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ABSTRACT

Lake and reservoir (waterbody) depth is a critical characteristic that influences many important
ecological processes. Unfortunately, depth measurements are labor-intensive to gather and are
only available for a small fraction of waterbodies globally. Therefore, scientists have tried to
predict depth from characteristics easily obtained for all waterbodies, such as surface area or
the slope of the surrounding land. One approach for predicting waterbody depth simulates
basins using a geometric cone model where the nearshore land slope and distance to the
center of the waterbody are assumed to be representative proxies for in-lake slope and distance
to the deepest point respectively. We tested these assumptions using bathymetry data from
~5000 lakes and reservoirs to examine whether differences in waterbody type or shape
influenced depth prediction error. We found that nearshore land slope was not representative
of in-lake slope, and using it for prediction increases error substantially relative to models using
true in-lake slope for all waterbody types and shapes. Predictions were biased toward
overprediction in concave waterbodies (i.e.,, bowl-shaped; up to 18% of the study population)
and reservoir waterbodies (up to 30% of the study population). Despite this systematic
overprediction, model errors were fewer (in absolute and relative terms, irrespective of any
specific slope covariate) for concave than convex waterbodies, suggesting the geometric cone
model is an adequate representation of depth for these waterbodies. But because convex
waterbodies are far more common (>72% of our study population), minimizing overall depth
prediction error remains a challenge.
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introduction correlations between nearshore geomorphology of

Depth is an important factor controlling the physics, land and in-lake geometry, which at limited extents

chemistry, and biota of lakes and reservoirs (hereafter,
waterbodies). For example, deeper waterbodies gener-
ally have higher water clarity and less complete mixing
compared to shallow waterbodies (Fee et al. 1996, Read
et al. 2014). These differences are reflected in variation
among waterbodies in terms of biological productivity
(Qin etal. 2020) and rates of greenhouse gas production
(Li et al. 2020). However, because measured depth data
are only available for a small fraction of waterbodies
(~15% of all waterbodies in the area encompassed by
our study), our ability to understand and predict
depth-dependent processes is limited. The importance
of waterbody depth, coupled with its limited availability,
has led to numerous attempts to predict depth using
measures available for all waterbodies such as surface
area or the nearshore slope of the surrounding land
(Sobek et al. 2011, Heathcote et al. 2015, Oliver et al.
2016). Such efforts rely on a strategy of exploiting

(e.g., within a single North American state or province)
can be quite strong while at larger extents can be depen-
dent on geographic location and waterbody type (Brans-
trator 2009, Oliver et al. 2016).

Given the limited prediction accuracy of prior depth
prediction efforts (+6-7 m; Sobek et al. 2011, Heathcote
et al. 2015, Oliver et al. 2016), a major focus has been on
improving accuracy using strategies such as using more
diverse covariates (Oliver et al. 2016), varying water-
body buffer sizes (Heathcote et al. 2015), or discrete
classifications (e.g., fitting different models for water-
body size classes) among waterbodies (Sobek et al.
2011, Cael et al. 2017). Unfortunately, the predictive
accuracy of these efforts has been limited (+6-7 m).

One intuitive approach for predicting waterbody
depth involves using a geometric model that assumes
waterbody basins correspond to an idealized shape
such as a cone, bowl, or an elliptic sinusoid (Neumann
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1959, Hollister et al. 2011, Getirana et al. 2018, Yigzaw
et al. 2018). All such geometric models for waterbody
depth prediction involve implicit assumptions about
the terms of geometric formulae. In the simplest case,
where waterbody basins are treated as cones (equation
1, Fig. 1), 2 assumptions are required to make depth pre-
dictions for all waterbodies: (1) that nearshore land
slope is a representative proxy for in-lake slope, and
(2) that the distance to the center of the waterbody is
a representative proxy for the distance to the deepest
point of the waterbody (Fig. 1). This cone model
imposes the following fixed (i.e., geometric) relationship
between slope and horizontal distance:

depthgeomeric = tan(slope) x distance, (1)

where the product of slope and horizontal distance
yields an exact geometric depth estimate (depthgeometric)-
Cone models of waterbody basins have been used
extensively to estimate hypsography in waterbodies
with no knowledge of volume or mean depth (Read
et al. 2014, Winslow et al. 2017).

