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Abstract—Deep unfolding networks have recently gained popu-
larity for solving imaging inverse problems. However, the compu-
tational and memory complexity of data-consistency layers within
traditional deep unfolding networks scales with the number of
measurements, limiting their applicability to large-scale imaging
inverse problems. We propose SGD-Net as a new methodology
for improving the efficiency of deep unfolding through stochastic
approximations of the data-consistency layers. Our theoretical
analysis shows that SGD-Net can be trained to approximate batch
deep unfolding networks to an arbitrary precision. Our simulations
on intensity diffraction tomography and sparse-view computed
tomography show that SGD-Net can match the performance of
the traditional batch network at a fraction of training and testing
complexity.

Index Terms—Model-based deep learning, regularization by
denoising, plug-and-play priors, stochastic optimization.

I. INTRODUCTION

THE recovery of an unknown image from a set of noisy
measurements is a central problem in computational imag-

ing. The recovery is traditionally formulated as an inverse prob-
lem that combines a physical-model characterizing the imag-
ing system with a regularizer imposing a prior knowledge on
the unknown image. Over the past years, many regularizers
have been proposed as imaging priors, including those based
on transform-domain sparsity, low-rank penalty, and dictionary
learning [1]–[6].

There has been considerable recent interest in using deep
learning (DL) in the context of imaging inverse problems (see re-
cent reviews [7]–[9]). Instead of explicitly defining a regularizer,
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the traditional DL approach is based on training a convolutional
neural network (CNN) architecture, such as U-Net [10], to invert
the measurement operator by exploiting the natural redundancies
in the imaging data [11]–[15]. Plug-and-play priors (PnP) [16]
and regularization by denoising (RED) [17] are two well-known
alternative approaches to the traditional DL that enable the
integration of pre-trained CNN denoisers, such as DnCNN [18],
as image priors within iterative algorithms. When equipped
with advanced CNN denoisers, PnP/RED provides excellent
performance by exploiting both the implicit prior, characterized
by the denoiser, and the measurement model [19]–[27]. Deep
unfolding is a related approach that interprets the iterations of
an image recovery algorithm as layers of a CNN and trains it
end-to-end in a supervised fashion (see “Unrolling” in [7] or
“Neural networks and analytical methods” in [8]). Unlike in
PnP/RED, the CNN in deep unfolding is trained jointly with
the measurement model, leading to an image prior optimized
for a given inverse problem [28]–[33]. Despite the recent pop-
ularity of deep unfolding, the training of such networks can
be a significant practical challenge in applications that require
processing of a large number of measurements. Specifically,
the data-consistency layers of these recursive neural networks
are based on batch processing, which means that they process
the entire set of measurements at each layer. While this type of
batch data processing is known to be suboptimal in traditional
large-scale optimization [34]–[37], the issue has never been
addressed in the context of designing deep unfolding networks.

We address this issue by proposing SGD-Net as the first
deep unfolding methodology to adopt stochastic processing of
measurements within data-consistency layers. This improves the
efficiency of SGD-Net compared to its batch counterparts on
large datasets during both training and testing. We implement
SGD-Net by unfolding the gradient-based RED algorithm and
introducing stochastic approximations to its data-consistency
layers. The CNN within SGD-Net is trained in an end-to-end
fashion to remove artifacts due to the imaging system and
stochastic processing of the measurements. We present a theoret-
ical analysis of SGD-Net that establishes that the network can be
trained to approximate the corresponding batch deep unfolding
network to desired accuracy. We also demonstrate the practical
relevance of SGD-Net by reconstructing images in intensity
diffraction tomography (IDT) [26], [38] and sparse-view com-
puted tomography (CT) [39]. Our simulations demonstrate the
effectiveness of SGD-Net in achieving comparable imaging
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quality to batch deep unfolding networks at a fraction of compu-
tational complexity. SGD-Net thus addresses an important gap in
the current literature on deep unfolding by providing an efficient
framework applicable to a wide variety of imaging problems.

II. BACKGROUND

A. Inverse Problems in Computational Imaging

Computational imaging problems can usually be posed as
the reconstruction of an unknown image x ∈ Cn from a set of
corrupted measurements y ∈ Cm. The reconstruction is often
formulated as an inverse problem

x∗ = arg min
x

f(x) with f(x) = g(x) + h(x), (1)

where g is the data-fidelity term that quantifies consistency
with y and h is the regularizer. For example, two widely used
functions in the context of imaging problems are the least squares
and total variation (TV) [1]

g(x) =
1

2
‖y −Ax‖22 and r(x) = τ‖Dx‖1, (2)

where A is the measurement operator and D is the discrete
gradient operator. The data-fidelity term in (2) assumes a lin-
ear measurement model y = Ax+ e, where the measurement
operator A ∈ Cm×n characterizes the response of the imaging
system and e ∈ Cm is the noise, which is often assumed to be
independent and identically distributed (i.i.d.) Gaussian.

Many popular regularizers, such as the ones based on the
"1-norm, are nondifferentiable. Proximal algorithms [40], such
as the proximal gradient method (PGM) [41]–[45] and the
alternating direction method of multipliers (ADMM) [46]–[48],
enable efficient minimization of nonsmooth functions without
differentiating them by using the proximal operator

proxµh(z) := arg min
x

{
1

2
‖x− z‖22 + µh(x)

}
, (3)

where µ > 0 is a parameter. Note that the proximal operator can
be interpreted as the regularized image denoiser for AWGN with
noise of variance µ.

