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Recovery of continuous 3D refractive index maps
from discrete intensity-only measurements using
neural fields

Renhao Liu®">7, Yu Sun'%7, Jiabei Zhu?, Lei Tian®23 and Ulugbek S. Kamilov®424

Intensity diffraction tomography (IDT) refers to a class of optical microscopy techniques for imaging the three-dimensional
refractive index (RI) distribution of a sample from a set of two-dimensional intensity-only measurements. The reconstruction
of artefact-free Rl maps is a fundamental challenge in IDT due to the loss of phase information and the missing-cone prob-
lem. Neural fields has recently emerged as a new deep learning approach for learning continuous representations of physical
fields. The technique uses a coordinate-based neural network to represent the field by mapping the spatial coordinates to
the corresponding physical quantities, in our case the complex-valued refractive index values. We present Deep Continuous
Artefact-free Rl Field (DeCAF) as a neural-fields-based IDT method that can learn a high-quality continuous representation
of a Rl volume from its intensity-only and limited-angle measurements. The representation in DeCAF is learned directly from
the measurements of the test sample by using the IDT forward model without any ground-truth Rl maps. We qualitatively and
quantitatively evaluate DeCAF on the simulated and experimental biological samples. Our results show that DeCAF can gen-
erate high-contrast and artefact-free Rl maps and lead to an up to 2.1-fold reduction in the mean squared error over existing

methods.

determines the interaction between light and matter within

a sample. The real part of the RI characterizes the phase,
whereas its imaginary part characterizes absorption. The RI can
thus serve as an endogenous source of optical contrast for imaging
samples without staining or labelling. By quantitatively characteriz-
ing the three-dimensional (3D) distribution of the RI, one can visu-
alize cellular or subcellular structures useful for morphogenesis’,
oncology’, cellular pathophysiology’, biochemistry’ and beyond
(see the review papers in refs. >°).

Intensity diffraction tomography (IDT) is a recent technique for
recovering the 3D RI maps of a sample by measuring the light it
scatters. In the standard IDT set-up, a sample is illuminated mul-
tiple times from different angles and a set of two-dimensional (2D)
intensity projections is captured by the camera (see Fig. 1c). A
tomographic image reconstruction algorithm is then used to com-
putationally reconstruct the desired 3D RI distribution from the set
of 2D measurements. Unlike traditional optical diffraction tomog-
raphy, which uses interferometry to record the complex-valued light
fields’, IDT only measures the squared amplitude of the scattered
light, leading to an easy set-up on standard transmission optical
microscopes with inexpensive hardware modifications. Such flex-
ibility has spurred different IDT variants integrating object scan-
ning'*", angled illumination'*~"*, pupil engineering'®'” and multiple
scattering'®"’. Set-ups achieving high resolution' and fast acquisi-
tion”” have also been reported.

Despite the rich literature on IDT, image reconstruction remains
a fundamental challenge. The first issue is that the phase of the scat-
tered light field is missing from the measurements, resulting in a

| he refractive index (RI) measures the optical density, which

nonlinear measurement system that is not characterizable by clas-
sical linear Fourier diffraction theory*'. This rules out the use of
standard filtered-backprojection methods and calls for advanced
computational algorithms. The second issue is the well-known
missing cone problem, which causes elongation of the reconstructed
object along the optical axis (z-dimension) and hence reduction
of the axial resolution. The missing cone problem is a result of a
limited-angle tomographic set-up, in which illuminations can come
only from one side of the sample plane with a limited range for angle
variation (less than ~40° in our set-ups). This leads to incomplete
coverage of the 3D Fourier spectra with a missing, cone-shaped
region in the axial direction. These missing phase and cone prob-
lems make image reconstruction in IDT a severely ill-posed inverse
problem.

Regularization methods are commonly used for mitigating the
ill-posed nature of many inverse problems. These methods are
based on minimizing a cost function that consists of a data-fidelity
term and a regularization term, where the former uses a physical
model to quantify the mismatch between the predicted and acquired
measurements, whereas the latter promotes solutions that are con-
sistent with a priori knowledge of the sample. For example, the
least-squares loss and Tikhonov regularizer (£,-penalty) are widely
used for obtaining closed-form solutions to inverse problems'*. The
work on plug-and-play priors has generalized the notion of image
priors to implicit regularizers characterized by image denoisers™>".
Deep learning has recently emerged as a powerful framework for
image reconstruction. A traditional deep learning reconstruction
is based on training a convolutional neural network (CNN) on a
large dataset to learn a mapping from low-quality images to their
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Fig. 1| Conceptual illustration of DeCAF for IDT. a, DeCAF reconstructs the Rl volume by learning a neural field parameterized by an MLP. The network

is trained to map the 3D coordinates (x,y, z) to the corresponding Rl value by minimizing a loss that penalizes measurement mismatch and imposes
regularization. b, Our IDT system uses a programmable LED array to illuminate a sample from different angles and uses a digital camera to record

the intensity measurements of the scattered light. By changing the illumination patterns, our system can implement different IDT modalities. ¢, Our
experiments consider three illumination patterns (dense, annular and multiplexed illuminations), each of which corresponds to a different formulation of
the 4D light transfer function (two separate 3D transfer functions for phase (ph.) and absorption (ab.), respectively). Example 2D intensity measurements
are visualized for each illumination pattern. Note that the background light is removed (b.r.) from the image. d, DeCAF can reconstruct high-quality 3D

Rl maps from intensity-only and limited-angle measurements. e, DeCAF learns a continuous representation and can render samples on a pixel grid of the

desired density (illustration with 3.5-, 7.5- and 31.8-fold upsampling).

high-quality counterparts. The state-of-the-art performance of
such methods has been demonstrated in X-ray computed tomog-
raphy*>”, magnetic resonance imaging”*, optical tomography***'
and seismic imaging® (see refs. **-**). Although deep learning has
considerably improved image reconstruction in many modali-
ties, traditional deep learning methods are impractical for image
reconstruction in IDT, where it is difficult to acquire high-quality
ground-truth RI maps in experiments. Although a physics-based
simulator has been proposed to generate datasets for training IDT
artefact-suppressing CNNs, the results are still limited by the mis-
match between the simulation and experiments™.