The assumptions of the cone model (as well as other
geometric models) can be tested by comparing proxy
measures of waterbody geometry against corresponding
“true” (i.e., in-lake) values derived from bathymetric
maps and by evaluating how waterbody cross-section
shapes differ from that of an idealized cone (Johansson
et al. 2007). For instance, waterbody cross-section
shapes have been shown to vary from narrow convex
forms to outstretched concave forms (Hikanson
1977). Because tests of geometric model assumptions
require bathymetric map data, which are only available
for a small fraction of waterbodies (including ~15% of

Distance to the
deepest point

Figure 1. Relations between true (black) and proxy (orange)
metrics of waterbody geometry. Geometric depth calculated
via equation 1 requires a single distance and slope metric.

all waterbodies in our study footprint), existing evidence
may not be applicable to all waterbodies. The few stud-
ies that have tested these assumptions have been limited
to individual studies of large (>500 ha) waterbodies or
on small numbers (<100) of waterbodies (Johansson
et al. 2007). Studies focused specifically on reservoirs
(as opposed to the more typical case where reservoirs
and natural lakes are combined) have been even more
restricted to large waterbodies >1000 ha (Lehner et al.
2011, Messager et al. 2016).

As a result of this limited testing, we lack knowledge
on both the predictive performance of geometric mod-
els, the effect of proxies on depth prediction, and
whether depth predictions are more sensitive to mea-
surement errors in the horizontal dimension (i.e., dis-
tance to the deepest point of the waterbody) or
measurement errors in the vertical dimension (i.e.,
in-lake slope). Additionally, it is unclear whether
model prediction error is related to differences in
waterbody type such those with different cross-section
shapes (concave vs. convex) or those classified as res-
ervoirs versus natural lakes. To address these knowl-
edge gaps, we asked 3 research questions: (1) How
representative is nearshore land slope of in-lake
slope, and how representative is the distance to the
center of a waterbody compared to the distance to
the deepest point of a waterbody? (2) How does the
use of proxies for waterbody geometry affect water-
body depth prediction error? (3) How does waterbody
cross-section shape (i.e., concave vs. convex) and
waterbody type (i.e., natural lake vs. reservoir) affect
depth prediction error? To answer these questions,
we extracted maximum depth (hereafter referred to
as observed maximum depth), in-lake slope, cross-sec-
tion shape (i.e., concave vs. convex), and distance to
the deepest point, of ~5000 waterbodies from bathy-
metric map data. We supplemented these geometry
measures with data classifying waterbodies as reser-
voirs or natural lakes. We used these data to compute
geometric depth estimates (equation 1) and prediction
offsets to these estimates using the random forest algo-
rithm (equation 3). Such offsets are model quantities
that minimize differences between observed and pre-
dicted depth as a function of covariates. In our case,
covariates included a variety of waterbody, watershed,
and hydrologic subbasin measures available for all
waterbodies (Table 1).

By definition, the distance proxy (distance to the cen-
ter of the waterbody) must always be greater or equal to
the true distance value (distance to the deepest point of
the waterbody). Therefore, we expected the use of this
proxy would lead to overestimation of waterbody
depth (Fig. 1). Furthermore, we expected to see greater
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Table 1. Summary of waterbody characteristics for the present study and for waterbodies in the conterminous United States (in
parentheses). Predictor variables for computing random forest offsets (equation 2) are printed in bold. Dashes (-) indicate an
identical sample size among this study and that of the conterminous United States from the National Hydrography Dataset. The

total number of waterbodies is reported as n.

Variable Median Q25 Q75 n
Max depth (m) 8.2(7) 46 (3.7) 14 (12) 4820 (17 700)
Area (ha) 55(33) 21 (11) 140 (100) 4820 (17 700)
Island area (ha) 0(0) 0 (0) 0.18 (0.076) 4820 (17 700)
Perimeter (m) 4400 (3500) 2500 (1800) 8100 (7300) 4820 (17 700)
Shoreline development 1.7 (1.7) 1.4 (1.4) 2.1(2.2) 4820 (17 700)
Elevation (m) 300 (340) 180 (210) 400 (460) 4820 (17 700)
Watershed-lake ratio 7.8 (10) 3.8 (4.4) 17 (29) 4820 (17 700)
Deepest point distance (m) 180 (-) 110 (5) 290 (-) 4820 (=)
Mean deepest point distance (m) 140 (=) 87 () 230 (-) 4820 (=)
Visual center distance (m) 240 (-) 160 (=) 390 (-) 4820 (-)
Inlake slope (m/m) 0.05 (-) 0.02 (-) 0.08 (-) 4820 (=)
Inlake slope online (m/m) 0.06 (-) 0.03 (-) 0.14 (=) 4800 (=)
Inlake slopes (m/m) 0.06 (-) 0.03 (-) 0.1(-) 4820 (=)
Inlake slopes online (m/m) 0.07 (-) 0.03 (-) 0.15 (=) 4800 (=)
Mean inlake slope (m/m) 0.04 (-) 0.02 () 0.09 (-) 4820 (-)
Nearshore mean slope (m/m) 0.08 (-) 0.05 (=) 011 () 4820 (-)
Nearshore slope online (m/m) 0.08 (-) 0.04 (-) 013 (=) 4590 (=)
Nearshore slopes online (m/m) 0.08 (-) 0.04 (-) 013 (=) 4540 (=)

overestimation error in reservoirs compared to natural
lakes because many reservoirs are known to be
drowned river valleys where the deepest point is close
to the edge at the end of the reservoir (i.e., next to
the dam) rather than in the center of the reservoir
(Lanza and Silvey 1985). In a similar fashion, we
expected to see overestimation error associated with
using a nearshore land slope proxy in waterbodies
with differing cross-section shapes, such that the
depth of bowl-shaped (i.e., concave) waterbodies

