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ARTICLE INFO ABSTRACT
This manuscript was handled by Huaming Guo, A reliable chlorophyll-nutrient relationship (CNR) is essential for lake eutrophication management. Although the
Editor-in-Chief spatial variability of CNRs has been extensively explored, temporal variations of CNRs at the individual lake scale

has rarely been discussed. The paucity of information about temporal dependence in CNRs may in part be due to
the lack of a suitable statistical framework that helps guide such investigations. In order to reveal temporal
dependence of CNR, this study develop a novel statistical framework. In the framework, we employ quantile
Nutrient limitation regression to generate overall (the entire dataset), annual (subsets for each year), and accumulative (subsets
Temporal dependence collected before a certain year) CNRs. We aim to 1) show biases of annual relationships by comparing the overall
Eutrophication management and annual relationships and 2) determine whether or not data accumulation is enough to develop a reliable
CNR. We use Lake Champlain and Lake Kasumigaura as case studies to illustrate the necessary steps needed to
utilize this novel framework. Results show that large interannual variations exist for CNRs. Accumulative re-
lationships tend to converge to the overall relationship, indicating that overall relationships are reliable for
informing lake-specific eutrophication management in the two case study lakes. The novel statistical framework
that we propose for a procedure to estimate reliable CNRs is important for informing lake-specific eutrophication
control decision-making processes.
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1. Introduction Schindler, 2009). In most cases, nutrients, including phosphorus and
nitrogen, are treated as two of the most manageable factors to curb lake

Globally, anthropogenic nutrient loading from industrial and agri- eutrophication (Carvalho et al., 2013; Conley et al., 2009; Schindler
cultural development has deteriorated water quality and impaired et al., 2008). Therefore, quantitative relationships between chlorophyll
ecosystem structure and function in many lakes (Chislock and Doster, (Chl) and nutrients are fundamental to guide lake eutrophication man-

2013; Ho et al., 2019; Huang et al., 2019; Le Moal et al., 2019; Smith and agement (Filstrup et al., 2014; Huo et al., 2013; Huo et al., 2018; Jones
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et al., 2011; Liang et al., 2021b; Vincon-Leite and Casenave, 2019).

The Chl-nutrient relationship (CNR) often varies substantially
among lakes. The variations of CNRs across spatial scales complicate
lake eutrophication management (Brown et al., 2000; Chen and Li,
2014; Phillips et al., 2008). For example, a “one-size-fits-all” approach —
where a single CNR is used to manage eutrophication across a diverse set
of lakes — is often not possible. This spatial variability in CNRs has been
well established (Cha et al., 2016; Qian et al., 2019; Zou et al., 2020),
and other studies have explored drivers of these spatially-varying re-
lationships at multiple scales (Abell et al., 2012; Filstrup et al., 2014).
Such studies have found that regional factors, such as land use and land
cover, can explain some of the spatial variation observed in CNRs (Huo
et al., 2014; Rohm et al., 2002; Wagner et al., 2011). In addition, recent
research has shown that factors operating at the lake-scale, such as lake
depth and watershed-scale (e.g., surrounding land use) can also influ-
ence CNRs (Qin et al., 2020; Read et al., 2015). Considering the spatial
heterogeneity of lake-specific drivers of CNRs, lake-specific eutrophi-
cation management strategies (Xu et al., 2015a), such as the develop-
ment of lakes-specific nutrient criteria (Liang et al., 2020; Olson and
Hawkins 2013), has been recommended.

At the lake-scale, a reliable CNR is critical for informing successful
management strategies. However, a lake-specific CNR might vary over
time (Liang et al., 2019). Understanding potential temporal variations in
CNRs could also be important for determining a reliable (i.e., tempotally
stable) lake-specific CNR. Despite some recent progress on developing
lake-specific CNRs (Liang et al., 2020; Qian et al., 2019), we note that
the temporal dependence of CNR has rarely been discussed or evaluated.
Specifically, several questions exist, including 1) to what extent do CNRs
vary annually and 2) if they do, how to determine whether or not a
developed CNR is reliable enough to inform lake eutrophication man-
agement. Particularly, there lacks a statistical framework for revealing
the temporal dependence of CNRs to answer the aforementioned
questions.

