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Abstract—In image-guided surgery, endoscope tracking and
surgical scene reconstruction are critical, yet equally chal-
lenging tasks. We present a hybrid visual odometry and
reconstruction framework for stereo endoscopy that leverages
unsupervised learning-based and traditional optical flow meth-
ods to enable concurrent endoscope tracking and dense scene
reconstruction. More specifically, to reconstruct texture-less
tissue surfaces, we use an unsupervised learning-based optical
flow method to estimate dense depth maps from stereo images.
Robust 3D landmarks are selected from the dense depth maps
and tracked via the Kanade-Lucas-Tomasi tracking algorithm.
The hybrid visual odometry also benefits from traditional
visual odometry modules, such as keyframe insertion and local
bundle adjustment. We evaluate the proposed framework on
endoscopic video sequences openly available via the SCARED
dataset against both ground truth data, as well as two other
state-of-the-art methods - ORB-SLAM2 and Endo-depth. Our
proposed method achieved comparable results in terms of
both RMS Absolute Trajectory Error and Cloud-to-Mesh RMS
Error, suggesting its potential to enable accurate endoscope
tracking and scene reconstruction.

Index Terms— Stereo Endoscopy, Visual Odometry, Surgical
Scene Reconstruction.

I. INTRODUCTION

Endoscope tracking is an essential component of image-
guided interventions that rely on video views for surgical
instrument navigation. Both optical (OTS) and electromag-
netic tracking systems (EMT) could be used to track an
endoscope [1]. However, despite their high tracking accuracy,
OTS require direct line-of-sight between the tracker and a
dynamic reference frame rigidly mounted on the endoscope;
similarly, EMTs are susceptible to magnetic field distortion
from surrounding metal or other ferromagnetic sources. An
alternative approach is to track the endoscope using only the
image data captured by the endoscope, a method also known
as visual odometry (VO) [2]. This approach is appealing, as
it mitigates the limitations associated with external tracking,
while requiring minimum modifications to the existing sur-
gical workflow.

Endoscope tracking is also paramount for surgical scene
reconstruction [3], [4], which entails the fusion of dense
depth maps and color images with estimated camera poses
[5]. The reconstruction benefits many downstream tasks,
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including visual analysis [4] and image-to-patient registration
[1]. Hence, given the critical need for accurate endoscope
tracking to achieve faithful surgical scene reconstruction,
in this work, we target both visual odometry and scene
reconstruction.

Existing methods for camera localization and dense scene
reconstruction include traditional methods based on multi-
view constraints [6], [7], end-to-end deep learning methods
[8], and hybrid methods [3], [4] that replace several modules
of traditional methods with deep learning methods. Tra-
ditional approaches using multi-view correspondences and
constraints can yield highly accurate results of tracking
and reconstruction given well-textured images. However,
correspondences are difficult to estimate from texture-less
surfaces, which are typical in endoscopic images, resulting
in sparse reconstruction.

Deep learning-based dense scene reconstruction methods
have shown promising results, especially for dense depth
estimation. Ozyoruk et al. [8] used an end-to-end deep
learning method based on a depth estimation network and a
pose estimation network. However, end-to-end deep learning
methods lack bundle adjustment[7], [2], which leads to
the accumulation of tracking drift [4]. Moreover, when the
training data and testing data have different data distributions,
end-to-end deep learning methods may also suffer from
domain gaps [9]. Hence, hybrid methods [3], [4] that leverage
the power of both traditional and deep learning methods have
shown further potential. One such example is the work by
Recasens et al. [3], which employs self-supervised depth
networks to generate pseudo-RGBD frames, then track the
camera using photometric constraints.

