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ABSTRACT
The effectiveness of human-robot interactions critically depends on
the success of computational efforts to emulate human inference of
intent, anticipation of action, and coordination of movement. To
this end, we developed two models that leverage a well described
feature of human movement: Gaussian-shaped submovements in
velocity profiles, to act as robotic surrogates for human inference
and trajectory planning in a handover task. We evaluated both
models based on how early in a handover movement the infer-
ence model can obtain accurate estimates of handover location and
timing, and how similar model trajectories are to human receiver
trajectories. Initial results using one participant dyad demonstrate
that our inference model can accurately predict location and han-
dover timing, while the trajectory planner can use these predictions
to provide a human-like trajectory plan for the robot. This approach
delivers promising performance while remaining grounded in phys-
iologically meaningful Gaussian-shaped velocity profiles of human
motion.

CCS CONCEPTS
•ComputingMethodologies→Machine learning approaches;
• Human-centered computing → Interaction devices; • Com-
puter systems organization → Robotics.
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1 INTRODUCTION
The use of service robots, designed to perform daily tasks and
support basic activities, has enormous potential to increase inde-
pendence and improve the quality of life for individuals with health
issues related to age and disability [7]. However, the effectiveness
of these robots hinges on their ability to integrate seamlessly into
our lives. Collaborative physical tasks in particular pose difficult
modeling challenges, as robots must emulate the inference of in-
tent, anticipation of action, and coordination of movement that
comes effortlessly to humans [1]. Handover, or the exchange of
objects between a human and their robot collaborator, represents
an essential function played by service robots in a home or assis-
tive living setting. Though human-human handover is a seemingly
simple task, it involves a complex perception-action coupling to
determine when and where the handover will happen and choose
an appropriate trajectory to receive the object [10]. Despite recent
advancements in sensing and control, human-robot handovers are
far from approaching the fluidity and flexibility of human-human
collaboration [2].

Here, we develop two models that leverage a well described
feature of human movement: Gaussian-shaped submovements in
human velocity profiles, to act as robotic surrogates for human
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Figure 1: Velocity profile decomposed into its principle sub-
movements. The complete velocity profile is depicted with
a red solid line, while submovements (modeled as Gaussian
curves) are depicted as dashed black lines.

inference and trajectory planning in a handover task. Continuous
velocity profiles measured from a variety of human motions can
be segmented into series of Gaussian-shaped components called
submovements, see Fig. 1 [4]. Submovements have been utilized
in autonomous robotics to generate complex motor behaviors that
emulate human trajectories, and can adapt to the perturbations of
a realistic environment [9]. This strategy has also been successfully
utilized for robotic control of complex motor tasks including reach-
ing movements, drawing 2D patterns, and tennis swings [3], hitting
a baseball [8], and tasks for service and household robots [11].

The Gaussian shape of submovements inspired our approaches
to modeling both human inference and trajectory planning. The
model for human inference utilizes Gaussian process regression: a
kernel based bayesian approach to regression. This approach allows
us to leverage our knowledge about the functional form of human
trajectories through the selection of a squared-exponential kernel.
The shape of the kernel function serves to represent the Gaussian
shape we observe in submovements. A similar approach using a
hybrid Gaussian process and stochastic classification model showed
promising results when applied to predicting human trajectories
for human-robot interactions [5]. The model for trajectory plan-
ning uses a similar but reversed approach, whereby a sequence of
submovements is calculated based on the results of the model for
human inference, and combined to form a complete velocity profile.
Submovements are calculated such that their individual contribu-
tions to the velocity profile account for updates to the predictions
of handover location and timing that exceed an error threshold.
This approach differs substantially from other approaches which
train models on human example trajectories, and may fail when
presented with handover cases which are not well characterized
in the training data [14]. This paper demonstrates the efficacy of
submovement inspired handover inference and trajectory planning
models for robotic control by describing model performance in

reproducing human inference and trajectory planning extracted
from experimental data collected during human-human handover.

