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A B S T R A C T   

A reliable chlorophyll–nutrient relationship (CNR) is essential for lake eutrophication management. Although the 
spatial variability of CNRs has been extensively explored, temporal variations of CNRs at the individual lake scale 
has rarely been discussed. The paucity of information about temporal dependence in CNRs may in part be due to 
the lack of a suitable statistical framework that helps guide such investigations. In order to reveal temporal 
dependence of CNR, this study develop a novel statistical framework. In the framework, we employ quantile 
regression to generate overall (the entire dataset), annual (subsets for each year), and accumulative (subsets 
collected before a certain year) CNRs. We aim to 1) show biases of annual relationships by comparing the overall 
and annual relationships and 2) determine whether or not data accumulation is enough to develop a reliable 
CNR. We use Lake Champlain and Lake Kasumigaura as case studies to illustrate the necessary steps needed to 
utilize this novel framework. Results show that large interannual variations exist for CNRs. Accumulative re
lationships tend to converge to the overall relationship, indicating that overall relationships are reliable for 
informing lake-specific eutrophication management in the two case study lakes. The novel statistical framework 
that we propose for a procedure to estimate reliable CNRs is important for informing lake-specific eutrophication 
control decision-making processes.   

1. Introduction 

Globally, anthropogenic nutrient loading from industrial and agri
cultural development has deteriorated water quality and impaired 
ecosystem structure and function in many lakes (Chislock and Doster, 
2013; Ho et al., 2019; Huang et al., 2019; Le Moal et al., 2019; Smith and 

Schindler, 2009). In most cases, nutrients, including phosphorus and 
nitrogen, are treated as two of the most manageable factors to curb lake 
eutrophication (Carvalho et al., 2013; Conley et al., 2009; Schindler 
et al., 2008). Therefore, quantitative relationships between chlorophyll 
(Chl) and nutrients are fundamental to guide lake eutrophication man
agement (Filstrup et al., 2014; Huo et al., 2013; Huo et al., 2018; Jones 
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et al., 2011; Liang et al., 2021b; Vinçon-Leite and Casenave, 2019). 
The Chl–nutrient relationship (CNR) often varies substantially 

among lakes. The variations of CNRs across spatial scales complicate 
lake eutrophication management (Brown et al., 2000; Chen and Li, 
2014; Phillips et al., 2008). For example, a “one-size-fits-all” approach – 
where a single CNR is used to manage eutrophication across a diverse set 
of lakes – is often not possible. This spatial variability in CNRs has been 
well established (Cha et al., 2016; Qian et al., 2019; Zou et al., 2020), 
and other studies have explored drivers of these spatially-varying re
lationships at multiple scales (Abell et al., 2012; Filstrup et al., 2014). 
Such studies have found that regional factors, such as land use and land 
cover, can explain some of the spatial variation observed in CNRs (Huo 
et al., 2014; Rohm et al., 2002; Wagner et al., 2011). In addition, recent 
research has shown that factors operating at the lake-scale, such as lake 
depth and watershed-scale (e.g., surrounding land use) can also influ
ence CNRs (Qin et al., 2020; Read et al., 2015). Considering the spatial 
heterogeneity of lake-specific drivers of CNRs, lake-specific eutrophi
cation management strategies (Xu et al., 2015a), such as the develop
ment of lakes-specific nutrient criteria (Liang et al., 2020; Olson and 
Hawkins 2013), has been recommended. 

At the lake-scale, a reliable CNR is critical for informing successful 
management strategies. However, a lake-specific CNR might vary over 
time (Liang et al., 2019). Understanding potential temporal variations in 
CNRs could also be important for determining a reliable (i.e., tempotally 
stable) lake-specific CNR. Despite some recent progress on developing 
lake-specific CNRs (Liang et al., 2020; Qian et al., 2019), we note that 
the temporal dependence of CNR has rarely been discussed or evaluated. 
Specifically, several questions exist, including 1) to what extent do CNRs 
vary annually and 2) if they do, how to determine whether or not a 
developed CNR is reliable enough to inform lake eutrophication man
agement. Particularly, there lacks a statistical framework for revealing 
the temporal dependence of CNRs to answer the aforementioned 
questions. 