Max depth (m)
e 03-10
e 10-30
® 30-70
70-200

Shape class
concave

& convex

Reservoir class
NL

Res

Figure 2. Study waterbodies showing (a) waterbody maximum
depth measurements, (b) cross-section shape class, and (c) res-
ervoir classification. The distribution of waterbody depths from
panel a is reported in Supplemental Fig. S10.

would be overpredicted, whereas the depth of V-shaped
(ie., convex) waterbodies would be underpredicted
(Supplemental Fig. S1). Finally, we expected that
depth predictions themselves would be strongly related
to waterbody area and hydrologic subbasin variables
because these measures have been influential in previ-
ous studies (Oliver et al. 2016).

By testing these expectations, we could establish
whether barriers to increased depth prediction accuracy
lie in lack of correspondence between true and proxy
measures of waterbody geometry or in specific charac-
teristics among waterbodies (such as waterbody cross-
section shape or reservoir status). This information
could help direct future research efforts to focus on par-
ticular dimensions of waterbody geometry (i.e., hori-
zontal vs. vertical) or to stratify model predictions
based on specific waterbody types and cross-section
shapes. Ultimately, achieving increased depth predic-
tion accuracy would allow more precise estimates of
depth-dependent biotic and chemical processes across
broad spatial extents.

Methods
Data description

We compiled bathymetry data on ~5000 waterbodies in
the Northeastern and Midwestern United States from 9
official state databases (Fig. 2). These data represent
~15% of all waterbodies in the United States included
in our study and are a diverse cross section in terms
of their characteristics and surface areas, and they
span a wide geographic extent including glaciated and
non-glaciated regions (Table 1). Thus, they can be
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considered representative of the entire population of
lakes in our study.

The original data were in a variety of formats, includ-
ing pre-interpolated rasters (Minnesota), contour lines
(Nebraska, Michigan, Massachusetts, Kansas, Iowa),
contour polygons (New Hampshire, Connecticut), or
point depth soundings (Maine). For the Minnesota
data, we simply clipped the raster for each waterbody
to its outline. For data from the remaining states, we
processed each waterbody by converting its original rep-
resentation to a point layer (if necessary), rasterizing
these points, and creating an interpolated bathymetry
“surface” using a simple moving window average in
the raster R package (Hijmans 2019). The size of the
moving window was adjusted iteratively to ensure that
each bathymetry raster contained no missing data.

All waterbody bathymetry was specifically calculated
relative to high resolution (1:24000 scale) National
Hydrography Dataset (USGS 2019) waterbodies such
that source data and bathymetry surface outputs were
clipped to the area of each waterbody polygon. We
restricted the waterbodies in our study to those with
an area of at least 4ha and a maximum depth of at
least 0.3 m to ensure that waterbodies had enough con-
tours (or points, or polygons) to generate adequately
smooth interpolations to calculate in-lake geometry
metrics.

We used our generated bathymetry surfaces to find
the location of the deepest point in the waterbody and
resolved ties by choosing the deepest point closest to
the center of the waterbody. We used the location of
this deepest point to calculate “distance to the deepest
point” as the minimum distance to the waterbody
shoreline. To account for waterbodies where the cen-
troid does not intersect waterbody bathymetry because
it is located within an embedded island or peninsula,
we calculated the center of the waterbody not as its cen-
troid, but rather by finding the point farthest from the
waterbody shoreline (i.e., its visual distance to water-
body center). For these calculations, we used the
polylabelr R package (Larsson 2019), which interfaces
with the Mapbox pole, an algorithm to find the polygon
pole of inaccessibility (Agafonkin 2019). We calculated
(maximum) in-lake slope as depth at the deepest point
divided by the shortest distance to the deepest point
from the shoreline. We calculated (mean) nearshore
land slope for each waterbody by computing the slope
within a 100 m buffer using data from a high-resolution
digital elevation model (~15 m x 15 m grain) accessed
using the elevatr R package (Hollister and Shah 2017).
We explored alternative buffer sizes ranging between
50 and 1000 m following Sobek et al. (2011), and

although 100 m provided the lowest model error, we
ultimately found little appreciable effect of varying
buffer sizes on model performance. Slope computations
proceeded by passing a 3 x 3 moving window over the
100 m buffer to calculate the slope at each point using
Horn’s algorithm via the terrain function in the raster
R package (Hijmans 2019). Reported nearshore land
slope values are the mean of all points in the buffer. In
addition to the aforementioned techniques of calculat-
ing in-lake (and nearshore) slopes and distances, we
tried 7 alternate techniques (described in
Supplemental Fig. S2 and Supplemental Table S1),
including measures such as median slope (results not
shown).

