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Research characterizing common student ideas about particular physics topics has significantly impacted
university-level physics teaching by providing knowledge that supports instructors to target their instruction and
by informing curriculum development. In this work, we utilize a Natural Language Processing algorithm (Latent
Dirichlet Allocation, or LDA) to identify distinct student ideas in a set of written responses to a conceptual
physics question, with the goal of significantly expediting the process of characterizing student ideas. We
preliminarily test the LDA approach by applying the algorithm to a collection of introductory physics student
responses to a conceptual question about circuits, specifically attending to whether it is useful for characterizing
instructionally-relevant student ideas. We find that for a large enough collection of student responses (N ≈
500), LDA can be useful for characterizing the ideas students used to answer conceptual physics questions.
We discuss some considerations that researchers may take into account as they interpret the results of the LDA
algorithm for characterizing student’s physics ideas.
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I. INTRODUCTION

Over the last few decades, Artificial Intelligence (AI) has
been increasingly useful in day-to-day life. From recom-
mendation algorithms on popular streaming streaming ser-
vices and e-commerce platforms [1] to the programming for
self-driving cars [2], applications of AI are vast and ever-
growing. Natural Language Processing (NLP) is a branch
of AI which has been defined as: “a theoretically motivated
range of computational techniques for analyzing and repre-
senting naturally-occurring texts at one or more levels of lin-
guistic analysis for the purpose of achieving human-like lan-
guage processing for a range of tasks or applications” [3].
With advancements in computational power, NLP has been
utilized to analyze enormous amounts of information in a
short amount of time.

One application of NLP is known as Topic Modeling [4],
which is used to extract themes or “topics” from large bodies
of text. Latent Dirichlet Allocation (LDA) is a popular topic
modeling algorithm which takes in a set of documents (called
a “corpus” in the language of LDA) and produces clusters
of words (“topics”) that are commonly used together within
those documents [4]. From this output, researchers can then
ascribe meaning to each of the topics produced by the algo-
rithm. LDA has been applied in fields such as software and
banking [5, 6], as well as in education research. In the past
few years, there have been several studies exploring the util-
ity of NLP in physics education [7, 8]. LDA has been utilized
to characterize topics in Physics Education Research (PER)
articles over the last several decades as a way to understand
the scope and breadth of the field [9, 10].

A research focus in PER is the investigation of common,
topic-specific knowledge that students bring to the classroom.
This kind of research has important impacts on physics in-
struction, particularly at the university level: it informs the
development of research-based instructional materials (e.g.,
Tutorials in Introductory Physics, Maryland Open-Source Tu-
torials [11, 12]) and it contributes instructors’ knowledge
of student ideas, which is an important part of the knowl-
edge that instructors use to teach [13]. Research identify-
ing students’ common physics ideas has investigated both
students’ common, incorrect ideas [14–16] and, less exten-
sively, students’ common, potentially-fruitful ideas [17–21].
The work of appropriately characterizing resources is very
time-intensive; two independent coders may spend upwards
of 10 hours each to create and assign descriptive codes to a
set of 500 written responses, and often data sets are much
larger—this may limit the extent and impact of this kind of
research.

The time-intensity of characterizing student ideas moti-
vates the work presented here. This study presents proof-of-
concept that LDA may be a useful tool to identify common,
instructionally-relevant student ideas. We illustrate a method
for automating part of the process of characterizing student
ideas by applying LDA to a corpus of student responses to a
particular conceptual physics question. We inspect the words
contained in a topic determined by the LDA model, then ex-

amine documents that best represent that topic to characterize
distinct student ideas used in the corpus. This paper builds
on previous LDA research by using this approach to analyze
students’ written responses to physics homework questions,
which often include a mixture of technical and informal lan-
guage.

The questions that guide our research are: To what extent
can LDA be used to characterize patterns in student thinking?
Can we produce a useful, time-saving method for researchers
which yields “instructionally-useful” student ideas?