Quantile regression (QR), as an alternative to traditional ordinary 
least-squares regression (OLSR), has been introduced to quantify cause- 
effect relationships between ecological variables. QR is used to explore 
the effect of one predictor on different quantiles of a response variable 
(Cade and Noon, 2003; Das et al., 2019), rather than the average of the 
response variable as in mean regression methods (e.g., OLSR; Altman 
and Krzywinski, 2015). The major advantage of applying QR to develop 
CNRs is that QR can estimate the upper boundary of Chl response to the 
nutrient (Chen and Li, 2014; Heiskary and Bouchard, 2015; Koenker and 
Bassett, 1978). Compared to OLSR-derived models, which fail to address 
the effect of unmeasured factors, QR-derived models can reflect the 
limiting effect of a nutrient on Chl by modeling the upper distribution of 
the Chl response to the nutrient (Cade et al., 1999; Xu et al., 2015a). 
Therefore, any unmeasured factors effecting CNRs including non-algal 
suspended solids, landscape factors, grazing by zooplankton, and other 
factors are considered in the QR analysis (Mazumder, 1994; Wagner 
et al., 2011). QR has been recently expanded in CNR estimations for 
lake-specific eutrophication assessment (Xu et al., 2015b), regional 
eutrophication management (Zou et al., 2020), and global nutrient 
limitation quantifications (Abell et al., 2012). However, there still lacks 
QR applications in revealing the temporal dependence of CNRs. 

In this study, we propose a novel statistical framework to reveal lake- 
specific temporal dependence of CNRs with the application of QR. In the 
framework, we develop overall (the entire dataset), annual (subsets for 
each year), and accumulative (subsets collected before a certain year) 
CNRs. We attempt to 1) quantify any potential biases in annual re
lationships by comparing the overall and annual CNRs, and 2) determine 
whether or not data accumulation is appropriate for developing a reli
able CNR by comparing the overall and accumulative relationships. We 
use data from Lake Champlain (LC; located in the United States) and 
Lake Kasumigaura (LK; located in Japan) as case studies to illustrate 
steps necessary to utilize this novel framework. We further discuss how 
our statistical framework could inform lake-specific eutrophication 

management. 

2. Materials and methods 

2.1. Study area 

We chose LC and LK as case studies based on two considerations, 
namely the availability of long-term monitoring data and lake-specific 
physical characteristics. Physical characteristics, measures of climate, 
and nutrient and Chl conditions for these two lakes are summarized in 
Table. 1. LC is located in the northeastern United States. It is a deep lake, 
with an average depth of 20 m and with a surface area of 1127 km2. The 
lake is well-known for its large watershed area to lake area ratio (19:1) 
(Isles et al., 2017). LK is located in Ibaraki Prefecture, approximately 50 
km northeast of Tokyo, Japan. It is the second largest shallow lake in 
Japan with an average depth of 4.0 m. The lake has a surface area of 171 
km2. The watershed to lake area ratio is approximately 9:1 (Arai and 
Fukushima, 2014; Tsuchiya et al., 2019). 

In this study, we included total nitrogen (TN) and total phosphorus 
(TP) in our analysis because they are the primary limiting nutrients of 
lake phytoplankton (Phillips et al., 2008; Stow and Cha, 2013). The 
concentrations of TN, TP, and Chl for estimating CNRs were obtained 
from the long-term monitoring datasets for LC and LK. The monitoring 
data for LC are freely available at https://dec.vermont.gov/watersh 
ed/lakes-ponds/lake-champlain. A total of 4413 paired TN, TP, and 
Chl concentrations for 12 sampling stations in LC from 1992 to 2018 
were used in this study. The LK database was obtained from the National 
Institute for Environmental Studies 2016, and accessed via https://db. 
cger.nies.go.jp/gem/moni-e/inter/GEMS/database/kasumi/index.html 
01-01-2020. Monthly time-series of 10 long-term sampling stations 
spanning the years 1985–2016, were used and resulted in 3807 paired 
Chl, TN and TP values for LK. All biweekly and monthly monitoring of 
TN, TP, and Chl concentrations were directly applied to develop CNRs. 

Table 1 
Comparisons of selected physical, chemical and climate characteristics between 
Lake Champlain and Lake Kasumigaura.  