Neural fields (NF) is a recent deep learning framework that has
gained popularity in computer vision and graphics for represent-
ing and rendering 3D scenes using coordinate-based deep neural
networks®*. It is worth mentioning that although NF was deemed
to be the most appropriate term**, this idea currently goes by
various names in the vision/graphics literature, including neural
coordinate-based representations or neural implicit models. It has
been shown that NF can learn a high-quality representation of a
complex scene from a sparse set of data without any external training
dataset. Motivated by this property, we propose Deep Continuous
Artefact-free Rl field (DeCAF) as a novel NF-based IDT method for
learning a high-quality, continuous 3D RI map from intensity-only
and limited-angle measurements without any external training
dataset of ground-truth RI maps. Figure 1 provides a conceptual
illustration of DeCAF, the key features of which are as follows:

The central component of DeCAF is a multilayer perceptron
(MLP)—a fully connected (non-convolutional) deep network—
for learning a function that maps 3D coordinates (x, y,z) to the
corresponding complex-valued RI values. The trained MLP thus
provides a continuous neural representation of the RI map. The
RI value at any spatial location can be retrieved by querying the
trained MLP with the corresponding coordinate. By decoupling
representation from an explicit voxel grid, DeCAF can effi-
ciently store large 3D volumes.

DeCAF is a self-supervised method, meaning that it does not
need to be trained on an external dataset of ground-truth RI
maps. This is possible as the same MLP is used at every 3D
location, enabling it to learn natural redundancies and cor-
relations within an RI volume. The MLP is trained directly
at test time by using only the IDT measurements of the sam-
ple that we seek to reconstruct. The IDT forward model is
used to map the output of MLP to the intensity measurements
and use the gradient back-propagation to update the MLP
weights.

DeCAF enables easy integration of additional prior knowl-
edge on the unknown sample using an explicit regulariza-
tion term in the loss function. In this paper we explored the
potential of such synergistic integration by including an ani-
sotropic 3D regularizer that separately imposes penalties in
the x-y plane and z direction. Specifically, the x-y penalty
uses a deep denoising CNN pre-trained on natural images to
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Fig. 2 | Reconstruction of Spirogyra algae acquired by dIDT. a, A 2D rendering obtained by accumulating all of the z slices from DeCAF. b, Visual
comparison of the axial views at z&€ {4,16, 28, 40} pm reconstructed by DeCAF, SIMBA and Tikhonov. ¢,d, Axial views corresponding to the coloured lines
in a. e, Line profiles from the white dashed lines in ¢ and d. This figure illustrates the ability of DeCAF to reconstruct high-contrast Rl maps by also greatly
reducing the missing cone artefacts. Note the quantitative demonstration of the reduction of elongation highlighted in e. Further examples can be found in
the Supplementary Videos (spirogyra-decaf.mov, spirogyra-simba.mov and spirogyra-tikhonov.mov).

remove additive white Gaussian noise*"*?, whereas the z pen-
alty is based on one-dimensional total variation. Although
our denoising CNN was not trained explicitly on RI images,
we show through ablation studies that it improves the perfor-
mance by mitigating noise and imaging artefacts.

The pipeline of the proposed method is visually illustrated in
Fig. la. In the training phase, the input of DeCAF is a set of spa-
tial coordinates ¢ = {(x;, y;, zi) };_, taken from a pre-defined grid.
DeCAF first maps the input coordinates to encodings using a
non-trainable radial expansion, followed by a standard fully con-
nected neural network to map the encodings to the RI values at the
input coordinates. We introduced a novel type of encoding called
radial encoding, which facilitates high-quality, artefact-free recon-
struction of RI maps (see the Methods for details). DeCAF is trained
to solve the following optimization with an objective consisting of a
measurement loss £ and regularizer R

¢ = argming {L(F(x),y) + R(x)}
such that x = M(c),

1
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where x is the predicted RI map, y represents the intensity mea-
surements of the test sample, F is the IDT forward model and M
is the MLP (which includes the radial encoding) parameterized
by weights ¢. Note that the test measurements are the only input
required in DeCAF. After the optimal ¢* is learned, one can ren-
der the test sample on a voxel grid with arbitrary density by simply
querying My« using the corresponding coordinates, as illustrated
in Fig. le.

Past applications of NF include novel view synthesis*~*, dynamic
scene representation’*%, object lightning’**" and computed tomog-
raphy”'. Our work has several contributions to the existing NF lit-
erature: (1) DeCAF considers learning NF by accounting for the
diffraction and scattering effects due to the wave nature of the light,
whereas the existing work in the area has focused on ray-tracing
models in graphics; (2) DeCAF extends the use of NF to the recov-
ery of the phase information from intensity-only data; (3) DeCAF
combines an implicit MLP regularization with an additional explicit
image regularizer (for example, based on a deep denoiser) to achieve
the best of both worlds, that is, to improve on the separate usage of
an implicit and explicit regularization; (4) DeCAF introduces radial
encoding as a novel type of encoding layer for improving the ability

783


http://www.nature.com/natmachintell

ARTICLES NATURE MACHINE INTELLIGENCE

Diatom algae (DeCAF)

/

-5
(812

Zplane
Opm

ZPlane
1.0 um

ZPlane
3.0 um

Tikhonov

Different interpolation methods (x26.7)