II. METHODS

A. Student Task

For this study, we analyzed a set of N = 483 written stu-
dent responses to the conceptual circuits question shown in
Figure 1. This question was adapted from [22] as part of
a larger study investigating common, instructionally-relevant
ideas (e.g., [20, 21, 23]). Responses to this question were an
appropriate data set for our this study because: (a) this is a
single-part question, (b) responses were text only (not num-
bers, equations, or diagrams), and (c) a large number of re-
sponses to this question had been collected electronically in
CSV file format. This question was administered to students
as part of a required, online homework assignment in an in-
troductory physics course at a large research university in the
United States. Participating students consented to share writ-
ten work completed for their physics course with researchers,
but students were not told which questions were administered
for research purposes. Therefore, we assume students framed
this question in the same way they framed any other required
online homework problem.

FIG. 1. Student task: Explain why a light bulb connected to two
batteries is brighter than a light bulb connected to one battery.

Comparing the brightness of the bulbs in Cir-
cuits 1 and 2, we observe that the bulb in Circuit
1 is brighter. Using Ohm’s Law, V = IR, we
know that current and voltage are directly pro-
portional when resistance is the same. Why do
you think more voltage leads to more current?
What mental models are you using to make sense
of this?

We used Gensim, a Python package that includes an LDA
algorithm, as our primary tool to analyze students’ responses
to this question [24].
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B. Data Cleaning

The following steps were implemented in Python using the
“pandas,” “re,” and “nltk” libraries to prepare the data for
LDA modeling [25, 26]:

1. Removed punctuation (quotes, commas, periods, and
parentheses).

2. Removed stopwords (commonly used words such as
“a,” “the,” and “is”).

3. Lemmatized words down to their roots (“increased” and
“increases” would become “increase”).

4. Created bigrams, (pairs of words such as “poten-
tial_difference” or “ohm_law”). This is necessary in
order to distinguish between concepts such as “poten-
tial difference” and “potential energy,” which have dis-
tinct meanings in physics, even though they both con-
tain the word “potential.”

5. Filtered out the most and least common words (based
on user-defined thresholds). This process is explained
below.

6. Created a bag-of-words for the LDA function [27].
The most and least common words were filtered out (step

5) based on criteria chosen by the researchers. Filtering out
the most common words involves choosing a threshold per-
centage of all documents in which a certain word occurs (the
“no above” threshold). In a circuits question, for example,
the word “current” may appear in 70% of all responses; a
researcher may choose to eliminate all words which appear
in more than 50% of all documents to remove "current" and
other very common words. The LDA algorithm tends to fo-
cus on the most common words and will consequently include
them in multiple topics. Removing very common words is a
standard step in LDA analysis, as it allows us to discover dis-
tinct patterns that appear without those most common words
[10]. For our data set, many of the most common words ap-
peared in the problem statement itself, and thus were unhelp-
ful in characterizing unique student ideas.

Filtering out the least common words involves choosing
a minimum number of documents in which a word can oc-
cur (the “no below” threshold). This step is important be-
cause it removes noise that would otherwise increase com-
putation time without yielding additional insight. For exam-
ple, words that appear in one or two documents may include
fanciful words used by only one student, or misspellings of
words (“increaes” rather than “increase”). More common
misspellings or typos (such as “becuase”) tend to appear in
more than just one document, and may be preserved with too
low a threshold. Given the comparatively small corpus size
we used (N < 500), we chose to exclude words that are only
found in two or three documents. For the analysis presented
here, we chose the following model parameters:

• “No above” = 50%. Words like “current” and “voltage”
appeared in more than 50% of all responses, and would
not be useful in characterizing student ideas.

• “No below” = 3. Setting this threshold any higher
would have excluded important words potentially sig-
nificant for student ideas, such as “gravitational.”