Parameter Lake Champlain Lake Kasumigaura 

Location New York, Vermont and 
Quebec, USA 

Ibaraki Prefecture, 
Japan 

Surface area (km2) 1127 171 
Maximum depth (m) 122 7.3 
Average depth (m) 20 4 
Watershed/ surface 

area 
19:1 9:1 

Average annual rainfall 
(mm) 

845 Approximately 1250 

Annual air temperature 
(◦C) 

−13.9–26. Approximately 14.0 

Water temperature (◦C) 18.6 (2.7–28.8) 16.5 (2.3–32.4) 
Sampling month April–November January–December 
Sampling frequency Biweekly Monthly 
Data available website [a] [b]  

Chlorophyll (Chl, mg⋅m−3) 
Mean 6.3 61.6 
Std.D 6.7 37.8 
Min 0.5 0.0 
Max 116.4 466.0  

Total nitrogen (TN, mg⋅m−3) 
Mean 403.3 1511.2 
Std.D 132.1 632.8 
Min 110.0 475.0 
Max 1710.0 4635.0  

Total phosphorus (TP, mg⋅m−3) 
Mean 24.2 115.8 
Std.D 17.4 51.8 
Min 5.0 13.0 
Max 235.0 765.0  
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In LC, average TN, TP, and Chl concentrations were 403.3 mg⋅m−3, 
24.2 mg⋅m−3, and 6.3 mg⋅m−3, respectively (Table 1). Spatial variation 
of trophic status was observed in LC, with some areas being eutrophic 
(Xu et al., 2015b). In contrast, LK is hypereutrophic, largely due to the 
extremely high loads of organic matter and nutrients (Ishii et al., 2009; 
Masunaga and Komuro, 2020). The average TN, TP, and Chl concen
trations were 1511.2 mg⋅m−3, 115.8 mg⋅m−3, and 61.6 mg⋅m−3, 
respectively (Table. 1). In addition, concentration ranges for TN, TP, and 
Chl concentrations spanned a wider range in LK than those in LC. 

2.2. Framework to reveal the temporal dependence of CNRs 

The proposed novel statistical framework to quantify potential 
temporal dependence of CNRs is shown in Fig. 1. The framework in
cludes three steps to estimate the overall, annual, and accumulative 
CNRs. Both Chl–TN and Chl–TP relationships were developed because 
both nutrients might influence Chl concentrations within lakes (Conley 
et al., 2009). In the framework, we want to explore two potential 

temporal dependencies that may exist. On the one hand, we compare the 
overall and annual relationships to show if there exist biases in annual 
relationships. On the other hand, we compare the overall and accumu
lative relationships to determine whether data accumulation is sufficient 
to develop a reliable CNR. 

In the proposed framework, the major difference among the three 
steps is the data used to develop the CNR. The first step is to develop the 
overall CNR using all available data (Fig. 1a). Next, we develop annual 
CNRs based on the data collected in every year (Fig. 1b). In the third 
step, we develop accumulative CNRs using the data collected before a 
specified year. For example, for the accumulative CNR for the year of 
2010, we use all data collected before and including 2010 (Fig. 1c). 
Following these steps, we can determine if CNRs for the initial year are 
identical in step 2 and step 3. The CNR for the last year in the third step is 
the same as the overall CNR in the first step. 

To explore the variation of annual CNRs, we compare the overall 
relationship with annual relationships. Here, the overall relationship 
could be treated as the baseline. If annual relationships all concentrate 
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near the overall relationship with small biases, we could determine that 
even an annual CNR is reliable to inform lake-specific eutrophication 
management. If the annual relationships deviate from the overall mean 
relationship substantially, it is worth exploring whether or not the 
overall relationship is reliable enough. 

If there is large variation among annual CNRs, we can then compare 
the overall relationship with accumulative relationships to determine 
the reliability of the overall relationship. As aforementioned, the accu
mulative CNR for the last year is the same as the overall relationship. 
However, if the accumulative relationships are very similar to the 
overall relationship several years before the last year (bias less than 
10%), we could conclude that the CNR is relatively stable over time. 
Therefore, the overall relationship may be reliable enough to inform 
lake eutrophication management. Otherwise, if the bias between the 
accumulative relationship and the overall relationship remains large 
until the year just before the last year, the overall relationship might not 
be adequate and more monitoring data may be required. 