Fig. 3 | Reconstruction of diatom algae acquired by alDT. a, A 3D illustration of the DeCAF reconstruction showing the overall structure of the sample.
b, Axial view at z=0pm (focal plane) reconstructed by DeCAF. ¢,d, Lateral views y-z (¢) and x-z (d) corresponding to the colored paths in b. The
Tikhonov results are also presented for reference. e, Visual illustrations of the axial views at ze {1, 1, 3} pm, highlighting better removal of artefacts than
Tikhonov. f, Visual demonstration of DeCAF's ability to perform continuous Rl upsampling along the x and y dimensions. DeCAF's results are consistent
with that of the classic interpolation methods but provide finer details highlighted by the arrows. More examples are shown in the Supplementary Videos

(diatom-decaf.mov and diatom-tikhonov.mov).

of NF to represent complex samples. Details on the network archi-
tecture and the learning procedure of DeCAF are provided in the
Methods and the Supplementary Information. In the next section,
we present both qualitative and quantitative results that demon-
strate DeCAF’s ability to reconstruct high-quality RI maps.

Results. Experimental validation. We validated DeCAF’s ability to
recover high-quality RI maps with accurate biological features and
minimal artefacts on experimentally collected IDT data. We used
DeCAF on four biological samples, including Spirogyra and dia-
tom algae, human buccal epithelial cells and Caenorhabditis elegans
(C. elegans). We adopted the existing light-propagation models to
formulate the inverse problems associated with the dense', annu-
lar®® and multiplexed* illumination patterns. As absorption pro-
vides a lower contrast for the considered samples, we focus on
comparing the phase images. In the subsequent sections we use x, y
and z to denote length, width and depth, respectively.

We first show the effectiveness of DeCAF for dense IDT (dIDT)
on stained Spirogyra (Fisher Scientific S68786, embedded in water,
RI~ 1.33)—unicellular algae containing a helical arrangement of
chloroplasts oriented in the 3D space. In total we collected 89 bright-
field intensity measurements using a 0.25 NA objective lens; two
example measurements are presented in Fig. 1c(i,ii). In the experi-
ment we compared DeCAF with two existing IDT reconstruction
baselines: Tikhonov regularization'* and SIMBA®”, as both meth-
ods have been extensively validated under similar imaging settings.
SIMBA is a recently proposed model-based algorithm that lever-
ages a deep learning denoiser as an image prior. Each method’s final
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reconstructed RI volume consists of 40 axial slices of 1,024 X 1,024
pixels, equally spaced between -30 pm and 50 pm, forming a vol-
ume of 665.6 X 665.6 X 80 pm?®. We define z=0pm as the focal plane
throughout the paper.

Figure 2 visualizes the experimental results. To demonstrate the
overall structure of the sample, a rendered 2D image that accumu-
lates all of the z layers of the DeCAF reconstruction is presented
in Fig. 2a. As shown, DeCAF successfully reconstructed the spi-
ral structure of the Spirogyra. Figure 2b compares the 2D axial
slices obtained by DeCAF, SIMBA and Tikhonov at the depths
z€{4,16,28,40} pm. The results show that DeCAF provides supe-
rior axial sectioning ability (that is, a pattern emerges only in the
slices it belongs to and fades rapidly as we move axially to differ-
ent depths) than the other two methods. This is demonstrated by
the clarity and sharpness of the spirals (in the dashed cyan boxes)
that appear at a specific depth, which show that DeCAF removes the
artefacts (in the red dashed boxes) generated by the diffraction from
the adjacent slices. These artefacts remain in the reconstructions by
SIMBA and Tikhonov. We further evaluate the axial resolution of
each reconstruction by comparing the lateral views that correspond
to the cutlines shown in Fig. 2c,d. DeCAF substantially reduces the
elongation artefacts caused by the missing cone problem. Line pro-
files presented in Fig. 2e quantitatively characterize the reduction of
z-elongation by DeCAF.

We next applied DeCAF to annular IDT (aIDT) to explore its
capability for efficient data processing. We imaged two distinct
classes of biological samples, including diatom microalgae (S68786,
Fisher Scientific) and unstained human epithelial buccal cells. The
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Fig. 4 | Reconstruction of a human buccal epithelial cell cluster acquired by alDT. a, Example intensity measurement collected by our alDT set-up for the
cell cluster. Note that the background light is removed (b.r.) from the image. b,¢, x-z (b) and y-z (¢) lateral views of the DeCAF reconstruction associated
with the paths in a. Superior performance in artefact removal and axial separation is demonstrated compared with Tikhonov regularization. d-f, The

axial views at various depths of the two sub-cell clusters shown in b and c. These results further highlight the strong axial sectioning effects as well as

the fine details preserved by DeCAF. g, h, Visual demonstration of DeCAF's ability to perform continuous Rl upsampling along the z dimension. Note that
{-5.5,-4.5,-3.5}pm and {1.5,2.5,3.5} pm are the only axial points used during training. Smooth and consistent transition is observed in the appearance
of the bacteria. More examples are shown in Supplementary Videos (cell-decaf-b.mov, cell-decaf-c.mov, cell-tikhonov-b.mov and cell-tikhonov-c.mov).

former is a unicellular algae with regular arrangement of punctae,
whereas the latter is a complex cell environment consisting of intra-
cellular bacteria. We acquired 24 intensity images using a 0.65 NA
objective lens under oblique illuminations for each sample. The dia-
tom and cell cluster samples are fixed in glycerin gelatin (R~ 1.47)
and water, respectively. We used Tikhonov as the baseline method
for comparison.