We categorized waterbodies based on their cross-
section shape and reservoir class (e.g., natural lake,
reservoir). For cross-section shape, we categorized
waterbodies as either convex or concave following the
method of Hakanson (1977) by computing normalized
waterbody depth-area relationships (i.e., hypsographic
curves) and assigning class membership based on
whether the midpoint of a waterbody’s curve falls
above or below that of a simple straight-sided cone
(Supplemental Fig. S3).

We further categorized waterbodies using the out-
put of a deep convolutional neural network model
trained on satellite images labeled according to visual
evidence of a water control structure significantly
impacting flow (Polus et al. 2021). This model had an
overall validation accuracy of 81% and produced a
probability for each waterbody as to whether it is a res-
ervoir or a natural lake. For our purposes, we set a con-
servative classification probability threshold of 0.75 to
determine whether a waterbody would be considered a
reservoir. For example, if the Polus et al. (2021) dataset
classified a particular waterbody as a reservoir with a
probability of 0.74, we categorized it as a natural
lake, but if the probability was >0.75, we categorized
it as a reservoir. Note that our reservoir classification
defines reservoirs as any permanent waterbody with a
water control structure likely to significantly impact
flow or pool water. It makes no distinction between
different dam types, heights, or uses/purposes because
the Polus et al. (2021) dataset is based only on visual
interpretation of waterbody images (via deep convolu-
tional neural network models). However, the Polus
et al. (2021) dataset is unique in that it provides data
using a standardized approach at broad spatial extents
for waterbodies >4 ha.

Covariates used in random forest modeling (Table 1,
equation 3; detailed later) for waterbody elevation, area,
island area, perimeter, shoreline development,
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watershed to waterbody area ratio, and hydrologic sub-
basin (i.e., HUC4s) were obtained from the LAGOS-US
LOCUS database. One such measure, that of shoreline
development, is a measure of waterbody perimeter
shape defined as:

perimeter

2 x +/1r x water area x 10000

shorelinegeve =

@

where sinuous waterbodies have larger values of shore-
line development and circular waterbodies have smaller
values of shoreline development. Watershed to water-
body area ratio is an approximation of water residence
time and is defined as watershed area divided by water-
body area (Timms 2009).

Proxy evaluation

We conducted a qualitative assessment of whether
proxy measures of waterbody geometry (e.g., nearshore
land slope, distance to the center of the waterbody) are
representative of their true values (e.g., in-lake slope,
distance to the deepest point of the waterbody) by visual
inspection (i.e., plotting each proxy measure against its
corresponding true value) and by computing coeffi-
cients of determination (R*). We further tested proxy
measures by examining their effect on waterbody
depth prediction error. Qur approach involved several
steps. First, we computed a geometric estimate of water-
body depth wusing only geometry information
(depthgeometric; €quation 1). Second, we fit a random

Table 2. Model fit and predictive accuracy metrics (RMSE = root
mean square error, R> = coefficient of determination, MAPE =
mean absolute percent error) for all combinations of true (in-
lake slope, distance to the deepest point of the waterbody)
and proxy (nearshore land slope, distance to waterbody
center) metrics.

Filter Slope Distance RMSE R? MAPE
All True True

True Proxy 48m 0.73 27%

Proxy True 73m 0.31 64%

Proxy Proxy 70m 036 61%
Reservoir True True

True Proxy 53m 0.66 36%

Proxy True 7.0m 040 61%

Proxy Proxy 7.0m 041 60%
Natural lake True True

True Proxy 41m 0.74 22%

Proxy True 6.7 m 0.26 68%

Proxy Proxy 6.6 m 029 64%
Convex True True

True Proxy 47m 0.74 30%

Proxy True 7.2m 034 59%

Proxy Proxy 6.9 m 039 58%
Concave True True

True Proxy 1.6m 0.78 20%

Proxy True 31m 0.14 46%

Proxy Proxy 3.0m 0.17 45%
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forest model to predict observed (i.e., true) depth as a
function of geometric depth along with several covari-
ates available for all waterbodies (Table 1). The purpose
of this random forest “offset” modeling was to more rig-
orously test our expectations regarding prediction error
among different formulations of depthgeometric and
among different waterbody types. Each of these steps
was executed iteratively for each combination of true
and proxy values of slope and distance (Table 2). We
conducted additional sensitivity analysis to examine
possible interactions between different proxy measures
of waterbody geometry and different subsets of the
entire dataset where model data were restricted (i.e.,
filtered) to include only reservoirs, only natural lakes,
only convex waterbodies, or only concave waterbodies
(Table 2).

