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Abstract—In this paper we present a hybrid neural net-
work augmented physics-based modeling (APBM) framework for
Bayesian nonlinear latent space estimation. The proposed APBM
strategy allows for model adaptation when new operation con-
ditions come into play or the physics-based model is insufficient
(or incomplete) to properly describe the latent phenomenon. One
advantage of the APBMs and our estimation procedure is the ca-
pability of maintaining the physical interpretability of estimated
states. Furthermore, we propose a constraint filtering approach
to control the neural network contributions to the overall model.
We also exploit assumed density filtering techniques and cubature
integration rules to present a flexible estimation strategy that can
easily deal with nonlinear models and high-dimensional latent
spaces. Finally, we demonstrate the efficacy of our methodology
by leveraging a target tracking scenario with nonlinear and
incomplete measurement and acceleration models, respectively.

Index Terms—Nonlinear filtering; Target tracking; Hybrid
Neural Network; Physics-based Neural Models; Gaussian filter-
ing.

I. INTRODUCTION

Complex nonlinear dynamic models can be found in nu-
merous applications such as describing biological systems,
weather prediction, fluid dynamics, and target tracking, to
name but a few. In many such applications the “true” underly-
ing model can be very complex and context-dependent. For in-
stance, this is the case for sunlight interaction with materials in
the Earth surface [1], [2], disease spread [3], indoor positioning
[4], navigation [5], or predicting the trajectory of a target [6].
In these examples, the model governing the evolution of
such signals is often either very complex or unknown (in the
case of target tracking) leading to more complex optimization
strategies and/or other sources of information to be able to
provide accurate predictions.

In this context machine learning (ML) algorithms become
appealing. This is the case especially when accurate physical-
based models are too complex or unknown. One drawback of
purely data-driven ML strategies relates to the interpretability
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and physical meaning of estimated quantities especially when
one aims at recovering latent states [7], [8].

In this contribution, we are especially interested in leverag-
ing ML strategies to improve nonlinear dynamical models. In
this context, ML approaches can be classified into hybrid [9],
[10], where data driven models are used in combination with
physics-based models, or purely data-driven following an end-
to-end learning philosophy [11]. The hybrid approaches focus
on providing corrections to estimates. The algorithms [12]
and [13] use back-propagation NNs to correct position es-
timates.The algorithm proposed in [14] predicts nonlinear
velocity and acceleration corrections to linear predicted states
by a recurrent NN and the algorithm [15] augments the error-
state Kalman filter (KF) by an RBF NN to compensate for
the lack of KF performance. The algorithms use NNs that are
unaware of the system model.

In addition to providing estimate corrections, several hybrid
approaches directly estimate the state. In [16] two algorithms
based on deep long short-term memory (LSTM) NNs were
proposed, which provide estimates either in two steps (time-
update and measurement-update) or in a single step. Both
algorithms are unaware of the system model and the learning
is based on estimated quality optimization. The algorithm [17]
uses the NN in the prediction step of the KF to provide not
only the estimate but also the associate covariance matrix. In
this case, the learning optimizes the negative log-likelihood of
multivariate normal distribution. An alternative approach was
proposed in [18], where the NN was used to learn the system
model parameters such as state transition and measurement
matrices, and associated noise covariance matrices under the
framework of Bayesian estimation. Recently, deep Kalman fil-
ters strategies were proposed in a smoother-like approach [19]
and efficient KF implementations where the Kalman gain is
approximated by NNs [20]. In both works however, the hybrid
APBM model component were not studied.

The data-based approaches use plain data to learn the
mapping from observations to the states to avoid complications
of the hybrid methods. In [21] a large amount of data was
simulated to be able to achieve end-to-end learning while
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in [22] all components of the process, i.e., data generator,
sliding window, centralization strategy, and the learner, have
been proposed.

In this paper we are concerned about nonlinear dynamical
models of the type:

ẋt = f(xt) + qt (1)
yt = h(xt) + rt

where xt ∈ Rdx is the state vector, f is the state transition
function and qt is an arbitrary zero-mean noise term inde-
pendent of xt. More specifically, we are interested in models
where the transition function f is not fully representative of
the true state dynamics due to either simplistic physics-based
models not being capable to explain time-varying dynamic
scenarios or other unmodeled factors. In such a scenario, we
propose a hybrid neural network augmentation approach capa-
ble of augmenting physics-based models. To cope with time-
varying dynamics we use a continuous learning strategy con-
sisting of augmenting the states with model parameters leading
to recursive Bayesian estimation (RBE) approaches [23]. One
of the challenges of incorporating neural network parameters
as states in an RBE approach is related to the computational
complexity inherent to high-dimensional state spaces espe-
cially when nonlinear or non-Gaussian models are in play. To
partially mitigate this issue, we leverage Cubature integration
strategies in association with Gaussian assumptions, i.e., the
Cubature Kalman filter [24]. We also propose a strategy to
control the neural network contribution to the overall dynamic
model.

