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The refractive index (RI) measures the optical density, which 
determines the interaction between light and matter within 
a sample. The real part of the RI characterizes the phase, 

whereas its imaginary part characterizes absorption. The RI can 
thus serve as an endogenous source of optical contrast for imaging 
samples without staining or labelling. By quantitatively characteriz-
ing the three-dimensional (3D) distribution of the RI, one can visu-
alize cellular or subcellular structures useful for morphogenesis1, 
oncology2, cellular pathophysiology3, biochemistry4 and beyond 
(see the review papers in refs. 5,6).

Intensity diffraction tomography (IDT) is a recent technique for 
recovering the 3D RI maps of a sample by measuring the light it 
scatters. In the standard IDT set-up, a sample is illuminated mul-
tiple times from different angles and a set of two-dimensional (2D) 
intensity projections is captured by the camera (see Fig. 1c). A 
tomographic image reconstruction algorithm is then used to com-
putationally reconstruct the desired 3D RI distribution from the set 
of 2D measurements. Unlike traditional optical diffraction tomog-
raphy, which uses interferometry to record the complex-valued light 
fields7–9, IDT only measures the squared amplitude of the scattered 
light, leading to an easy set-up on standard transmission optical 
microscopes with inexpensive hardware modifications. Such flex-
ibility has spurred different IDT variants integrating object scan-
ning10,11, angled illumination12–15, pupil engineering16,17 and multiple 
scattering18,19. Set-ups achieving high resolution18 and fast acquisi-
tion20 have also been reported.

Despite the rich literature on IDT, image reconstruction remains 
a fundamental challenge. The first issue is that the phase of the scat-
tered light field is missing from the measurements, resulting in a 

nonlinear measurement system that is not characterizable by clas-
sical linear Fourier diffraction theory21. This rules out the use of 
standard filtered-backprojection methods and calls for advanced 
computational algorithms. The second issue is the well-known 
missing cone problem, which causes elongation of the reconstructed 
object along the optical axis (z-dimension) and hence reduction 
of the axial resolution. The missing cone problem is a result of a 
limited-angle tomographic set-up, in which illuminations can come 
only from one side of the sample plane with a limited range for angle 
variation (less than ~40° in our set-ups). This leads to incomplete 
coverage of the 3D Fourier spectra with a missing, cone-shaped 
region in the axial direction. These missing phase and cone prob-
lems make image reconstruction in IDT a severely ill-posed inverse 
problem.

Regularization methods are commonly used for mitigating the 
ill-posed nature of many inverse problems. These methods are 
based on minimizing a cost function that consists of a data-fidelity 
term and a regularization term, where the former uses a physical 
model to quantify the mismatch between the predicted and acquired 
measurements, whereas the latter promotes solutions that are con-
sistent with a priori knowledge of the sample. For example, the 
least-squares loss and Tikhonov regularizer (ℓ2-penalty) are widely 
used for obtaining closed-form solutions to inverse problems14. The 
work on plug-and-play priors has generalized the notion of image 
priors to implicit regularizers characterized by image denoisers22–25. 
Deep learning has recently emerged as a powerful framework for 
image reconstruction. A traditional deep learning reconstruction 
is based on training a convolutional neural network (CNN) on a 
large dataset to learn a mapping from low-quality images to their 
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high-quality counterparts. The state-of-the-art performance of 
such methods has been demonstrated in X-ray computed tomog-
raphy26,27, magnetic resonance imaging28,29, optical tomography30,31 
and seismic imaging32 (see refs. 33–35). Although deep learning has 
considerably improved image reconstruction in many modali-
ties, traditional deep learning methods are impractical for image 
reconstruction in IDT, where it is difficult to acquire high-quality 
ground-truth RI maps in experiments. Although a physics-based 
simulator has been proposed to generate datasets for training IDT 
artefact-suppressing CNNs, the results are still limited by the mis-
match between the simulation and experiments36.

Neural fields (NF) is a recent deep learning framework that has 
gained popularity in computer vision and graphics for represent-
ing and rendering 3D scenes using coordinate-based deep neural 
networks37,38. It is worth mentioning that although NF was deemed 
to be the most appropriate term39,40, this idea currently goes by 
various names in the vision/graphics literature, including neural 
coordinate-based representations or neural implicit models. It has 
been shown that NF can learn a high-quality representation of a 
complex scene from a sparse set of data without any external training 
dataset. Motivated by this property, we propose Deep Continuous 
Artefact-free RI field (DeCAF) as a novel NF-based IDT method for 
learning a high-quality, continuous 3D RI map from intensity-only 
and limited-angle measurements without any external training 
dataset of ground-truth RI maps. Figure 1 provides a conceptual 
illustration of DeCAF, the key features of which are as follows:

t� !e central component of DeCAF is a multilayer perceptron 
(MLP)—a fully connected (non-convolutional) deep network—
for learning a function that maps 3D coordinates (x, y, z) to the 
corresponding complex-valued RI values. !e trained MLP thus 
provides a continuous neural representation of the RI map. !e 
RI value at any spatial location can be retrieved by querying the 
trained MLP with the corresponding coordinate. By decoupling 
representation from an explicit voxel grid, DeCAF can e"-
ciently store large 3D volumes.