Figure 3 presents the results for diatom algae. Two example
measurements are provided in Fig. 1c(iii,iv). Both DeCAF and
Tikhonov were configured to reconstruct 52 slices of 700 X 700 pix-
els equally spaced between —10 pm and 16 pm, forming a volume of
113.75%113.75x 26 pm?®. The 3D illustration of the volume recon-
structed by DeCAF is presented in Fig. 3a, demonstrating the overall
reconstruction quality. Figure 3e presents the slices reconstructed
by each method at depths z€{-1,1,3} pm. DeCAF demonstrates
better sectioning capability than Tikhonov regularization. Superior
removal of the missing cone artefacts is also shown in the lateral
views in Fig. 3c,d. As DeCAF learns a continuous representation of
the RI distribution, it can generate images on arbitrarily dense voxel
grids without additional retraining. Figure 3f demonstrates this
unique ability of DeCAF by interpolating 26.7-times more pixels
than the original reconstruction in the x-y planar region shown in
Fig. 3b. For comparison, we used nearest neighbour (Pixel), bilinear
(Bilinear) and bicubic (Bicubic) interpolation methods to upsample
the same region. Our results show that DeCAF is able to resolve
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small features with strong cross-scale consistency while avoiding
interpolation artefacts highlighted by the arrows.

We next present the results of epithelial buccal cell clusters in
Fig. 4. A background-removed intensity measurement showing
the distribution of the whole cell cluster is presented in Fig. 4a.
In Fig. 4b,c we focus on two complex regions where cells overlap
with each other to highlight the superior axial sectioning capability
of DeCAE The size of the two volumes are 81.25x81.25X 16 pm?
and 97.5%x97.5x 16 pm?, discretized to 32 slices of 500%x 500 and
600X 600 pixels, respectively. DeCAF successfully resolves different
cells with clear separation, whereas Tikhonov generates strong arte-
facts that blur the boundaries. A visual demonstration of the axial
slices of these cells is provided in Fig. 4d-f. In each reconstructed
slice, DeCAF recovers clear cell membrane, cytoplasm, micronu-
clei and bacterias while removing the diffraction and scattering
artefacts.

We further show the continuous representation learned by
DeCAF by upsampling it along z, meaning that DeCAF is used to
interpolate an entire axial slice that was not part of the grid used
during training. Figure 4gh presents the interpolated slices of
the bacteria clusters highlighted in Fig. 4d,e. A z-axis is provided
In each figure to show the axial location of each slice. Note that
{=5.5,—4.5,—-3.5} pm and {1.5,2.5,3.5}pm are the axial coordi-
nates pre-defined in the training grid. The interpolated slices in
Fig. 4g,h clearly show the appearance and disappearance of the
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Fig. 5 | Reconstruction of C. elegans acquired by mIDT. a,b, The reconstructed RI distribution at z=0 pum (focal plane) by DeCAF. c-e, Lateral views
corresponding to the paths shown in a and b. Biological structures are highlighted by the arrows and circles. f-h, Axial views of the regions highlighted in
aand b at ze{-1,1,3} pm. Note how DeCAF provides higher contrast and finer details than Tikhonov. More examples can be found in the Supplementary
Videos (celegans-decaf-head.mov, celegans-decaf-body.mov, celegans-tikhonov-head.mov and celegans-tikhonov-body.mov).

bacteria clusters at different values of z. As shown, the interpolated
biological features are consistent with those lying in the pre-defined
grid, making the whole transition smooth across axial layers. This
strong axial consistency preserved in DeCAF enables it to produce
high-fidelity interpolations without any additional retraining.

We finally validate DeCAF on the multiplexed IDT microscopy
(mIDT). This modality allows more rapid acquisition under the
same time by simultaneously illuminating the sample from mul-
tiple angles for each intensity measurement. We imaged a C. elegans
worm specimen by using a 0.65 NA objective lens to acquire 16
measurements, with each from the simultaneous illuminations of
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six different light-emitting diode (LED) sources. Figure lc(v,vi)
shows two example measurements. The sample is challenging due
to its thickness and complicated arrangement of organs. As the
worm is alive and moving during the acquisition, we reconstructed
two volumes of 162.5%162.5x20pm?, discretized to 40 slices of
1,000 1,000 pixels, at different times to cover the worm bodies
with interested biological features. Extended Data Fig. 1 also dem-
onstrates DeCAF’s ability to reconstruct a relatively thin diatom
algae sample from mIDT measurements.

Figure 5a,b presents the reconstructed RI maps of C. elegans at
the focal plane. DeCAF successfully recovers the sample’s structure
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Fig. 6 | Quantitative and visual comparison of DeCAF, SIMBA and Tikhonov for the reconstruction of the granulocyte phantom from simulated data.
a, A 3D illustration of the phantom. b, Visual comparison of the axial views at z€ {1.2, 1.5} pm reconstructed using all three methods. The ground-truth
is provided in the left-most column. Visual differences are highlighted in the green dashed circles. ¢,d, Visual comparison of the x-z (¢) and y-z (d) lateral
views reconstructed using each method. The corresponding position of each view is shown in the left of each figure. Note how DeCAF provides much

higher PSNR values than both SIMBA and Tikhonov.

with clear quantification of the internal biological tissues. For exam-
ple, the buccal cavity, anterior and terminal pharyngeal bulbs, isth-
mus and intestine are clearly restored in our reconstruction. Smaller
features are also distinguishable with high contrast, as shown in the
regions expanded in Fig. 5f-h. For example, lysosomes, a grinder
and the lumen of intestine are accurately visualized with clear sepa-
ration from the other tissues. Figure 5c—e shows the y-z lateral
views, where the oval shape of C. elegans is reconstructed without
the missing cone artefacts, and fine features such as buccal cavity
and grinder are preserved and recovered at different axial layers.