Quantile regression (QR), as an alternative to traditional ordinary
least-squares regression (OLSR), has been introduced to quantify cause-
effect relationships between ecological variables. QR is used to explore
the effect of one predictor on different quantiles of a response variable
(Cade and Noon, 2003; Das et al., 2019), rather than the average of the
response variable as in mean regression methods (e.g., OLSR; Altman
and Krzywinski, 2015). The major advantage of applying QR to develop
CNRs is that QR can estimate the upper boundary of Chl response to the
nutrient (Chen and Li, 2014; Heiskary and Bouchard, 2015; Koenker and
Bassett, 1978). Compared to OLSR-derived models, which fail to address
the effect of unmeasured factors, QR-derived models can reflect the
limiting effect of a nutrient on Chl by modeling the upper distribution of
the Chl response to the nutrient (Cade et al., 1999; Xu et al., 2015a).
Therefore, any unmeasured factors effecting CNRs including non-algal
suspended solids, landscape factors, grazing by zooplankton, and other
factors are considered in the QR analysis (Mazumder, 1994; Wagner
et al., 2011). QR has been recently expanded in CNR estimations for
lake-specific eutrophication assessment (Xu et al., 2015b), regional
eutrophication management (Zou et al., 2020), and global nutrient
limitation quantifications (Abell et al., 2012). However, there still lacks
QR applications in revealing the temporal dependence of CNRs.

In this study, we propose a novel statistical framework to reveal lake-
specific temporal dependence of CNRs with the application of QR. In the
framework, we develop overall (the entire dataset), annual (subsets for
each year), and accumulative (subsets collected before a certain year)
CNRs. We attempt to 1) quantify any potential biases in annual re-
lationships by comparing the overall and annual CNRs, and 2) determine
whether or not data accumulation is appropriate for developing a reli-
able CNR by comparing the overall and accumulative relationships. We
use data from Lake Champlain (LC; located in the United States) and
Lake Kasumigaura (LK; located in Japan) as case studies to illustrate
steps necessary to utilize this novel framework. We further discuss how
our statistical framework could inform lake-specific eutrophication

Journal of Hydrology 603 (2021) 127134
management.
2. Materials and methods
2.1. Study area

We chose LC and LK as case studies based on two considerations,
namely the availability of long-term monitoring data and lake-specific
physical characteristics. Physical characteristics, measures of climate,
and nutrient and Chl conditions for these two lakes are summarized in
Table. 1. LC is located in the northeastern United States. It is a deep lake,
with an average depth of 20 m and with a surface area of 1127 km?. The
lake is well-known for its large watershed area to lake area ratio (19:1)
(Isles et al., 2017). LK is located in Ibaraki Prefecture, approximately 50
km northeast of Tokyo, Japan. It is the second largest shallow lake in
Japan with an average depth of 4.0 m. The lake has a surface area of 171
km?. The watershed to lake area ratio is approximately 9:1 (Arai and
Fukushima, 2014; Tsuchiya et al., 2019).

In this study, we included total nitrogen (TN) and total phosphorus
(TP) in our analysis because they are the primary limiting nutrients of
lake phytoplankton (Phillips et al., 2008; Stow and Cha, 2013). The
concentrations of TN, TP, and Chl for estimating CNRs were obtained
from the long-term monitoring datasets for LC and LK. The monitoring
data for LC are freely available at https://dec.vermont.gov/watersh
ed/lakes-ponds/lake-champlain. A total of 4413 paired TN, TP, and
Chl concentrations for 12 sampling stations in LC from 1992 to 2018
were used in this study. The LK database was obtained from the National
Institute for Environmental Studies 2016, and accessed via https://db.
cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html
01-01-2020. Monthly time-series of 10 long-term sampling stations
spanning the years 1985-2016, were used and resulted in 3807 paired
Chl, TN and TP values for LK. All biweekly and monthly monitoring of
TN, TP, and Chl concentrations were directly applied to develop CNRs.

Table 1
Comparisons of selected physical, chemical and climate characteristics between
Lake Champlain and Lake Kasumigaura.