t� DeCAF is a self-supervised method, meaning that it does not 
need to be trained on an external dataset of ground-truth RI 
maps. !is is possible as the same MLP is used at every 3D 
location, enabling it to learn natural redundancies and cor-
relations within an RI volume. !e MLP is trained directly 
at test time by using only the IDT measurements of the sam-
ple that we seek to reconstruct. !e IDT forward model is  
used to map the output of MLP to the intensity measurements 
and use the gradient back-propagation to update the MLP 
weights.

t� DeCAF enables easy integration of additional prior knowl-
edge on the unknown sample using an explicit regulariza-
tion term in the loss function. In this paper we explored the 
potential of such synergistic integration by including an ani-
sotropic 3D regularizer that separately imposes penalties in 
the x–y plane and z direction. Speci#cally, the x–y penalty 
uses a deep denoising CNN pre-trained on natural images to 
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Fig. 1 | Conceptual illustration of DeCAF for IDT. a, DeCAF reconstructs the RI volume by learning a neural field parameterized by an MLP. The network 
is trained to map the 3D coordinates (x,!y,!z) to the corresponding RI value by minimizing a loss that penalizes measurement mismatch and imposes 
regularization. b, Our IDT system uses a programmable LED array to illuminate a sample from different angles and uses a digital camera to record 
the intensity measurements of the scattered light. By changing the illumination patterns, our system can implement different IDT modalities. c, Our 
experiments consider three illumination patterns (dense, annular and multiplexed illuminations), each of which corresponds to a different formulation of 
the 4D light transfer function (two separate 3D transfer functions for phase (ph.) and absorption (ab.), respectively). Example 2D intensity measurements 
are visualized for each illumination pattern. Note that the background light is removed (b.r.) from the image. d, DeCAF can reconstruct high-quality 3D 
RI maps from intensity-only and limited-angle measurements. e, DeCAF learns a continuous representation and can render samples on a pixel grid of the 
desired density (illustration with 3.5-, 7.5- and 31.8-fold upsampling).
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remove additive white Gaussian noise41,42, whereas the z pen-
alty is based on one-dimensional total variation. Although 
our denoising CNN was not trained explicitly on RI images, 
we show through ablation studies that it improves the perfor-
mance by mitigating noise and imaging artefacts.

The pipeline of the proposed method is visually illustrated in  
Fig. 1a. In the training phase, the input of DeCAF is a set of spa-
tial coordinates D = {(Y

J


 Z

J


 [

J

)}O
J=�

 taken from a pre-defined grid. 
DeCAF first maps the input coordinates to encodings using a 
non-trainable radial expansion, followed by a standard fully con-
nected neural network to map the encodings to the RI values at the 
input coordinates. We introduced a novel type of encoding called 
radial encoding, which facilitates high-quality, artefact-free recon-
struction of RI maps (see the Methods for details). DeCAF is trained 
to solve the following optimization with an objective consisting of a 
measurement loss L and regularizer R

Ƞ

∗ = BSHNJO

Ƞ

{L(F(Y)
 Z) +R(Y)}

TVDI UIBU Y = M
Ƞ

(D)

	�


where x is the predicted RI map, y represents the intensity mea-
surements of the test sample, F  is the IDT forward model and M

Ƞ

 
is the MLP (which includes the radial encoding) parameterized 
by weights ϕ. Note that the test measurements are the only input 
required in DeCAF. After the optimal ϕ* is learned, one can ren-
der the test sample on a voxel grid with arbitrary density by simply 
querying M

Ƞ

∗ using the corresponding coordinates, as illustrated 
in Fig. 1e.

Past applications of NF include novel view synthesis43–45, dynamic 
scene representation46–48, object lightning49,50 and computed tomog-
raphy51. Our work has several contributions to the existing NF lit-
erature: (1) DeCAF considers learning NF by accounting for the 
diffraction and scattering effects due to the wave nature of the light, 
whereas the existing work in the area has focused on ray-tracing 
models in graphics; (2) DeCAF extends the use of NF to the recov-
ery of the phase information from intensity-only data; (3) DeCAF 
combines an implicit MLP regularization with an additional explicit 
image regularizer (for example, based on a deep denoiser) to achieve 
the best of both worlds, that is, to improve on the separate usage of 
an implicit and explicit regularization; (4) DeCAF introduces radial 
encoding as a novel type of encoding layer for improving the ability 
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Fig. 2 | Reconstruction of Spirogyra algae acquired by dIDT. a, A 2D rendering obtained by accumulating all of the z slices from DeCAF. b, Visual 
comparison of the axial views at z!∈!{4,!16,!28,!40}!μm reconstructed by DeCAF, SIMBA and Tikhonov. c,d, Axial views corresponding to the coloured lines 
in a. e, Line profiles from the white dashed lines in c and d. This figure illustrates the ability of DeCAF to reconstruct high-contrast RI maps by also greatly 
reducing the missing cone artefacts. Note the quantitative demonstration of the reduction of elongation highlighted in e. Further examples can be found in 
the Supplementary Videos (spirogyra-decaf.mov, spirogyra-simba.mov and spirogyra-tikhonov.mov).
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of NF to represent complex samples. Details on the network archi-
tecture and the learning procedure of DeCAF are provided in the 
Methods and the Supplementary Information. In the next section, 
we present both qualitative and quantitative results that demon-
strate DeCAF’s ability to reconstruct high-quality RI maps.

