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The COVID-19 pandemic has accelerated interest in virtual reality (VR) for education,
entertainment, telerehabilitation, and skills training. As the frequency and duration of VR
engagement increases—the number of people in the United States using VR at least once
per month is forecasted to exceed 95 million—it is critical to understand how VR
engagement influences brain and behavior. Here, we evaluate neurophysiological
effects of sensory conflicts induced by VR engagement and posit an intriguing
hypothesis: the brain processes VR as a unique “context” leading to the formation and
maintenance of independent sensorimotor representations. We discuss known VR-
induced sensorimotor adaptations to illustrate how VR might manifest as a context for
learning and how technological and human factors might mediate the context-
dependency of sensorimotor representations learned in VR.
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1 INTRODUCTION

The COVID-19 pandemic has accelerated interest in virtual reality (VR) for education (Affouneh
et al., 2020; Pears et al., 2020; Pregowska et al., 2021), entertainment (Sigala, 2020), telerehabilitation
(Mantovani et al., 2020; Singh et al., 2020;Wang et al., 2020), and skills training (De Ponti et al., 2020;
Ehrlich et al., 2020). As the frequency and duration of VR engagement increases—the number of
people in the United States using VR at least once per month is forecasted to exceed 95 million
(Vailshery, 2021)—it is important to understand how VR engagement influences the brain and
behavior. Here, we evaluate the known behavioral and neurophysiological effects of sensory conflicts
such as visual-vestibular mismatch induced by VR engagement and posit an alluring hypothesis: the
brain interprets VR as a unique “context”, leading to the formation and maintenance of specific
sensorimotor representations for VR engagement. We provide a working definition of VR as a
context and offer examples of how context-specificity of VR may influence the brain and behavior at
different levels of sensorimotor functioning: vestibulo-ocular reflex (VOR) gains, visuomotor
adaptation of voluntary movements, and spatial navigation. We next review several
technological and human factors that may influence the extent to which the brain might
interpret VR as a unique context for learning and performance. Finally, we identify the
implications of this hypothesis and avenues for additional scientific exploration.

What is a context for learning? Two definitions of “context” are relevant to VR. In experimental
psychology (associative learning (Aiba et al., 1994;Wasserman andMiller, 1997; Bouton, 2010; Rosas
et al., 2013; Urcelay and Miller, 2014), fear conditioning (Antoniadis and McDonald, 2000;
Marschner et al., 2008; Maren et al., 2013), semantic memory (Kutas and Federmeier, 2000;
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Federmeier et al., 2002; Jones et al., 2015)), context-specificity
implies that a behavior is more likely to be displayed in the state,
place, or circumstance in which it was learned (e.g., attending an
examination in the same location as the place of study results in
better retrieval of the subject matter). In sensorimotor
neuroscience, context-dependent adaptation refers to learning
multiple motor programs depending on specific sensory
conditions and efficiently retrieving the learned motor
programs later upon recognition of the same sensory
conditions (Glover and Dixon, 2001; Richter et al., 2004;
Burguiere et al., 2005; Welch and Ting, 2014; Neszmélyi and
Horváth, 2019). Here, we define a “VR context” as a set of sensory
cues associated with engagement with immersive head-mounted
display-based virtual reality (HMD-VR), and “context-dependent
learning” as the memory of learned adaptations that previously
yielded reduced sensory conflict and hence more accurate
behavior in VR. In this perspective, we focus our attention on
the context-dependencies of the VR experience agnostic to the
virtual scene, task, or paradigm. We, therefore, focus more
directly on the sensorimotor aspects of the “VR context.”
However, we do not exclude the possibility of context-
dependent behavioral patterns associated with the content of
the virtual scene.

2 How Might VR Manifest as a Context?
Repeated experiences within a context can enhance retrieval of
specific adaptation strategies required for successful actions. For
example, with repeated exposures to VR, a user may over time
form a prediction about a sensorimotor error experienced in VR.
Donning a head-mounted display (HMD) may cue recall of a
previously learned adaptation strategy to overcome the error,
establishing VR as the context for retrieval of previous learning.
This context-specific learning may involve simple reflex adaption,
visuomotor adaptation of voluntary movements, and navigation-
based adaptations.