Model description

Geometric model

We used a geometric model of waterbodies in which
basins are treated as cones with a fixed relationship
between slope and distance (equation 1), in part
because, unlike other idealized shapes, the cone model
does not require knowledge of waterbody volume or
mean depth. Note that equation 1 is a geometric for-
mula and has no intercept or coefficients, and it pro-
duces an exact depth value given true values of slope
and distance. To use this model to predict the depth
of all waterbodies, an assumption was made that
proxy slope and distance measures, which are available
for all waterbodies, are representative of true slope and
distance (Fig. 1).

Random forest models

Prior studies using geometric models to predict water-
body depth included a statistical or machine learning
model “layer” or “offset” to boost predictive accuracy
(Hollister et al. 2011, Yigzaw et al. 2018), which involves
fitting a statistical or machine learning model to the
residuals of an initial geometric model. For our pur-
poses, such offset modeling enabled us to test our expec-
tations that prediction error would be different among
different formulations of depthgemewic and among
different waterbody types. It also facilitated direct com-
parison against prior models of waterbody depth,
including those that are non-geometric. We generated
an offset to geometric depth (sensu Hollister et al.
2011) using the random forest algorithm and the ranger
R package (Wright and Ziegler 2017) to predict
observed maximum depth as a function of covariates
including geometric maximum depth (from equation
1) along with the waterbody elevation, area, perimeter,
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and ratio/index measures (Table 2):

depthopserved ~ depthgeometric + covariates.  (3)

We evaluated the relative importance of individual
covariates by comparing performance between (1)
models in which a given covariate was left untouched
versus (2) models in which a given covariate was per-
muted randomly (Prasad et al. 2006, Wright and Zie-
gler 2017). Neither cross-section shape nor reservoir
class was used as a covariate in any random forest
models. Random forest training and test data were
stratified on shape and reservoir class to match
those of the overall waterbody population. We used
the random forest algorithm because it makes no
assumptions about the distribution of model residuals,
allows non-linearity, and is insensitive to interactions
(i.e, multicollinearity) among covariates (Prasad
et al. 2006).

Model comparisons

We tested model sensitivity to slope and distance
proxies by generating multiple “geometric maximum
depth” estimates from 3 different model runs using
each of the possible metric combinations for equation
1 (true slope-proxy distance; proxy slope-true dis-
tance; proxy slope-proxy distance). Before entering
into equation 1, we standardized proxy distances to
have the same numeric range as their true counter-
part to prevent waterbodies with extremely long
proxy distances from having an outsized impact on
model evaluation metrics. In addition to comparing
among model runs using different metric combina-
tions, we compared among sets of model runs in
which slope and distance measures were calculated

using different sets of calculation techniques
(Supplemental Table S1).
a 3000 5 ‘b
-
] . 4
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Figure 3. Comparison among proxy and true values of water-
body geometry for (a) distance to deepest point vs. distance
to waterbody center and (b) nearshore land slope vs. in-lake
slope. A best-fit line and coefficient of determination are
shown to illustrate representativeness.

Model evaluations

We evaluated model fit and prediction error using root
mean square error (RMSE), mean absolute percent error
(MAPE), and coefficient of determination (R*) metrics
on a holdout set (i.e., a data subset not used for model
training) containing 25% of all waterbodies. We evalu-
ated the residuals of each model relative to waterbody
cross-section shape and reservoir classes to determine
whether depth is consistently over or under predicted
for some waterbody types relative to others.

Results

Waterbodies belonging to each cross-section shape and
reservoir class were not evenly distributed across our
study area (Fig. 2). For example, concave waterbodies
were nearly absent from Michigan, whereas Maine
had more waterbodies categorized as neither concave
nor convex (~3%) than other states. Waterbodies in
the southern portions of our study area tended to be
classified as reservoirs, whereas waterbodies in the
northern portions of our study area were a more even
mix between reservoirs and natural lakes (Fig. 2).
Approximately 18%, 80%, and 2% of waterbodies were
classified as having a concave, convex, or neither
shape, respectively, whereas ~30% and 70% of water-
bodies were classified as a reservoir or a natural lake,
respectively.