Results. Experimental validation. We validated DeCAF’s ability to 
recover high-quality RI maps with accurate biological features and 
minimal artefacts on experimentally collected IDT data. We used 
DeCAF on four biological samples, including Spirogyra and dia-
tom algae, human buccal epithelial cells and Caenorhabditis elegans  
(C. elegans). We adopted the existing light-propagation models to 
formulate the inverse problems associated with the dense14, annu-
lar20 and multiplexed52 illumination patterns. As absorption pro-
vides a lower contrast for the considered samples, we focus on 
comparing the phase images. In the subsequent sections we use x, y 
and z to denote length, width and depth, respectively.

We first show the effectiveness of DeCAF for dense IDT (dIDT) 
on stained Spirogyra (Fisher Scientific S68786, embedded in water, 
RI ≈ 1.33)—unicellular algae containing a helical arrangement of 
chloroplasts oriented in the 3D space. In total we collected 89 bright-
field intensity measurements using a 0.25 NA objective lens; two 
example measurements are presented in Fig. 1c(i,ii). In the experi-
ment we compared DeCAF with two existing IDT reconstruction 
baselines: Tikhonov regularization14 and SIMBA53, as both meth-
ods have been extensively validated under similar imaging settings. 
SIMBA is a recently proposed model-based algorithm that lever-
ages a deep learning denoiser as an image prior. Each method’s final 

reconstructed RI volume consists of 40 axial slices of 1,024 × 1,024 
pixels, equally spaced between –30 μm and 50 μm, forming a vol-
ume of 665.6 × 665.6 × 80 μm3. We define z = 0 μm as the focal plane 
throughout the paper.

Figure 2 visualizes the experimental results. To demonstrate the 
overall structure of the sample, a rendered 2D image that accumu-
lates all of the z layers of the DeCAF reconstruction is presented 
in Fig. 2a. As shown, DeCAF successfully reconstructed the spi-
ral structure of the Spirogyra. Figure 2b compares the 2D axial 
slices obtained by DeCAF, SIMBA and Tikhonov at the depths 
z ∈ {4, 16, 28, 40} μm. The results show that DeCAF provides supe-
rior axial sectioning ability (that is, a pattern emerges only in the 
slices it belongs to and fades rapidly as we move axially to differ-
ent depths) than the other two methods. This is demonstrated by 
the clarity and sharpness of the spirals (in the dashed cyan boxes) 
that appear at a specific depth, which show that DeCAF removes the 
artefacts (in the red dashed boxes) generated by the diffraction from 
the adjacent slices. These artefacts remain in the reconstructions by 
SIMBA and Tikhonov. We further evaluate the axial resolution of 
each reconstruction by comparing the lateral views that correspond 
to the cutlines shown in Fig. 2c,d. DeCAF substantially reduces the 
elongation artefacts caused by the missing cone problem. Line pro-
files presented in Fig. 2e quantitatively characterize the reduction of 
z-elongation by DeCAF.

We next applied DeCAF to annular IDT (aIDT) to explore its 
capability for efficient data processing. We imaged two distinct 
classes of biological samples, including diatom microalgae (S68786, 
Fisher Scientific) and unstained human epithelial buccal cells. The 
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former is a unicellular algae with regular arrangement of punctae, 
whereas the latter is a complex cell environment consisting of intra-
cellular bacteria. We acquired 24 intensity images using a 0.65 NA 
objective lens under oblique illuminations for each sample. The dia-
tom and cell cluster samples are fixed in glycerin gelatin (RI ≈ 1.47) 
and water, respectively. We used Tikhonov as the baseline method 
for comparison.