C. LDA Modeling

In brief, the LDA algorithm works by taking in a corpus
(or collection) of documents, noticing groups of words that
commonly occur within certain documents, and picking out
those groups of words, labeling them as “topics” [4]. The
words within a topic are weighted according to their preva-
lence in a topic, relating to how often those words co-occur
with other words in a given topic. More technically, LDA
iteratively “learns” topics by creating and adjusting a proba-
bilistic model for how words are distributed in topics, as well
as how topics are distributed among documents.

The LDA modeling process relies on a few key assump-
tions. LDA assumes that the order in which words occur
in a document doesn’t matter, nor does the part of speech,
etc. LDA also assumes that each document is composed of a
weighted mixture of all the topics. During the modeling pro-
cess, each document is assigned a set of weights indicating
how relevant to each topic that document appears to be. That
is, for a three-topic model, a given document could be com-
prised of 70% Topic 1, 20% Topic 2, and 10% Topic 3. This
is important for interpreting the results of our model because
the “distinctness” of the topics is affected by input parameters
which can be specified by the researcher.

The mathematics of LDA is founded upon the Dirichlet
distribution, which can be thought of as a multivariate gen-
eralization of the beta distribution [28]. With k topics cho-
sen, the Dirichlet distribution is formulated using a (k − 1)
simplex, existing in k dimensions. A 3-topic model yields
a 2-simplex, which is an equilateral triangle projected onto
three dimensions, where each corner lies on its own axis. In
the topic-word distribution, each of the “corners” of this tri-
angle represents one topic, and a point within this triangle
represents one word. A word near one corner of the triangle
is fairly exclusive to that topic, whereas a word closer to the
middle of the triangle can be included multiple topics. One
hyperparameter (which we will call α), in a sense, “encour-
ages” words to occur either in the corners of the distribution
(α < 1) or in the center of the distribution (α > 1). Like-
wise, for the document-topic distribution, each corner of the
triangle represents one topic, and one point within the trian-
gle represents one document. A document near the center
of this triangle is composed fairly equally of all three top-
ics, whereas a document close to one of the corners would
fairly exclusively include the topic corresponding to that cor-
ner. A second hyperparameter, β, behaves like α and controls
a probability distribution which defines the degree to which
one document includes a mixture of all the topics. More de-
tailed descriptions of the mathematics and intuition behind
LDA can be found in Blei et al. [29] and Odden et al. [9].

In the context of our research, the corpus of documents is
the collection of all student responses for a single question,
and a document is a single student response within that cor-
pus. The research we are conducting looks at the extent to
which a topic can represent a student idea. In this setting,
any given student response would be comprised of a distri-
bution of ideas, with the heterogeneity of the topic-document
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distribution controlled by the hyperparameter β. For this pre-
liminary analysis, the values of α and β were chosen auto-
matically by Gensim, which we used to implement the LDA
algorithm.

We ran models on the corpus of student responses with the
number of topics (k) ranging from three to seven, and com-
puted coherence values (Cv) for each model [30]. The coher-
ence is a measure of “the tendency of the top words in the
topic to co-occur”[9], where higher coherence values (closer
to 1) describe more distinct topic distributions. In selecting
the number of topics to use for our final analysis, were atten-
tive to the topic number which yielded the highest coherence
value, and the topic number that appeared to yield the most
interesting student ideas. This was done by inspection; two
authors examined which topics looked to be the most distinct
and/or best matched our instructional experience. In practice,
the models with higher coherence also appeared to produce
more distinct or instructionally-relevant topics. For this anal-
ysis, we chose to use a five-topic model, which yielded the
highest coherence value.

Because LDA relies on an initial randomization, it is im-
portant to note that between random seeds, there is some run-
to-run variation in the different topics the model converges
on. The topics presented in this paper are chosen from just
one particular run of the model; results may vary if a random
seed for the algorithm is not specified.

D. Representative Responses

Because LDA modeling assigns a weight for each topic
within the document, we were able to examine the documents
with the highest weights for each topic. We considered the
documents with the highest weight for a given topic to be the
best examples of that topic. Without displaying the student
responses, we would need to infer student ideas solely from
the words in the topic and their respective weights. Examin-
ing representative responses allowed us to ground our inter-
pretation of topics-as-ideas in real student responses that are
"closest" to each topic.