B. Image Reconstruction Using Deep Learning

Recently, deep learning has gained popularity due to its effec-
tiveness for solving imaging inverse problems. A widely used
approach first brings the measurements to the image domain and
then trains a deep network to map the corresponding low-quality
images {x̃j} to their clean target versions {xj} by solving an
optimization problem [11], [14], [15]

arg min
θ

1

M

M∑

j=1

L(Tθ(x̃j)− xj), (4)

where Tθ represents the CNN parametrized by θ trained under
the loss function L. Popular loss functions include the "2-norm
and "1-norm [49]. For example, in the context of sparse-view
CT, prior methods have trained Tθ for mapping a filtered back-
projected image x̃ to a reconstruction x from a fully-sampled
groundtruth data [7], [15].

The idea of end-to-end inversion can be refined by including
the measurement operator into the CNN architecture. Inspired
by LISTA [50], the corresponding unfolding algorithms inter-
pret iterations of a regularized inversion as layers of a CNN
and train it end-to-end in a supervised fashion [51]–[55]. In
the context of compressive sensing, ADMM-CSNet [56] and
ISTA-Net + [28] have considered jointly training the image
transforms and shrinkage functions within an unfolded algo-
rithm. A related class of methods [31], [32], [57], have included
a full CNN as a trainable regularizer within an unfolded al-
gorithm. Such unfolding algorithms have been shown to be
effective in a number of problems [32], [58] and are closely
related to the PnP/RED methods (discussed in Section II-C)
that also combine the measurement operator and the imaging
prior. Their main differences is that the former optimize the
parameters in an end-to-end manner, and generally produce
higher-quality results with fewer iterations. However, model-
based deep unfolding architectures require the storage of all
the measurements, parameters of the measurement operator, and
intermediary activation maps at every iteration of the unfolded
algorithm. This limits their ability to solve inverse problems
where one needs to process high-dimensional data (for example,
see relevant discussion in the section “Memory Requirements”
in [57]). It is worth mentioning that several recent publications
have explored memory-efficient training in model-based deep
learning [59]–[62]. For example, [59] proposed to reduce the
memory usage in unfolding networks through reverse recalcu-
lations. On the other hand, [60] proposed a memory-efficient
architecture that relies on per-iteration refinement of CNNs.
Those strategies are fundamentally different from our usage
of stochastic approximations within data-consistency layers. In
fact, all those approaches are fully complimentary and can be
combined with our work for efficient training of model-based
deep architectures.

C. Using Denoisers as Image Priors

Since the proximal operator (3) is mathematically equivalent
to regularized image denoising, there has been considerable
interest in developing denoiser-based iterative algorithms such
as PnP [16] and RED [17]. The key idea in PnP is to replace
the proximal operator with an advanced image denoiser Hσ ,
where σ > 0 controls the strength of denoising. This simple
replacement enables PnP to regularize the problem by using
advanced denoisers, such as BM3D [63] or DnCNN [18], that do
not correspond to any explicit h. Recent studies have confirmed
the effectiveness of PnP in a range of imaging applications [20],
[64]–[66].

The RED framework is an alternative scheme where the
denoiser can sometimes lead to an explicit regularization func-
tion [17]. In the most general setting, RED algorithms seek a
fixed point x∗ that satisfies

G(x∗) = ∇g(x∗) + τ(x∗ −Hσ(x
∗)) = 0, (5)

where τ > 0 is the regularization parameter. Equivalently, x∗

satisfies

x∗ ∈ zer(G) := {x ∈ Cn : G(x) = 0}. (6)
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Fig. 1. Architecture of (a) SGD-Net with Q steps and (b) its batch variant that we label as Unfolded RED (U-RED). Data-consistency layers within SGD-Net
rely on minibatch gradients with B ' I measurements, while those in U-RED rely on the full batch gradient using I measurements. The learned operator blocks
within SGD-Net and U-RED share their weights across steps and are trained in an end-to-end fashion by accounting for the data-consistency layers.

When the denoiser is locally homogeneous and has a symmetric
Jacobian [17], [23], the term τ(x−Hσ(x)) corresponds to the
gradient of the RED regularizer h(x) = (τ/2)xT(x−Hσ(x)),
which enables a simple interpretation of RED as an instance of
(1). The excellent performance of RED together with learned
CNN denoisers has been reported in super-resolution, phase
retrieval, and compressed sensing [67], [68]. Additionally, prior
work has developed a scalable online variant of RED, known
as SIMBA, that is well suited for tomographic applications
with a large number of projections [26]. However, unlike deep
unfolding, the CNN in RED is not jointly trained with the mea-
surement model, limiting its ability to capture the non-iid nature
of the artifacts within iterations [31]. SGD-Net, introduced in
the next section, is a natural extension of SIMBA [26] towards
CNNs trained for artifact-removal, which leads to a scalable and
end-to-end trainable deep network.

III. PROPOSED METHOD

We now introduce SGD-Net, which adopts stochastic pro-
cessing of measurements within data-consistency layers. As
demonstrated by our results in Section V, SGD-Net is ideal for
data-intensive applications where the object features are difficult
to characterize by a pre-trained CNN denoiser.