Figure 3 presents the results for diatom algae. Two example 
measurements are provided in Fig. 1c(iii,iv). Both DeCAF and 
Tikhonov were configured to reconstruct 52 slices of 700 × 700 pix-
els equally spaced between –10 μm and 16 μm, forming a volume of 
113.75 × 113.75 × 26 μm3. The 3D illustration of the volume recon-
structed by DeCAF is presented in Fig. 3a, demonstrating the overall 
reconstruction quality. Figure 3e presents the slices reconstructed 
by each method at depths z ∈ {–1, 1, 3} μm. DeCAF demonstrates 
better sectioning capability than Tikhonov regularization. Superior 
removal of the missing cone artefacts is also shown in the lateral 
views in Fig. 3c,d. As DeCAF learns a continuous representation of 
the RI distribution, it can generate images on arbitrarily dense voxel 
grids without additional retraining. Figure 3f demonstrates this 
unique ability of DeCAF by interpolating 26.7-times more pixels 
than the original reconstruction in the x–y planar region shown in 
Fig. 3b. For comparison, we used nearest neighbour (Pixel), bilinear 
(Bilinear) and bicubic (Bicubic) interpolation methods to upsample 
the same region. Our results show that DeCAF is able to resolve 

small features with strong cross-scale consistency while avoiding 
interpolation artefacts highlighted by the arrows.

We next present the results of epithelial buccal cell clusters in 
Fig. 4. A background-removed intensity measurement showing 
the distribution of the whole cell cluster is presented in Fig. 4a. 
In Fig. 4b,c we focus on two complex regions where cells overlap 
with each other to highlight the superior axial sectioning capability 
of DeCAF. The size of the two volumes are 81.25 × 81.25 × 16 μm3 
and 97.5 × 97.5 × 16 μm3, discretized to 32 slices of 500 × 500 and 
600 × 600 pixels, respectively. DeCAF successfully resolves different 
cells with clear separation, whereas Tikhonov generates strong arte-
facts that blur the boundaries. A visual demonstration of the axial 
slices of these cells is provided in Fig. 4d–f. In each reconstructed 
slice, DeCAF recovers clear cell membrane, cytoplasm, micronu-
clei and bacterias while removing the diffraction and scattering 
artefacts.

We further show the continuous representation learned by 
DeCAF by upsampling it along z, meaning that DeCAF is used to 
interpolate an entire axial slice that was not part of the grid used 
during training. Figure 4g,h presents the interpolated slices of 
the bacteria clusters highlighted in Fig. 4d,e. A z-axis is provided 
In each figure to show the axial location of each slice. Note that 
{−5.5, −4.5, −3.5} μm and {1.5, 2.5, 3.5} μm are the axial coordi-
nates pre-defined in the training grid. The interpolated slices in  
Fig. 4g,h clearly show the appearance and disappearance of the 
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bacteria clusters at different values of z. As shown, the interpolated 
biological features are consistent with those lying in the pre-defined 
grid, making the whole transition smooth across axial layers. This 
strong axial consistency preserved in DeCAF enables it to produce 
high-fidelity interpolations without any additional retraining.

We finally validate DeCAF on the multiplexed IDT microscopy 
(mIDT). This modality allows more rapid acquisition under the 
same time by simultaneously illuminating the sample from mul-
tiple angles for each intensity measurement. We imaged a C. elegans  
worm specimen by using a 0.65 NA objective lens to acquire 16 
measurements, with each from the simultaneous illuminations of 

six different light-emitting diode (LED) sources. Figure 1c(v,vi) 
shows two example measurements. The sample is challenging due 
to its thickness and complicated arrangement of organs. As the 
worm is alive and moving during the acquisition, we reconstructed 
two volumes of 162.5 × 162.5 × 20 μm3, discretized to 40 slices of 
1,000 × 1,000 pixels, at different times to cover the worm bodies 
with interested biological features. Extended Data Fig. 1 also dem-
onstrates DeCAF’s ability to reconstruct a relatively thin diatom 
algae sample from mIDT measurements.

Figure 5a,b presents the reconstructed RI maps of C. elegans at 
the focal plane. DeCAF successfully recovers the sample’s structure 
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corresponding to the paths shown in a and b. Biological structures are highlighted by the arrows and circles. f–h, Axial views of the regions highlighted in 
a and b at z!∈!{−1,!1,!3}!μm. Note how DeCAF provides higher contrast and finer details than Tikhonov. More examples can be found in the Supplementary 
Videos (celegans-decaf-head.mov, celegans-decaf-body.mov, celegans-tikhonov-head.mov and celegans-tikhonov-body.mov).
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with clear quantification of the internal biological tissues. For exam-
ple, the buccal cavity, anterior and terminal pharyngeal bulbs, isth-
mus and intestine are clearly restored in our reconstruction. Smaller 
features are also distinguishable with high contrast, as shown in the 
regions expanded in Fig. 5f–h. For example, lysosomes, a grinder 
and the lumen of intestine are accurately visualized with clear sepa-
ration from the other tissues. Figure 5c–e shows the y–z lateral 
views, where the oval shape of C. elegans is reconstructed without 
the missing cone artefacts, and fine features such as buccal cavity 
and grinder are preserved and recovered at different axial layers.

Extended Data Fig. 2 highlights the space used for storing the 
MLP weights in DeCAF. As the representation is decoupled from 
a predefined voxel grid, DeCAF can be trained on a sparse grid to 
reduce the storage cost, but can still produce the final reconstruction 
on a grid of desired density. The storage reduction is demonstrated 
by comparing the memory requirements of DeCAF and Tikhonov 
for the reconstruction of the C. elegans worm. DeCAF retains the 
small memory size of 3 MB across different grid densities while that 
of Tikhonov increases as the grid becomes denser.