We used the three most representative responses for each
topic in conjunction with the topic words and their respective
weights to characterize students’ ideas about the given cir-
cuits question. In this secondary, qualitative analysis of the
LDA model, we (a) examined the highest-weighted words in
a topic, (b) picked out phrases in the representative responses
that contained these words, and (c) synthesized those phrases
into coherent physics ideas guided by our "professional vi-
sion" as physics instructors [31]. We found this final inter-
pretive step crucial for assigning disciplinary meaning to the
model’s topics.

III. RESULTS

Here we present the topics characterized by the model and
representative responses from each topic, and we discuss how
we used these results of the modeling process to characterize
five distinct student ideas about circuits. The topics produced
by the model are shown in Table I. This five-topic model

TABLE I. Top words in topics with weights
Topic Words in Topic (with weights)
1 water (.090), large (.053), flow (.053), think (.044),

energy (.042), pressure(.040), like (.028), great
(.026), push (.023), electron (.023)

2 electron (.074), force (.057), great (.044), high
(.041), big (.038), mean (.033), faster (.031),
potential (.027), push (.023), think (.022)

3 increase (.053), high (.052), charge (.050), electron
(.039), great (.033), battery (.031), lead (.029), flow
(.027), mean (.027), potential_difference (.026)

4 battery (.081), circuit (.069), power (.069), bulb
(.048), increase (.043), brighter (.036), think (.029),
push (.028), lead (.024), double (.022)

5 increase (.163), resistance (.083), circuit (.048),
constant (.041), equation (.027), mean (.024), bulb
(.024), ir (.024), ohm_law (.022), change (.022)

TABLE II. Selected phrases from most representative responses
(Topic words in bold)
Topic Representative Student Responses
1 “water flows through a river like current flows

through circuits”
“if there is more potential (or, less accurately,
pressure)...more electrons will flow”

2 “the more potential...means the more force there is
pulling [the electron] to where it wants to be”
“more voltage...results in a harder pull, and
therefore the electrons speed up more...faster
electrons will result in a higher current”

3 “if the voltage of the battery increases...potential
difference...increases...the battery must push more
charge through it to maintain the voltage”
“a greater magnitude electric field...increases the
amount of charge that passes through
a...circuit...increasing the current”

4 “second battery...doubles the voltage...increasing
the current increases the power”
“a brighter bulb represents more power and
therefore more current”

5 “rearranging the equation V = IR...in terms of the
equation...a change in one value affects the other...if
R is constant, I must increase.”

yielded a coherence score of 0.4625. Table II shows some
phrases from the most representative student responses for
each topic.

Our qualitative analysis of the five topics given by the LDA
model produced the following distinct student ideas:

1. Current flows through circuits like water through a river
or pipe.

2. Voltage results in a force which “pulls electrons.”
3. Voltage is potential difference, which pushes charges.

More V means more charges pushed, so more I .
4. Batteries increase the power in a circuit. More power
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means brighter.
5. Voltage is proportional to current. With resistance held

constant, increasing the voltage increases the current.
For this particular set of responses to the circuits question,

the LDA algorithm produced topics that we were able to inter-
pret as distinct student ideas. Topic 1 was a particularly dis-
tinct and stable topic; every run of the algorithm (regardless
of number of topics) produced some topic related to the flow
of water. Though Topics 2 and 3 were both related to potential
and current, we noted that Topic 2 related voltage to a force
on electrons causing them to speed up, whereas representa-
tive responses for Topic 3 focused more on a higher voltage
“pushing more charges.” While subtle, this minute linguis-
tic difference was significant enough for LDA to distinguish
between the two ideas. Topic 4 refers to the idea that “bat-
teries provide power,” including colloquial notions of power
(i.e. a “power outage”) and more technical definitions (e.g.,
P = IV ). Topic 5 refers directly to Ohm’s Law; responses
representative of this topic use the equation itself to explain
why increasing the voltage should increase the current.