Parameter Lake Champlain Lake Kasumigaura

Location New York, Vermont and Ibaraki Prefecture,
Quebec, USA Japan

Surface area (km?) 1127 171

Maximum depth (m) 122 7.3

Average depth (m) 20 4

Watershed/ surface 19:1 9:1

area

Average annual rainfall 845
(mm)

Annual air temperature
(9]

Water temperature (°C)

Sampling month

Approximately 1250
—13.9-26. Approximately 14.0

18.6 (2.7-28.8)
April-November

16.5 (2.3-32.4)
January-December

Sampling frequency Biweekly Monthly
Data available website [a] [b]
Chlorophyll (Chl, mg-m~>)

Mean 6.3 61.6
Std.D 6.7 37.8
Min 0.5 0.0
Max 116.4 466.0
Total nitrogen (TN, mg-m~>)

Mean 403.3 1511.2
Std.D 132.1 632.8
Min 110.0 475.0
Max 1710.0 4635.0
Total phosphorus (TP, mg-m~>)

Mean 24.2 115.8
Std.D 17.4 51.8
Min 5.0 13.0
Max 235.0 765.0



https://dec.vermont.gov/watershed/lakes-ponds/lake-champlain
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In LC, average TN, TP, and Chl concentrations were 403.3 mg-m’s,
24.2 mg-m~3, and 6.3 mg-m 3, respectively (Table 1). Spatial variation
of trophic status was observed in LC, with some areas being eutrophic
(Xu et al., 2015b). In contrast, LK is hypereutrophic, largely due to the
extremely high loads of organic matter and nutrients (Ishii et al., 2009;
Masunaga and Komuro, 2020). The average TN, TP, and Chl concen-
trations were 1511.2 mg~m’3, 115.8 mg-m’?’, and 61.6 mg~m’3,
respectively (Table. 1). In addition, concentration ranges for TN, TP, and
Chl concentrations spanned a wider range in LK than those in LC.

2.2. Framework to reveal the temporal dependence of CNRs

The proposed novel statistical framework to quantify potential
temporal dependence of CNRs is shown in Fig. 1. The framework in-
cludes three steps to estimate the overall, annual, and accumulative
CNRs. Both Chl-TN and Chl-TP relationships were developed because
both nutrients might influence Chl concentrations within lakes (Conley
et al.,, 2009). In the framework, we want to explore two potential

Data Model

a Overall Chi-nutrient Relationship

Lake-specific

Quantile regression
\Daﬁty 90th model
logChl ~ logTN
Chl, TN, TP logChl ~ logTP
Year,, ..., Year, Year,, ..., Year,

N

b Annual Chi-nutrient Relationship

Lake-specific

Quantile regression

\Data—set/ 90th model

logChl ~ logTN

Chl, TN, TP logChl ~ logTP
Year,

Year,, ..., Year,

Year,
Year,

N

C Accumulative Chl-nut

rient Relationship

Lake-specific

Chl, TN, TP

Yeary, ..., Year,

Quantile regression
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logChl ~ logTN
logChl ~ logTP

Yeary, ..., Year,
.
Yeary, ..., Year,

Year;,

N
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temporal dependencies that may exist. On the one hand, we compare the
overall and annual relationships to show if there exist biases in annual
relationships. On the other hand, we compare the overall and accumu-
lative relationships to determine whether data accumulation is sufficient
to develop a reliable CNR.

In the proposed framework, the major difference among the three
steps is the data used to develop the CNR. The first step is to develop the
overall CNR using all available data (Fig. 1a). Next, we develop annual
CNRs based on the data collected in every year (Fig. 1b). In the third
step, we develop accumulative CNRs using the data collected before a
specified year. For example, for the accumulative CNR for the year of
2010, we use all data collected before and including 2010 (Fig. 1c).
Following these steps, we can determine if CNRs for the initial year are
identical in step 2 and step 3. The CNR for the last year in the third step is
the same as the overall CNR in the first step.