Quantitative evaluation. In this section we present quantita-
tive evaluations of DeCAF using a high-fidelity cell phantom. 
We used CytoPacq54 to generate a granulocyte phantom contain-
ing tens of granulocyte cells randomly distributed in a volume of 
60 × 60 × 12 μm3, discretized to 40 slices of 454 × 454 pixels. The 

maximum RI value in the cell is set to O
SF

= ����� and O
JN

= � (the 
real and imaginary parts of the sample’s RI, respectively), meaning 
that there is no absorption. The immersion media is assumed to be 
air (n0 = 1). The simulation is based on the aIDT set-up and used the 
split-step non-paraxial simulator to simulate the full wave propaga-
tion55,56. The set-up includes an annular LED array at 515 nm wave-
length for illumination and an objective lens with 0.65 NA. In total, 
24 measurements are taken during the acquisition.

The result of quantitative evaluation are summarized in Fig. 6.  
Figure 6a shows the overall 3D structure of the phantom. Section 
views of axial and lateral planes are compared for DeCAF, 
SIMBA and Tikhonov, with quantitative evaluation of the peak 
signal-to-noise ratio (PSNR) values

14/3(Y
 Ŷ) = �� MPH

(

NBY(Y)

NTF(Y
 Ŷ)

)


 	�


where the mean squared error is computed by .4& (·
 ·) and the 
maximum pixel value in the image is returned by NBY (·). Figure 
6b visualizes the axial slices reconstructed by each method at 
z ∈ {−1.5, 1.2} μm. Figure 6c,d plots the x–z and y–z section views. 
The corresponding position of each view is shown in the left of 
each figure. DeCAF achieves better PSNR than both SIMBA and 
Tikhonov by reconstructing more accurate RI values, reducing the 
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Fig. 6 | Quantitative and visual comparison of DeCAF, SIMBA and Tikhonov for the reconstruction of the granulocyte phantom from simulated data.  
a, A 3D illustration of the phantom. b, Visual comparison of the axial views at z!∈!{1.2,!−1.5}!μm reconstructed using all three methods. The ground-truth 
is provided in the left-most column. Visual differences are highlighted in the green dashed circles. c,d, Visual comparison of the x–z (c) and y–z (d) lateral 
views reconstructed using each method. The corresponding position of each view is shown in the left of each figure. Note how DeCAF provides much 
higher PSNR values than both SIMBA and Tikhonov.
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missing cone artefacts, and removing the cell shadows due to axial 
elongations (highlighted using dashed circles).

Extended Data Fig. 3 visualizes the 3D volumes reconstructed by 
each method using Fiji57 under the default configuration. From left 
to right, the figure displays the 3D volumes corresponding to the 
ground-truth, DeCAF, SIMBA and Tikhonov. Peak signal-to-noise 
ratio values are labelled on each volume in green. DeCAF clearly 
outperforms SIMBA and Tikhonov by reconstructing cells that 
look most similar to the ground-truth. For example, consider the 
cells highlighted in the zoom-in volume. DeCAF reconstructs these 
cells with clear shapes and sharp edges, while the reconstructions 
of SIMBA and Tikhonov are either axially elongated or blurry. 
Quantitative results further highlight the accuracy of DeCAF, show-
ing PSNR improvements of 1.6 dB and 3.3 dB with respect to SIMBA 
and Tikhonov, respectively (equivalent to a 1.5- and 2.1-fold reduc-
tion in MSE).

Discussion. Difference to SIMBA. DeCAF offers several benefits 
from the existing SIMBA method First, test-time learning: SIMBA 
does not adapt to the specifics of a test sample—it uses a fixed forward 
model and a fixed pre-trained prior. On the other hand, DeCAF is 
a test-time learning method in which the MLP weights are adjusted 
for each test sample, leading to a better reconstruction performance 
reported throughout this paper. Second, grid-free representation: 
SIMBA reconstructs a discrete volume on a pre-defined voxel grid. 
DeCAF decouples the representation of the reconstructed 3D RI 
from the grid by using MLP. This enables one to synthesize any part 
of the 3D RI volume ‘on demand’ on any grid by simply querying 
the relevant coordinates of MLP. Thus, the complexity of storing the 
sample reconstructed by DeCAF is decoupled from the voxel-grid. 
Third, internal and external regularization: unlike SIMBA, DeCAF 
synergistically uses internal and external regularization offered by 
MLP and a CNN denoiser, respectively. Our quantitative results 
show that MLP offers a substantial amount of regularization, even 
when no external regularizer is used; however, the best results are 
achieved when both regularizers are used.