This work is organized as follows. In Section II we present
our NN augmentation strategy. In Section III we present an
augmented likelihood mechanism to control the NN’s contri-
bution. In Section IV we discuss the Cubature integration and
relationship with different filtering approaches. Experiments
are presented in Section V and final remarks discussed in
Section VI.

II. HYBRID NEURAL NETWORK PHYSICS-BASED MODELS

In this section, we aim at augmenting the ODE model in (1)
using neural networks. The model mismatch might occur due
to missing ODE components or inaccurate models that do
not match the governing physics of the phenomenon. In this
contribution, we aim at the latter. That is, we assume that the
number of states is known and somehow represented by the
physical model f . The discretization of (1) is

xk = xk−1 + Tsf(xk−1) + Tsq̃k−1 (2)
yk = h(xk) + rk

where Ts is the sampling period and q̃k−1 is the independent
discretized noise term. Thus, we propose to augment the
discretized dynamical model in (2) as:

xk = g (f(xk−1),xk−1;θ) + qk−1 (3)

where g(·) : Rdx × Rdx → Rdx is a vector-valued function,
modeled as neural network, and parametrized by θ ∈ RP , that
we assumed to have incorporated the sampling period Ts, and

qk−1 = Tsq̃k−1. The model in Eq. (3) is flexible enough that
allow for both replacing whole ODEs (e.g, f(xk) = 0), or
fusing arbitrary functions of xk and f(xk). We call models
extended in such fashion augmented physics-based models
(APBMs).

III. CONTROLLING NEURAL NETWORK CONTRIBUTIONS IN
AUGMENTED MODELS

One important point regarding the hybrid dynamical model
is the capability of controlling the contribution of the neu-
ral augmentation. In this section we propose to introduce
a regularization over the NN model parameters θk by an
augmentation of the likelihood model [25] as p(yk, θ̄|xk,θk),
where θ̄ is the P -dimensional vector designed such that
g
(
f(xk),xk;θ = θ̄

)
= f(xk). This allows us to re-write the

state-space model in (3) as:

θk = θk−1 + qθk−1 (4)
xk = g(f(xk−1),xk−1;θk−1) + qxk−1 (5)yk
θ̄

 =

h(xk)

θk

+

ryk
rθk

 (6)

where qθk−1 ∼ N (0,Qθ), qxk−1 ∼ N (0,Qx) model the dy-
namic model uncertainty, ryk ∼ N (0,Ry) is the measurement
noise, and rθk ∼ N (0, 1

λI) defines the ball around θ̄ of
possible solutions for θk. The posterior can then be re-written
as

p(xk,θk|y1:k, θ̄) ∝ p(yk, θ̄|xk,θk) (7)

×
∫ ∫

p(xk|xk−1,θk−1)p(xk−1|θk−1,y1:k−1, θ̄)

× p(θk|θk−1)p(θk−1|y1:k−1, θ̄)dxk−1dθk−1

In this Gaussian case the recursive Bayesian filtering solution
for the above problem is equivalent to the solution to the
following problem for the state mean at every time instant
k:

(x̂k, θ̂k) = arg min
(x,θ)

‖yk − h(x)‖2R−1 + λ‖θ − θ̄‖2 (8)

+ ‖x− f(x̂k−1)‖2
[P̂ x
k|k−1

]−1 + ‖θ − θ̂k−1‖2[P̂ θ
k|k−1

]−1

where the terms correspond to data fit, neural network param-
eter regularization, and the two regularizations resulting from
the the dynamical models for the states x and θ, respectively.
We call attention to the fact that the parameter λ controls
the regularization term ‖θ − θ̄‖2 and, thus, the contribution
of the neural network model. For instance, when λ → ∞
the parameter constraint is fully enforced in (8) completely
eliminating the neural augmentation contribution to the model.
When λ → 0 the parameter constraint in (8) is turned-off
leading to free neural network model contributions that can,
possibly, overpower the physics-based model.
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IV. EFFICIENT GAUSSIAN FILTER MODEL LEARNING