A. Stochastic Data-Consistency Layers

Consider a data-fidelity g that consists of a set of I ≥ 1
component functions {gi(x)}, where each gi depends on some
subset yi of the measurements in y. For example, in tomo-
graphic imaging each yi corresponds to a single projection of
an object along a specific angle [39]. When g corresponds to the
least-squares penalty, the data-consistency layer within the deep
unfolding network becomes

∇g(x) =
1

I

I∑

i=1

∇gi(x) =
1

I

I∑

i=1

AH
i (Aix− yi), (7)

where (·)H denotes the conjugate transpose operation. Note that
the complexity of ∇g scales linearly with the total number
of components I . This means that when I → ∞, the memory
requirements or computation time of the traditional batch deep
unfolding becomes impractical. The central idea of SGD-Net,

summarized in Fig 1, is to approximate the gradient at every
step within the deep unfolding network with an average of
1 ≤ B ' I component gradients, which makes SGD-Net inde-
pendent of the total number of components I . The corresponding
minibatch gradient is computed as

∇̂g(x) =
1

B

B∑

b=1

∇gib(x) =
1

B

B∑

b=1

AH
ib(Aibx− yib), (8)

where i1, . . . , iB are independent random indices that are se-
lected uniformly from the set {1, . . . , I}. The minibatch size
parameter B ≥ 1 controls the number of gradient components
at each step of SGD-Net. Note that (8) directly implies that
E[∇̂g(x)] = ∇g(x), where the expectation is taken over the
random indices i1, . . . , iB .

For notational convenience, we will use the vectorφ to denote
the physical parameters within the data-consistency layers of
the unfolded network. In the context of the batch network in
Fig. 1(b), which uses all the measurements at every step, the
physical parameters φ relate to the gradients {∇gi} at every
step of the unfolded network. SGD-Net seeks to minimize the
complexity of the unfolded network by replacing φ with its
minibatch approximation φ̂, obtained by applying (8) to every
step. More specifically, for (7) we can denote the physical
parameters as φ = (φ1,φ2) with

φ1 = vec

(
1

I

I∑

i=1

A H
i Ai

)
and φ2 =

1

I

I∑

i=1

A H
i yi, (9)

where vec(·) vectorizes the matrix into a vector. Similarly,
for the SGD-Net data-consistency layer in (8), we have φ̂ =
(φ̂1, φ̂2) with

φ̂1 = vec

(
1

B

B∑

i=1

A H
ibAib

)
and φ̂2 =

1

B

B∑

i=1

A H
ibyib .

(10)

Note that we directly have that E[φ̂] = φ, where the expectation
is taken over the random indices i1, . . . , iB . It is important to
note that φ and φ̂ do not need to be physically stored as vectors,
since they are simply used for notational convenience in our
theoretical analysis.
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B. Stochastic Deep Unfolding Network

Given an initial solution x̃ = AHy, SGD-Net iteratively re-
fines it by infusing information from both the minibatch gradient
of the data-fidelity term ∇̂g and the learned operator Dθ defined
as

Dθ(x) = (I −Rθ)(x) = x−Rθ(x), (11)

where Rθ is the artifact-removal CNN. Unlike in SIMBA [26],
the prior in SGD-Net is optimized end-to-end using the training
data to maximally reduce the artifacts. We fix the total number
of SGD-Net steps to Q ≥ 1, with each step given by

xq+1 = xq − γ(∇̂g(xq) + τDθ(x
q)), (12)

where γ > 0 is a step-size parameter. Fig. 1(a) illustrates the
algorithmic details of SGD-Net, which can, in principle, be
implemented with or without weight-sharing across the Q steps.
In our implementation, we opted to share the weights of Rθ

accross different steps to make it more suitable for large-scale
imaging applications. While there are no trainable parameters
within the stochastic data-consistency layers, one can still use
backpropagation to compute the gradient of SGD-Net with
respect to the trainable parameters θ. Since SGD-Net randomly
processes a subset of measurements at each step, the prediction
of SGD-Net is in fact randomized. Our theoretical analysis
in Section IV precisely characterizes the training of SGD-Net
relative to that of the batch network that uses all the measurement
in every step.

SGD-Net is compatible with any CNN architecture used to
implement Dθ . In our implementation, we adopted U-Net [10],
which has been extensively used in the context of imaging
inverse problems [11], [69]. The CNN consists of four scales,
each with a skip connection between downsampling and up-
sampling. These connections increase the effective receptive
field of the CNN. The number of channels in each layer are
32, 64, 128, and 256. We make two additional modifications
to the U-Net. First, the activation function in our setting is
PReLU (parametric ReLU, f(x) = max(0, x) + a ∗ min(0, x),
where a is a trainable parameter). Second, since we adopt small
minibatch training, we use group normalization (GN) [70] as
an alternative to batch normalization (BN). The computation in
GN is independent of the minibatch dimension, which makes its
accuracy stable for a wide range of minibatch sizes.

C. End-to-End Training of SGD-Net

Let Tθ;φ(x̃,y) be the batch unfolded RED (U-RED) network,
where θ are the learnable parameters within Dθ , φ are physical
parameters within the data consistency layers, y is the mea-
surement vector, and x̃ is the input to the network. End-to-end
training seeks to compute the learnable parameters θ of Tθ;φ by
minimizing a loss functionF overM training samples {xj ,yj}.
LetFj be a loss functions over the training sample (xj ,yj), then
the training is formulated as the following optimization problem

over learnable parameters

arg min
θ

F (θ; φ) with F (θ; φ) :=
1

M

M∑

j=1

Fj(θ; φ).

(13)
For example, a popular choice for the loss function Fj as the
mean square error (MSE) between the image predicted by Tθ,φ
and the desired image xj

Fj(θ;φ) =
∥∥Tθ,φ(x̃j ,yj)− xj

∥∥2
2

with x̃j = AHyj . (14)

One can train both U-RED and SGD-Net using gradient-based
optimizers, such as the stochastic gradient descent (SGD) [71].
When training SGD-Net, iteration k of training is performed
by generating two sets of independent random variables. First,
an index in jk is randomly selected from {1, . . . ,M}, then,

a stochastic approximation φ̂
k

of φ is generated by replacing
the batch gradients by their randomized minibatch approxima-
tions (8) at every step of the network. The trainable weights can
then be updated as

θk+1 = θk − ηk∇̂F (θk; φ̂
k
), (15)

where ∇̂F (θk; φ̂
k
) = ∇Fjk(θ

k; φ̂
k
) and ηk > 0 is the step-

size at the training iteration k ≥ 0. As illustrated in Fig. 1,
SGD-Net can significantly reduce the complexity of the data-

consistency layers by using φ̂
k

instead of the full φ. In Sec-
tion IV, we present a theoretical analysis of training SGD-Net
using the SGD iteration (15).