To explore the variation of annual CNRs, we compare the overall
relationship with annual relationships. Here, the overall relationship
could be treated as the baseline. If annual relationships all concentrate

Result
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°
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o
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°
°

Fig. 1. The statistical framework to quantify potential temporal dependence of chlorophyll-nutrient relationships. The three steps include estimating (a) overall, (b)
annual, and (c) accumulative chlorophyll-nutrient relationships.
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near the overall relationship with small biases, we could determine that
even an annual CNR is reliable to inform lake-specific eutrophication
management. If the annual relationships deviate from the overall mean
relationship substantially, it is worth exploring whether or not the
overall relationship is reliable enough.

If there is large variation among annual CNRs, we can then compare
the overall relationship with accumulative relationships to determine
the reliability of the overall relationship. As aforementioned, the accu-
mulative CNR for the last year is the same as the overall relationship.
However, if the accumulative relationships are very similar to the
overall relationship several years before the last year (bias less than
10%), we could conclude that the CNR is relatively stable over time.
Therefore, the overall relationship may be reliable enough to inform
lake eutrophication management. Otherwise, if the bias between the
accumulative relationship and the overall relationship remains large
until the year just before the last year, the overall relationship might not
be adequate and more monitoring data may be required.

2.3. QR for CNR development

In the framework, we apply QR to develop CNRs in all three steps.
The main function of QR is expressed as Eq. (1) (Koenker and Bassett,
1978):

yi =bo+bix;+ & (@]

where i represents the order of observations (i = 1, 2, ..., M, M is the
sample size), y represents the log transformed Chl concentration
(logChl), and x represents the log transformed nutrient concentration
(1ogTP or 1ogTN). by and b; represent the regression intercept and slope.
Since all the data are log transformed, the regression slope (b1), is
interpreted as the percent change in Chl concentration per 1% change in
TN and TP concentration (Qian, 2017). ¢ is the error. The parameter
estimation in linear QR is based on the minimum of absolute error (Eq.
(2)) (Koenker and Bassett, 1978):
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Tlyi — bo — bix;| + Z (1 =7)|yi = bo — brx;]

ie{izyi<(bo+bix;) }

min E

ie{izyiz(bo+b1xi) }

(2)

where 7 represents the quantile of the response. In our study, 7 is chosen
to be 0.9, following common practices when quantifying the limiting
effect in ecological studies (Chassot et al., 2010).

Coefficients of determination (Rl) for 0.9 quantile were calculated to
infer the goodness of fit to the upper boundary of data distributions for
CNRs. The R! value is calculated as follows: R = 1 — (SUMr): SUM(z)),
where SUM(p, refers to the sum of weighted absolute deviations mini-
mized to estimate each of the full parameter models, and SUMg) refers
to the sum of weighted absolute deviations minimized to estimate each
of corresponding reduced parameter models of logChl = by + ¢ (Koenker
and Machado, 1999). In order to be comparable to the OLSR-derived RZ,
the QR-derived R! for 0.9 quantile were converted to R?, which are
calculated as follows: R> = 1 — (1 — R})? (McKean and Sievers, 1987;
Schooley and Wiens, 2005; Xu et al., 2015a).

All models were fitted using the R software (R version 4.0.2; R Core
Team 2020). The algorithm for parameter estimation of QR models was
implemented in the quantreg package (Koenker, 2020). The code for the
development of overall, annual, and accumulative CNRs is freely
available at https://doi.org/10.5281/zenodo.4087838.

3. Results
3.1. Overdll and annual CNR

Overall CNRs based on all available data are shown in Fig. 2. The
overall CNR describes the upper response of Chl to each nutrient. In LC,
the QR-estimated regression slopes of TN and TP are 1.33 and 0.87,
respectively, indicating that a 1% increase/decrease for TN and TP
concentration would lead to a 1.33% and 0.87% increase/decrease of
Chl concentration. In LK, the QR-estimated regression slopes of TN and