Extended Data Fig. 2 highlights the space used for storing the
MLP weights in DeCAF. As the representation is decoupled from
a predefined voxel grid, DeCAF can be trained on a sparse grid to
reduce the storage cost, but can still produce the final reconstruction
on a grid of desired density. The storage reduction is demonstrated
by comparing the memory requirements of DeCAF and Tikhonov
for the reconstruction of the C. elegans worm. DeCAF retains the
small memory size of 3 MB across different grid densities while that
of Tikhonov increases as the grid becomes denser.

Quantitative evaluation. In this section we present quantita-
tive evaluations of DeCAF using a high-fidelity cell phantom.
We used CytoPacq™ to generate a granulocyte phantom contain-
ing tens of granulocyte cells randomly distributed in a volume of
60x 60X 12 pm?, discretized to 40 slices of 454 x454 pixels. The
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maximum RI value in the cell is set to n;e = 1.075 and ny, = 0 (the
real and imaginary parts of the sample’s RI, respectively), meaning
that there is no absorption. The immersion media is assumed to be
air (n,=1). The simulation is based on the aIDT set-up and used the
split-step non-paraxial simulator to simulate the full wave propaga-
tion®>*. The set-up includes an annular LED array at 515 nm wave-
length for illumination and an objective lens with 0.65 NA. In total,
24 measurements are taken during the acquisition.

The result of quantitative evaluation are summarized in Fig. 6.
Figure 6a shows the overall 3D structure of the phantom. Section
views of axial and lateral planes are compared for DeCAF,
SIMBA and Tikhonov, with quantitative evaluation of the peak
signal-to-noise ratio (PSNR) values

PSNR(x, x) = 101log <W(5)‘)) , (2)

where the mean squared error is computed by MSE (-, -) and the
maximum pixel value in the image is returned by max (-). Figure
6b visualizes the axial slices reconstructed by each method at
z€{-1.5,1.2} pm. Figure 6¢,d plots the x-z and y-z section views.
The corresponding position of each view is shown in the left of
each figure. DeCAF achieves better PSNR than both SIMBA and
Tikhonov by reconstructing more accurate RI values, reducing the
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missing cone artefacts, and removing the cell shadows due to axial
elongations (highlighted using dashed circles).

Extended Data Fig. 3 visualizes the 3D volumes reconstructed by
each method using Fiji*” under the default configuration. From left
to right, the figure displays the 3D volumes corresponding to the
ground-truth, DeCAF, SIMBA and Tikhonov. Peak signal-to-noise
ratio values are labelled on each volume in green. DeCAF clearly
outperforms SIMBA and Tikhonov by reconstructing cells that
look most similar to the ground-truth. For example, consider the
cells highlighted in the zoom-in volume. DeCAF reconstructs these
cells with clear shapes and sharp edges, while the reconstructions
of SIMBA and Tikhonov are either axially elongated or blurry.
Quantitative results further highlight the accuracy of DeCAF, show-
ing PSNR improvements of 1.6 dB and 3.3 dB with respect to SIMBA
and Tikhonov, respectively (equivalent to a 1.5- and 2.1-fold reduc-
tion in MSE).

Discussion. Difference to SIMBA. DeCAF offers several benefits
from the existing SIMBA method First, test-time learning: SIMBA
does not adapt to the specifics of a test sample—it uses a fixed forward
model and a fixed pre-trained prior. On the other hand, DeCAF is
a test-time learning method in which the MLP weights are adjusted
for each test sample, leading to a better reconstruction performance
reported throughout this paper. Second, grid-free representation:
SIMBA reconstructs a discrete volume on a pre-defined voxel grid.
DeCAF decouples the representation of the reconstructed 3D RI
from the grid by using MLP. This enables one to synthesize any part
of the 3D RI volume ‘on demand’ on any grid by simply querying
the relevant coordinates of MLP. Thus, the complexity of storing the
sample reconstructed by DeCAF is decoupled from the voxel-grid.
Third, internal and external regularization: unlike SIMBA, DeCAF
synergistically uses internal and external regularization offered by
MLP and a CNN denoiser, respectively. Our quantitative results
show that MLP offers a substantial amount of regularization, even
when no external regularizer is used; however, the best results are
achieved when both regularizers are used.

Limitations of DeCAF. An obvious limitation of DeCAF is that it
is based on the linear IDT forward models that are based on the
first Born approximation. This limits the applicability of the current
implementation to relatively thin and weakly scattering samples.
This limitation can be observed in the reconstruction of a relatively
thick C. elegans sample. Future work will explore the extension of
DeCAF to thicker and stronger scattering samples by using forward
models accounting for multiple scattering, such as the ones based
on the variations of the beam propagation method'>**. Another
limitation of DeCAF is that it is currently slower than existing IDT
reconstruction methods, Tikhonov and SIMBA, which is due to our
implementation of the NF training. Our model takes less than a day
(~20h) to infer each real sample, while the runtimes of Tikhonov
and SIMBA are at the levels of several minutes and hours, respec-
tively. Furthermore, DeCAF’s hyperparameters need to be tuned
manually on real samples due to the lack of ground-truth, which
potentially leads to further increases in runtime. The future work
will explore faster DeCAF implementations that leverage recent
progress in accelerating NF methods (for example, Instant Neural
Graphics Primitives® suggests an order of magnitude acceleration).

Conclusion. We proposed a novel self-supervised deep learning
method, DeCAF, for enabling high-quality 3D reconstruction of
the RI distribution from intensity-only measurements. We exten-
sively validated DeCAF on the experimentally collected datasets
of multiple biological samples under three different IDT set-ups.
The results show that DeCAF can mitigate the missing cone arte-
facts while maintaining the fine details of small biological features.
We also provide quantitative evidence to further corroborate our
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argument. Results show that DeCAF can reduce MSE by up to
2.1-fold. The continuous representation in DeCAF also allows to
generate images at voxel grids of arbitrary density without retraining
of the deep network, which is useful for addressing computational
and memory bottlenecks in image reconstruction and analysis.