2.1 VR as a Context for Reflex Adaptation
Relatively low-tech experiences, such as wearing corrective
magnifying lenses or scuba goggles, provide clues about
context-dependent learning during engagement with HMD-
VR. These accessories alter the perceived distance, position,
and size of objects, creating a vestibular-ocular conflict akin to
that experienced in VR and requiring recalibration of the
vestibulo-ocular reflex (VOR) to stabilize gaze. VOR is a low
latency (10–12 ms) reflex that enables eye rotation in an equal
and opposite direction of head rotation to maintain gaze fixation
(Gauthier and Robinson, 1975; Gonshor and Jones, 1976a;
Gonshor and Jones, 1976b; Paige and Sargent, 1991). Atypical
viewing conditions can result in the loss of fixation due to
insufficient ocular compensation for head rotation. Image blur
due to this “retinal slip” serves as an error signal, encouraging the
adaptation of the VOR gain to minimize the blur (Ito, 1998).
Multiple VOR gains can be toggled as appropriate contexts arise.
For instance, donning a familiar pair of magnifying eyeglasses
induces rapid changes in VOR gain to accommodate the
magnification (Collewijn et al., 1983; Demer et al., 1987).
Simply, the tactile feedback of putting on or even touching

scuba goggles suffices to toggle VOR adaptation in
experienced divers (Virre, 1996; Sharoni et al., 2001). Does VR
also constitute a context for which a VOR gain is learned and
retrieved under specific sensory conditions?

Visuovestibular conflict induced by dynamic head-tracking
errors and delays in virtual environment projection result in a
velocity-dependent phase lag between the vestibular feedback of
head rotation and visual feedback of scene rotation (DiZio and
Lackner, 1992). Just like correctivemagnifying lenses, visuovestibular
conflict in VR also induces VOR adaptation (Draper, 1996, 1998;
Virre, 1996). For example, reduced VOR gain was found following
20min of gameplay when head rotation was used to direct the
character’s movement and returned to normal 30 min following
cessation of VR engagement (DiGirolamo et al., 2001). In a cohort of
patients with unilateral vestibular hypofunction, VOR gain increased
following 1month of vestibular training using a VR racing game
(Micarelli et al., 2017, 2019). This cohort also showed better
retention of increased VOR gain at a 12-month follow-up than a
comparable cohort that received conventional vestibular training
alone (Viziano et al., 2019). More investigations of VOR adaptation
in healthy individuals using modern HMD-VR systems with
repeated engagements are needed to comprehensively probe these
phenomena.

Given these initial studies, we hypothesize that VR may
constitute a context for which VOR gain can be learned and
retrieved whenever that context is recalled based on sensory
cues (Figure 1). Similar to how putting on goggles can retrieve
VOR adaptation specific to the lenses’ magnification
(Herdman, 1998; Gimmon et al., 2018), donning an HMD
may also drive retrieval of a learned VOR adaptation.
Contextual cues typically associated with VOR adaptation
such as vergence angle (Lewis et al., 2003), head position
(Tan et al., 1992; Yakushin et al., 2003), and eye position
(Shelhamer et al., 1992) are common attributes of HMD-VR
headsets (Kramida, 2015), and hence, VOR may adapt
specifically to HMD-VR. If true, context-dependent retrieval
of VOR adaptation should depend on the duration, frequency,
and consistency of VR engagement. For instance, in one study,
VOR adaptation paired with a unique head orientation was
retained for a much longer time than the training duration,
and some retention existed outside of the training context
(Yakushin et al., 2003; Schubert et al., 2008). To understand
VR as a context for reflex adaptation, we need to address
whether these gains are truly remembered or learned de novo
each time, albeit at a faster rate with the help of familiar
sensory cues.