We use a pre-training strategy to accelerate the training of
the weights θ within SGD-Net. The training of the artifact-
removal CNN Rθ is considerably faster than the training of
the full SGD-Net, since the latter consist of both Rθ and data-
consistency blocks. In order to accelerate the training, we first
pre-train Rθ separately from a random initialization of θ using
the MSE loss in (4). Since the weights θ are shared across steps
of SGD-Net, we can then initialize them with those obtained
from pre-training. We observed that this pre-training strategy is
considerably more efficient than initializing the entire SGD-Net
network with the random weights.

IV. THEORETICAL ANALYSIS

We now present the theoretical analysis of the training of
SGD-Net by using the SGD algorithm in (14). Note that our
analysis does not explicitly assume that the unfolded architecture
corresponds to RED, which means that it is also applicable to
other architectures, including those based on PnP.

Our theoretical analysis requires a number of technical as-
sumptions that act as sufficient conditions for the main theorem
below. Our first assumption is on Lipschitz continuity of the
gradient of F over both φ and θ.

Assumption 1: Function F has a global minimizer θ∗ and
satisfies the following continuity assumption

‖∇F (θ1;φ1)−∇F (θ2;φ2)‖2
≤ Lθ‖θ1 − θ2‖2 + Lφ‖φ1 − φ2‖2,

with Lθ, Lφ > 0 for every (θ1,φ1) and (θ2,φ2).
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Assumption 1 is a standard assumption in traditional opti-
mization that holds for many widely-used cost functions F [37],
[72], [73]. The only difference in our statement of this assump-
tion is in the explicit definition of two constants Lθ and Lφ,
which can be avoided by defining L = max{Lθ, Lφ}. Note that
we do not assume that F is convex.

A common assumption in stochastic optimization is that the
minibatch gradients are unbiased estimators of the full gradient
and have bounded variances [74], [75]. Our second assumption
states this condition for the physical parameters of the unfolded
network.

Assumption 2: The physical parameters of the network satisfy

E
[
φ̂

k
]
= φ, E

[
‖φ̂

k
− φ‖22

]
≤ σ2

B
,

for all iterations k ≥ 0, where σ > 0 is a constant and B ≥ 1 is
the minibatch size.

This is a mild assumption since SGD-Net obtains φ̂by relating
∇g at every step to ∇̂g via (9) and (10). This automatically en-
sures that φ̂ is an unbiased estimator of φ. Our final assumption
is related to Assumption 2, but considers the selection of the
gradients ∇̂F during SGD training.

Assumption 3: The stochastic gradients in (15) satisfy the
following two conditions for any fixed vectors θ and φ.

(a) The stochastic gradient is unbiased:

E
[
∇̂F (θ;φ)

]
= ∇F (θ;φ).

(b) The variance of the stochastic gradient is bounded:

E
[
‖∇̂F (θ;φ)−∇F (θ;φ)‖22

]
≤ ε2.

The expectations are taken with respect to the random index
j ∈ {1, . . . ,M} used to select the training sample.

Theorem 1: Run the SGD learning in (15) for K ≥ 1 iter-
ations under Assumptions 1-3 using the step-size parameters
0 < ηk ≤ 1/L with L = max{Lθ, Lφ} and the minibatch size
B ≥ 1. Then, the iterates generated by (15) satisfy the bound

K−1∑

k=0

ηkE
[
‖∇F (θk; φ)‖22

]
≤ 2(F (θ0;φ)− F (θ∗;φ))

+
L2σ2

B

(
K−1∑

k=0

ηk

)
+ Lε2

(
K−1∑

k=0

η2k

)
.

Proof: See the appendix. !
Theorem 1 allows us to establish various forms of convergence

results by controlling the step-sizes ηk. For example, when ηk =
1/(L

√
K), one obtains

min
k∈{0,...,K−1}

E
[
‖∇F (θk;φ)‖

]
≤ C√

K
+

L2σ2

B
,

where C = 2(F (θ0;φ)− F (θ∗;φ))L+ ε2 is a constant. This
implies that SGD in (15), which relies only on the minibatch

approximation φ̂
k

of φ, achieves, in expectation, the first-order
necessary conditions of optimality for (13) up to an error term
L2σ2/B. This error term can be made as small as possible by

controlling B within SGD-Net. Theorem 1 shows that SGD-
Net can closely approximate the performance of the full-batch
U-RED for a small enough step size ηk and a large-enough
minibatch sizeB. However, this theoretical result is not intended
to be used as a recipe for finding good parameters ηk and B
for training SGD-Net. In practice, it is better to tune those
parameters empirically, as is commonly done in the literature on
optimization for deep learning. Section V presents simulations
showing the ability of SGD-Net to match the performance
of U-RED for different values of B while also substantially
reducing the training and testing complexity.

V. NUMERICAL VALIDATION

We now empirically validate SGD-Net in the context of two
computational imaging modalities, IDT and sparse-view CT.
Our first goal is to validate the proposed theorems in Section IV
and the second one is to highlight the effectiveness and efficiency
of our method for processing a large number of measurements.
All the experiments were performed on a machine equipped with
an Intel Xeon Gold 6130 Processor and eight NVIDIA GeForce
RTX 2080 Ti GPUs.