Methods

IDT experiments. IDT resolution. The lateral and axial resolutions of the IDT
system are limited by the support of the optical transfer function, which is
determined by the objective NA and illumination NA'. For both the aIDT and
mIDT set-up, our maximum illumination angle is close to the objective NA; thus,
the recovered lateral spatial frequency can reach the incoherent diffraction limit
4NA/4, and the axial Fourier coverage is up to (2ng — 24/n2 — NA?)/4, where n,
is the RI of background media.

Dense IDT. Our dense IDT system consists of: a Nikon TE 2000-U microscope
equipped with a custom programmable LED array (approximately illuminating
the plane wave with a central wavelength of 1=632 nm); a X10/0.25 NA objective
(Nikon, CFI Plan Achromat); and an sSCMOS camera (PCO.Edge 5.5). The

LED array is placed about 79 mm away from the sample. It is controlled via a
microcontroller and is synchronized with the camera. A small subset of the LEDs
on the array—containing the 89 LEDs within the brightfield region—is used to
illuminate the sample sequentially.

Annular IDT. Our annular IDT system consists of a Nikon ECLIPSE E200
microscope equipped with a programmable ring LED unit (Adafruit, 1586
NeoPixel Ring). The microscope objective is X40/0.65 NA (Nikon, CFI Plan
Achromat), and each LED approximately provides a plane wave with a central
wavelength of =515 nm. The ring LED unit has 24 LED lights and is 60 mm in
diameter. It is centered at the optical axis and placed approximately 35 mm away
from the sample, which sets the angle between the wave vector and the optical axis
to about 40° and complies with the microscope objective NA.

Multiplexed IDT. Our multiplexed IDT system has the same hardware specification
as the dense IDT system except that the microscope objective is X40/0.65

NA (Nikon, CFI Plan Achromat). Besides, the subset of the LEDs used in the
experiment changes to 96 LEDs corresponding to the NA range from 0.3 to

0.575. This design contains 16 disjoint illumination patterns and the multiplexed
illumination quantity of each pattern is 6. The camera is synchronized with the
LED array and captures 16 measurements corresponding to each illumination
pattern.

Sample and data preparation. Spirogyra algae. This sample is a part of Fisher
Science Education algae basic slide set S68786. We captured 89 intensity-only
bright field measurements. We pre-processed each measurement by removing

the background intensity followed by normalization. The same pre-processing
procedure is also applied to other samples. We consider a reconstruction volume
of 665.6 X 665.6 X 80 pm?, positioned between —30 pm and 50 pm around the focal
plane. The volume is discretized into 40 slices along the z-axis, with each slice
having 1,024 X 1,024 pixels. Here, a single voxel corresponds to 6.5X 6.5 X 2 pm’.

Diatom algae (aIDT). This sample is a part of Fisher Science Education algae basic
slide set S68786. We captured 24 measurements and consider a reconstruction
volume of 113.75X 113.75 X 26 pm®, positioned between —10 pm and 16 pm
around the focal plane. The volume is discretized into 52 slices along the z-axis,
with each slice having 700X 700 pixels. Here, a single voxel corresponds to
0.1625%0.1625% 0.5 pm®.

Diatom algae (mIDT). This sample is a part of Fisher Science Education algae basic
slide set S68786. We captured 16 measurements, and each measurement used six
LEDs. We consider a reconstruction volume of 130 X 130 X 30 pm?, positioned
between —15pm and 15 pm around the focal plane. The volume is discretized into
60 slices along the z-axis, with each slice having 800 X 800 pixels. Here, a single
voxel corresponds to 0.1625X 0.1625 X 0.5 pm?.

Human buccal epithelial cells. This sample was swabbed from a researcher’s buccal.
The individual rinsed the mouth with clean water and then twirled a wooden swab
against the inner cheek. The end of the swab was immersed in a drop of purified
water on a glass slide and covered by a coverslip. We captured 24 measurements

of the cell cluster and consider two volumes in the region as shown in Fig. 4b,c.
The former has 81.25% 81.25 X 16 pm?® and the latter has 97.5 % 97.5 X 16 pm?>. Both
volumes are positioned between —8 pm and 8 pm around the focal plane. They

are discretized to 32 slices of 500 x 500 and 600 X 600 pixels. Here, a single voxel
corresponds to 0.1625 % 0.1625 % 0.5 pm”.

C. elegans. Young adult C. elegans were mounted on 3% agarose pads in a drop of
nematode growth medium buffer. Glass coverslips were then gently placed on top of
the pads and sealed with a 1:1 mixture of paraffin and petroleum jelly.
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As the C. elegans were alive and moving during data acquisition, we captured a video
at 4fps in which each frame contained 16 measurements and each measurement
used six LEDs. We picked two frames at 1.5s and 44 s for reconstruction, where

the sample was relatively steady. We consider a unified reconstruction volume of
162.5X162.5% 20 pm?, positioned between —10 pm and 10 pm around the focal
plane. The volume is divided into 40 slices along the z-axis, with each slice having
1,000 1,000 pixels. Here, a single voxel corresponds to 0.1625% 0.1625 X 0.5 pm®.