a b
3.0 —logChl = 1.33 (+0.09)logTN - 2.36 (£0.22) R?=0.225 | 7 — logChl=0.87 (+0.02)logTP - 0.14 (x0.03) R?=0.482
P - -logChl = 0.73 (£0.04)logTN - 1.23 (+0.01)  R?=0.074 - +logChl = 0.66 (0.02)logTP - 0.20 (0.02) R?=0.292
€ 20- ]
(o))
S
=
< 1.0 i
(@)
o))
ke)
0.04 .
T T T T T T T T T
c d
3.0 i
—
@
£
D 2.0+ J
E ___________
=
=
O 1.0 .
[5))
LS)
0.0 , 1 ,
— logChl = 0.85 (+0.03)logTN - 0.66 (+0.09) R?=0.266 — logChl = 0.86 (0.03)logTP + 0.21 (+0.06)  R?=0.441
- -logChl = 0.20 (+0.03)logTN + 1.09 (0.09) R?=0.013 = +logChl = 0.81 (+0.02)logTP + 0.07 (+0.04) R?=0.269
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2.0 2.5 3.0 3.5 1.0 1.5 2.0 25 3.0
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Fig. 2. Scatter plots of chlorophyll (log;oChl) against total nitrogen (log;oTN, a & c) and total phosphorus (log;oTP, b & d) for Lake Champlain (a & b) and Lake
Kasumigaura (c & d). Black solid lines indicate the relationships for Chl-TN and Chl-TP at the 0.9 regression quantile. Black dashed lines are ordinary least-squares

regression derived models for Chl-TN and Chl-TP relationship.
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TP are 0.85 and 0.86, respectively, indicating that a 1% increase/
decrease of TN and TP concentration would lead to a 0.85% and 0.86%
increase/decrease of Chl concentration. It is worth noting that the
overall CNRs derived from the QR method fit better than those derived
from the OLSR method with higher R? values for QR than for OLSR
(Fig. 2).

Generally, there were no apparent patterns in the annual variation
for the annual CNRs in both lakes. Regression parameters show large
interannual variation (Figs. 3 and 4). Parameter estimation results of
annual CNRs in LC are shown in Fig. 3 (hollow triangles). For the Chl-TN
relationship, regression slopes range from 0.56 to 2.05, with an average
of 1.35 (+0.41, standard deviation). Regression intercepts range from
—4.21 to —0.50, with an average of —2.46 (+£1.01). For the Chl-TP
relationship, average regression slopes and intercepts were 0.87 (+0.25)
and —0.16 (£0.34), respectively. Corresponding ranges were from 0.34
to 1.54 and from —0.90 to 0.51.

Parameter estimation results of annual CNRs in LK are shown in
Fig. 4 (hollow triangles). For the Chl-TN relationship, regression slopes
range from —0.05 to 1.36, with an average of 0.79 (+0.31). Regression
intercepts range from —2.24 to 2.03, with an average of —0.50 (+0.92).
For the Chl-TP relationship, average regression slopes and intercepts
were —0.96 (£0.29) and —0.002 (£0.57), respectively. Corresponding
ranges were from 0.25 to 1.56 and from —1.22 to 1.38. Despite of
relatively larger ranges of TN, TP, and Chl concentrations in LK
compared with LC, estimated regressions parameters for these two lakes
did not show many differences.

3.2. Accumulative CNRs

Parameter estimation results for the accumulative CNRs are shown in
Figs. 3 and 4 (solid dots). Unlike the annual CNRs, regression parameters
of accumulative CNRs show an obvious trend with year and generally
converge to stable values (i.e., the parameters values of overall re-
lationships) over time. In LC, regression slopes for the Chl-TN and
Chl-TP relationships both increase with increasing year, while

Journal of Hydrology 603 (2021) 127134

regressions intercepts both have decreasing trends (Fig. 3, solid dots).
The regression slope for the Chl-TN relationship increases from 0.56 to
1.22 in 1995, and then become very similar to the 1.33 slope estimated
for the overall relationship. Regression intercepts decrease from —0.58
to —2.23 for 1995, and then converge to be very close to the overall
relationship. For the Chl-TP relationship, the slope increases from 0.49
to 0.80 for the year 2004, and then become very close to the 0.87 slope
estimated for overall relationship. The intercept decreases from 0.36 to
—0.05 for the year 2004, and then becomes very close to the overall
relationship.