Limitations of DeCAF. An obvious limitation of DeCAF is that it 
is based on the linear IDT forward models that are based on the 
first Born approximation. This limits the applicability of the current 
implementation to relatively thin and weakly scattering samples. 
This limitation can be observed in the reconstruction of a relatively 
thick C. elegans sample. Future work will explore the extension of 
DeCAF to thicker and stronger scattering samples by using forward 
models accounting for multiple scattering, such as the ones based 
on the variations of the beam propagation method12,58. Another 
limitation of DeCAF is that it is currently slower than existing IDT 
reconstruction methods, Tikhonov and SIMBA, which is due to our 
implementation of the NF training. Our model takes less than a day 
(~20 h) to infer each real sample, while the runtimes of Tikhonov 
and SIMBA are at the levels of several minutes and hours, respec-
tively. Furthermore, DeCAF’s hyperparameters need to be tuned 
manually on real samples due to the lack of ground-truth, which 
potentially leads to further increases in runtime. The future work 
will explore faster DeCAF implementations that leverage recent 
progress in accelerating NF methods (for example, Instant Neural 
Graphics Primitives59 suggests an order of magnitude acceleration).

Conclusion. We proposed a novel self-supervised deep learning 
method, DeCAF, for enabling high-quality 3D reconstruction of 
the RI distribution from intensity-only measurements. We exten-
sively validated DeCAF on the experimentally collected datasets 
of multiple biological samples under three different IDT set-ups. 
The results show that DeCAF can mitigate the missing cone arte-
facts while maintaining the fine details of small biological features. 
We also provide quantitative evidence to further corroborate our  

argument. Results show that DeCAF can reduce MSE by up to 
2.1-fold. The continuous representation in DeCAF also allows to 
generate images at voxel grids of arbitrary density without retraining 
of the deep network, which is useful for addressing computational 
and memory bottlenecks in image reconstruction and analysis.

Methods
IDT experiments. IDT resolution. !e lateral and axial resolutions of the IDT 
system are limited by the support of the optical transfer function, which is 
determined by the objective NA and illumination NA14. For both the aIDT and 
mIDT set-up, our maximum illumination angle is close to the objective NA; thus, 
the recovered lateral spatial frequency can reach the incoherent di$raction limit 
4NA/λ, and the axial Fourier coverage is up to (�O

�

− �

√

O

�

�

− /"

�)�ȉ, where n0 
is the RI of background media.

Dense IDT. Our dense IDT system consists of: a Nikon TE 2000-U microscope 
equipped with a custom programmable LED array (approximately illuminating 
the plane wave with a central wavelength of λ = 632 nm); a ×10/0.25 NA objective 
(Nikon, CFI Plan Achromat); and an sCMOS camera (PCO.Edge 5.5). The 
LED array is placed about 79 mm away from the sample. It is controlled via a 
microcontroller and is synchronized with the camera. A small subset of the LEDs 
on the array—containing the 89 LEDs within the brightfield region—is used to 
illuminate the sample sequentially.

Annular IDT. Our annular IDT system consists of a Nikon ECLIPSE E200 
microscope equipped with a programmable ring LED unit (Adafruit, 1586 
NeoPixel Ring). The microscope objective is ×40/0.65 NA (Nikon, CFI Plan 
Achromat), and each LED approximately provides a plane wave with a central 
wavelength of λ = 515 nm. The ring LED unit has 24 LED lights and is 60 mm in 
diameter. It is centered at the optical axis and placed approximately 35 mm away 
from the sample, which sets the angle between the wave vector and the optical axis 
to about 40° and complies with the microscope objective NA.

Multiplexed IDT. Our multiplexed IDT system has the same hardware specification 
as the dense IDT system except that the microscope objective is ×40/0.65 
NA (Nikon, CFI Plan Achromat). Besides, the subset of the LEDs used in the 
experiment changes to 96 LEDs corresponding to the NA range from 0.3 to 
0.575. This design contains 16 disjoint illumination patterns and the multiplexed 
illumination quantity of each pattern is 6. The camera is synchronized with the 
LED array and captures 16 measurements corresponding to each illumination 
pattern.

Sample and data preparation. Spirogyra algae. !is sample is a part of Fisher 
Science Education algae basic slide set S68786. We captured 89 intensity-only 
bright #eld measurements. We pre-processed each measurement by removing 
the background intensity followed by normalization. !e same pre-processing 
procedure is also applied to other samples. We consider a reconstruction volume 
of 665.6 × 665.6 × 80 μm3, positioned between −30 μm and 50 μm around the focal 
plane. !e volume is discretized into 40 slices along the z-axis, with each slice 
having 1,024 × 1,024 pixels. Here, a single voxel corresponds to 6.5 × 6.5 × 2 μm3.

Diatom algae (aIDT). This sample is a part of Fisher Science Education algae basic 
slide set S68786. We captured 24 measurements and consider a reconstruction 
volume of 113.75 × 113.75 × 26 μm3, positioned between −10 μm and 16 μm 
around the focal plane. The volume is discretized into 52 slices along the z-axis, 
with each slice having 700 × 700 pixels. Here, a single voxel corresponds to 
0.1625 × 0.1625 × 0.5 μm3.