2.3. QR for CNR development 

In the framework, we apply QR to develop CNRs in all three steps. 
The main function of QR is expressed as Eq. (1) (Koenker and Bassett, 
1978): 

yi = b0 + b1xi + εi (1)  

where i represents the order of observations (i = 1, 2, …, M, M is the 
sample size), y represents the log transformed Chl concentration 
(logChl), and x represents the log transformed nutrient concentration 
(logTP or logTN). b0 and b1 represent the regression intercept and slope. 
Since all the data are log transformed, the regression slope (b1), is 
interpreted as the percent change in Chl concentration per 1% change in 
TN and TP concentration (Qian, 2017). ε is the error. The parameter 
estimation in linear QR is based on the minimum of absolute error (Eq. 
(2)) (Koenker and Bassett, 1978): 

min

[
∑

i∈{i:yi⩾(b0+b1xi) }

τ|yi − b0 − b1xi| +
∑

i∈{i:yi<(b0+b1xi) }

(1 − τ)|yi − b0 − b1xi|

]

(2)  

where τ represents the quantile of the response. In our study, τ is chosen 
to be 0.9, following common practices when quantifying the limiting 
effect in ecological studies (Chassot et al., 2010). 

Coefficients of determination (R1) for 0.9 quantile were calculated to 
infer the goodness of fit to the upper boundary of data distributions for 
CNRs. The R1 value is calculated as follows: R1 = 1 − (SUM(F): SUM(R)), 
where SUM(F) refers to the sum of weighted absolute deviations mini
mized to estimate each of the full parameter models, and SUM(R) refers 
to the sum of weighted absolute deviations minimized to estimate each 
of corresponding reduced parameter models of logChl = b0 + ε (Koenker 
and Machado, 1999). In order to be comparable to the OLSR-derived R2, 
the QR-derived R1 for 0.9 quantile were converted to R2, which are 
calculated as follows: R2 = 1 – (1 – R1)2 (McKean and Sievers, 1987; 
Schooley and Wiens, 2005; Xu et al., 2015a). 

All models were fitted using the R software (R version 4.0.2; R Core 
Team 2020). The algorithm for parameter estimation of QR models was 
implemented in the quantreg package (Koenker, 2020). The code for the 
development of overall, annual, and accumulative CNRs is freely 
available at https://doi.org/10.5281/zenodo.4087838. 

3. Results 

3.1. Overall and annual CNR 

Overall CNRs based on all available data are shown in Fig. 2. The 
overall CNR describes the upper response of Chl to each nutrient. In LC, 
the QR-estimated regression slopes of TN and TP are 1.33 and 0.87, 
respectively, indicating that a 1% increase/decrease for TN and TP 
concentration would lead to a 1.33% and 0.87% increase/decrease of 
Chl concentration. In LK, the QR-estimated regression slopes of TN and 
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Fig. 2. Scatter plots of chlorophyll (log10Chl) against total nitrogen (log10TN, a & c) and total phosphorus (log10TP, b & d) for Lake Champlain (a & b) and Lake 
Kasumigaura (c & d). Black solid lines indicate the relationships for Chl–TN and Chl–TP at the 0.9 regression quantile. Black dashed lines are ordinary least-squares 
regression derived models for Chl–TN and Chl–TP relationship. 
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TP are 0.85 and 0.86, respectively, indicating that a 1% increase/ 
decrease of TN and TP concentration would lead to a 0.85% and 0.86% 
increase/decrease of Chl concentration. It is worth noting that the 
overall CNRs derived from the QR method fit better than those derived 
from the OLSR method with higher R2 values for QR than for OLSR 
(Fig. 2). 

Generally, there were no apparent patterns in the annual variation 
for the annual CNRs in both lakes. Regression parameters show large 
interannual variation (Figs. 3 and 4). Parameter estimation results of 
annual CNRs in LC are shown in Fig. 3 (hollow triangles). For the Chl–TN 
relationship, regression slopes range from 0.56 to 2.05, with an average 
of 1.35 (±0.41, standard deviation). Regression intercepts range from 
−4.21 to −0.50, with an average of −2.46 (±1.01). For the Chl–TP 
relationship, average regression slopes and intercepts were 0.87 (±0.25) 
and −0.16 (±0.34), respectively. Corresponding ranges were from 0.34 
to 1.54 and from −0.90 to 0.51. 

