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ABSTRACT. We consider two manifestations of non-positive curvature: acylin-
drical actions (on hyperbolic spaces) and quasigeodesic stability. We study
these properties for the class of hierarchically hyperbolic groups, which is a
general framework for simultaneously studying many important families of
groups, including mapping class groups, right-angled Coxeter groups, most
3-manifold groups, right-angled Artin groups, and many others.

A group that admits an acylindrical action on a hyperbolic space may
admit many such actions on different hyperbolic spaces. It is natural to try
to develop an understanding of all such actions and to search for a “best”
one. The set of all cobounded acylindrical actions on hyperbolic spaces admits
a natural poset structure, and in this paper we prove that all hierarchically
hyperbolic groups admit a unique action which is the largest in this poset.
The action we construct is also universal in the sense that every element which
acts loxodromically in some acylindrical action on a hyperbolic space does so
in this one. Special cases of this result are themselves new and interesting.
For instance, this is the first proof that right-angled Coxeter groups admit
universal acylindrical actions.

The notion of quasigeodesic stability of subgroups provides a natural ana-
logue of quasiconvexity which can be considered outside the context of hy-
perbolic groups. In this paper, we provide a complete classification of stable
subgroups of hierarchically hyperbolic groups, generalizing and extending re-
sults that are known in the context of mapping class groups and right-angled
Artin groups. Along the way, we provide a characterization of contracting
quasigeodesics; interestingly, in this generality the proof is much simpler than
in the special cases where it was already known.

In the appendix, it is verified that any space satisfying the a priori weaker
property of being an “almost hierarchically hyperbolic space” is actually a hier-
archically hyperbolic space. The results of the appendix are used to streamline
the proofs in the main text.
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1. INTRODUCTION

Hierarchically hyperbolic groups were recently introduced by Behrstock, Hagen,
and Sisto [BHS17b] to provide a uniform framework in which to study many im-
portant families of groups, including mapping class groups of finite type surfaces,
right-angled Coxeter groups, most 3—manifold groups, right-angled Artin groups
and many others. A hierarchically hyperbolic space (HHS) consists of: a quasi-
geodesic space, X; a set of domains, G, which index a collection of d—hyperbolic
spaces to which X projects; and, some additional information about these projec-
tions, including, for instance, a partial order on the domains and a unique largest
element in that order, which we denote by S (i.e., S is comparable to and larger
than every other domain in ).

Largest acylindrical actions. The study of acylindrical actions on hyperbolic
spaces, as initiated in its current form by Osin [Osil6] building on earlier work of
Sela [Sel97] and Bowditch [Bow08], has proven to be a powerful tool for studying
groups with some aspects of non-positive curvature. As established in [BHS17b],
non-virtually cyclic hierarchically hyperbolic groups admit non-elementary acylin-
drical actions when the d—hyperbolic space associated to the maximal element in
G has infinite diameter, a property which holds in all the above examples except
for those that are direct products.

Any given group with an acylindrical action may actually admit many acylin-
drical actions on many different spaces. A natural question is to try and find a
“best” acylindrical action. There are different ways that one might try to optimize
the acylindrical action. For instance, the notion of a universal acylindrical action,
for a given group G, is an acylindrical action on a hyperbolic space X such that
every element of G which acts loxodromically in some acylindrical action on some
hyperbolic space, must act loxodromically in its action on X. As established by
Abbott, there exist finitely generated groups which admit acylindrical actions, but
no universal acylindrical action [Abb16]; we also note that universal actions need
not be unique [ABO19].

In [ABO19], Abbott, Balasubramanya, and Osin introduce a partial order on
cobounded acylindrical actions which, in a certain sense, encodes how much in-
formation the action provides about the group. When there exists an element in
this partial ordering which is comparable to and larger than all other elements it is
called a largest action. By construction, any largest action is necessarily a universal
acylindrical action and unique.
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In this paper we construct a largest action for every hierarchically hyperbolic
group. Special cases of this theorem recover some recent results of [ABO19], as
well as a number of new cases. For instance, in the case of right-angled Coxeter
groups (and more generally for special cubulated groups), even the existence of a
universal acylindrical action was unknown. Further, outside of the relatively hyper-
bolic setting, our result provides a single construction that simultaneously covers
these new cases as well as all previously known largest and universal acylindrical
actions of finitely presented groups. The following summarizes the main results of
Section 5 (where there are also further details on the background and comparison
with known results).

