
Endoscope Localization and Dense Surgical Scene Reconstruction for

Stereo Endoscopy by Unsupervised Optical Flow and

Kanade-Lucas-Tomasi Tracking

Zixin Yang1, Shan Lin2, Richard Simon3, and Cristian A. Linte1,3

AbstractÐ In image-guided surgery, endoscope tracking and
surgical scene reconstruction are critical, yet equally chal-
lenging tasks. We present a hybrid visual odometry and
reconstruction framework for stereo endoscopy that leverages
unsupervised learning-based and traditional optical flow meth-
ods to enable concurrent endoscope tracking and dense scene
reconstruction. More specifically, to reconstruct texture-less
tissue surfaces, we use an unsupervised learning-based optical
flow method to estimate dense depth maps from stereo images.
Robust 3D landmarks are selected from the dense depth maps
and tracked via the Kanade-Lucas-Tomasi tracking algorithm.
The hybrid visual odometry also benefits from traditional
visual odometry modules, such as keyframe insertion and local
bundle adjustment. We evaluate the proposed framework on
endoscopic video sequences openly available via the SCARED
dataset against both ground truth data, as well as two other
state-of-the-art methods - ORB-SLAM2 and Endo-depth. Our
proposed method achieved comparable results in terms of
both RMS Absolute Trajectory Error and Cloud-to-Mesh RMS
Error, suggesting its potential to enable accurate endoscope
tracking and scene reconstruction.

Index TermsÐ Stereo Endoscopy, Visual Odometry, Surgical
Scene Reconstruction.

I. INTRODUCTION

Endoscope tracking is an essential component of image-

guided interventions that rely on video views for surgical

instrument navigation. Both optical (OTS) and electromag-

netic tracking systems (EMT) could be used to track an

endoscope [1]. However, despite their high tracking accuracy,

OTS require direct line-of-sight between the tracker and a

dynamic reference frame rigidly mounted on the endoscope;

similarly, EMTs are susceptible to magnetic field distortion

from surrounding metal or other ferromagnetic sources. An

alternative approach is to track the endoscope using only the

image data captured by the endoscope, a method also known

as visual odometry (VO) [2]. This approach is appealing, as

it mitigates the limitations associated with external tracking,

while requiring minimum modifications to the existing sur-

gical workflow.

Endoscope tracking is also paramount for surgical scene

reconstruction [3], [4], which entails the fusion of dense

depth maps and color images with estimated camera poses

[5]. The reconstruction benefits many downstream tasks,
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including visual analysis [4] and image-to-patient registration

[1]. Hence, given the critical need for accurate endoscope

tracking to achieve faithful surgical scene reconstruction,

in this work, we target both visual odometry and scene

reconstruction.

Existing methods for camera localization and dense scene

reconstruction include traditional methods based on multi-

view constraints [6], [7], end-to-end deep learning methods

[8], and hybrid methods [3], [4] that replace several modules

of traditional methods with deep learning methods. Tra-

ditional approaches using multi-view correspondences and

constraints can yield highly accurate results of tracking

and reconstruction given well-textured images. However,

correspondences are difficult to estimate from texture-less

surfaces, which are typical in endoscopic images, resulting

in sparse reconstruction.

Deep learning-based dense scene reconstruction methods

have shown promising results, especially for dense depth

estimation. Ozyoruk et al. [8] used an end-to-end deep

learning method based on a depth estimation network and a

pose estimation network. However, end-to-end deep learning

methods lack bundle adjustment[7], [2], which leads to

the accumulation of tracking drift [4]. Moreover, when the

training data and testing data have different data distributions,

end-to-end deep learning methods may also suffer from

domain gaps [9]. Hence, hybrid methods [3], [4] that leverage

the power of both traditional and deep learning methods have

shown further potential. One such example is the work by

Recasens et al. [3], which employs self-supervised depth

networks to generate pseudo-RGBD frames, then track the

camera using photometric constraints.