In LK, patterns reverse. Both regression slopes decrease and both
intercepts increase over time (Fig. 4, solid dots). The regression slope for
the Chl-TN relationship increases from 1.02 to 1.18, then decreases to
0.86 in the year 1993, and generally converges to the slope of overall
relationships. Regression intercept decreases from —1.16 to —1.61, and
then increases to 0.68 in the year 1993, and converges to the overall
relationships. For the Chl-TP relationship, the slope increases from 1.01
to 1.22, and then decrease to 0.93 in the year 2001, and generally
converges to the slope of overall relationships. Regression intercept
decreases from 0.08 to —0.31, then increases to 0.10 in the year 2001
and tends to the overall relationships.

4. Discussion
4.1. The difference of nutrient limitations between two lakes

Difference in the upper boundary equations on the CNRs for LC and
LK indicates that the nutrients limitation of chlorophyll varies between
these two case study lakes. Nnutrients limitation variation may be due to
the difference in hydrodynamic disturbance of these lakes. Conjectur-
ally, the geographic location and water depth of the two lakes are the
main reason for different hydrodynamic conditions. LC is relatively
stable in terms of hydrodynamic conditions due to its deep depth (Table.
1). In contrast, the shallow LK is influenced by the mixing effect of
storms, especially typhoons. The energy of these storms leads to the
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Fig. 3. Estimated coefficients for annual (hollow triangles) and accumulative (solid dots) chlorophyll (Chl) — nutrient relationships in Lake Champlain. The co-
efficients include slopes (b;) and intercepts (by) for Chl - total nitrogen (Chl-TN, a & b) and Chl - total phosphorus (Chl-TP, d & e) relationship. The horizontal
dashed line indicates the relationship for ChI-TN or Chl-TP at the 0.9 regression quantile.
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suspension of sediments and an increase the non-algal turbidity, thus
enhancing light limitation of phytoplankton (Brezonik et al., 2019;
Jones and Knowlton, 2005; Zhang et al., 2017). Therefore, it can be
reasonably assumed that the hydrodynamic disturbance is the primary
factor influencing the nutrient limitation by the result of lower slopes for
Chl-nutrients upper boundary equations for LK compared to LC (Fig. 2).
The differences in nutrients limitation of chlorophyll between lakes
indicate that lake-specific nutrient criteria are not universally appli-
cable, and the lake-specific upper boundary equation of Chl-nutrient
should be calculated using a lake-specific dataset. In this study, the QR-
derived Chl-nutrient upper boundaries reflecting peak algal biomass
response to nutrients under an ideal condition, fit better than OLSR-
derived models which cannot account for unmeasured drivers for Chl
(Fig. 2). Therefore, it is reasonable to assume that QR provides more
insight into the ecological concept of “law of the minimum”, which
could help lake managers to better understand and establish more ac-
curate nutrient criteria. Here, we introduce a Chl standard of 15.0
mg-m~> applied by USEPA (2000) as an example to show that the
calculation of nutrient thresholds by the upper boundary CNR is
different between the two case study lakes. It appears that nutrient
criteria derived from the overall Chl-nutrient equations are significantly
different between these two case lakes. Given the target Chl concen-
tration of 15.0 mg-m 3, the thresholds of TN and TP for LC are 458.8
mg-m > (logTN = 2.66), and 32.9 mg-m > (logTP = 1.52), respectively.
The thresholds for TN and TP for LK are 146.1 mg-m’?’ (logTN = 2.16),
and 13.4 mg-m > (logTP = 1.13), respectively. This suggests that lake-
specific nutrient criteria developed using upper boundary QR equa-
tions will be useful for informing lake eutrophication management.

4.2. Variation of annual CNR

There was large variations in regressions parameters among annual
CNRs in both lakes (Figs. 3 and 4). More importantly, regression pa-
rameters in some years differed substantially from regression parame-
ters of the overall relationship. For example, in LC, for the Chl-TN

relationship in 1992, the regression slope was estimated to 0.56, and the
difference from the overall value is 1.36 times the slope of 1992. In LK,
for the Chl-TP relationship in 2010, the regression intercept was esti-
mated at —0.88, and the difference from the overall value of 0.21 was
1.24 times the intercept of 2010.