DeCAF framework. A linearized approximation of IDT forward measurement
system can be described by equation (3)

Y, = Ayl 3)

where Ae = A¢re + jA€in is the unknown volume of complex-valued permittivity
contrast, y, is the collection of the background-removed intensity measurements
corresponding to the LED illuminations emitted at a set of locations p, and A, is the
measurement matrices that model the sample-intensity mapping associated with
these illuminations. The reconstruction of Ae is equivalent to the reconstruction of
the RI distribution via equation (4)

A€im
2.1

(4)

Nee = \/% ((n(z) + Aere) + 1/ (n + Ae,e)z + Aeizm> and nj,=

where n,. and n;n, are the real and imaginary parts of the sample’s RI, and n, is
the RI of the background medium (where the attenuation is often assumed to be
zero). In equation (4), all operations are evaluated in an element-wise manner.
We derived the formulations of A, by following past works on dIDT", aIDT* and
mIDT* (see the TDT forward model section in the Supplementary Information).
The central piece of DeCAF is a coordinate-based MLP, M, which maps the
3D coordinate (x, y, z) to the corresponding values of Aer and Ae;jn. We normalize
the coordinate grid to a cube [—1, 1]* before feeding them into M. The deep
network M consists of two subnetworks, where the first one is an encoding
layer y(x, y, z), pre-defined before training, and the second one is a standard MLP
Ny : 7(% 3, 2) = (Aére, A€im) parameterized by the trainable parameters ¢. A
visual illustration of the detailed network architecture is provided in the Extended
Data Fig. 4a.

Radial encoding. It has been shown that a Fourier-type encoding of the spatial
coordinates is essential for a MLP to represent high-frequency variations in

the signal”’ and impose implicit regularization®. In DeCAF, we consider a
decomposition of the input coordinate (x, y,z) into (x,y) and z, and use different
strategies to expand (x, y) and z. This is due to the non-isotropic resolution of the
imaging system along the x-y plane and the z dimension. Our experiments showed
that existing encoding strategies, such as positional® and Gaussian®' encoding, lead
to suboptimal reconstruction of RI images along the x—y dimensions. We propose
radial encoding as an alternative for expanding v:=(x, y)

sin (2°7Rpv) , cos (2°nRgv),

Traa(¥) =
oLy —1 Ly —1
sin(2™~ " wRgv), cos(2™ " aRgV) (5)
ksin kcos

{ |:c0s(0k) — sin(6) :| }K

with Ry = .

sin (6 )cos(6) 1

Here, sin and cos compute the (element-wise) sinusoidal and cosinusoidal
values, respectively, Ry denotes a collection of rotation matrices that translate

the coordinates by the angles 8, and L,,> 0 controls the number of the expanded
frequency. By incorporating rotation, our strategy enables a frequency expansion
that can efficiently acount for the dependencies within the x-y plane (see the
‘Radial Encoding’ section in the Supplementary Information). The difference
between radial encoding and positional encoding is conceptually illustrated in
Extended Data Fig. 4b,c. In the experiments we observed that the radial encoding
improves the representation of small textures that are otherwise lost by other
encodings. We adopted the standard positional encoding for the expansion of z

sin (2°7z) , cos (2°nz),

(@ = | , )

sin(Zsz1 nz), cos(ZLz*1 7z)
~—~— ~—~—
ksin kcos

where L, >0 denotes the total number of frequencies. We fine-tuned 0, L,,, and L,

for every sample by running multiple sets of parameters and manually selecting
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the set leading to the best visual quality. We summarize their values in Extended
Data Fig. 5. The ablation experiment on the challenging C. elegans specimen (see
Supplementary Fig. 4 for details) demonstrates the superior performance of the
proposed encoding. More quantitative evidence can be found in the ‘Ablation
experiments’ section in the Supplementary Information.

MLP architecture. The network architecture of N is illustrated in Extended Data
Fig. 4a. Network N is composed of N fully connected layers. The first N—1
layers have M hidden neurons activated by the leaky rectified linear unit (leaky
ReLU), while the last layer has M unactivated hidden neurons. A skip connection
is implemented at the | N/2]™ fully connected layer to concatenate the original
input of N, with the intermediate outputs, which has been shown beneficial for
improving the representation performance®’. We used one network configuration
for all biological samples, which is summarized in Extended Data Fig. 5.

Regularized loss function. At test time, we train M, to minimize equation (7) by
using a customized Adam® optimizer (see the ‘Block-wise training of DeCAF’
section in the Supplementary Information)

L(gy,) = 1A M) =y, +a || My(e) = De(My ()3

measurement consistency x — yplane noise reduction

8371 M) — M @
j

z-dimension continuity

where ¢ = {(x;, yi, zi) }/_, is a collection of all coordinates on the grid and M/
denotes the jth axial slice of the predicted RI map. The loss defined in equation (7)
can be divided into three terms serving different purposes, with a >0 and >0
balancing their contributions. The first term is a widely used #,-norm loss that
ensures the consistency with the test measurements. The second and third terms
are the regularizers imposing x—y plane noise reduction and continuity along z,
respectively. The D, term denotes a 2D image denoiser with 6> 0 controlling the
denoising strength. We selected a denoising convolutional neural network due to its
state-of-the-art denoising performance®. A detailed description of the architecture
and training of the denoising convolutional neural network is presented in the
‘Additional technical details” section in the Supplementary Information. We
fine-tuned a and f for each sample by running multiple sets of parameters and
manually selecting the set leading to the best visual quality. We summarized their
values in Extended Data Fig. 5 and provide the empirical evidence to demonstrate
the necessity of the explicit regularization for imaging the complex organism (see
the visual results in Supplementary Fig. 6). Additional quantitative evaluations are
provided in the ‘Ablation experiments’ section in the Supplementary Information.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

The data used for reproducing the results in the manuscript are available at https://
github.com/wustl-cig/DeCAF®. We visualized the pre-processed raw intensity
images of the relevant samples in Figs. 1 and 4.