2 METHODS
2.1 Experimental Setup and Data Collection
All protocols were conducted in conformance with the Declaration
of Helsinki and were approved by the Institutional Review Board of
Northeastern University. Two young healthy right handed individ-
uals participated after providing institutionally approved written
informed consent. Standing across from each other separated by
a 60cm square table (adjusted to be roughly waist height) table,
subjects performed 384 handovers in a single 180-min session, with
the trials spread over 2 Roles (Giver, Receiver) × 2 Leads (Initiator,
Follower) × 2 Objects (Small, Large) × 2 Initial position of the ob-
ject (Right, Left of the Giver) × 4 Final position of the object (Right
Shoulder (Top Right), Right Hip (Bottom right), Left Shoulder (Top
Left), and Left Hip (Bottom Left) of the Receiver) × 6 Trials per
combination of the other variables (5 standard trials, 1 perturbation
trial). The duration of the inter-trial intervals was randomized and
ranged from 1–3 s to prevent the giver from adopting a periodic
pattern, which could be used by the receiver as temporal cue. So,
each participant performed 192 trials as the Giver and 192 trials as
the Receiver, of which he/she performed 96 trials as the Initiator
and 96 trials as the Follower. Subjects wore earbuds, and separate
recorded instructions to each subject were played prior to each
trial describing the experimental condition. The start of each trial
was indicated by an acoustical signal delivered to the initiator. The
follower only received the instruction to grasp the object and was
not given the start tone. All trials started with the object and the
receivers hand placed on a copper tape-based electrical switch so
that lifting the hand (or object) off the tape broke the circuit and
provided a clear indicator of trial start.

A 21-IRED Motion Capture System (Qualisys AB, Sweden, 8 x
Oqus 700+ and 13 x Miqus M3, 100 Hz) was used to collect full body
position data. Separate 3D models were created for each participant
using the modified Helen Hayes marker set with 55 markers per
subject [6]. An additional 3 markers were placed on the object. IR
LED markers were attached to the copper switch to synchronize
motion capture data and the trial start indicator. Models were tested
only on data collectedwith the large object where the initiator of the
handover passed the object to the receiver (handover trials where
the initiator reached to receive the object from the follower, as well
as trials using the small object were not included in this analysis).
All handover trials were segmented from movement onset of the
initiator to receiver contact with the object. Trials were visually
inspected for lapses in marker detection. All analyses and models
were developed in MATLAB 2019b (Mathworks, Inc., Natick, MA).

2.2 Gaussian Process Regression
Gaussian process regression is a kernel-based Bayesian approach
to regression. The model consists of a probability distribution over
all possible functions that fit a set of training points, with a mean
function that can be used for regression prediction. The covari-
ance function (kernel) should reflect prior knowledge about the
form of function being modeled. In the handover prediction model,
we can leverage the representation of velocity profiles as linear
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combinations of Gaussian submovements by choosing the widely-
used squared-exponential kernel (reference equation). Here we
outline the standard Gaussian process regression implemented in
the model for human inference. [12]. Given a set of N input-output
pairs {x (i),y(i)}Ni=1, x

(i) ∈ X ⊂ Rnx , y(i) ∈ R related according to
an arbitrary model such as

y(i) = ψ (x (i)) + η(i) (1)

with η ∼ N(0,σ 2η ), and ψ ∈ H considered to be a function of a
reproducing kernel Hilbert space H defined over a compact set
X, GPs assume a Gaussian functional distribution as prior for the
function ψ |x (i) ∼ N(0,κ(x (i),x (i))), where κ is a kernel function
such that κ(·,x) ∈ H . For a set of input pointsX = [x (1), . . . ,x (N )]

the prior distribution for ψ becomesψ |X ∼ N(0,K), where K ∈

RN×N is the Gram matrix with entries [K]i j = κ(x (i),x (j)). For a
given set of measurements y = [y(1), . . . ,y(N )]⊤ associated with
the positions X , the prior distribution becomes

y ∼ N(0,K + σ 2ηI ). (2)

The predictive distribution allows one to evaluate the functionψ at
a new input value x . Thus, we have ψ |x ∼ N(0,κ(x ,x)) . Since y
andψ are jointly Gaussian their joint PDF is given by

y

ψ

 ∼ N
©­«0,


K + σ 2ηI κ(X ,x)

κ(x ,X ) κ(x ,x)

ª®¬ . (3)

Finally the predictive distribution can be obtained by conditioning
ψ over the observation and its respective positions as

ψ |y,X ,x ∼ N(µ(x), s2(x)) (4)

with

µ(x) = κ(x ,X )

(
K + σ 2ηI

)−1
y

= κ(x ,X )α (5)

s2(x) = κ(x ,x) − κ(x ,X )

(
K + σ 2ηI

)−1
κ(X ,x)

= κ(x ,x) − β⊤β (6)

where α =
(
K + σ 2ηI

)−1
y = (L⊤)−1L−1y, and L is the lower-

triangular Cholesky decomposition ofK+σ 2ηI , and β = L−1κ(X ,x).