Diatom algae (mIDT). This sample is a part of Fisher Science Education algae basic 
slide set S68786. We captured 16 measurements, and each measurement used six 
LEDs. We consider a reconstruction volume of 130 × 130 × 30 μm3, positioned 
between −15 μm and 15 μm around the focal plane. The volume is discretized into 
60 slices along the z-axis, with each slice having 800 × 800 pixels. Here, a single 
voxel corresponds to 0.1625 × 0.1625 × 0.5 μm3.

Human buccal epithelial cells. This sample was swabbed from a researcher’s buccal. 
The individual rinsed the mouth with clean water and then twirled a wooden swab 
against the inner cheek. The end of the swab was immersed in a drop of purified 
water on a glass slide and covered by a coverslip. We captured 24 measurements 
of the cell cluster and consider two volumes in the region as shown in Fig. 4b,c. 
The former has 81.25 × 81.25 × 16 μm3 and the latter has 97.5 × 97.5 × 16 μm3. Both 
volumes are positioned between −8 μm and 8 μm around the focal plane. They 
are discretized to 32 slices of 500 × 500 and 600 × 600 pixels. Here, a single voxel 
corresponds to 0.1625 × 0.1625 × 0.5 μm3.

C. elegans. Young adult C. elegans were mounted on 3% agarose pads in a drop of 
nematode growth medium buffer. Glass coverslips were then gently placed on top of 
the pads and sealed with a 1:1 mixture of paraffin and petroleum jelly.  
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As the C. elegans were alive and moving during data acquisition, we captured a video 
at 4 fps in which each frame contained 16 measurements and each measurement 
used six LEDs. We picked two frames at 1.5 s and 44 s for reconstruction, where 
the sample was relatively steady. We consider a unified reconstruction volume of 
162.5 × 162.5 × 20 μm3, positioned between −10 μm and 10 μm around the focal 
plane. The volume is divided into 40 slices along the z-axis, with each slice having 
1,000 × 1,000 pixels. Here, a single voxel corresponds to 0.1625 × 0.1625 × 0.5 μm3.

DeCAF framework. A linearized approximation of IDT forward measurement 
system can be described by equation (3)

Z
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+ Kɔʠ
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 is the unknown volume of complex-valued permittivity 
contrast, yρ is the collection of the background-removed intensity measurements 
corresponding to the LED illuminations emitted at a set of locations ρ, and Aρ is the 
measurement matrices that model the sample-intensity mapping associated with 
these illuminations. The reconstruction of Δϵ is equivalent to the reconstruction of 
the RI distribution via equation (4)
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where O
SF

 and O
JN

 are the real and imaginary parts of the sample’s RI, and n0 is 
the RI of the background medium (where the attenuation is often assumed to be 
zero). In equation (4), all operations are evaluated in an element-wise manner. 
We derived the formulations of Aρ by following past works on dIDT14, aIDT20 and 
mIDT52 (see the ‘IDT forward model’ section in the Supplementary Information).

The central piece of DeCAF is a coordinate-based MLP, M
Ƞ

, which maps the 
3D coordinate (x, y, z) to the corresponding values of ɔȯ

SF

 and ɔȯ

JN

. We normalize 
the coordinate grid to a cube [−1, 1]3 before feeding them into M

Ƞ

. The deep 
network M

Ƞ

 consists of two subnetworks, where the first one is an encoding 
layer γ(x, y, z), pre-defined before training, and the second one is a standard MLP 
N

Ƞ

: ȁ(Y
 Z
 [) → (ɔȯ

SF


ɔȯ

JN

) parameterized by the trainable parameters ϕ. A 
visual illustration of the detailed network architecture is provided in the Extended 
Data Fig. 4a.

Radial encoding. It has been shown that a Fourier-type encoding of the spatial 
coordinates is essential for a MLP to represent high-frequency variations in 
the signal43 and impose implicit regularization60. In DeCAF, we consider a 
decomposition of the input coordinate (x, y, z) into (x, y) and z, and use different 
strategies to expand (x, y) and z. This is due to the non-isotropic resolution of the 
imaging system along the x–y plane and the z dimension. Our experiments showed 
that existing encoding strategies, such as positional43 and Gaussian61 encoding, lead 
to suboptimal reconstruction of RI images along the x–y dimensions. We propose 
radial encoding as an alternative for expanding v := (x, y)
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Here, sin and cos compute the (element-wise) sinusoidal and cosinusoidal 
values, respectively, Rθ denotes a collection of rotation matrices that translate 
the coordinates by the angles θ, and Lxy > 0 controls the number of the expanded 
frequency. By incorporating rotation, our strategy enables a frequency expansion 
that can efficiently acount for the dependencies within the x–y plane (see the 
‘Radial Encoding’ section in the Supplementary Information). The difference 
between radial encoding and positional encoding is conceptually illustrated in 
Extended Data Fig. 4b,c. In the experiments we observed that the radial encoding 
improves the representation of small textures that are otherwise lost by other 
encodings. We adopted the standard positional encoding for the expansion of z
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where Lz > 0 denotes the total number of frequencies. We fine-tuned θ, Lxy, and Lz 
for every sample by running multiple sets of parameters and manually selecting 

the set leading to the best visual quality. We summarize their values in Extended 
Data Fig. 5. The ablation experiment on the challenging C. elegans specimen (see 
Supplementary Fig. 4 for details) demonstrates the superior performance of the 
proposed encoding. More quantitative evidence can be found in the ‘Ablation 
experiments’ section in the Supplementary Information.