2.2 VR as a Context for Adaptation of
Voluntary Movements
Adaptation of voluntary movements refers to the integration
of proprioceptive and visual information of movement
outcomes to reduce sensory prediction error by updating an
internal model. It is typically studied by examining changes in
movement patterns in response to visuoproprioceptive
discordance, such as in the prismatic adaptation paradigm
(Redding et al., 2005; Luauté et al., 2009; Redding and Wallace,
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2013). Individuals can learn to toggle between learned
adaptations and multiple environments by rapidly retrieving
the appropriate internal model or strategy based on specific
sensory cues (Mistry and Contreras-Vidal, 2004; Hegele and
Heuer, 2010; Huberdeau et al., 2015; Schween et al., 2018).
Errors in co-registration between the head and virtual scene
can cause displacement and rotation of the virtual display with
respect to the real world, inducing visual-proprioceptive
discordance (Draper, 1996). Visual-proprioceptive
discordance may also arise from body tracking errors
resulting in displacements or gains between real-world
movements and those of virtual avatars (Draper, 1996).

Accumulating evidence suggests that VR might encourage
reliance on explicit learning strategies based on explicit
knowledge about the task and target error (Taylor et al., 2014;
Taylor and Ivry, 2014), in contrast to implicit adaptation, or
“error-based learning,” which improves performance
continuously and involves updating an internal model based
on sensory prediction errors. Researchers evaluated differences
in motor learning mechanisms between a 2D screen-based
visuomotor adaptation task and HMD-VR presentation of the
same task (Anglin et al., 2017). Participants were more likely to
use explicit strategies in HMD-VR, although in both conditions,
they required the same time to adapt to the perturbation and

FIGURE 1 |HMD-VR constitutes a context for which a vestibulo-ocular reflex (VOR) gain can be learned and retrieved based on sensory cues. (A). A new user dons
an HMD-VR. (B). The user experiences a mismatch between the rotational velocity of the head and that of the visual scene, causing a retinal slip error. (C). Over time, the
adaptation of VOR gain reduces the retinal slip error. D. The user removes the HMD-VR. (E). An aftereffect is experienced in the real world, causing retinal slip. VOR
deadapts to reduce the error. (B–E)may repeat several times prior to F, resulting in the learning of the adaptation. (F, G). Even sight or touch of the HMD triggers a
“preparatory” change in VOR gain upon or even prior to entering the VR. (H). Retinal slip is minimal or absent in the HMD-VR due to preparatory VOR adaptation. (I).
Removal of the HMD is accompanied by preparatory deadaptation of VOR gain. (J). Aftereffects are greatly diminished due to preparatory deadaptation. (K). The HMD-
VR has now become a “context” for the retrieval of a previously successful strategy for reducing retinal slip, and the sight or touch of the HMD becomes the sensory cues
triggering this retrieval.
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reduce errors. In another study, participants showed larger
aftereffects in a prismatic adaptation task in HMD-VR
compared to prism goggles (Ramos et al., 2019).

Evaluating aftereffects is critical to learning in VR, but few
studies have investigated this variable. Findings from the real
world indicate that explicit strategies provide rapid
performance improvements during adaptation and are
particularly beneficial for tasks requiring rapid and precise
mastery of a visuomotor transformation. However, explicit
strategies may be detrimental in tasks requiring consistent
performance during learning (e.g., performing an
endoscopic surgery using a robotic device).

Explicit strategies are predominantly used early in the
learning process, while later learning relies on the adoption
and use of an internal model (Taylor and Ivry, 2011; Taylor
et al., 2014; McDougle et al., 2015). Studies that include a focus
on duration of VR engagement are especially important to
understanding if, and at what point, individuals adapt an
implicit strategy in VR. Additionally, the nature of the
learning process is a critical factor for understanding the
transfer of skills from VR to the real world. VR-based
learning often shows little transfer to the real world (Levac
et al., 2019). For instance, amplification of errors in VR
negatively impacted transfer due to the use of different
coordination strategies (Marchal-Crespo et al., 2017, 2019).
Even in older adults and healthy controls, practice in VR does
not transfer to the real world (de Mello Monteiro et al., 2014).
The typical approach to enhancing skill transfer is to increase
the similarity between virtual and real tasks (Levac et al., 2019).
However, this attempt would be useless if the brain perceives
VR as a distinct context.