Parameter estimation results of annual CNRs in LK are shown in 
Fig. 4 (hollow triangles). For the Chl–TN relationship, regression slopes 
range from −0.05 to 1.36, with an average of 0.79 (±0.31). Regression 
intercepts range from −2.24 to 2.03, with an average of −0.50 (±0.92). 
For the Chl–TP relationship, average regression slopes and intercepts 
were −0.96 (±0.29) and −0.002 (±0.57), respectively. Corresponding 
ranges were from 0.25 to 1.56 and from −1.22 to 1.38. Despite of 
relatively larger ranges of TN, TP, and Chl concentrations in LK 
compared with LC, estimated regressions parameters for these two lakes 
did not show many differences. 

3.2. Accumulative CNRs 

Parameter estimation results for the accumulative CNRs are shown in 
Figs. 3 and 4 (solid dots). Unlike the annual CNRs, regression parameters 
of accumulative CNRs show an obvious trend with year and generally 
converge to stable values (i.e., the parameters values of overall re
lationships) over time. In LC, regression slopes for the Chl–TN and 
Chl–TP relationships both increase with increasing year, while 

regressions intercepts both have decreasing trends (Fig. 3, solid dots). 
The regression slope for the Chl–TN relationship increases from 0.56 to 
1.22 in 1995, and then become very similar to the 1.33 slope estimated 
for the overall relationship. Regression intercepts decrease from −0.58 
to −2.23 for 1995, and then converge to be very close to the overall 
relationship. For the Chl–TP relationship, the slope increases from 0.49 
to 0.80 for the year 2004, and then become very close to the 0.87 slope 
estimated for overall relationship. The intercept decreases from 0.36 to 
−0.05 for the year 2004, and then becomes very close to the overall 
relationship. 

In LK, patterns reverse. Both regression slopes decrease and both 
intercepts increase over time (Fig. 4, solid dots). The regression slope for 
the Chl–TN relationship increases from 1.02 to 1.18, then decreases to 
0.86 in the year 1993, and generally converges to the slope of overall 
relationships. Regression intercept decreases from −1.16 to −1.61, and 
then increases to 0.68 in the year 1993, and converges to the overall 
relationships. For the Chl–TP relationship, the slope increases from 1.01 
to 1.22, and then decrease to 0.93 in the year 2001, and generally 
converges to the slope of overall relationships. Regression intercept 
decreases from 0.08 to −0.31, then increases to 0.10 in the year 2001 
and tends to the overall relationships. 

4. Discussion 

4.1. The difference of nutrient limitations between two lakes 

Difference in the upper boundary equations on the CNRs for LC and 
LK indicates that the nutrients limitation of chlorophyll varies between 
these two case study lakes. Nnutrients limitation variation may be due to 
the difference in hydrodynamic disturbance of these lakes. Conjectur
ally, the geographic location and water depth of the two lakes are the 
main reason for different hydrodynamic conditions. LC is relatively 
stable in terms of hydrodynamic conditions due to its deep depth (Table. 
1). In contrast, the shallow LK is influenced by the mixing effect of 
storms, especially typhoons. The energy of these storms leads to the 
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suspension of sediments and an increase the non-algal turbidity, thus 
enhancing light limitation of phytoplankton (Brezonik et al., 2019; 
Jones and Knowlton, 2005; Zhang et al., 2017). Therefore, it can be 
reasonably assumed that the hydrodynamic disturbance is the primary 
factor influencing the nutrient limitation by the result of lower slopes for 
Chl–nutrients upper boundary equations for LK compared to LC (Fig. 2). 