To further mitigate the limitations associated with accu-
mulated tracking drift and sparse reconstruction, here we
propose a hybrid visual odometry and dense scene recon-
struction framework (END-VO). New techniques in END-
VO include: 1) An unsupervised learning-based optical flow
method [10] is employed to estimate dense depth maps
from low-textured stereo endoscopic images. 2) To accu-
rately estimate camera poses, we design a rule to select
accurate and easy-to-track landmarks from both Kanade-
Lucas-Tomasi (KLT) tracking [11] and unsupervised optical
flow [10]. 3) We leverage traditional modules to improve the
tracking and the reconstruction performance, such as bundle
adjustment to reduce the accumulation of tracking drift,
and keyframe insertion module to prevent significant point
cloud overlap and ensure accurate tracking. We evaluate
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Fig. 1.

END-VO overview, showing main modules: 1) Mapping - predicts dense depth map and selects robust 3D landmarks for tracking; 2) Tracking -
infers current camera pose relative to previous pose; 3) Key Frame Insertion -

triggers mapping and performs local bundle adjustment, if needed; 4) Local

Bundle Adjustment - optimizes existing landmarks and key frame camera poses; 5) Visualization and Reconstruction - displays the depth map and builds
a global 3D mesh model. Detected landmarks, reconstructed point clouds, and estimated camera poses are all stored in the Map. Green and red represent

2D features and 3D landmarks, respectively.

our proposed framework on the Stereo Correspondence and
Reconstruction of Endoscopic (SCARED) dataset [12] and
showed competitive results, comparable to those yielded by
other state-of-the-art methods.

II. METHODS

A. END-VO Framework

Our method uses a sequence of stereo endoscopic videos
with known camera calibration parameters as input to track
the stereo endoscope, and reconstructs the surface as a global
3D mesh model. The proposed framework comprises several
modules illustrated in Fig. 1 and also described below. The
framework gradually builds a map based on 3D landmarks,
point clouds, and camera poses. Camera poses are estimated
using 3D landmarks and their associated 2D image features.
Our algorithm updates the 3D landmarks and point clouds
of the map only when a new keyframes is inserted [2], [7].
Finally, a global mesh model is constructed using the dense
point clouds and associated camera poses.

1) Mapping: This module updates the dense point clouds
and robust 3D landmarks in the map when a keyframe is
captured. A dense depth map D e is derived from a pair
of stereo images via the unsupervised deep learning-based
optical flow [10]. Given the associated camera intrinsic and
extrinsic parameters, the dense point cloud can be recovered
from the dense depth map. KLT tracking [11] is used to
identify good 2D features to subsequently track and estimate
a sparse depth map Dgpr of the features from a pair
of stereo images. KLT tracking tends to select features
on relative well-textured regions, which ensures those fea-
tures to be easily and accurately tracked on the following
frames. However, the Dy usually contains outliers, and
Dgeep may be invalid in some regions, as the learning-
based optical flow predicts on unseen images. We select
robust 3D landmarks by comparing Dgrr and Dgeep. If
| D 17(p) — Daeep(p)| < thg, where thy is the threshold

to filter outliers, the identified features, and associated depth
values are selected as robust 3D landmarks.

2) Tracking: This module infers the current camera lo-
cation relative to the previous camera position and updates
the camera pose in the map. The 3D landmarks identified
in the mapping module are projected onto the previous
frame using the estimated camera pose of the previous
frame and then tracked on the current frame via Lucas-
Kanade (L-K) optical flow [11]. Given a set of 3D landmarks
and their corresponding 2D projections, the current camera
pose relative to the previous frame can be solved via the
Perspective-n-Point (PnP) RANSAC, detailed in [2]. The
pose is then transformed into the world coordinate system
(the first frame in the sequence) and stored in the map.