2.3 VR as a Context for Spatial Navigation
Navigation involves the use of 1) idiothetic or “self-motion” cues
(e.g., vestibular, proprioceptive, efference) generated by the body
and head movements for multisensory path integration and 2)
allothetic or “landmark” cues (e.g., visual, auditory, tactile) for
processing landmark information. Integration of the two is
necessary to specify an individual’s spatial orientation in
allocentric coordinates. The entailed visual, proprioceptive, and
vestibular multisensory integration might differ between VR and
the real world.

The importance of self-motion in spatial navigation is well
demonstrated. The accuracy of scene recognition is reduced when
an array of objects is rotated relative to a stationary observer but
not when the observer moves relative to a stationary display
(Simons and Wang, 1998). Self-motion, but not the passive
motion of objects, facilitates scene recognition from novel
viewpoints (Witmer and Kline, 1998; Wang and Simons,
1999), and self-motion is critical for orientation (Klatzky et al.,
1998). Not surprisingly, given their susceptibility to
disorientation after visual rotations, people face difficulty in
learning spatial layouts in VR (Richardson et al., 1999).
Context-specific learning in VR does not necessarily involve
bodily self-movement in the visual scene (Riecke et al., 2010),
but spatial navigation within VRmay entail intrinsic conflicts due
to a false sense of motion induced by optic flow (Park et al., 2018).

The distinct relationship between self-motion and optic flow in
VR likely leads to distinct ways in which spatial information is
encoded (Aghajan et al., 2015).

In summary, navigation in VR likely does not engage the
idiothetic component of “self-motion” comparable to that in the
real world. It is immensely challenging to fully identify how this
fact influences how VR is interpreted by the brain as a unique
context.

3 KEY FACTORS THAT INFLUENCE THE
INTERPRETATION OF VR AS A
SENSORIMOTOR CONTEXT
3.1 Technological Factors
Sensory conflict in HMD-VR arises from 1) head motion
tracking errors, 2) body motion tracking errors, and 3)
delays, lags, and errors in optic flow (Figure 2) (Holloway,
1995). The previous sections have described the processes by
which tracking errors lead to sensory adaptations with a focus
on dynamic head-tracking errors and VOR adaptation, static
head or body tracking errors and adaptation of voluntary arm
movements, and the influence of optic flow errors on spatial
navigation. Currently, little is known about how the type,
magnitude, and variability of VR-system errors affect the
adaptation and recall of sensorimotor representations.
Information about these factors is critical to engineering
innovation in VR to further decrease the gap between the
real and virtual world. In this regard, “presence” becomes a
critical lens through which to view these factors that determine
the extent to which the brain interprets VR as a distinct
context. Presence most broadly refers to “the perceived
realness of a mediated or virtual experience” (Skarbez et al.,
2017). However, “presence” as a universal construct for
evaluating VR remains amorphous (see Skarbez et al., 2017
for an in-depth discussion of the definitions of presence).
Several definitions of presence concentrate on sensorimotor
coupling in the virtual world (Slater andWilbur, 1997; Zahorik
and Jenison, 1998; Slater, 2009; Skarbez et al., 2017), with
perhaps the most well established being Slater’s “response-as-
if-real (RAIR)” formulation (Slater, 2009). RAIR states that if a
VR user experiences Place Illusion (sense of being in the
virtual environment) and Plausibility Illusion (the sense
that the virtual experience is really happening), then they
should react to virtual stimuli as if they were real. Place
Illusion is described to be a function of the sensorimotor
contingencies, referred to as immersion, afforded by the
virtual reality system. In contrast, Plausibility Illusion is
described to be a function of the internal logical and
behavioral consistency, referred to as coherence, of the
virtual experience. Importantly, this formulation of
presence can be assessed objectively through measurements
of participant behavior and is, therefore, most relevant to the
notion that VR may represent a context for adaptation. We
note that this is indeed distinct from definitions of presence
that describe “feeling” present, which is a subjective response
most often measured by self-report. Whether the sense of
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presence in VR is related to the extent to which VR is a context
for sensorimotor learning remains an open question that may
add an important new dimension to the study of presence.