The differences in nutrients limitation of chlorophyll between lakes 
indicate that lake-specific nutrient criteria are not universally appli
cable, and the lake-specific upper boundary equation of Chl–nutrient 
should be calculated using a lake-specific dataset. In this study, the QR- 
derived Chl–nutrient upper boundaries reflecting peak algal biomass 
response to nutrients under an ideal condition, fit better than OLSR- 
derived models which cannot account for unmeasured drivers for Chl 
(Fig. 2). Therefore, it is reasonable to assume that QR provides more 
insight into the ecological concept of “law of the minimum”, which 
could help lake managers to better understand and establish more ac
curate nutrient criteria. Here, we introduce a Chl standard of 15.0 
mg⋅m−3 applied by USEPA (2000) as an example to show that the 
calculation of nutrient thresholds by the upper boundary CNR is 
different between the two case study lakes. It appears that nutrient 
criteria derived from the overall Chl–nutrient equations are significantly 
different between these two case lakes. Given the target Chl concen
tration of 15.0 mg⋅m−3, the thresholds of TN and TP for LC are 458.8 
mg⋅m−3 (logTN = 2.66), and 32.9 mg⋅m−3 (logTP = 1.52), respectively. 
The thresholds for TN and TP for LK are 146.1 mg⋅m−3 (logTN = 2.16), 
and 13.4 mg⋅m−3 (logTP = 1.13), respectively. This suggests that lake- 
specific nutrient criteria developed using upper boundary QR equa
tions will be useful for informing lake eutrophication management. 

4.2. Variation of annual CNR 

There was large variations in regressions parameters among annual 
CNRs in both lakes (Figs. 3 and 4). More importantly, regression pa
rameters in some years differed substantially from regression parame
ters of the overall relationship. For example, in LC, for the Chl–TN 

relationship in 1992, the regression slope was estimated to 0.56, and the 
difference from the overall value is 1.36 times the slope of 1992. In LK, 
for the Chl–TP relationship in 2010, the regression intercept was esti
mated at −0.88, and the difference from the overall value of 0.21 was 
1.24 times the intercept of 2010. 

Because the CNR is determined by the regression slope and intercept 
together, we further explored the deviation of annual CNRs with the 
overall relationship (Fig. 5). We found that annual relationships vary 
substantially among years, and are different from the overall relation
ships. In fact, the biases between some annual relationships and the 
overall relationship were very large. For example, for the Chl–TN rela
tionship in LC, the regression equation in 1999 was logChl = 2.05 
(±0.27) × logTN − 4.21(±0.69), which was different from the overall 
regression equation logChl = 1.33(±0.09) × logTN – 2.36(±0.22). 
Assuming that the TN is 1000 mg⋅m−3, the Chl derived from the 1999 
regression equation is 87.1 mg⋅m−3 and that from overall equation is 
42.7 mg⋅m−3. Additionally, assuming that the TP is 100 mg⋅m−3, the Chl 
calculated from the regression equation in 1986 is 123.0 mg⋅m−3, which 
is 1.45 times that of overall. 

Global climate change and regional watershed nutrient dynamics 
may result in annual variation of Chl–nutrient upper boundary equa
tions. Generally, erratic fluctuation in nutrient limitation on Chl is 
attributed to annually differences in temperature, which is vital for 
phytoplankton growth (Huisman et al., 2018; Huo et al., 2019; Paterson 
et al., 2017). Additionally, differences in annual precipitation is ex
pected to influence concentrations of non-algal suspended solids by 
watershed inputs, which contributes to variations in the slopes of 
Chl–nutrient upper boundary equations (Jones and Knowlton, 2005; 
Yuan and Jones, 2020). As the different forms of nitrogen and phos
phorus are transported from the watershed to the lake, variable pre
cipitation intensity alters the input N:P, which further affects the 
utilization of nutrients by phytoplankton in lakes (Isles et al., 2017). 

Considering the large biases between the overall relationship and 
annual relationships in some years for both lakes and both nutrients, we 
conclude that the annual CNR do in fact vary. Short-term monitoring 
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might not be able to reflect the overall ecological process influencing 
nutrient – phytoplankton dynamics over longer temporal scales (Smol, 
2019). Despite annual relationships in some years being close to the 
overall relationship, applying a CNR developed using data from a single 

year might mislead lake eutrophication management decisions. To 
develop a reliable lake-specific CNR, more data collected over more 
years, rather than more data collected in a single year, are likely 
required. 
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4.3. Stabilization of CNR with data accumulation 

After determining that data from a single year might not be adequate 
to develop a reliable CNR and that additional data collected over more 
years is desirable, the next question is how to determine whether or not 
the accumulated data are sufficient to adequately characterize the lake’s 
‘true’ CNR. In our framework, we answer this question by comparing the 
overall relationship with accumulative relationships. We consider the 
CNR stable when the difference between coefficients for a certain 
dataset and the overall relationship is 10% or less. 