3) Keyframe Insertion: The keyframe insertion module
determines whether the current frame is a keyframe based
upon the spatial distribution of tracked features in the current
frame. Inserting a keyframe based on the number of tracked
features [7] cannot guarantee that the tracked features are
not over-concentrated in a small region of the current image
due to camera motion. We grid the current frame into NV
equally sized, non-overlapping patches, then we insert the
current frame as a keyframe if N,/N < th,, where N,
is the number of patches that contain tracked features, and
thy, is a threshold. Our insertion rule ensures that there is
enough area covered by tracked features, if not, the mapping
module will detect new 3D landmarks from the current pair
of stereo images. Also, this rule reduces the number of
highly overlapping keyframes, thus decreasing computational
burden, and improve reconstruction since the fusion of highly
overlapping frames results in a blurry surface.

4) Local Bundle Adjustment: This module jointly
optimizes the 3D landmarks and camera poses of the most
recent Ny keyframes by minimizing re-projection error [7],
leading to reduced tracking drift.

5) Visualization and Reconstruction: All camera poses,
landmarks and point clouds of the map are visualized in
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TABLE I
PERFORMANCE COMPARISON OF THREE VISUAL ODOMETRY / SCENE RECONSTRUCTION TECHNIQUES (END-VO - PROPOSED METHOD,
ORB-SLAM?2 AND ENDO-DEPTH) ON THE SCARED DATASET.

ATE RMSE (mm) C2M RMSE (mm)
ORB-SLAM2 | Endo-Depth END-VO Endo-Depth END-VO
[7] [3] (Proposed Method) [3] (Proposed Method)
Dataset1/video2 0.87 391 1.14 3.71 0.62
Dataset2/video2 4.63 21.50 3.85 1.98 0.37
Dataset3/video2 1.10 9.32 1.37 2.90 1.60
—— Ground Truth —— Ground Truth —— Ground Truth
—— ORB-SLAM2 —— ORB-SLAM2 —— ORB-SLAM2
—— Endo-Depth —— Endo-Depth —— Endo-Depth
— END-VO B — END-VO — END-VO -

Xjmm o,

Datset1/video2

Datset2/video2

Datset3/video2

Fig. 2. Endoscopic camera trajectories estimated by ORB-SLAM?2 [7], Endo-Depth [8], and our proposed END-VO on video sequences of
the SCARED dataset. Note that the distance between the ground truth and END-VO trajectories is less than 4 mm across all reconstructed

paths.

real time. We apply the Truncated Signed Distance Function
(TSDF) [5] to the point clouds to reconstruct a global 3D
mesh. The TSDF grids the space into equal voxels of the
TSDF volume (Visqr) and sequentially averages the 3D
locations and point cloud colors within each voxel.

B. END-VO Experiments, Implementation and Evaluation

Our experiments are conducted on three sub-datasets
(dataset 1, 2, 3) of the SCARED dataset [12], collected from
the abdominal anatomy of a porcine cadaver using a Da
Vinci Xi surgical robot and a structured light. Each sub-
dataset corresponds to a single porcine subject and contains
4 or 5 video sequences. Each video is accompanied by
its associated camera calibration parameters, camera poses,
and the point cloud of the first frame. The point clouds
were reconstructed using structured light, while the camera
poses were determined based on the robot kinematics. As we
include the deep learning-based method in our framework,
we use video 2 that is the longest video of each sub-dataset
for testing and the rest of the available video sequences for
training and validation. There are 5035 training pairs, 915
validation pairs, and 3997 testing pairs in all.

The proposed stereo visual odometry method was imple-
mented in C++ and built upon the code library in [2]. We
use the OpenCV implementation of KLT and PnP, and the
Open3D implementation of TSDF. The unsupervised optical
flow method was trained using the same parameter settings
recommended by [10]. All experiments were conducted on
a 2.60GHz Intel i7-9750H CPU and a GTX 2070 GPU. The
hyper-parameters were set: thy = 8, N = 64, th, = 0.65,

N =7, Vigqr = 0.02 mm3, tuned on training and validation
dataset.