In this paper, we train a hybrid ODE and neural network
model using recursive Bayesian state estimation. Specifically,
when the predictive and observation models are linear and
Gaussian, the state posterior recursion integrals can be solved
analytically leading to the well-known Kalman time and
measurement update equations [26]. When nonlinear models
are in play, the required integrals often become intractable
and numerical strategies must be sought [27]. Alternatives
include linearization of nonlinear functions (extended Kalman
filters, EKF) or sampling methods such as particle filters [28],
unscented Kalman filters (UKF) [29], or cubature Kalman
filters (CKF) [24], which assume different levels of system
simplicity. For instance, EKF, UKF, and CKF assume Gaus-
sianity of the measurement and transitional models while
handling the integration exploiting this Gaussianity in different
ways. While EKF linearizes the models using a first-order
Taylor expansion, UKF and CKF use unscented and cubature
rules to compute integrals of the form

I(`) =

∫
D
`(x)p(x)dx (9)

where ` is a nonlinear function of x ∈ Rdx and p(x) =
N (µ,Σ) is a Gaussian PDF with mean µ and covariance Σ,
as a weighted sum of function evaluations of a finite number
of deterministic points. For the third-degree cubature rule, the
integral in (9) can be approximated as

I(`) ≈ 1

2dx

2dx∑
j=1

`(S>ξj + µ) (10)

where ξj = [1]j
√

2dx/2 are deterministic points [24], and
S is the lower triangular Cholesky decomposition such that
Σ = SS>. It is important to highlight that the cubature rule
demands only two points per dimension of x, i.e., 2dx, to
evaluate the sum in (10), making it more suitable when work-
ing in high-dimensional state-spaces. Assuming Gaussianity
of state posteriors, the CKF can solve the integrals required
in the Bayesian recursion as well as the moments (mean and
covariance) of the new state posterior [24].

In contrast, particle filters do not assume any particular dis-
tribution; instead, they approximate the distribution as a linear
combination of Dirac deltas. Thus, moments of propagated
particles can be easily computed. One drawback of particle
filters is the high number of particles needed to accurately
represent distributions. This issue is profoundly aggravated
if the state-space dimension is large, making this filtering
strategy unfeasible in such scenarios [6].

V. EXPERIMENTS

In this section, we present two experiments designed to
test different forms of model augmentation. In the first, see
Section V-A, we consider the Lorenz Attractor [30] where we
replaced a whole ODE with a neural network model. We keep
the approach hybrid in the sense that we kept the remaining
ODEs fixed. In the second example, see Section V-B, we

exploit a target tracking example where the data was generated
with a model that contains additive constant velocity and
sinusoidal components. In this example, we augmented the
constant velocity model with a neural network.

For both examples, we performed Monte Carlo simulations
using 100 runs. To measure the filtering performance we
consider the tracking root mean-squared error (RMSE):

RMSEk =

√∑NMC
r=1 ‖p

(r)
k − p̂

(r)
k ‖2

dNMC
(11)

with d is the dimension of pk, NMC is the number of Monte
Carlo runs, and p̂k is the estimated states of interest, e.g.,
position for the target tracking case and all states for the
Lorenz Attractor example.

To analyse the evolution of the weights over time with
different λ, we computed the average variance of parameters
as:

E[Var(θk)] =

∑NMC
r=1 Var(θ(r)

k )

NMC
(12)

where Var(θ(r)
k ) is the sample variance of the neural network

parameters for the r-th Monte Carlo run.

A. Application to chaotic systems

In this section we present the Lorenz Attractor [30] as an
example chaotic system to test our approach. The Lorenz
Attractor consists of three ordinary differential equations
(ODEs):

ẋ1 = σ(x2 − x1) (13)
ẋ2 = x1(ρ− x3) (14)
ẋ3 = x1x2 − βx3 (15)

where xi, i = 1, 2, 3, are the system states and σ, ρ, β ∈ R are
model parameters.

The model can be discretized as

xk = xk−1 + Tsf(xk−1) (16)

where xk ∈ R3 is the vector of states and f(·) =
[f1(·), f2(·), f3(·)]> is a vector valued function representing
the dynamical model in Eqs. (13)–(15). We generate measure-
ments according to the following measurement equation:

yk = xk + nk , (17)

where nk ∼ N (0, 0.001I). The initial state was set as x0 =
(1, 1, 1)>, and the dynamical model parameters as σ = 28,
ρ = 10, and β = 8/3, and Ts = 1s.