3.2 Human Factors
Age is a critical factor influencing the extent to which VR is
interpreted as a distinct context. VOR gain changes in early
development (<10 years) have been linked to the
development of inhibitory control of the reticular formation
in the brainstem (Ornitz et al., 1985). VOR gain also reduces in
aging individuals (>75 years) (Baloh et al., 1993), indicating a
reduction in reflex adaptation. Due to poorly calibrated VOR
in these populations, head movements can cause image motion
on the retina, leading to deficits in motor learning in VR.
Whether VR is associated with greater sensitivity to retinal slip
and whether VOR adaptation, retention, and consolidation in
VR proceed the same way over the lifespan remain open
questions.

Young children may experience VR as real to a greater
extent than adults do (Flavell et al., 1990; Sharar et al., 2007;
Richert et al., 2011; Bailey and Bailenson, 2017) and even
respond to non-immersive virtual environments in a way that
is cognitively and behaviorally distinct from adults
(Baumgartner et al., 2006, 2008). In two studies, adolescents
(13–17 years of age) (Baumgartner et al., 2006) and adults
(21–43 years of age) (Baumgartner et al., 2006) were found to
recruit the prefrontal cortex during the virtual engagement
more than children (8–11 years old and 6–11 years old,
respectively). It may be that young children, who have a

less mature prefrontal cortex and feel more presence in
virtual environments, might show increased reliance on
implicit learning strategies and may consequently
experience a greater degree of interference between real-
world tasks and VR. Indeed, evidence indicates that VR
might interfere with the normal development of
sensorimotor coordination (Miehlbradt et al., 2020) due to
an increased reliance on the information obtained from the
modality with the highest context-dependent reliability (Gori
et al., 2008; Nardini et al., 2014). However, we are unaware of
systematic investigations about the sensorimotor
consequences of prolonged VR engagement in pediatric
populations.

In contrast to the younger populations, aging increases
reliance on sensorimotor predictions about the
consequences of self-generated actions due to the structural
and functional changes in frontostriatal circuits (Wolpe et al.,
2016). Older populations may therefore be more likely than
young adults to interpret VR as a distinct context. These age-
related changes are important to consider since they may make
VR-based training less likely to transfer to the real world in
these geriatric populations, as has been reported (Levac et al.,
2019). Beyond age, sensorimotor deficits due to various health
conditions might also affect the scope of VR-based
interventions in clinical populations, though conclusive
evidence remains sparse. Finally, other human factors to
consider include sex-related differences. In fact, sex-related
differences in postural stability in VR have been noted in the
literature; women are more likely than men to experience

FIGURE 2 | Three examples of context-specific learning in head-mounted display-based virtual reality (HMD-VR).
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cybersickness in VR (Koslucher et al., 2016; Munafo et al.,
2017). Additional studies should examine whether these
differences percolate to reflex adaptation, the adaptation of
voluntary movements, and spatial navigation and if the female
brain interprets VR as a distinct context more readily than the
male brain does.

Overall, an emerging theme is that the developmental status
of the prefrontal cortex (young children), and the ability to
integrate multisensory information quickly and veridically
(aging adults), influences the extent to which the brain
interprets VR as a distinct context, and the sense of
presence may be the critical component mediating its
influence on cognition and behavior.

3.3 Duration of VR Engagement
Most investigations of sensory conflict in VR involve a single
session with less than 2 hours of VR engagement. Even these
studies have been limited to subjective reports of cybersickness
caused by visuovestibular conflict (Gallagher and Ferrè, 2018;
Weech et al., 2018; Kim et al., 2020). Evidence that increased
duration of single-session VR engagement increases self-reported
cybersickness (Kennedy et al., 2000; Kourtesis et al., 2019) and
repeated exposure to VR reduces self-reported cybersickness
(Kennedy et al., 2000; Risi and Palmisano, 2019) offers
insights into how the duration and frequency of VR
engagement might be related to context-dependent learning.
In particular, reduced cybersickness with repeated VR
engagement might indicate a strategy to overcome sensory
conflict errors learned during previous VR engagements. This
hypothesis is also in line with recent reports that faster
readaptation to a learned sensory conflict relies more on
retrieving explicit learning than faster implicit learning
(Avraham et al., 2021).