Theorem A (HHG have actions that are largest and universal). Every hierar-
chically hyperbolic group admits a largest acylindrical action. In particular, the
following admit acylindrical actions which are largest and universal:

(1) Hyperbolic groups.

(2) Mapping class groups of orientable surfaces of finite type.

(3) Fundamental groups of compact three-manifolds with no Nil or Sol compo-
nent in their prime decomposition.

(4) Groups that act properly and cocompactly on a special CAT(0) cube complez,
and more generally any cubical group which admits a factor system. This
includes right-angled Artin groups, right-angled Cozeter groups, and many
other examples as in [HS16].

We use this construction of a largest action to characterize stable subgroups
(Theorem B) and contracting elements (Corollary 5.5) of hierarchically hyperbolic
groups, and to describe random subgroups of hierarchically hyperbolic groups (The-
orem E).

Stability in hierarchically hyperbolic groups. One of the key features of a
Gromov hyperbolic space is that every geodesic is uniformly Morse, a property also
known as (quasigeodesic) stability; that is, any uniform quasigeodesic beginning
and ending on a geodesic must lie uniformly close to it. In fact, any geodesic metric
space in which each geodesic is uniformly Morse is hyperbolic.

In the context of geodesic metric spaces, the presence of Morse geodesics has
important structural consequences for the space; for instance, any asymptotic cone
of such a space has global cut points [DMS10]. Moreover, quasigeodesic stability
in groups is quite prevalent, since any finitely generated acylindrically hyperbolic
group contains Morse geodesics [Osil6, Sis16].

There has been much interest in developing alternative characterizations [DMS10,
CS15,ACGH17,ADT17] and understanding this phenomenon in various important
contexts [Min96, Beh06, DMS10,DT15, ADT17]. This includes the theory of Morse
boundaries, which encode all Morse geodesics of a group [CS15,Corl7,CH17,CD19,
CM19]. In [DT15], Durham and Taylor generalized the notion of stability to sub-
spaces and subgroups.

In this paper, we obtain a complete characterization of stability in hierarchically
hyperbolic groups.

Let (X,6) be an HHS. We say that a subset Y ¢ X has D-bounded projections
when diamey (7 (Y)) < D for all non-maximal U € &; when the constant does not
matter, we simply say the subset has uniformly bounded projections.
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Theorem B (Equivalent conditions for subgroup stability). Any hierarchically
hyperbolic group G admits a hierarchically hyperbolic group structure (G, &) such
that for any finitely generated H < G, the following are equivalent:

(1) H is stable in G;

(2) H is undistorted in G and has uniformly bounded projections;

(3) Any orbit map H — CS is a quasi-isometric embedding, where S is the
E-mazimal element in S.

Theorem B generalizes some previously known results. In the case of mapping
class groups: [Beh06] proved that (2) implies (1) for cyclic subgroups; [DT15] proved
equivalence of (1) and (3); equivalence of (2) and (3) follows from the distance
formula; moreover, [KL08, Ham] yield that these conditions are also equivalent to
convex cocompactness in the sense of [FM02]. The case of right-angled Artin groups
was studied in [KMT17], where they prove equivalence of (1) and (3).

Section 6 contains a more general version of Theorem B, as well as further
applications, including Theorem 6.6, which concerns the Morse boundary of hier-
archically hyperbolic groups and proves that all hierarchically hyperbolic groups
have finite stable asymptotic dimension.

On purely loxodromic subgroups. In the mapping class group setting [BBKL20]
proved that the conditions in Theorem B are also equivalent to being undistorted
and purely pseudo-Anosov. Similarly, in the right-angled Artin group setting, it was
proven in [KMT17] that (1) and (3) are each equivalent to being purely loxodromic.