Although proxy distance to waterbody center was
often larger in magnitude than the true distance to the
deepest point of waterbodies (rather than being identi-
cal), they were strongly related (R*=0.8). Note that
the coefficient of determination for this relationship is
not strictly correct given that distance to waterbody cen-
ter is an upper bound on distance to the deepest point of
a waterbody. In contrast to distance metrics, proxy near-
shore land slope and true in-lake slope were more
weakly related (R*=0.17). For slope measures, most
waterbodies had higher magnitude (i.e., steeper) near-
shore land slope compared to true in-lake slope (Fig.
3). Taken together, these results suggest that proxy dis-
tance to the center of waterbodies is representative of
true distance to the deepest point of waterbodies,
whereas proxy nearshore land slope is not representa-
tive of true in-lake slope. The strong relationship
between distance to the center of waterbodies and dis-
tance to the deepest point means that converting
between the 2 measures in subsequent analyses is possi-
ble (best-fit equations in Fig. 3).

In addition to overall differences between slope and
distance measures, we found differences in these rela-
tionships among waterbody shape classes. For example,
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in-lake slope and distance to the deepest point of the
waterbody metrics were consistently larger in magnitude
for convex waterbodies than concave waterbodies
(Supplemental Fig. S4). We found evidence that this
difference was at least partly explained by the fact that con-
vex waterbodies are deeper than concave waterbodies
(Supplemental Fig. S5). Unlike concave and convex water-
bodies, no clear differences were found among slope and
distance metrics for natural lakes versus reservoirs.

Offset model fit and prediction error differed
depending on the technique used to calculate in-lake
and nearshore geometry metrics (Supplemental Table
S1). We found that the best model fit and lowest
model error occurred when in-lake slope was calculated
as the average point-wise slope of all points at maximum
waterbody depth rather than at a single point of maxi-
mum depth. However, given the small difference in
the fit of models using either of these techniques and
the significant cost in terms of computational load
and complexity, we limit our discussion hereafter to
the simpler case involving only a single deepest point.

The use of proxy nearshore land slope had a larger
effect on model fit and prediction error than the use
of proxy distance to waterbody center (Table 2). More
specifically, the true slope (in-lake slope)-proxy dis-
tance (distance to the center of the waterbody) model
had a better fit (R*=0.73) and lower prediction error
(RMSE = 4.8 m, MAPE =27%) compared to the proxy
slope-true distance model (R*=0.31, RMSE=7.3m,
MAPE = 64%). The fit of the proxy slope-proxy distance
model (R*=0.36, RMSE=7.1 m, MAPE =61%) was
similar to the proxy slope-true distance model. Pre-
dicted depth values for this model were generally under-
estimates relative to measured depth values
(Supplemental Fig. S6).

Furthermore, analysis of model residuals showed
overestimation of waterbody depth for concave water-
bodies when models included a proxy slope measure
(Fig. 4). We observed similar but smaller overestimation
depending on whether a waterbody was classified as a
reservoir rather than a natural lake (Fig. 4). We found
that models restricted to consider only concave lakes
had lower error (both in absolute and relative terms)
than models on other data subsets (e.g., convex lakes,
reservoirs, natural lakes; Table 2). Conversely, we
observed no notable geographic patterns in model resid-
uals (Supplemental Fig. S7).

The most important covariates in these models were
those relating to spatial location, waterbody area, and
perimeter (Fig. 5). Conversely, watershed metrics and
waterbody elevation made little contribution to random
forest model fit. The spatial location (i.e., HUC4, hydro-
logic subbasin) covariate was notably less important in
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the true slope model than the 2 proxy slope models.
To evaluate the contribution of our “offset” models rel-
ative to the “base” geometric model, we can look at
model importance calculations for the geometric max
depth input to the random forest model (Fig. 5).
These calculations indicate that omitting a geometric
max depth term results in a 130%, 60%, or 50% increase
in mean square error depending on the formulation of
geometric max depth.

Discussion

Our tests of the geometric cone model of waterbody
depth models show that specific proxy measures of
waterbody geometry are not representative of true geom-
etry measures across a broad array of waterbodies. Mod-
els using nonrepresentative proxies showed increased
error and systematic overestimation of depth in concave
and reservoir waterbodies. Although our analysis was
limited to waterbodies with available bathymetry data,
their characteristics did not differ from those of the over-
all waterbody population (apart from the fact that our
study waterbodies were somewhat larger in area than
the overall waterbody population; Supplemental Figs S8
and S9, Table 1). Although some hidden bias not
explored in our analyses could exist, this lack of differ-
ence suggests that our results are likely broadly applicable
to nearly all waterbodies in the study area.