We evaluated our framework using two metrics, consistent
with other reported methods [4], [8]. Endoscope tracking
was evaluated based on the Root-Mean-Squared Absolute
Trajectory Error (ATE-RMSE), computed as the root-mean-
squared distance between the ground truth endoscope tra-
jectory and the reconstructed trajectory, implemented in the
evo Python library'. Scene reconstruction was evaluated
using the Root-Mean-Squared Cloud-to-Mesh Error (C2M-
RMSE), computed as the root-mean-squared error of the
signed distance between the ground truth point cloud and
the reconstructed mesh model, implemented using the open-
souce CloudCompare tool. Note that the SCARED dataset
only provides ground truth point cloud data for the first frame
of all video sequences.

III. RESULTS

We assessed the performance of our proposed method
(END-VO) against the ground truth data by comparing
its performance to two other methods - ORB-SLAM?2 [7]
and Endo-Depth [3] - evaluated against the same ground
truth data. The former (ORB-SLAM?2) is a state-of-the-art
sparse feature-based simultaneous localization and mapping
(SLAM) system that includes global bundle adjustment in
addition to visual odometry. The latter (Endo-Depth) is a
recently published method that depends on dense depth maps
estimated from a self-supervised depth estimation network

'http://github.com/MichaelGrupp/evo
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trained on stereo images and photometric constraints for
tracking.

Ground Truth

Endo-Depth[3]

END-VO

Datset2/video2 Datset3/video2

Datsetl/video2

Fig. 3. Visualizations of scene reconstructions from the first frame
of several video sequences of the SCARED dataset: ground-truth;
Endo-depth [8]; and END-VO. Note the superior quality of the
END-VO reconstructions relative to the blurry and incomplete
Endo-depth reconstructions.

With regards to endoscope tracking accuracy, both the
RMS-Absolute Trajectory Error and RMS-Cloud-to-Mesh
Error reported in Table I and Fig. 2, respectively, con-
firm that END-VO performs comparably to ORB-SLAM?2,
while significantly out-performs Endo-depth. ORB-SLAM2’s
global bundle adjustment could be useful for tracking long
image sequences in broad spaces, such as in autonomous
driving. In abdominal cavities, local bundle adjustment may
be sufficient. Endo-depth’s performance lags both ORB-
SLAM2 and END-VO, mainly because it does not include
the bundle adjustment to reduce the accumulated camera
drift, and photometric constraints are not commonly valid
due to illumination change, which may lead to tracking er-
rors. In terms of surgical scene reconstruction, ORB-SLAM2
is not capable to perform dense scene reconstructions. Both
the RMS-Cloud-to-Mesh error reported in Table I and the
qualitative reconstructions illustrated in Fig. 3 confirm that
END-VO achieves a reconstruction quality superior to that
of Endo-depth. Fig. 3 clearly shows that the surfaces re-
constructed using Endo-depth are blurry, as a result of
colors of overlapping point clouds being averaged during
the reconstruction. This artifact is a result of Endo-depth
selecting a keyframe after a fixed number of frames, causing
significant point cloud overlap; on the other hand, END-
VO mitigates such artifacts thanks to the keyframe insertion
module that prevents significant point cloud overlap.

IV. CONCLUSIONS

We have presented a hybrid visual odometry framework
(END-VO) for stereo endoscopy applications that enables

both accurate endoscope tracking and dense scene recon-
struction from stereo endoscopy. We used an unsupervised
learning-based optical flow method to estimate dense depth
maps from the low-textured tissue surfaces. We selected
accurate and easy-to-track landmarks by leveraging the joint
power of KLT tracking and unsupervised optical flow. We
also designed an objective rule to govern keyframe insertion
within our framework, which reduces computational burden
and ensures high-quality scene reconstruction.

In summary, our proposed END-VO framework exploits
the benefits of both traditional video odometry and unsuper-
vised deep learning-based optical flow, therefore achieving
high performance in both endoscope tracking and scene re-
construction from routine stereo endoscopy video sequences.
Future work will focus on further improving and adapting
this framework to enable accurate scene reconstruction from
tissue-deforming surgical scenes.
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