Code availability
The code used for reproducing the results in the manuscript is available at https://
github.com/wustl-cig/DeCAF®.
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Extended Data Fig. 1| Reconstruction of Diatom Algae acquired by mIDT. (a) 2D rendering obtained by accumulating all the z slices from DeCAF. Scale
bar 10 um. (b) & (d) Lateral views corresponding to the colored lines in (a). (c) & (e) Axial views at z&€ {11,0, 11} um reconstructed by using DeCAF and
Tikhonov, respectively. This figure illustrates the ability of DeCAF to reconstruct high-contrast Rl maps for a relatively thin sample acquired by mIDT.
Note how DeCAF successfully recovers the folding structure of the sample with two clear separate layers, which are barely recognizable in the Tikhonov
reconstruction. Additional examples are shown in Supplementary Videos diatom-midt-decaf.mov and diatom-midt-tikhonov.mov.
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Methods Training Inference
(Grid size) 1000 x 1000 x 40 5000 x 5000 x 40 10000 x 10000 x 80 20000 x 20000 x 80
DeCAF 3MB 3MB 3MB 3MB
Tikhonov - 3.73GB 29.84GB 119.36GB

Extended Data Fig. 2 | Quantitative lllustration of the scalability of DeCAF due to its off-the-grid feature using the C. elegans specimen as an example.
Note how the space required to store the reconstructed sample in DeCAF is independent of the reconstruction grid.
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Extended Data Fig. 3 | Reconstruction of the 3D Granulocyte Phantom using DeCAF, SIMBA, and Tikhonov. (a) From left to right, 3D volumes
correspond to Groundtruth, DeCAF, SIMBA, and Tikhonov, respectively. (b) Close-up views of the reconstructions at the location shown in (a). Note how
DeCAF reconstructs sharper and better quality cell images compared to both SIMBA and Tikhonov.
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Extended Data Fig. 4 | Visual illustration of the network structure and the encoding strategy used in DeCAF. (a) The overall structure of network Mg. (b)
Illustration of positional encoding for z coordinate. (c) lllustration of radial encoding for the coordinates in the (x, z) plane.
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Diatom Diatom
Hyperparameters Algae (aIDT) Cells (mIDT) C.elegans
Modality type IDT alDT alDT mIDT mIDT
. . 1024 x 1024 x
Reconstruction Voxel Size 1024 x 40 1024 x 40 700x700%x52  800x800x 60 1000 x 1000 x 40
Number of radial encoding
|6]  lines distributed evenly 20 4 6 6 30
around 360°
Number of expanded
Loy frequencies for the z-y 7 9 8 9 9
plane
L. ?Iumber of z expanded 5 6 5 6 6
requency
N Number of layers in MLP 10 10 10 10 10
p Numberof Hidden 208 208 208 208 208
neurons
Skip layer 5 5 5 5 5
o Denoiser strength 1 1 1 1 1
Regularization strength of _5 6 _7 7 3 x 1076 (head)
@ -y noise reduction 1x10 1x10 3x10 3% 10 1.5 x 10~ (body)
p  Regularization strength of 1x 106 3x1078  15x10°7 3% 107 3% 10-6

z-dimension continuity

Extended Data Fig. 5 | List of algorithmic hyperparameters used by DeCAF for different biological samples. List of algorithmic hyperparameters used by
DeCAF for different biological samples.

NATURE MACHINE INTELLIGENCE | www.nature.com/natmachintell


http://www.nature.com/natmachintell

nature research

Last updated by author(s): 31/7/22

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed
|:| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

X XX X X &

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  We implemented customized code to collect data.

Data analysis We implemented customized code using Matlab 2018a, Python 3.7.11, and Tensorflow 2.6 for pre-processing the raw intensity images and
reconstruct the refractive index distribution of the sample. Also see README.md in the source code code.zip we provided.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

The code used for reproducing the results in the manuscript is available at https://github.com/wustl-cig/DeCAF. We visualize the pre-processed raw intensity
images of the relevant samples in Figure 1 and Figure 4.
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We selected six biological samples.

Data exclusions  No data were excluded.

>
Q
—
C
=
(D
=
D
W
(D
Q
=
(@)
>
=
(D
©O
]
=
>
(e}
%)
c
3
[eY)
=
<

Replication We ran the customized code for multiple times, and the samples can be successfully reconstructed in each trial.
Randomization  Thisis not relevant to the study because there is no biological analysis.

Blinding This is irrelevant to the study because there is no biological analysis.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study

XI|[ ] Antibodies [ ] chip-seq

|:| Eukaryotic cell lines |:| Flow cytometry

|:| Palaeontology and archaeology |:| MRI-based neuroimaging
g |:| Animals and other organisms

g |:| Human research participants

|Z |:| Clinical data

X |:| Dual use research of concern

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) - Spirogyra Algae. This sample is a part of Fisher Science Education algae basic slide set S68786.
- Diatom Algae (acquired by alDT). This sample is a part of Fisher Science Education algae basic slide set S68786.
- Diatom Algae (acquired by mIDT). This sample is a part of Fisher Science Education algae basic slide set S68786.
- Human Buccal Epithelial Cells. This sample was swabbed from a researcher’s buccal. The individual rinsed the mouth with
clean water and then twirled a wooden swab against the inner cheek.
- Caenorhabditis Elegans: Previously published dataset from the following paper: Alex Matlock and Lei Tian, High-throughput,
volumetric quantitative phase imaging with multiplexed intensity diffraction tomography, Biomedical Optics Express Vol. 10,
Issue 12, pp. 6432-6448 (2019).

Authentication N/A

Mycoplasma contamination N/A

Commonly misidentified lines  n/a
(See ICLAC register)
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