Several image reconstruction methods were used as refer-
ences, including TV [1], U-Net [10], RED-DnCNN [17] and
ISTA-Net+ [28]. TV is formulated in (2), and was imple-
mented using the accelerated proximal gradient descent method
(APGM) [76]. U-Net corresponds to our own implementation
of the architecture used in [14]. The network was trained in
the usual supervised fashion using the "2-loss [11]. We adopted
the DnCNN architecture used in [67] as the AWGN denoiser
for RED. The network has seventeen layers, including 15
hidden layers, an input layer, and an output layer. We have
also experimented using RED with the U-Net like architecture
from SGD-Net, but observed that this does not improve the
image reconstruction quality achieved by RED. ISTA-Net+ is
a widely-used deep unfolding architecture based on the feed-
forward network obtained by unfolding and truncating ISTA.
We unfolded ISTA-Net+ .1 for 12 steps and set the number
of feature maps in each convolution layers equal to 64 for the
best SNR performance in our experimental settings. Note that
U-RED uses the complete set of measurements I corresponds
to the traditional deep unfolding of the batch RED algorithm.
In all the experiments, we train SGD-Net and U-RED using the
same training strategy and parameter initialization settings. The
only difference between those two algorithms is in the number of
measurements used in their data-consistency layers. All methods
were implemented in Pytorch with a GPU backend.

We used the following signal-to-noise ratio (SNR) [26], [77]
in dB for quantitively comparing different algorithms

SNR(x̂,x) = max
a,b∈R

{
20 log10

(
‖x‖2

‖x− ax̂+ b‖2

)}
, (16)

where x̂ and x represents the noisy vector and ground truth
respectively, while the purpose of a and b is to adjust for contrast

1The code for ISTA-Net+ is publicly available at https://github.com/
jianzhangcs/ISTA-Net-PyTorch
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Fig. 2. Quantitative evaluation of SGD-Net on IDT for different minibatch sizes B ∈ {40, 120, 180} used at each step of the network against U-RED using
the full batch of I = 240 measurements. (a) Illustration of the loss against time in hours for different values of B evaluated on the training set. (b) Illustration of
the loss against the epoch number evaluated on the training set. (c) Illustration of the SNR (dB) against time evaluated on the training set. (d) Illustration of the
SNR (dB) against time in hours evaluated on the testing set. (e) Illustration of the amount of time required to reach a certain epoch for different values of B. (f)
Illustration of the SNR (dB) achieved at different epochs for different values of B evaluated over the testing set. The figure highlights that by using minibatches of
size 1 ≤ B ' I one can achieve nearly 2× improvement in training time over U-RED for the same final imaging quality.

and offset. We also used the structural similarity index measure
(SSIM) [78] as an alternative metric.

A. Intensity Diffraction Tomography

IDT [38] is a data intensive computational imaging modality
that seeks to recover the spatial distribution of the complex
permittivity contrast of an object given a set of its intensity-only
measurements. In this problem, A consists of a set of I complex
measurement operators [A1, . . . ,AI ]T, where each Ai is a
convolution corresponding to the ith measurementyi. In the sim-
ulation, we extracted a random subset of 350 slices of 320× 320
images for training, 10 images for validation, and 35 images for
testing from the NYU fastMRI Initiative database [79]. Followed
by the experimental setup in [26], [38], the simulated images are
assumed to be on the focal plane z = 0µmwith LEDs located at
zLED = −70mm. The wavelength of the illumination was set to
λ = 630nm and the background medium index was assumed
to be water with εb = 1.33. We generated I = 240 intensity
measurements with 40× microscope objectives (MO) and 0.65
numerical aperture (NA). All simulated measurements were
additionally corrupted by AWGN corresponding to {15, 20, 25}
dB of input SNR.

We trained SGD-Net and U-RED with the initialization
x0 = AHy, where AH denotes the conjugate transpose. The
proposed recursive model SGD-Net and U-RED were unrolled
for Q = 8 steps and trained using SGD with minibatch size 1.
While the step-size parameter of the data-consistency block in
each step of SGD-Net and U-RED was fixed to γ = 5× 10−3,
the regularization parameter was set as a learnable parameter,
initialized with τ = 2. The learning rate of SGD was set in two

stages. In the first 150 epochs, we adopt the cyclic learning rate
policy [80], where the policy cycles the learning rate between
8× 10−3 and 4× 10−3 with 2000 training iterations in the
decreasing half of a cycle. In stage 2, the learning rate was
gradually reduced by a factor of 0.5 every 50 epochs. The
number of total training epochs was 300. It is worth to note
that each SGD-Net was trained with the noise corresponding to
20 dB of input SNR in order to test the stability of the proposed
method with respect to changes in amount of measurements
noise. Both TV and RED-DnCNN were initialized with x = 0,
and we used fminbound in the scipy.optimize toolbox
to identify the optimal regularization parameters. We trained the
DnCNN denoiser in RED for AWGN removal at four noise levels
corresponding to σ ∈{ 5, 10, 15, 20} For each experiment, we
selected the denoiser achieving the highest SNR value. Several
instances of U-Net and ISTA-Net+ were trained by mapping
the backprojection (BP) AHy to the ground truth for each input
SNR levels. We initialized the step-size and the regularization
parameters of ISTA-Net+ to the same values as SGD-Net,
subsequently learned all these parameters during training, as
done in the original paper.