As we mentioned before, parameters of accumulative CNRs generally 
converge to parameters of the overall relationships. We visually iden
tified the year at which parameters of accumulative relationship and 
overall relationships become similar (converge). In LC, for the TN–Chl 
and TP–Chl relationship, the year is approximate 1995 and 2012, 
respectively. In LK, for the TN–Chl and TP–Chl relationship, the year is 
approximate 1990 and 2001, respectively. 

Moreover, accumulative relationships tend to converge to the overall 
CNRs as more years are sampled (Fig. 6). For example, for the Chl–TN 
relationship in LC, the accumulative relationship for the initial year 
differs from the overall Chl–TN relationship. As more years are included 
in the calculation of the relationship, the accumulative relationship 
becomes closer to the overall relationship. Finally, accumulative re
lationships for years near the last year are almost coincident with the 
overall relationship, with variation between the two less than 10%. The 
Chl–TP relationships in LC and those in LK have similar patterns. 

The convergent trend of accumulative CNR to the corresponding 
overall relationship indicates that the overall relationship is reliable to 
inform lake eutrophication since it becomes relatively stable after 
several years from the initial year. In our cases, the number of moni
toring years were 27 and 32 for LC and LK, respectively. In fact, 
considering the earlier convergence of accumulative CNRs, even if we 
had less data, we could determine the reliability of the overall rela
tionship. For example, for the Chl–TN relationship in LK, if we had 
approximately 9 years of monitoring data, we could determine that the 
overall relationship converges and is thus reliable to inform lake 
eutrophication management. 

4.4. Implications and generalizations of the proposed framework 

We have shown how our novel statistical framework can reveal the 
temporal dependence of CNR, including the exploration of variation of 
annual CNRs and the convergence of accumulative CNR to the overall 
relationship. Here, we summarize implications of the statistical frame
work to lake-specific eutrophication management: 

Firstly, by comparing the overall with annual CNRs, we can illustrate 
the variation of annual relationships and how they compare to the 
overall relationship. In our case, the variation is large, indicating that 
annual CNRs are likely not adequate to inform lake eutrophication 
management. 

Secondly, via the comparison of the overall and accumulative re
lationships, we determined whether the current dataset is adequate to 
develop a reliable CNR, which could be used to inform lake-specific 
eutrophication management. Since a reliable CNR is essential to lake 
eutrophication management, our novel statistical framework is of vital 
importance to ensure the effectiveness of corresponding lake eutrophi
cation control actions. 

Given the flexibility of our proposed framework, we suggest that it 
will be generalizable to many ecological applications through the 
following considerations. Firstly, with the accumulating of TN, TP, and 
Chl monitoring data, our framework has great potential for generaliza
tion to other lakes. Therefore, the reliability of the framework can be 
tested in turn. Since phytoplankton biomass may be co-limited by both 
nitrogen and phosphorus, the N:P ratios (Dolman et al., 2016) or joint 
nutrients (Liang et al., 2021b; Poikane et al., 2019) can be introduced to 
generate CNRs to further reveal the temporal dependence. The novel 

framework can be further improved by applying the ecologically based 
quality targets for Water Framework Directive in Europe to assess the 
temporal dependence of CNRs (Carvalho et al., 2008; Poikane et al., 
2010; Poikane et al., 2014). Considering the lack of statistical metrics to 
determine trend convergence of accumulative CNRs in our framework, a 
reliable indicator to better assess the trend convergence is an area of 
future research. The method applied in the framework can also be 
extended to other methods, such as a Bayesian QR approach (Liang 
et al., 2021a) and QR neural network (Cannon, 2011). 

5. Conclusions 

The contribution of this study is the proposed statistical framework 
which can reveal the temporal dependence of CNR. In the framework, 
we explored annual variation in CNRs, and the convergence of accu
mulative CNRs to the overall relationship. The statistical framework is 
applied in LC and LK. The framework effectively shows the variation of 
annual CNRs. Our statistical framework can be used to inform lake- 
specific eutrophication management by revealing the temporal depen
dence of CNRs, particularly by answering the question about whether or 
not a developed CNR is reliable. A reliable Chl–nutrient relationship is 
needed for nutrient criteria establishment which is important for 
informing eutrophication controldecision-making processes. Therefore, 
our proposed framework can help guide lake-specific eutrophication 
management. 
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