IV. CONCLUSION/DISCUSSION

The research questions guiding this investigation were: To
what extent can LDA be used to characterize patterns in stu-
dent thinking? and Can we produce a time-saving method us-
ing LDA that yields instructionally-relevant student ideas? In
this preliminary study, LDA was used to characterize five dis-
tinct student ideas about a simple circuit, and these five topics
were recognizable to us as physics ideas that were relevant for
the question at hand. More specifically, the model on its own
produced five distinct topics with relevant physics words, and
researchers were readily able to interpret the combined output
of topics and representative responses as disciplinarily mean-
ingful ideas.

A primary goal of this analysis was to propose a method
to streamline studies of common student ideas. Our results
suggest that LDA may support researchers in more efficiently
characterizing student ideas, but it does not remove the need
for researcher interpretation. To inform further development
of a semi-automated method for characterizing student ideas
about physics topics, we have discussed some ways in which
researchers’ decisions about the LDA model (e.g., choices
about α and β values or the number of topics) can affect the
topics it yields. We have also described the methodological
steps taken to interpret instructionally-relevant student ideas
from algorithm-generated topics. These choices about the
model and the interpretive steps that follow suggest a frame-
work for how future work can use LDA to characterize stu-
dent ideas.

Future work could refine the use of LDA for characterizing
student ideas by investigating how the hyperparameters α and
β can be chosen to produce the most instructionally-relevant
topics. There is no theoretically-based method choosing the
“best” values for α and β for the LDA algorithm [32]. Rather,
these hyperparameters should be chosen based on the re-
search goals and aims. In our model, we allowed these pa-

rameters to be chosen automatically. We are curious whether
lower values of α and/or β might produce more distinct, easy-
to-interpret topics. Future work could include an exploration
of how tuning the various model parameters affects the co-
herence scores or the perceived instructional relevance of the
model output.

Some limitations of this approach for categorizing stu-
dent ideas include the need for a large sample and from the
fact that LDA looks specifically for patterns in text. Typi-
cally, LDA is best suited to a corpus containing upwards of
N = 1000 documents, preferring a large amount of small
documents over a small amount of large documents [9]. With
N = 483 student responses, the run-to-run topic variation
was not incredibly high, but some runs of the model were
noticeably different. As a test, we ran this model on a data
set of N < 200 responses and we found that the run-to-run
variation in topics was much higher and the topics were less
distinct and more difficult to interpret. This suggests to us
that in order for LDA to be an effective tool, roughly 500 or
more student responses are necessary. For smaller datasets
(e.g., N < 300 responses) topics are more difficult to inter-
pret from the LDA model and hand-coding is less time con-
suming, and therefore may be preferable.

Students’ written responses to conceptual physics ques-
tions typically vary significantly in terms of the visual and
mathematical representations they use, their spelling and
word choices, and their length. A researcher manually pars-
ing through students’ written responses can interpret the
meanings of various representations, synonyms, and mis-
spellings. Electronically collected responses do not always
allow students to include diagrams or other visual represen-
tations of their thinking, and in any case LDA cannot inter-
pret visual representations. LDA does not match physically
equivalent equations or expressions, and thus may miss when
words or topics are nearly identical from a physics perspec-
tive. Additionally, misspelled words lose their meaning in
the LDA model. Lastly, student homework responses vary
from just a few words in length to several sentences forming
a paragraph or two. LDA treats these as having equal foot-
ing, though an instructor might expect that longer responses
include more distinct ideas. Each of these issues limits the
extent to which the LDA algorithm captures the full mean-
ing of a student’s response. Future work could include more
data cleaning and pre-processing, including spell-checking
and splitting responses up into one-sentence chunks which
act as documents; this may improve model stability and use-
fulness for characterizing distinct, common ideas.

The code used for this analysis, and other case studies us-
ing questions about heat & temperature and waves, are avail-
able on GitHub as Jupyter Notebooks [33].
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