Fig. 2 highlights the ability of SGD-Net to reduce the com-
putational complexity of training compared to the full batch
network U-RED. The three top plots compares the average
loss and SNR achieved by SGD-Net when evaluated on the
training set using different values for B at each step. Note that
U-RED uses a fixed set of full (I = 240) measurements, while
SGD-Net selects a random subset of B measurements at every
step. Fig. 2(d) presents the average SNR achieved by SGD-Net
against the training time evaluated on the testing set. Fig. 2(e)
highlights the time necessary to run a fixed number of epochs

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on June 29,2022 at 18:12:19 UTC from IEEE Xplore.  Restrictions apply. 



604 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 7, 2021

Fig. 3. Quantitative evaluation of several well-known methods on IDT under noise corresponding to input SNR of 20 dB. The total number of IDT measurements
in this experiment is I = 240. All the baseline methods use the full set of measurements I during reconstruction. U-RED corresponds to the full batch architecture
that uses all the measurements at every step. SGD-Net (40) and SGD-Net (120) use minibatches of size B = 40 and B = 120, respectively, at every step. Each
image is labeled with its SNR (dB) and SSIM values with respect to the original image. The yellow box provides a close-up with a corresponding error map
provided on its right. The results highlight the competitive performance of SGD-Net relative to several well-known methods, while also showing its ability to match
the imaging quality achieved by the batch U-RED network. Best viewed by zooming in the display.

TABLE I
SNR AND SSIM VALUES OBTAINED BY SEVERAL REFERENCE METHODS FOR IDT. NOTE THAT THE LAST TWO COLUMNS PROVIDE THE GPU MEMORY USAGE

AND THE RUN-TIMES FOR ALL THE METHODS FOR RECONSTRUCTING A 320×320 IMAGE. THE TOTAL NUMBER OF MEASUREMENT IS I = 240. NOTE THE
EXCELLENT BALANCE BETWEEN QUALITY AND COMPLEXITY ACHIEVED BY SGD-NET

for different values of B. Fig. 2(f) shows the SNR achieved by
SGD-Net for different epochs. Note that the average time of
training 250 epochs of SGD-Net using B ∈ {40, 120, 180} and
U-RED was 20.50 hours, 27.55 hours, 34.51, hours and 37.90
hours, respectively. We did not observe significant SNR differ-
ences when using smaller minibatches for training compared
with the usage of the full measurements. This highlights the
ability of SGD-Net to reduce the complexity in deep unfolding
by maintaining excellent imaging quality.

Table I provides the final SNR and SSIM values achieved by
SGD-Net and several baseline methods when applied to IDT
at three noise levels. Overall, model-based deep learning meth-
ods, such as RED-DnCNN, ISTA-Net + and SGD-Net, achieve
the best performances. Moreover, SGD-Net using B = 40 and
B = 120 matches the performance of the batch algorithms in
terms of the final reconstruction quality. The runtime in the

table corresponds to the average inference time that excludes
the model loading. Specifically, SGD-Net withB = 40 is around
2.9× faster than U-RED on GPU and around 4.2× faster than
U-RED on CPU with parallel processing. The memory col-
umn in the table corresponds to the usage of GPU memory.
Specifically, the memory considerations in image reconstruction
must take into account the size of all variables related to the
image volume x, the measured data {yi}, and the measurement
operators {Ai}. SGD-Net addresses the problem of storing and
processing the measurements and the measurement operators on
the GPU during end-to-end training. Our implementation stores
each Ai as two separate arrays for phase and absorption. In
addition, each matrix is stored in the Fourier space to reduce the
computational complexity of evaluating convolutions. This re-
sults in the storage of complex valued arrays for each, consisting
of pairs of single precision floats for every element. The real and
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Fig. 4. Visual illustration of SGD-Net with B = 60 relative to several well-known deep-learning baseline methods on sparse-view CT with {90, 120, 180} views
and noise of 50 dB input SNR. Note that RED-DnCNN and ISTA-Net+ use the full set of measurements at each step. Each image is labeled with the corresponding
SNR (dB) and SSIM values. This figure highlights that SGD-Net can achieve competitive performance relative to several well-known methods, while also providing
a mechanism to reduce the complexity of data-consistency layers. Best viewed by zooming in the display.

imaginary parts of each array were then separated into two input
channels of SGD-Net. Thus, the shape of each measurements
and measurement operators in U-RED for reconstructing one
slice is 1× 320× 320× 240× 2. A detailed discussion on the
IDT forward model is available in [26], [38]. While U-RED
requires 1.01 GB of GPU memory due to its processing of all
measurements in every iteration, SGD-Net withB = 40 requires
only 0.17 GB, which is about 1/6 th of the full volume. This
highlights the potential of applying SGD-Net to large scale
image reconstruction.

Fig. 3 visually highlights the imaging quality of SGD-Net
relative to several baseline methods. The top row of Fig. 3
presents the results obtained by several learning-based methods.
As shown in the zoomed regions and the corresponding error
maps, SGD-Net with B = 40 outperforms all other learning
based methods. The bottom row of Fig. 3 highlights the com-
parable quality obtained by SGD-Net with B = 120 and that of
U-RED using all I = 240 measurements.

B. Sparse-View CT

Conventional CT requires many views for high-quality image
reconstruction. In the following experiments, we explore the
possibility of high-quality imaging when reducing the number
of views in CT imaging. We consider reconstruction of simulated
data obtained from the clinically realistic CT images provided by

Mayo Clinic for the AAPM Low Dose CT Grand Challenge [81].
The data from 7 patients was used for training, one patient data
for validation, and two patients’ data for testing. This provides
us with 2070 slices of 512× 512 images for training, 150 slices
of 512× 512 images for validation. The testing data consists
of 275 slices of 512× 512 images. We implemented A and
AH with RayTransform in Operator Discretization Library
(ODL).2 [82], which uses GPU accelerated astra-gpu back-
end [83]. In particular, the scanning geometry is a fan-beam
source with I ∈ {90, 120, 180} projection views equally dis-
tributed around 360◦ and 1447 detector pixels. The sinograms
were generated by slightly perturbing the view angles by a
zero-mean AWGN with standard deviation of 0.003 degrees
so as to make the experiments more realistic [77]. We added
Gaussian noise to the sinograms to make the input SNR equal
to 50 dB.