Because the CNR is determined by the regression slope and intercept
together, we further explored the deviation of annual CNRs with the
overall relationship (Fig. 5). We found that annual relationships vary
substantially among years, and are different from the overall relation-
ships. In fact, the biases between some annual relationships and the
overall relationship were very large. For example, for the Chl-TN rela-
tionship in LC, the regression equation in 1999 was logChl = 2.05
(£0.27) x 1ogTN — 4.21(+0.69), which was different from the overall
regression equation logChl = 1.33(£0.09) x logTN - 2.36(+0.22).
Assuming that the TN is 1000 mg-m ™3, the Chl derived from the 1999
regression equation is 87.1 mg-m~> and that from overall equation is
42.7 mg-m~3. Additionally, assuming that the TP is 100 mg-m >, the Chl
calculated from the regression equation in 1986 is 123.0 mg-mfs, which
is 1.45 times that of overall.

Global climate change and regional watershed nutrient dynamics
may result in annual variation of Chl-nutrient upper boundary equa-
tions. Generally, erratic fluctuation in nutrient limitation on Chl is
attributed to annually differences in temperature, which is vital for
phytoplankton growth (Huisman et al., 2018; Huo et al., 2019; Paterson
et al.,, 2017). Additionally, differences in annual precipitation is ex-
pected to influence concentrations of non-algal suspended solids by
watershed inputs, which contributes to variations in the slopes of
Chl-nutrient upper boundary equations (Jones and Knowlton, 2005;
Yuan and Jones, 2020). As the different forms of nitrogen and phos-
phorus are transported from the watershed to the lake, variable pre-
cipitation intensity alters the input N:P, which further affects the
utilization of nutrients by phytoplankton in lakes (Isles et al., 2017).

Considering the large biases between the overall relationship and
annual relationships in some years for both lakes and both nutrients, we
conclude that the annual CNR do in fact vary. Short-term monitoring



Q. Qiu et al. Journal of Hydrology 603 (2021) 127134

a — logChl = 1.33 (£0.09)logTN - 2.36 (+0.22) | b —logChl=0.87 (£0.02)logTP - 0.14 (x0.03)

= N w
<) <) o
1 1

logChl (mg-m™%)

o
o
1

w
o
1
o
1

\

logChl (mg-m®)
°

o
o
L

— logChl = 0.86 (+0.03)logTP + 0.21 (+0.06)

— logChl = 0.85 (£0.03)logTN - 0.66 (£0.09)

2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0

logTN (mg-m) logTP (mg-m™)
Fig. 5. Scatter plots of log;o chlorophyll (Chl) against log, total nitrogen (TN, a & c) and log;, total phosphorus (TP, b & d) for Lake Champlain (a & b) and Lake
Kasumigaura (c & d). The gray lines represent annual Chl-nutrient relationships, and black lines indicate the overall Chl-nutrient relationships at the 0.9 regres-
sion quantile.
year might mislead lake eutrophication management decisions. To

develop a reliable lake-specific CNR, more data collected over more
years, rather than more data collected in a single year, are likely

might not be able to reflect the overall ecological process influencing
nutrient — phytoplankton dynamics over longer temporal scales (Smol,
2019). Despite annual relationships in some years being close to the

overall relationship, applying a CNR developed using data from a single required.
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Fig. 6. Scatter plots of log;o chlorophyll (Chl) against log;, total nitrogen (TN, a & c) and log;o total phosphorus (TP, b & d) for Lake Champlain (a & b) and Lake
Kasumigaura (c & d). The gray lines represent accumulative Chl-nutrient relationships, and black lines indicate the overall Chl-nutrient relationships at the 0.9
regression quantile. Arrows represent the trends for accumulative Chl-nutrient relationships converging to the overall relationship.
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4.3. Stabilization of CNR with data accumulation

After determining that data from a single year might not be adequate
to develop a reliable CNR and that additional data collected over more
years is desirable, the next question is how to determine whether or not
the accumulated data are sufficient to adequately characterize the lake’s
‘true’ CNR. In our framework, we answer this question by comparing the
overall relationship with accumulative relationships. We consider the
CNR stable when the difference between coefficients for a certain
dataset and the overall relationship is 10% or less.