2.3 Human Inference Model
The Gaussian process regression model for human inference GP
takes as input a one-second history of unidimensional velocity data
vk−L:k (where L is one second’s worth of samples), and outputs a
mean velocity function v̂k :k+L which is projected one second into
the future for regression predictions.

v̂k :k+L = GP(vk−L:k ) (7)

Input data are cropped at one second for each prediction to improve
the algorithm’s runtime, with the justification that an accurate
prediction can still be obtained while omitting kinematics data
from more than one second prior to the time when the prediction
is made. Due to the squared-exponential covariance function, the
predictions will invariably converge to zero, providing a time of
handover, t̂h,k , based on the reasonable assumption that handover
will occur when the giver velocity approaches zero. Using this point

of convergence (selected as the time after the current sample when
velocity drops below a threshold of 0.005m/s), we can obtain a
prediction of handover time.

t̂h,k = arд(v̂k :k+L < 0.005) (8)

By integrating the mean velocity function from the current time
to the point of convergence (v̂k :k+L), we obtain a position offset
in three dimensions from the initiator’s current position objxyzk to
the locus of handover. This offset gives us our prediction for locus
of handover p̂k .

p̂k = obj
xyz
k +

∫ k+L

k
v̂k :k+L(t) dt (9)

2.4 Trajectory Planning Model
The trajectory planning model takes as input the current receiver
hand position and the output from the inference model of the
giver’s intention, and returns a velocity profile for movement to
the predicted locus of handover (arriving at the predicted timing
of handover). As the inference model updates throughout the trial,
the trajectory planning model waits for the error p_e between the
previous predicted locus of handover p̂k−1 and the current predicted
locus of handover p̂k to exceed a distance threshold. This triggers
the release of a Gaussian-shaped submovement whose amplitude A
and standard deviationσ are calculated to account for the new offset
in predicted locus of handover. The submovements are combined
linearly to form a complete velocity profile. Several free parameters
(defined below) were tuned via grid search over a range of possible
values, and finding the combination of values that minimized root
mean squared error between the model trajectory output and the
human receiver’s actual trajectory across all trials.

p_e = p̂k − p̂k−1 (10)
if p_e exceeds the error threshold of 1cm, and more than 50ms have
elapsed since the last correction, a new submovement is triggered
with the following amplitude:

s = 1/
√
2π (11)

A =
p_e
(σ/s)

(12)

σ will be calculated such that the correction will complete at the
predicted timing of handover at time k , t̂h,k :

σ =
t̂h,k − µ

4
(13)

Reaction time r_t is a free parameter defined below. This parameter
allows for an urgency factor that results in submovements with
higher amplitude and smaller standard deviation when the target
handover time approaches. The standard deviation for each sub-
movement is calculated by taking the time difference between the
current time and the predicted timing of handover, and dividing
this value by 4. A minimum width for standard deviations is set
to prevent non-physiological velocity profiles. The center of the
submovement is defined as:

µ = r_t + k (14)
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Figure 2: Handover experiment. In A both participants are in their starting positions (giver in blue, receiver in red). In B the
giver begins to move towards the locus of handover. The human inference model uses motion capture data from the giver’s
index finger to output predictions for location and timing of handover (green dot). In C the trajectory planning model uses
the output of the human inference model to generate and continuously update a trajectory plan that will bring the receiver’s
hand to the locus of handover at the predicted timing of handover. In D the receiver follows the trajectory plan to grasp the
object, successfully completing the handover.
This prevents an instantaneous correction to a prediction error.
Each submovement is defined using the probability density function
for a Gaussian distribution:

f x =
1

σ
√
2π

e(−0.5((x−µ)/σ )
2) (15)

The complete velocity plan for the receiver is obtained by summing
all individual submovements:

f xTotal =
n∑
i=1

Ai × f xi (16)

• Reaction time (283.3ms): the time betweenwhen the error
threshold for prediction is exceeded, and the center of the
submovement correcting for that error.

• Correction latency (192.3 ms): the delay following move-
ment onset before the primary movement is overridden.Even
if an error exceeding the error threshold is observed, a cor-
rective submovement is not released until this delay is com-
pleted.

• Distance threshold (1 cm): theminimumdistance between
a current and previous prediction to trigger a corrective
submovement.

• Time threshold (50 ms): the minimum time between suc-
cessive submovement corrections.

• Primarymovement delay: Primarymovement delay µpr im
is calculated separately for X, Y, and Z components of the ve-
locity. Three values: µ_x_f actor , µ_y_f actor , and µ_z_f actor
aremultiplied by the standard deviation of the primarymove-
ment to determine this delay for each component.