We trained the SGD-Net by using the filtered backpojection
(FBP) initializationx0 = AHFy. The FBP was performed with
a Hann filter by using the method fbp-op in ODL. We set the
number of steps in SGD-Net to Q = 8. In these experiments, we
numerically found that using Adam solver [84] with adaptive
learning rate is around 2× faster than applying for SGD with
cyclic learning rate when training both SGD-Net and U-RED.
Hence, we trained SGD-Net and U-RED using the Adam solver,

2The code for ODL is publicly available at https://github.com/odlgroup/odl
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TABLE II
SNR AND SSIM VALUES OBTAINED BY SEVERAL REFERENCE METHODS FOR THE RECONSTRUCTION OF A 512×512 IMAGE IN SPARSE-VIEW CT WITH NOISE OF
50 DB INPUT SNR. THE HIGHEST SNR AND SSIM VALUES ARE IN BOLD. NOTE THAT THE LAST TWO ROWS PROVIDE THE AVERAGE TEST-TIMES FOR ALL THE
COMPETING METHODS FOR 180 VIEWS ON GPU AND CPU. SGD-NET ENABLES ONE TO BALANCE THE TIME COMPLEXITY OF RECONSTRUCTION AGAINST THE

FINAL IMAGING QUALITY

with minibatch size 2 and weight decay 2× 10−8. As can be seen
below the training with Adam seems to behave similarly to that
with SGD, with SGD-Net nearly matching the performance of
U-RED. For physical parameters, we fixed the step-size in each
step to γ = 5× 10−3 and initialized the trainable regularization
parameter to τ = 4. The learning rate starts from 1× 10−3 and
is halved at epoch 20, then gradually reduced by a factor of 0.7
every 10 epochs. The number of total training epochs is 100. We
adopt gradient clipping [85] in order to accelerate and stabilize
the training. We also applied the same training schemes for U-
Net and ISTA-Net+. We set the number of iterations for TV
and RED to 240. For DnCNN in RED, we trained it for AWGN
removal at four noise levels corresponding to σ ∈ {2, 5, 10, 15}.
Several instances of U-Net and ISTA-Net+, corresponding to
different numbers of views, were trained by mapping the FBP
AHFy to the ground truth for each sparse view.

Table II provides the SNR and SSIM values obtained by
SGD-Net and the baseline methods when applied to sparse-view
CT with different projection views. Overall, all methods offer
significant gains over FBP, with model-based deep learning
methods (RED-DnCNN, ISTA-Net+ and SGD-Net) achieving
the best performance. Moreover, SGD-Net using B ∈ {30, 60}
achieves comparable image reconstruction quality to U-RED,
which highlights the potential of using minibatches within deep
unfolding networks. Similar conclusions can be drawn by Fig. 5,
which shows the statistical evaluation of SGD-Net and other
deep-learning methods. Visual inspection of the results highlight
the excellent performance of SGD-Net. Specifically, Fig. 4
presents the reconstruction results by all the learning-based
methods. SGD-Net with B = 60 performs better than other
methods on all individual slices, highlighted by the yellow arrow.
In Fig. 6, FBP is dominated by streaking artifacts, while TV
reduces those artifacts, but blurs the fine structures by producing
cartoon-like features. The zoomed regions suggest that SGD-Net
with B = 30 can accurately reconstruct the fine details as good
as its batch version using all the measurements.

Fig. 7 provides several additional evaluations highlighting the
influence of the number of steps and minibatch sizes. Fig. 7(a)
shows the SNR performance versus number of unrolling steps.
It can be observed that the average SNR values improve as
we increase the number of model steps, and SGD-Net with
B = 60 consistently achieves a similar performance with the full

Fig. 5. Quantitative evaluation of several reference methods on sparse-view
CT with noise corresponding to 50 dB of input SNR. The top row quantifies the
image quality in terms of SNR (dB), while the bottom row in terms of SSIM.
Columns from left to right provide results for 90, 120, and 180 views. This
figure highlights that the usage of minibatches within SGD-Net does not reduce
its ability to achieve high imaging quality.

batch unrolled RED algorithm. Fig. 7(b) shows the performance
of SGD-Net trained for B ∈ {30, 60, 90} and U-RED when
tested with different minibatch sizes. This results highlights the
robustness of pre-trained SGD-Net to the changes in minibatch
sizes. One can observe that the performance of U-RED degrades
much faster than SGD-Net with B = 30 when using smaller
minibatches. Fig. 7(c) shows the computational time of using
different minibatch sizes for reconstructing all the testing slices.
We conducted 40 trials and 20 trails to calculate the average
performance for each minibatch on GPU and CPU, respectively.

VI. CONCLUSION

The proposed SGD-Net method introduces stochastic ap-
proximation to the data-consistency layers of deep unfolding
networks. Such approximations lead to complexity reductions
during both training and testing of the complete network, making
the network potentially applicable for problems with a large
number of measurements. We provided extensive numerical re-
sults motivating the practical relevance of SGD-Net. Our results
indicate that SGD-Net provides competitive imaging quality
compared to the traditional and learning-based methods due to
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Fig. 6. Visual illustration of SGD-Net with B = 30 relative to FBP, TV, and U-RED on sparse-view CT with {90, 120, 180} views and noise of 50 dB input
SNR. See Table II for quantitative and Fig. 4 for visual comparisons with additional reference methods. Note that SGD-Net provides substantial improvements
over traditional image reconstruction methods, matching the performance of U-RED that uses all the measurements in each step of the network. Best viewed by
zooming in the display.