MLP architecture. The network architecture of N
Ƞ

 is illustrated in Extended Data 
Fig. 4a. Network N

Ƞ

 is composed of N fully connected layers. The first N − 1 
layers have M hidden neurons activated by the leaky rectified linear unit (leaky 
ReLU), while the last layer has M unactivated hidden neurons. A skip connection 
is implemented at the ⌊N/2⌋th fully connected layer to concatenate the original 
input of N

Ƞ

 with the intermediate outputs, which has been shown beneficial for 
improving the representation performance62. We used one network configuration 
for all biological samples, which is summarized in Extended Data Fig. 5.

Regularized loss function. At test time, we train M
Ƞ

 to minimize equation (7) by 
using a customized Adam63 optimizer (see the ‘Block-wise training of DeCAF’ 
section in the Supplementary Information)
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 is a collection of all coordinates on the grid and MK

Ƞ

 
denotes the jth axial slice of the predicted RI map. The loss defined in equation (7) 
can be divided into three terms serving different purposes, with α ≥ 0 and β ≥ 0 
balancing their contributions. The first term is a widely used ℓ1-norm loss that 
ensures the consistency with the test measurements. The second and third terms 
are the regularizers imposing x–y plane noise reduction and continuity along z, 
respectively. The Dσ term denotes a 2D image denoiser with σ > 0 controlling the 
denoising strength. We selected a denoising convolutional neural network due to its 
state-of-the-art denoising performance64. A detailed description of the architecture 
and training of the denoising convolutional neural network is presented in the 
‘Additional technical details’ section in the Supplementary Information. We 
fine-tuned α and β for each sample by running multiple sets of parameters and 
manually selecting the set leading to the best visual quality. We summarized their 
values in Extended Data Fig. 5 and provide the empirical evidence to demonstrate 
the necessity of the explicit regularization for imaging the complex organism (see 
the visual results in Supplementary Fig. 6). Additional quantitative evaluations are 
provided in the ‘Ablation experiments’ section in the Supplementary Information.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used for reproducing the results in the manuscript are available at https://
github.com/wustl-cig/DeCAF65. We visualized the pre-processed raw intensity 
images of the relevant samples in Figs. 1 and 4.

Code availability
The code used for reproducing the results in the manuscript is available at https://
github.com/wustl-cig/DeCAF65.
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Extended Data Fig. 1 | Reconstruction of Diatom Algae acquired by mIDT. (a) 2D rendering obtained by accumulating all the z slices from DeCAF. Scale 
bar 10 μm. (b) & (d) Lateral views corresponding to the colored lines in (a). (c) & (e) Axial views at z!∈!{11,!0,!11}!μm reconstructed by using DeCAF and 
Tikhonov, respectively. This figure illustrates the ability of DeCAF to reconstruct high-contrast RI maps for a relatively thin sample acquired by mIDT. 
Note how DeCAF successfully recovers the folding structure of the sample with two clear separate layers, which are barely recognizable in the Tikhonov 
reconstruction. Additional examples are shown in Supplementary Videos diatom-midt-decaf.mov and diatom-midt-tikhonov.mov.

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell

http://www.nature.com/natmachintell


ARTICLESNATURE MACHINE INTELLIGENCE ARTICLESNATURE MACHINE INTELLIGENCE

Extended Data Fig. 2 | Quantitative Illustration of the scalability of DeCAF due to its off-the-grid feature using the C. elegans specimen as an example. 
Note how the space required to store the reconstructed sample in DeCAF is independent of the reconstruction grid.
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Extended Data Fig. 3 | Reconstruction of the 3D Granulocyte Phantom using DeCAF, SIMBA, and Tikhonov. (a) From left to right, 3D volumes 
correspond to Groundtruth, DeCAF, SIMBA, and Tikhonov, respectively. (b) Close-up views of the reconstructions at the location shown in (a). Note how 
DeCAF reconstructs sharper and better quality cell images compared to both SIMBA and Tikhonov.
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Extended Data Fig. 4 | Visual illustration of the network structure and the encoding strategy used in DeCAF. (a) The overall structure of network Mφ. (b) 
Illustration of positional encoding for z coordinate. (c) Illustration of radial encoding for the coordinates in the (x, z) plane.
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Extended Data Fig. 5 | List of algorithmic hyperparameters used by DeCAF for different biological samples. List of algorithmic hyperparameters used by 
DeCAF for different biological samples.
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