µpr im_x = µ_x_f actor × σpr im_x (17)
µpr im_y = µ_y_f actor × σpr im_y (18)
µpr im_z = µ_z_f actor × σpr im_z (19)

• Minimum st_dev (300 ms): minimum standard deviation
for a submovement.

3 RESULTS
The performance of handover inference and trajectory planning
models was assessed separately by comparing model outcomes to
empirical data derived from human-human experiments.

3.1 Handover Location and Timing Prediction
Results

Model outputs were analyzed in aggregate for location and timing
prediction accuracy 1000ms, 800ms, 600ms, 400ms, 200ms and 0ms
prior to receiver contact. The results for location prediction (see
Fig. 4) show a marked reduction in mean location prediction error
600ms prior to handover, with the error consistently less than 3cm
at this time point. Mean location errors further reduce to 1-2cm
300ms prior to handover. Similar results of low errors in location
prediction 600ms prior to handover are shown for a single trial, see
Fig. 3. Handover timing predictions showed initial improvement
in prediction quality until around 200ms prior to handover before
resulting in amean overestimation of handover time. The prediction
of timing suffers partially from small adjustments made by the giver
immediately prior to receiver contact. These small movements can
cause an overestimation of handover time due to their tendency to
produce submovements with small amplitudes and large standard
deviations. Given the model definition of handover time which
searches for future convergence of the velocity prediction to zero,
and the additive property of these submovements, final adjustments
will often result in increasing overestimation of handover time.

3.2 Trajectory Planning Results
To assess the performance of the trajectory planning model, the
model was run on the same data session used to test the human
inference model. The location and timing prediction outputs from
the human inference model were fed to the trajectory planning
model, simulating a handover experiment. Using predictions of han-
dover location and timing, the trajectory planning model returned
a velocity profile for the receiver, and continuously revised the
profile to accommodate for updates in these predictions. Root Mean
Square Error (RMSE) was used to evaluate the similarity between
the X, Y, and Z components of the final trajectory plan (integrated
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Figure 3: Visualization of the accuracy in model predictions
of handover location (left axis) and timing (right axis). All
traces are cropped from movement onset to receiver con-
tact with the object. Handover location accuracy improves
to within 2cm of the true locus of handover 350ms prior
to handover. The handover timing prediction improves un-
til 300ms prior to handover, before overestimating the true
handover time. This late drop in accuracy is likely due to
the small adjustments in the giver’s trajectory immediately
prior to receiver contact.

velocity), and the ground truth trajectory of the human receiver
for that trial. A grid search was performed over a range of possi-
ble values to find those values that minimized RMSE across trials
from all four handover locations. These values were as follows: Cor-
rection Latency (192.3ms), Reaction Time (283.3ms), mu_x_factor
(3.09), mu_y_factor (3.42), and mu_z_factor (2.48) (the values for
mu_x_factor, mu_y_factor, and mu_z_factor control the delay of
the primary movement). Larger factors for a particular component
(X, Y, or Z) resulted in a greater delay for that component of the
primary movement.

The trajectory planning model was then run using optimal pa-
rameters. For comparison, variability of human receiver movements
(per handover location and component position) were calculated
as the RMSE between ground truth receiver trajectories and the
mean receiver trajectory for each position. The RMSE between the
model output and human receiver trajectories was comparable to
that observed between those human receiver trajectories and the
mean human receiver trajectory for all locations except bottom
left, see Fig. 7. The bottom left location showed a larger RMSE
between model and human trajectory than between human trajec-
tory and mean human trajectory for X and Z components of the
movement. These differences are also evident in the position traces
for model outputs and receiver trajectories, see Fig. 5, where the
model predicted earlier movement in the X and Z directions than
what was observed in the corresponding human receiver trajecto-
ries. Representative traces for each location were plotted in three
dimensional space for additional visualization of model output and
human receiver trajectories, see Fig. 6.

Figure 4: Prediction accuracy prior to handover across 32
handover trials. The mean location prediction improves to
within 3cm of the target location as early as 600ms prior to
handover. The variation in prediction quality across trials
reduces significantly for predictions made later in the trial.
Prediction of handover time improves until roughly 200ms
prior to handover, after which themodel overestimates han-
dover time. This may be due to small adjustments made by
the giver immediately prior to receiver contact which do not
significantly change handover location, however, the sub-
movements produced by small adjustments can lead to an
overestimation of handover time.