In this first experimental setup, we follow a procedure
similar to the one in [10] where we replaced an ODE of
the system was replaced by a neural network. In the example
presented in this section we replaced the ODE for x1 in Eq.
(13) with a neural network γ(·). In this case, the discretized
NN-based version of (13) can be written as

x1,k = x1,k−1 + γ(xk−1;θ) (18)
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leading to:

g(f(xk−1),xk−1;θ) =


x1,k−1 + γ(xk−1;θ)

f2(x1,k−1, x3,k−1)

f3(xk)

 (19)

where f2 and f3 represent the functions in the RHS of (14)
and (15), respectively, and Ts has been incorporated into the
model parameters θ. The structure of γ was consists of 3
inputs, a hidden layer with 5 hidden units and ReLu activation
functions, and a single output neuron with linear activation.

The experiment results are summarized in Figures 1 and 2.
Figure 1 depicts the Lorenz Attractor ground-truth and the

Fig. 1. Single simulation demonstrating the effectiveness of the APBM while
tracking a chaotic system.

estimation using the APBM with λ = 0 and the estimation
using the true model. We considered only λ = 0 for the
APBM since in this case we completely replaced the ODE
corresponding to the state x1, and therefore any θ̄ satisfying
g
(
f(xk),xk;θ = θ̄

)
= f(xk) would be the true ODE.

Analyzing Fig. 1 we can observe that, even under noisy
observations, both filtering processes were able to approximate
the chaotic system reasonably well. Although at first sight
it seems that the APBM better approximates the Attractor’s
ground truth, the RMSE over MC realizations depicted in
Fig. 2 shows a small decrease in performance of APBM with
respect to the true model.

B. Application to target tracking

State estimation is widely used in many navigation and
tracking related applications [5], which would benefit from
the proposed data augmentation models. To test the discussed
approach, we consider a two-dimensional target tracking appli-
cation with additive constant velocity [31] and sinusoidal [24]
terms. Measurements from two collocated sensors measuring
received signal strength (RSS) and bearings were considered:

yk =

 10 log10

(
Ψ0

‖p0−pk‖q

)
∠(p0,pk)

+ nk , (20)

with p0 being the position of the sensors, pk the unknown
position of the target, 10 log10 (Ψ0) = 30 dBm, q = 2.2

Fig. 2. Result of training on 100 Monte Carlo simulations. Average RMSE for
the true model (blue triangles) is compared to the estimations of the APBM
approach (orange squares). Note that the APBM is performing worse than the
true model in the first 103 seconds but the performance is approaching the
true model performance as the parameters of the APBM are being trained.
RMSE across different Monte Carlo simulations are similar due to the usage
of same the ρ, β, and σ parameters throughout the simulations.

the path loss exponent, ∠(p0,pk) denoting the angle between
locations p0 and pk in radians, and nk ∼ N (0, diag(1, 0.1))
the measurement noise. Sensors were located at the origin of
the coordinate system, p0 = (0, 0)>.

The dynamics of the target were simulated from

xk = (F +Gk−1)xk−1 +Muk−1 , (21)
Ωk = Ωk−1 + vk−1

with

F =


1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1

 ,

Gk−1 =


0 sin Ωk−1Ts

Ts
0 − 1−cos Ωk−1Ts

Ωk−1

0 cos Ωk−1Ts 0 − sin Ωk−1Ts

0 1−cos Ωk−1Ts
Ωk−1

0 sin Ωk−1Ts
Ωk−1

0 sin Ωk−1Ts 0 cos Ωk−1Ts


xk = (xk, ẋk, yk, ẏk)> being a state vector, composed of the
two-dimensional position (pk = (xk, yk)>) and velocity of
the target (ṗk = (ẋk, ẏk)>), respectively, and Ωk being an
angle state. In (21), Ts = 1s is the sampling period and uk ∼
N (0, 0.1 · I) is the process noise for vector of position and
velocities, while vk ∼ N (0, 0.1) is the process noise for the
angle Ωk . The true trajectory was initialized at

x0 = (100, 100, 0, 0)> (22)

and the estimated x̂0 was drawn from a Gaussian distribution
with mean x0 and covariance diag (0.1, 0.1, 0.01, 0.01).

With this setup, the trajectory described by a target moving
for T = 500 seconds was generated. Results were averaged
over 100 independent Monte Carlo runs and trajectories, and
thus the results are trajectory-independent.
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To test the capability of APBM models to model unknown
parcels of the model, we augment a constant velocity model
with a neural network. More precisely we consider:

g(f(xk−1),xk−1;θ) = Fxk−1 + γ(xk−1;θ) (23)

where γ(·) is a neural network with one hidden layer with 5
neurons and ReLu activation function, an output layer with 4
neurons and linear activation, and parameterized by θ, leading
to a total of 49 parameters including bias terms. As showed
in (21) the term Fxk−1 is a simple constant velocity model.