Subgroups of right-angled Coxeter groups all of whose elements act loxodromi-
cally on the contact graph were studied in the recent preprint [Tra, Theorem 1.4],
which proved that property is equivalent to (3). Since there often exist Morse el-
ements in a right-angled Coxeter group which do not act loxodromically on the
contact graph (which plays the role of CS in the standard HHG structure on the
group), his condition is not equivalent to (1). It is the ability to change the hier-
archically hyperbolic structure as we do in Theorem 3.7, discussed below, which
allows us to prove our more general result which characterizes all stable subgroups,
not just the ones acting loxodromically on the contact graph.

Mapping class groups and right-angled Artin groups have the property that in
their standard hierarchically hyperbolic structure they admit a universal acylindri-
cal action on CS, where CS is the hyperbolic space associated to the E-maximal
domain S. On the other hand, right-angled Coxeter groups often don’t admit
universal acylindrical actions on CS in their standard structure. Accordingly, we
believe the following questions are interesting. The first item would generalize the
situation in the mapping class group as established in [BBKL20], and the second
item for right-angled Artin groups would generalize results proven in [KMT17], and
for right-angled Coxeter groups would generalize results in [Tra]. If the second item
is true for the mapping class group, this would resolve a question of Farb—Mosher
[FMO02]. See also [ADT17, Question 1].

Question C. Let (G, &) be a hierarchically hyperbolic group which admits a uni-
versal acylindrical action on CS, where S is the E—maximal element in &. Let H
be a finitely generated subgroup of G.

e Are the conditions in Theorem B also equivalent to: H is undistorted and
acts purely loxodromically on CS?
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e Under what hypotheses on (G, &), are the conditions in Theorem B also
equivalent to: H acts purely loxodromically on C.S?

Note that in the context of Question C, an element acts loxodromically on CS
if and only if it has positive translation length. This holds since the action is
acylindrical and thus each element either acts elliptically or loxodromically.

In an early version of this paper, we asked if the second part of Question C held
for all hierarchically hyperbolic groups. In the general hierarchically hyperbolic
setting, however, the undistorted hypothesis is necessary, as pointed out to us by
Anthony Genevois with the following example. The necessity is shown by Brady’s
example of a torsion-free hyperbolic group with a finitely presented subgroup which
is not hyperbolic [Bra99]. This subgroup is torsion-free and thus purely loxodromic.
But, a subgroup of a hyperbolic group is stable if and only if it is quasiconvex.
Thus, since this subgroup is not quasiconvex, we see that being purely loxodromic
is strictly weaker than the conditions of Theorem B.

New hierarchically hyperbolic structures. In order to establish the above
results, we provide some new structural theorems about hierarchically hyperbolic
spaces.

One of the key technical innovations in this paper is provided in Section 3. There
we prove Theorem 3.7 which allows us to modify a given hierarchically hyperbolic
structure (X, &) by removing CU for some U € & and, in their place, enlarging the
space CS. For instance, this is how we construct the space on which a hierarchically
hyperbolic group has its largest acylindrical action.

Another important tool is Theorem 4.4 which provides a simple characterization
of contracting geodesics in a hierarchically hyperbolic space.

The following is a restatement of that result in the case of groups (see Theorem
4.4 for the precise statement):

Theorem D (Characterization of contracting quasigeodesics). Let G be a hierar-
chically hyperbolic group. For any K > 1 there exist uniform constants depending
only on K and G such that the following holds for every (K, K)-quasigeodesic
v < X: the quasigeodesic v is uniformly contracting if and only if v has uniformly
bounded projections (in any structure with unbounded products, e.g., in one as pro-
vided by Corollary 3.8).

Since the presence of a contracting geodesic implies the group has at least qua-
dratic divergence, an immediate consequence of Theorem D is that any hierarchi-
cally hyperbolic group has quadratic divergence whenever X’ projects to an infinite
diameter subset of CS.

As a sample application of Theorem D and using work of Taylor—Tiozzo [TT16],
we prove the following in Section 6.4 as Theorem 6.8.

Theorem E (Random subgroups are stable). Let (X, &) be an HHS for which
CS has infinite diameter, where S is the E—mazimal element, and consider G <
Aut(X, &) which acts properly and cocompactly on X. Then any k-generated ran-
dom subgroup of G stably embeds in X via the orbit map.