Representativeness of proxy measures of
waterbody geometry

In comparing waterbody geometry measures, our analy-
sis suggests that proxy distance to waterbody center is
representative of true distance to the deepest point of
the waterbodies, but that proxy nearshore land slope
is not representative of true in-lake slope. A simple
indication of this nonrepresentativeness is that proxy
nearshore land slope was often (>74% of cases) steeper
than true in-lake slope. This finding is consistent with
Heathcote et al. (2015), whose results suggest that in-
lake slopes are shallower than the surrounding land.
Furthermore, the fact that in-lake slopes were shallower
than the surrounding land even after controlling for
differences in area (Supplemental Fig. S10) is consistent
with the idea of topographic scaling (i.e., scale invari-
ance) explored in previous work and detailed by
Cael et al. (2017). The underlying reason for these shal-
low in-lake slopes may be related to slope-induced tur-
bidity currents, which distribute sediment from shallow
high-energy areas of waterbodies to deep low-energy
areas (Hékanson 1981, Johansson et al. 2007). The
strength of such sediment focusing is likely greater in
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Figure 4. Depth model residuals (residual = observed - predicted) in meters by (a) cross-section shape and (b) reservoir class, indi-
cating overprediction of concave and reservoir waterbodies. Dashed line is 1:1 relationship.

‘younger’ waterbodies with steeper slopes, leading to a
smoothing of their bathymetry over time (Blais and
Kalff 1995).

One surprising finding with respect to the relation-
ship between true and proxy geometry measures when
examined by waterbody class was the lack of a greater
difference between proxy and true distances in reser-
voirs than for natural lakes. This finding is contrary to
the idea that most reservoirs are drowned river valleys
where the deepest point is close to the edge at the end
of the reservoir (i.e., next to the dam) rather than in
the center of the reservoir (Lanza and Silvey 1985).
One possible explanation is that our reservoir classifica-
tion data used a more general definition of a reservoir
(i.e., any permanent waterbody that has a water control

Geometric max depth (m) - .e
HUC4 ID A -]
Area (ha)q - = slope—distance
measure
Perimeter (m)q - =
true_proxy
Shoreline development4 - =@ ®  proxy_true

Island area (ha)+ -= ®  proxy_proxy

Watershed-lake ratio 4 =

Elevation (m) 4 ==

50 100
Percent increase in mean square error

Figure 5. Importance plot for random forest variables showing
increase in mean square error. Higher values indicate greater
importance to model predictions. See equation 1 for a definition
of geometric max depth. HUC4 ID is a “dummy” variable of geo-
graphic (hydrologic subbasin) location. The key indicates differ-
ent combinations of true (in-lake slope, distance to the deepest
point of the waterbody) and proxy (nearshore land slope, dis-
tance to waterbody center) metrics.

structure likely to significantly impact flow or pool
water) than that of conventional classifications tied to
specific dam types or dam heights. Another possible
explanation is that conventional reservoir classifications
are conceptually biased toward more southern areas
with few natural lakes (Fig. 2). Southern Iowa, for
instance, is typically considered to have few to no natu-
ral lakes. In the present study, all of the apparent natural
lakes in southern Iowa were in fact oxbow lakes adjacent
to the Missouri River.

We found other differences among waterbody geom-
etry measures according to waterbody cross-section
shape. One finding was that convex waterbodies had
longer distances than concave waterbodies to waterbody
centers relative to corresponding distances to the deep-
est point. In addition, convex waterbodies often had
steeper in-lake slopes relative to nearshore land slopes
than concave waterbodies. Finally, and notably, convex
waterbodies were deeper than concave waterbodies
despite having similar distributions of waterbody sur-
face area (Supplemental Fig. S5). The underlying cause
of these differences is unknown, but one possibility is
that geometry is tied to the circumstances of waterbody
formation whereby the formation of concave water-
bodies was a result of more intense glacial scouring
compared to the formation of convex waterbodies
(Gorham 1958). While our findings provide some evi-
dence to support this idea, namely that a geographic
hotspot of concave waterbodies is associated with the
glaciated prairie pothole region (Hayashi and van der
Kamp 2000), it is not supported by the overall geo-
graphic distribution of waterbody cross-section shapes.
Instead of a concentrated area of concave waterbodies in
formerly glaciated regions, a fairly even mix of concave
and convex waterbodies is distributed among the north-
ern (ie., glaciated) and southern (non-glaciated) por-
tions of our study area (Fig. 2).
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Effects of proxy measures of waterbody
geometry depth prediction error