Fig. 3. Comparison of APBM and CV (constant velocity model) for a single
simulation. APBM with λ = 10 (gray squares) tracks the ground truth path
(red stars) with a smaller error compared to constant velocity model (CV)
(blue squares).

Figure 3 presents one realization of the experiment where
the ground-truth and estates estimates with APBM (with
λ = 10) and constant velocity (CV) model are depicted. It
can be observed that the APBM approach can track with
a smaller error due to the flexibility acquired with the NN
component. As expected, the improvement of the APBM with
respect to the CV model can be especially noticed in sharper
curves. Figure 4 depicts another realization now including
APBM with different λ values. While the performance of
λ ∈ [0.01, . . . , 10] can be hardily distinguished, the estima-
tions obtained using the CV model and APBM with λ = 106

overlap and are clearly worse. This behavior can be more
consistently demonstrated in Fig. (5) where the evolution of
the RMSE computed over MC realizations for CV and APBM,
with different values of λ, models are shown.

Further analyzing Fig. 5, we notice that λ = 0.01, λ = 0.1,
and λ = 10 yielded to similar RMSE reaching RSMEs under
2m for t = 500s, that λ = 0 led to the worse result with
RMSE above 5m, and, as expected, the RMSE for the APBM
with very high λ and the CV models are almost identical,
with RMS just under 3m. These results indicate that including
the constraints over the neural network parameters may lead
to improved performance over the unconstrained version and
that λ→∞ leads to the CV model as expected.

Fig. 4. Result of a single tracking simulation emphasizing the contribution
of λ on the tracking performance. Black line is the ground truth. λ = 0.01
(red triangles), λ = 0.1 (gray squares), and λ = 10 (blue circles) are in a
range for λ that results in low RMSE tracking. λ = 106 (purple pluses) and
CV (orange squares) are overlapping.

Fig. 5. Result of training on 100 Monte Carlo simulations. Average RMSE
for Monte Carlo simulations using different λ values are reported. Dashed
lines are representing estimated values. RMSE values for the constant velocity
model (orange stars) and APBM regularized with λ = 106 (purple plus) are
overlapping.

Finally, we observed the effect of λ in the evolution of
the neural network parameters. We utilized the Eq. (12) to
calculate the mean of the variance of parameters at a step
k for all simulations. Figure 6 demonstrates that increasing
the λ forced the parameters to remain close to 0 and we can
regularize the parameters by adjusting λ accordingly.

VI. CONCLUSION

In this paper, we present a systematic neural augmentation
approach centered on physical-based models. The motivation
for such an approach is rooted in the desire to produce
meaningful and interpretable results while making simplistic
models more flexible and capable of adapting to different
operation scenarios. Furthermore, we presented a simplistic,
yet efficient, strategy to control the neural network contribution
to the overall model. We showed with simulations that i)
the whole of such constraint over the NN parameters is not
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Fig. 6. Mean of variances of weights across all 100 Monte Carlo simulations.
Eq. 12 is used for all lines. The x-axis demonstrates the time and the y-axis
demonstrates the mean of variance of all weights at a time step. Weights are
initialized as zeros, and the evolution of the weights in time for different λ
values is reported. Note that weights trained with a greater regularization term
λ have a smaller variance.

negligible since it led to better results when compared with
the unconstrained version; and ii) that our intuition regarding
λ, discussed in Section III, was correct.
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and Cédric Richard, “Kalman filtering and expectation maximization
for multitemporal spectral unmixing,” IEEE Geoscience and Remote
Sensing Letters, 2020.

[3] Parul Arora, Himanshu Kumar, and Bijaya Ketan Panigrahi, “Prediction
and analysis of covid-19 positive cases using deep learning models: A
descriptive case study of india,” Chaos, Solitons & Fractals, vol. 139,
pp. 110017, 2020.

[4] D. Dardari, P. Closas, and P.M. Djuric, “Indoor Tracking: Theory,
Methods, and Technologies,” IEEE Trans. on Vehicular Technology,
vol. 64, no. 4, pp. 1263–1278, April 2015.

[5] Jindrich Dunı́k, Sanat K Biswas, Andrew G Dempster, Thomas Pany,
and Pau Closas, “State estimation methods in navigation: overview and
application,” IEEE Aerospace and Electronic Systems Magazine, vol.
35, no. 12, pp. 16–31, 2020.

[6] Tales Imbiriba and Pau Closas, “Enhancing particle filtering using
gaussian processes,” in 2020 IEEE 23rd International Conference on
Information Fusion (FUSION). IEEE, 2020, pp. 1–7.

[7] L. Haoqing, R. A. Borsoi, T. Imbiriba, P. Closas, J. C. M. Bermudez, and
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