Fig. 7. Quantifying the influence of the number of steps and minibatch sizes. (a) SNR versus number of steps for the full batch network and SGD-Net with
B = 60. Note how SGD-Net matches the full batch network in all settings. (b) SGD-Net architectures trained with certain minibatch sizes are tested on different
minibatch sizes. This plot shows that networks trained on smaller minibatches achieve better generalization. (c) Runtime of SGD-Net for different minibatch sizes
on GPU and CPU at test time. One can achieve significant savings for both GPU and CPU implementations with small minibatches.

the training of the priors in conjunction with the forward model.
In particular, SGD-Net using small minibatches achieves the
SNR performance of the network using all the available measure-
ments at a fraction of complexity. While our experiments focused
on IDT and CT, the method is broadly applicable to many
other imaging modalities such as optical diffraction tomography
(ODT) [86] and photoacoustic tomography (PAT) [29], where
the evaluation of the measurement model is computationally in-
tensive. Additionally, while we implemented SGD-Net based on
the RED framework, the idea can be used for other model-based
deep learning architectures.

APPENDIX

This appendix presents the proof of Theorem 1. Our analysis
is based on the traditional analysis of SGD in the context of
machine learning [37], [72], [73]. Note that while our theo-
retical bounds explicitly rely on the Lipschitz constant L =
max{Lθ, Lφ}, this constant does not provide a practical recipe
for setting parameters η andB. Instead, those parameters should
be empirically fine-tuned as is commonly done in the context of
optimization for deep learning.
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Assumption 1 leads to two bounds. By setting φ1 = φ2 = φ
in Assumption 1, we obtain the traditional Lipschitz continuity
bound on the gradient

‖∇F (θ1;φ)−∇F (θ2;φ)‖22 ≤ L‖θ1 − θ2‖22,

for all θ1, θ2, and φ, which directly leads to the traditional
quadratic upper bound (see Lemma 1.2.3 in [72])

F (θ1;φ) ≤ F (θ2;φ) +∇F (θ2;φ)
T(θ1 − θ2)

+
L

2
‖θ1 − θ2‖22. (17)

By setting θ1 = θ2 = θ in Assumption 1, we obtain the follow-
ing useful bound for our proof

1

2
‖∇F (θ;φ)−∇F (θ; φ̂)‖22 ≤ L2

2
‖φ− φ̂‖22

⇔ −∇F (θ;φ)T∇F (θ; φ̂) +
1

2
‖∇F (θ; φ̂)‖22

≤ L2

2
‖φ− φ̂‖22 −

1

2
‖∇F (θ;φ)‖22

(18)

The unbiasedness and boundedness of the variance of the
stochastic gradient in Assumption 3 implies that for any fixed
vector θ and φ, we have that

E
[
‖∇̂F (θ;φ)−∇F (θ;φ)‖22|θ,φ

]
≤ ε2

⇔ E
[
‖∇̂F (θ;φ)‖22|θ,φ

]
≤ ‖∇F (θ;φ)‖22 + ε2,

(19)

where the expectation is taken over the index j ∈ {1, . . . ,M}
of the stochastic gradient.

Now, we are ready to establish the result in Theorem 1.
Consider a single iteration of optimizing SGD-Net with SGD

θk+1 = θk − ηk∇̂F (θk; φ̂
k
).

From the quadratic upper bound (17), we get

F (θk+1;φ)− F (θk;φ)

≤ ∇F (θk;φ)T(θk+1 − θk) +
L

2
‖θk+1 − θk‖22

= −ηk∇F (θk;φ)T∇̂F (θk; φ̂
k
) +

η2k L

2
‖∇̂F (θk; φ̂

k
)‖22,

(20)

where φ represents the true physical parameters and φk their
stochastic approximation. By taking the conditional expectation
with respect to the previous trainable parametersθk and physical

parameters φ̂
k
, using (18) and (19), we obtain

E
[
F (θk+1;φ)|θk, φ̂

k
]
− F (θk;φ)

≤ −ηk∇F (θk;φ)TE
[
∇̂F (θk; φ̂

k
)|θk, φ̂

k
]

+
ηk
2
‖∇F (θk; φ̂

k
)‖22 +

η2kLε
2

2

≤ −ηk
2
‖∇F (θk;φ)‖22 +

ηkL2

2
‖φ− φ̂

k
‖22 +

η2kLε
2

2
,

where we also used the unbiasedness of the stochastic gradient
∇̂F and the fact that 0 < ηk ≤ 1/L. By rearranging the terms,
using Assumption 2, and taking the law of total expectation

E
[
ηk‖∇F (θk;φ)‖22

]
≤ 2(E

[
F (θk;φ)

]
− E

[
F (θk+1;φ)

]
)

+

(
ηkL2σ2

B
+ η2kLε

2

)
.

By summing this bound over 0 ≤ k ≤ K − 1, we get

K−1∑

k=0

ηkE
[
‖∇F (θk;φ)‖22

]

≤ 2(F (θ0;φ)− E
[
F (θK ;φ))

]
+

K−1∑

k=0

(
ηkL2σ2

B
+ η2kLε

2

)

≤ 2(F (θ0;φ)− F (θ∗;φ)) +
K−1∑

k=0

(
ηkL2σ2

B
+ η2kLε

2

)
,

where we used the fact that F (θ∗;φ) ≤ E[F (θK ;φ))], with θ∗

denoting a global minimizer of F .
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