Models using only proxy variables (Table 2) had predic-
tion errors (RMSE =7.1 m) of a similar magnitude to
those in prior studies (RMSE=6-7.3m) predicting
waterbody depth at broad geographic extents (Hollister
et al. 2011, Messager et al. 2016, Oliver et al. 2016).
When only a single proxy measure was used, model sen-
sitivity differed depending on whether it was a horizon-
tal distance measure or a vertical slope measure. In the
case of a true slope and proxy distance combination,
models were more accurate (+4.8 m, 27%) than even
the most accurate of prior studies (Hollister et al.
2011, Messager et al. 2016, Oliver et al. 2016). Con-
versely, models using a proxy slope and true distance
combination had prediction error rates (+7.3 m, 64%)
of a similar magnitude as that of the baseline proxy-
proxy model (+7.1 m, 61%). The greater sensitivity of
depth predictions to proxy slope measures relative to
proxy distance measures may be explained by the fact
that proxy slope measures were a more imperfect repre-
sentation of true in-lake slopes relative to proxy versus
true distances. We found no evidence that the sensitivity
of depth predictions to slope was dependent on varia-
tions in how these measures were calculated
(Supplemental Table S1). In a general sense, the sensi-
tivity of depth predictions to slope help explain the rel-
atively poor predictive performance of prior
nongeometric waterbody depth models given that they
rely heavily on waterbody area as a predictor (Sobek
et al. 2011, Messager et al. 2016, Oliver et al. 2016),
and both horizontal distance measures and vertical
slope measures seem to be decoupled from waterbody
area (Supplemental Fig. S5).

Effects of waterbody shape and waterbody type
on depth prediction error

As expected, we found that the maximum depth of con-
cave waterbodies was systematically overpredicted by a
simple geometric model using proxy nearshore land
slope (Supplemental Fig. S1). However, contrary to
our expectation, we did not observe underprediction
of depth in convex waterbodies, likely because geo-
metric depth itself was always greater than observed
maximum depth because proxy distance is constrained
to be greater than true distance. Models restricted to
only concave waterbodies had low error (both in abso-
lute and relative terms, irrespective of any particular
slope metric), suggesting that despite evidence of over-
prediction, the cone model is an adequate representa-
tion of depth for these waterbodies. However, because
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only 18% of lakes in our study population are concave,
minimizing overall depth prediction errors remains a

challenge.

Future research

The only model parameterization that was more accu-
rate than the most accurate of prior studies (which fit
models to waterbody depth) requires data on in-lake
slope (true slope, proxy distance), which are not avail-
able for all waterbodies, so using this method for general
prediction is not practical. However, we propose that
the error rate of this model (+4.8 m, 27%) be used as
an out-of-sample prediction benchmark for future stud-
ies that should attempt to match but not expect to
exceed it.

Because this most accurate model requires bathyme-
try data, producing depth predictions for all waterbodies
with error rates below ~5 m or 30% may not be possible
with current data and models. To achieve high predic-
tion accuracy using data available for all waterbodies,
future studies could explore alternative modeling
approaches such as ordinal modeling, which would cap-
ture whether a waterbody crosses some important depth
threshold that has ecological relevance but would not
seek to predict a specific depth value. Another emerging
approach is to use data such as topobathymetric prod-
ucts that integrate both topographic and bathymetric
data in a seamless fashion rather than treating them as
separate entities. Although topobathymetry would
allow more robust tests of the representativeness of geo-
metric model inputs, topobathymetric products are rare
and have mostly been limited to nearshore marine envi-
ronments, and as such are not yet widely available for
inland waters (Danielson et al. 2016). Other potential
explanatory data include information on waterbody ori-
gin such as glaciation status. Unfortunately, such water-
body ontogeny data are currently available only for
select regions and limited to the largest waterbodies
(Sharma and Byrne 2011).

Finally, our findings indicate that geometry measures
differ according to waterbody cross-section shape, mak-
ing them an attractive target for inclusion in depth pre-
diction models. Unfortunately, identifying the cross-
section shape of a waterbody requires bathymetry
data, which are unavailable for most waterbodies. How-
ever, given the conceptual links between cross-section
shape, glaciation, and sedimentation (Johansson et al.
2007), it may be advantageous for future studies to com-
pile data on sedimentation to determine if these data
can be used to predict cross-section shape and boost
depth prediction accuracy. We note that such data do
not currently exist for large numbers of waterbodies.
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Conclusion

To our knowledge, the present study is the largest and
most comprehensive test to date of the geometric cone
model of waterbody depth. Using bathymetry data on
~5000 waterbodies, we showed that proxy slope measures
are a poor representative of true in-lake slope, leading to
overestimates of depth in concave and reservoir water-
bodies. Despite these apparent biases, overall prediction
accuracy was equivalent to that of prior depth prediction
studies (+6-7 m). In addition, although depth estimates
may be biased for concave waterbodies, models restricted
to only consider these waterbodies had fewer errors than
other data subsets (both in absolute and relative terms),
suggesting that the cone model is an adequate representa-
tion of depth for concave waterbodies.

Only our models using a true measure of in-lake
slope had greater accuracy than those of prior studies
(4.8 m, 27%). Given that these in-lake slope models
require data only available for waterbodies with bathy-
metry data, their use for general depth prediction is lim-
ited but can provide a best-case benchmark for future
studies that use commonly available data. Lack of
improvements in prediction accuracy (short of includ-
ing data unavailable for most waterbodies) suggest
that improved prediction may require new types of
data or novel analysis techniques.

Data availability
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