As we mentioned before, parameters of accumulative CNRs generally
converge to parameters of the overall relationships. We visually iden-
tified the year at which parameters of accumulative relationship and
overall relationships become similar (converge). In LC, for the TN-Chl
and TP-Chl relationship, the year is approximate 1995 and 2012,
respectively. In LK, for the TN-Chl and TP-Chl relationship, the year is
approximate 1990 and 2001, respectively.

Moreover, accumulative relationships tend to converge to the overall
CNRs as more years are sampled (Fig. 6). For example, for the Chl-TN
relationship in LC, the accumulative relationship for the initial year
differs from the overall Chl-TN relationship. As more years are included
in the calculation of the relationship, the accumulative relationship
becomes closer to the overall relationship. Finally, accumulative re-
lationships for years near the last year are almost coincident with the
overall relationship, with variation between the two less than 10%. The
Chl-TP relationships in LC and those in LK have similar patterns.

The convergent trend of accumulative CNR to the corresponding
overall relationship indicates that the overall relationship is reliable to
inform lake eutrophication since it becomes relatively stable after
several years from the initial year. In our cases, the number of moni-
toring years were 27 and 32 for LC and LK, respectively. In fact,
considering the earlier convergence of accumulative CNRs, even if we
had less data, we could determine the reliability of the overall rela-
tionship. For example, for the Chl-TN relationship in LK, if we had
approximately 9 years of monitoring data, we could determine that the
overall relationship converges and is thus reliable to inform lake
eutrophication management.

4.4. Implications and generalizations of the proposed framework

We have shown how our novel statistical framework can reveal the
temporal dependence of CNR, including the exploration of variation of
annual CNRs and the convergence of accumulative CNR to the overall
relationship. Here, we summarize implications of the statistical frame-
work to lake-specific eutrophication management:

Firstly, by comparing the overall with annual CNRs, we can illustrate
the variation of annual relationships and how they compare to the
overall relationship. In our case, the variation is large, indicating that
annual CNRs are likely not adequate to inform lake eutrophication
management.

Secondly, via the comparison of the overall and accumulative re-
lationships, we determined whether the current dataset is adequate to
develop a reliable CNR, which could be used to inform lake-specific
eutrophication management. Since a reliable CNR is essential to lake
eutrophication management, our novel statistical framework is of vital
importance to ensure the effectiveness of corresponding lake eutrophi-
cation control actions.

Given the flexibility of our proposed framework, we suggest that it
will be generalizable to many ecological applications through the
following considerations. Firstly, with the accumulating of TN, TP, and
Chl monitoring data, our framework has great potential for generaliza-
tion to other lakes. Therefore, the reliability of the framework can be
tested in turn. Since phytoplankton biomass may be co-limited by both
nitrogen and phosphorus, the N:P ratios (Dolman et al., 2016) or joint
nutrients (Liang et al., 2021b; Poikane et al., 2019) can be introduced to
generate CNRs to further reveal the temporal dependence. The novel
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framework can be further improved by applying the ecologically based
quality targets for Water Framework Directive in Europe to assess the
temporal dependence of CNRs (Carvalho et al., 2008; Poikane et al.,
2010; Poikane et al., 2014). Considering the lack of statistical metrics to
determine trend convergence of accumulative CNRs in our framework, a
reliable indicator to better assess the trend convergence is an area of
future research. The method applied in the framework can also be
extended to other methods, such as a Bayesian QR approach (Liang
et al., 2021a) and QR neural network (Cannon, 2011).

5. Conclusions

The contribution of this study is the proposed statistical framework
which can reveal the temporal dependence of CNR. In the framework,
we explored annual variation in CNRs, and the convergence of accu-
mulative CNRs to the overall relationship. The statistical framework is
applied in LC and LK. The framework effectively shows the variation of
annual CNRs. Our statistical framework can be used to inform lake-
specific eutrophication management by revealing the temporal depen-
dence of CNRs, particularly by answering the question about whether or
not a developed CNR is reliable. A reliable Chl-nutrient relationship is
needed for nutrient criteria establishment which is important for
informing eutrophication controldecision-making processes. Therefore,
our proposed framework can help guide lake-specific eutrophication
management.
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