To further mitigate the limitations associated with accu-

mulated tracking drift and sparse reconstruction, here we

propose a hybrid visual odometry and dense scene recon-

struction framework (END-VO). New techniques in END-

VO include: 1) An unsupervised learning-based optical flow

method [10] is employed to estimate dense depth maps

from low-textured stereo endoscopic images. 2) To accu-

rately estimate camera poses, we design a rule to select

accurate and easy-to-track landmarks from both Kanade-

Lucas-Tomasi (KLT) tracking [11] and unsupervised optical

flow [10]. 3) We leverage traditional modules to improve the

tracking and the reconstruction performance, such as bundle

adjustment to reduce the accumulation of tracking drift,

and keyframe insertion module to prevent significant point

cloud overlap and ensure accurate tracking. We evaluate
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Fig. 1. END-VO overview, showing main modules: 1) Mapping - predicts dense depth map and selects robust 3D landmarks for tracking; 2) Tracking -
infers current camera pose relative to previous pose; 3) Key Frame Insertion - triggers mapping and performs local bundle adjustment, if needed; 4) Local
Bundle Adjustment - optimizes existing landmarks and key frame camera poses; 5) Visualization and Reconstruction - displays the depth map and builds
a global 3D mesh model. Detected landmarks, reconstructed point clouds, and estimated camera poses are all stored in the Map. Green and red represent
2D features and 3D landmarks, respectively.

our proposed framework on the Stereo Correspondence and

Reconstruction of Endoscopic (SCARED) dataset [12] and

showed competitive results, comparable to those yielded by

other state-of-the-art methods.

II. METHODS

A. END-VO Framework

Our method uses a sequence of stereo endoscopic videos

with known camera calibration parameters as input to track

the stereo endoscope, and reconstructs the surface as a global

3D mesh model. The proposed framework comprises several

modules illustrated in Fig. 1 and also described below. The

framework gradually builds a map based on 3D landmarks,

point clouds, and camera poses. Camera poses are estimated

using 3D landmarks and their associated 2D image features.

Our algorithm updates the 3D landmarks and point clouds

of the map only when a new keyframes is inserted [2], [7].

Finally, a global mesh model is constructed using the dense

point clouds and associated camera poses.

1) Mapping: This module updates the dense point clouds

and robust 3D landmarks in the map when a keyframe is

captured. A dense depth map Ddeep is derived from a pair

of stereo images via the unsupervised deep learning-based

optical flow [10]. Given the associated camera intrinsic and

extrinsic parameters, the dense point cloud can be recovered

from the dense depth map. KLT tracking [11] is used to

identify good 2D features to subsequently track and estimate

a sparse depth map DKLT of the features from a pair

of stereo images. KLT tracking tends to select features

on relative well-textured regions, which ensures those fea-

tures to be easily and accurately tracked on the following

frames. However, the DKLT usually contains outliers, and

Ddeep may be invalid in some regions, as the learning-

based optical flow predicts on unseen images. We select

robust 3D landmarks by comparing DKLT and Ddeep. If

|DKLT (p) − Ddeep(p)| < thd, where thd is the threshold

to filter outliers, the identified features, and associated depth

values are selected as robust 3D landmarks.

2) Tracking: This module infers the current camera lo-

cation relative to the previous camera position and updates

the camera pose in the map. The 3D landmarks identified

in the mapping module are projected onto the previous

frame using the estimated camera pose of the previous

frame and then tracked on the current frame via Lucas-

Kanade (L-K) optical flow [11]. Given a set of 3D landmarks

and their corresponding 2D projections, the current camera

pose relative to the previous frame can be solved via the

Perspective-n-Point (PnP) RANSAC, detailed in [2]. The

pose is then transformed into the world coordinate system

(the first frame in the sequence) and stored in the map.