4 DISCUSSION
The proposed models of human inference and trajectory planning
showed promising similarity to human-to-human handover. The
model of human inference could predict the location of handover
within 2–3 cm, 600 ms prior to handover. The model also provided a
timing predictionwhich, although overestimating the true handover
time by an average of 200 ms, could still be used successfully in tra-
jectory planning. The trajectory planning model produced smooth,
sigmoidal position profiles characteristic of human motion for all
conditions that were qualitatively similar to the human receiver.
The RMSE between actual receiver trajectories and model trajec-
tories fell within the variability observed for the human receiver,
except for the bottom left handover location. The dependence of
model performance on the task constraints of handover could be
explored in future research. A potential improvement addressing
the larger error observed for the bottom left handover location
could be to delay the release of corrective submovements based on
error in all three dimensions (X, Y, and Z ). This condition could
prevent the early release of corrections in the Y and Z dimensions,
which appear to be contributing to these errors.

Our submovement based trajectory planner has potential ad-
vantages over existing trajectory planners designed to emulate a
human-like reaching. During handover with a human giver, the
object position is constantly changing, requiring frequent updating
of the receiver trajectory. Models which require training on human
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Figure 5: 2D visualization in time of the outputs of the receiver trajectory planning model. Each model output (dashed line) is
paired by color with the true receiver trajectory for the same trial (solid line), and broken down into X,Y, and Z components.
Three trials for the bottom left handover condition are depicted (red, green, and blue traces), along with the mean receiver
trajectory (gray).

Figure 6: 3D visualization of the trajectory planning model
output. One trial is selected for each of the four handover
locations (top right, top left, bottom right, and bottom left).
Motion capture traces of the object are depicted with solid
blue lines. Ground truth receiver trajectories for those four
trials are depicted with solid pink lines whilemodel outputs
are depicted as dashed pink lines.
examples may perform poorly or fail to maintain human-like mo-
tion when presented with giver movement patterns not included
in the training set [10, 14]. Our submovement based approach both
enables real-time adaptation to changes in object prediction and
retains smoothness in the complete trajectory plan. Therefore, our
additive Gaussian approach offers a generalizable model for trajec-
tory planning to simulate the submovements we observe in humans
as they adapt to changes in their internal predictions of handover
location and timing.

In summary, the proposed models for human inference and tra-
jectory planning offer promising performance for human-robot
handover while remaining grounded in a physiologically meaning-
ful feature of human motion: Gaussian submovements in velocity

Figure 7: Results of root mean square error (RMSE) anal-
ysis on the trajectory planning model. RMSE was calcu-
lated between all individual receiver trajectories and the
mean receiver trajectory (blue bars), as well as between each
model trajectory and its corresponding receiver trajectory
(red bars) across four handover target locations. Error be-
tween the model output and true receiver trajectories was
comparable to the inter-trial variation observed across all re-
ceiver trajectories, with the exception of the X and Z compo-
nents for the bottom left condition. Human receivers exhib-
ited a delayed primary movement in the X and Z directions
for this condition as compared to the trajectories predicted
by the model.
profiles. Our study had several limitations. Data used to assess the
model in this pilot study came from a single human dyad perform-
ing handover. We have plans to test performance of our models on
a larger dataset consisting of multiple pairings of the same partici-
pant to explore the model generalizability to individual behavior.
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The models described here utilize only index finger motion for
inference and trajectory planning. Motion capture data used here
was extracted from a larger dataset consisting of kinematic and
gaze data collected on human-to-human object handovers using
RGB-D cameras, 3D motion capture, inertial measurement units,
force-sensitive finger sensors, and wearable eye tracking headsets.
Data fusion from multiple sensors has the potential to increase
model performance and robustness to intermittent loss of a single
sensing modality as can be expected in real world environments.

Finally, in this pilot study, we did not compare our model output
with those from previous models. Several directions for enhance-
ments to inference and trajectory models can be pursued. One such
direction is the use of a prior-based model in unison with the online
model for human inference. This approach could provide highly
accurate initial predictions of handover location and timing while
retaining the ability to correct for unexpected changes in position
of the object. We also plan to explore the effects of the location
and timing error thresholds used to trigger the release of corrective
submovements in the trajectory planning model and how these
values correspond to humans’ internal representation of prediction
error [13]. These parameters likely have a profound effect on the
shapes of the trajectories produced. We plan to incorporate these
models, with improvements, into empirical testing of human-robot
handover to investigate whether the proposed inference and tra-
jectory planning models provide more fluid handover and greater
user comfort when interacting with robots.
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