When sensory conflict resolution in VR is viewed as a form
of context-dependent learning, exciting questions emerge
about how the schedule of VR engagement affects known
properties of context-dependent learning. What schedule of
engagement is required for VR to constitute a contextual cue
for retrieval of learned adaptations? Certain types of context-
dependent learning, such as fear conditioning, form strong
context-dependent memories upon a single exposure to the
context (Maren et al., 2013; Lonsdorf et al., 2017), whereas
other types of learning require repeated context-dependent
learning to form strong context-dependent memories
(Ingram et al., 2011; Ruitenberg et al., 2012; Lee and
Fisher, 2019). It is important to understand the interaction
between the strength of context-dependent memories of
learned adaptations and variability in the magnitude of
sensory conflict upon repeated VR engagement. If tracking
errors or visual display lags vary even slightly, retrieving a
learned adaptation may interfere with the recalibration of
sensory adaptations (Fu and Santello, 2012). Probing the
effects of different forms of interference on context
encoding, conditioning, retrieval, and extinction would
provide valuable information about how VR-induced
sensory conflict is resolved (Bouton, 1994, 2010).

4 DISCUSSION

Understanding the extent to which the brain interprets VR as a
unique context precludes sustained and successful adoption of
VR technology. Context-dependent learning may either be an
asset or a hindrance to VR engagements. When used for
entertainment, teleconferencing, or work it may be preferable
to minimize carryover of sensorimotor adaptations from VR to
the real world. Because short-lasting or absent aftereffects are a
hallmark of context-dependent learning, it may be desirable to
enhance context dependency of learned adaptations for these use
cases. In contrast, when VR is used for for skills training or
rehabilitation it may be desirable to reduce the context-
dependency of learning to enhance aftereffects and ultimately
generalization of learning fromVR to the real world. This transfer
might be accomplished by reducing the repeatability of the
environment or increasing the presence of the experience.

A complete absence of visuomotor discrepancies, or full
immersion, has been previously hypothesized to give rise to a
strong sense of Place Illusion (Skarbez et al., 2017; Slater, 2009).
Given the definition of context presented here, the complete
absence of visuomotor discrepancies would theoretically remove
the need for interpreting VR as a context for sensorimotor
adaption. However, whether this is true or not remains to be
tested. Perhaps the more pertinent question is, how veridical does
a VR system need to be to remove context? Furthermore, it is
likely that the magnitude and type of sensorimotor discordance
may affect context dependencies of reflex conditioning, voluntary
motor adaptation, and spatial navigation differently. We
hypothesize that VR as a context for spatial navigation is
likely distinct from VR as a context for reflex adaptation or
for adaptation of voluntary movements. Low coherence within
the virtual world, yielding poor Plausibility Illusion, is more likely
to influence how spatial information is encoded and may likely
constitute a context distinct from the real world that persists even
when sensorimotor discordance is low. Studies that address the
technological and human factors that may influence whether the
brain interprets a context distinct from the real world are few and
far between. The following questions remain open for both the
engineers developing the systems and the perceptual scientists
interested in the neurological effects of VR:

• How do the duration, frequency, and schedule of
engagement influence whether the brain perceives VR as
a context distinct from the real world?

• What are the aftereffects of VR engagement and how do
they change with repeated exposure?

• What are the thresholds for sensorimotor adaptation in VR?
How close to the human perceptual threshold can sensory
conflicts occur without causing the individual to invoke a
learning or adaptation strategy? Does it matter if sensory
conflicts occur suddenly or gradually?

• How do sensory conflicts arising from multiple sources of
error (e.g., head and body tracking errors combined) affect
adaptation? Is there a different threshold for each source of
error?
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• Are there interference or reinforcement effects between
training performed in VR and transferred to the real world?

Future work on context-dependent learning based on
numerous well-validated designs previously used for testing
retrieval, interference, and savings (Krakauer et al., 1999, 2005;
Zarahn et al., 2008; Huang et al., 2011; Taylor et al., 2014) can
provide a greater understanding of the extent to which the brain
interprets VR as a unique context, providing invaluable
information to VR applications across multiple domains.
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