3) Keyframe Insertion: The keyframe insertion module

determines whether the current frame is a keyframe based

upon the spatial distribution of tracked features in the current

frame. Inserting a keyframe based on the number of tracked

features [7] cannot guarantee that the tracked features are

not over-concentrated in a small region of the current image

due to camera motion. We grid the current frame into N
equally sized, non-overlapping patches, then we insert the

current frame as a keyframe if Np/N < thp, where Np

is the number of patches that contain tracked features, and

thp is a threshold. Our insertion rule ensures that there is

enough area covered by tracked features, if not, the mapping

module will detect new 3D landmarks from the current pair

of stereo images. Also, this rule reduces the number of

highly overlapping keyframes, thus decreasing computational

burden, and improve reconstruction since the fusion of highly

overlapping frames results in a blurry surface.

4) Local Bundle Adjustment: This module jointly

optimizes the 3D landmarks and camera poses of the most

recent Nk keyframes by minimizing re-projection error [7],

leading to reduced tracking drift.

5) Visualization and Reconstruction: All camera poses,

landmarks and point clouds of the map are visualized in
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TABLE I

PERFORMANCE COMPARISON OF THREE VISUAL ODOMETRY / SCENE RECONSTRUCTION TECHNIQUES (END-VO - PROPOSED METHOD,

ORB-SLAM2 AND ENDO-DEPTH) ON THE SCARED DATASET.

ATE RMSE (mm) C2M RMSE (mm)

ORB-SLAM2 Endo-Depth END-VO Endo-Depth END-VO
[7] [3] (Proposed Method) [3] (Proposed Method)

Dataset1/video2 0.87 3.91 1.14 3.71 0.62

Dataset2/video2 4.63 21.50 3.85 1.98 0.37

Dataset3/video2 1.10 9.32 1.37 2.90 1.60

Datset1/video2 Datset2/video2 Datset3/video2

Fig. 2. Endoscopic camera trajectories estimated by ORB-SLAM2 [7], Endo-Depth [8], and our proposed END-VO on video sequences of
the SCARED dataset. Note that the distance between the ground truth and END-VO trajectories is less than 4 mm across all reconstructed
paths.

real time. We apply the Truncated Signed Distance Function

(TSDF) [5] to the point clouds to reconstruct a global 3D

mesh. The TSDF grids the space into equal voxels of the

TSDF volume (Vtsdf ) and sequentially averages the 3D

locations and point cloud colors within each voxel.

B. END-VO Experiments, Implementation and Evaluation

Our experiments are conducted on three sub-datasets

(dataset 1, 2, 3) of the SCARED dataset [12], collected from

the abdominal anatomy of a porcine cadaver using a Da

Vinci Xi surgical robot and a structured light. Each sub-

dataset corresponds to a single porcine subject and contains

4 or 5 video sequences. Each video is accompanied by

its associated camera calibration parameters, camera poses,

and the point cloud of the first frame. The point clouds

were reconstructed using structured light, while the camera

poses were determined based on the robot kinematics. As we

include the deep learning-based method in our framework,

we use video 2 that is the longest video of each sub-dataset

for testing and the rest of the available video sequences for

training and validation. There are 5035 training pairs, 915

validation pairs, and 3997 testing pairs in all.

The proposed stereo visual odometry method was imple-

mented in C++ and built upon the code library in [2]. We

use the OpenCV implementation of KLT and PnP, and the

Open3D implementation of TSDF. The unsupervised optical

flow method was trained using the same parameter settings

recommended by [10]. All experiments were conducted on

a 2.60GHz Intel i7-9750H CPU and a GTX 2070 GPU. The

hyper-parameters were set: thd = 8, N = 64, thp = 0.65,

Nk = 7, Vtsdf = 0.02 mm3, tuned on training and validation

dataset.

We evaluated our framework using two metrics, consistent

with other reported methods [4], [8]. Endoscope tracking

was evaluated based on the Root-Mean-Squared Absolute

Trajectory Error (ATE-RMSE), computed as the root-mean-

squared distance between the ground truth endoscope tra-

jectory and the reconstructed trajectory, implemented in the

evo Python library1. Scene reconstruction was evaluated

using the Root-Mean-Squared Cloud-to-Mesh Error (C2M-

RMSE), computed as the root-mean-squared error of the

signed distance between the ground truth point cloud and

the reconstructed mesh model, implemented using the open-

souce CloudCompare tool. Note that the SCARED dataset

only provides ground truth point cloud data for the first frame

of all video sequences.

III. RESULTS

We assessed the performance of our proposed method

(END-VO) against the ground truth data by comparing

its performance to two other methods - ORB-SLAM2 [7]

and Endo-Depth [3] - evaluated against the same ground

truth data. The former (ORB-SLAM2) is a state-of-the-art

sparse feature-based simultaneous localization and mapping

(SLAM) system that includes global bundle adjustment in

addition to visual odometry. The latter (Endo-Depth) is a

recently published method that depends on dense depth maps

estimated from a self-supervised depth estimation network

1http://github.com/MichaelGrupp/evo
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trained on stereo images and photometric constraints for

tracking.
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Fig. 3. Visualizations of scene reconstructions from the first frame
of several video sequences of the SCARED dataset: ground-truth;
Endo-depth [8]; and END-VO. Note the superior quality of the
END-VO reconstructions relative to the blurry and incomplete
Endo-depth reconstructions.

With regards to endoscope tracking accuracy, both the

RMS-Absolute Trajectory Error and RMS-Cloud-to-Mesh

Error reported in Table I and Fig. 2, respectively, con-

firm that END-VO performs comparably to ORB-SLAM2,

while significantly out-performs Endo-depth. ORB-SLAM2’s

global bundle adjustment could be useful for tracking long

image sequences in broad spaces, such as in autonomous

driving. In abdominal cavities, local bundle adjustment may

be sufficient. Endo-depth’s performance lags both ORB-

SLAM2 and END-VO, mainly because it does not include

the bundle adjustment to reduce the accumulated camera

drift, and photometric constraints are not commonly valid

due to illumination change, which may lead to tracking er-

rors. In terms of surgical scene reconstruction, ORB-SLAM2

is not capable to perform dense scene reconstructions. Both

the RMS-Cloud-to-Mesh error reported in Table I and the

qualitative reconstructions illustrated in Fig. 3 confirm that

END-VO achieves a reconstruction quality superior to that

of Endo-depth. Fig. 3 clearly shows that the surfaces re-

constructed using Endo-depth are blurry, as a result of

colors of overlapping point clouds being averaged during

the reconstruction. This artifact is a result of Endo-depth

selecting a keyframe after a fixed number of frames, causing

significant point cloud overlap; on the other hand, END-

VO mitigates such artifacts thanks to the keyframe insertion

module that prevents significant point cloud overlap.

IV. CONCLUSIONS

We have presented a hybrid visual odometry framework

(END-VO) for stereo endoscopy applications that enables

both accurate endoscope tracking and dense scene recon-

struction from stereo endoscopy. We used an unsupervised

learning-based optical flow method to estimate dense depth

maps from the low-textured tissue surfaces. We selected

accurate and easy-to-track landmarks by leveraging the joint

power of KLT tracking and unsupervised optical flow. We

also designed an objective rule to govern keyframe insertion

within our framework, which reduces computational burden

and ensures high-quality scene reconstruction.

In summary, our proposed END-VO framework exploits

the benefits of both traditional video odometry and unsuper-

vised deep learning-based optical flow, therefore achieving

high performance in both endoscope tracking and scene re-

construction from routine stereo endoscopy video sequences.

Future work will focus on further improving and adapting

this framework to enable accurate scene reconstruction from

tissue-deforming surgical scenes.
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