We note that one immediate consequence of this result is a new proof of a theorem
of Maher—Sisto: any random subgroup of a hierarchically hyperbolic group which
is not the direct product of two infinite groups is stable [MS19]. The mapping class
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group and right-angled Artin group cases of this result were first established in
[TT16].

Finally, at the end of the paper we discuss a technical condition on hierarchically
hyperbolic structures, called having clean containers. While in Proposition 7.2
this hypothesis is shown to hold for many groups, it does not hold in all cases.
This condition was used in earlier versions of this paper in which it was assumed
for the proof of Theorem 3.7, and then the general result was bootstrapped from
there. In light of Theorem A.1 in the Appendix, this property is no longer required
for this paper. We keep the contents of this section in the paper nonetheless,
since they have found independent interest and already been used elsewhere, e.g.,
[BR,HS16, Rus20], as well as in several papers in progress.

2. BACKGROUND

We begin by recalling some preliminary notions about metric spaces, maps be-
tween them, and group actions. Given metric spaces X, Y, we use dx, dy to denote
the distance functions in X,Y, respectively. A map f: X — Y is K-Lipschitz
if there exists a constant K > 1 such that for every z,y € X, dy (f(z), f(y)) <
Kdx(z,y); it is (K, C)—coarsely Lipschitz if dy (f(z), f(y)) < Kdx(z,y) + C The
map f is a (K, C)—quasi-isometric embedding if there exist constants K > 1 and
C = 0 such that for all z,y € X,

dx(@,y) = O < dy (f(2), f(9)) < Kdx(2,9) + C.

If, in addition, Y is contained in the C—neighborhood of f(X), then f is a (K,C)-
quasi-isometry. For any interval I < R, the image of an isometric embedding
I — X is a geodesic and the image of a (K, C')—quasi-isometric embedding I — X
is a (K, C)—quasigeodesic.

If any two points in X can be connected by a (K, C)-quasigeodesic, then we
say X is a (K, C)—quasigeodesic space. If K = C, we may simply say that X is
a K —quasigeodesic space. A subspace Z < X is K—quasi-convex if there exists a
constant K > 0 such that any geodesic in X connecting points in Z is contained in
the K—neighborhood of Z. For all of the above notions, if the particular constants
K, C are not important, we may drop them and simply say, for example, that a
map is a quasi-isometry.

Throughout this paper, we will assume that all group actions are by isometries.
The action of a group G on a metric space X, which we denote by G —~ X, is proper
if for every bounded subset B € X, the set {g € G | gB n B # (J} is finite. The
action is cobounded (respectively, cocompact) if there exists a bounded (respectively,
compact) subset B € X such that X = UgeG gB. If a group G acts on metric spaces
X and Y, we say a map f: X — Y is G-equivariant if for every x € X and every
g € G we have f(gx) = gf(x). A quasi-action of G on X associates to each g € G a
quasi-isometry A,: z — gx of X with uniform quasi-isometry constants, such that
Ag 0 Ay is within uniformly bounded distance of Agp,.

2.1. Hierarchically hyperbolic spaces. In this section we recall the basic defi-
nitions and properties of hierarchically hyperbolic spaces as introduced in [BHS17b,
BHS19].

Definition 2.1 (Hierarchically hyperbolic space). A g—quasigeodesic space (X, dy)
is said to be hierarchically hyperbolic if there exists § = 0, an index set &, and a set
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{CW | W € &} of 0-hyperbolic spaces (CU,dy), such that the following conditions
are satisfied:

(1)

2)

(4)

(5)

(6)

(7)
®)

(Projections.) There is a set {my: X — 2°W | W € &} of projections
sending points in X to sets of diameter bounded by some £ > 0 in the
various CW € &. Moreover, there exists K so that each my is (K, K)-
coarsely Lipschitz and my (X) is K—quasiconvex in CW.

(Nesting.) & is equipped with a partial order =, and either & = &
or G contains a unique E-maximal element which is larger than all other
elements; when V= W, we say V is nested in W. For each W € &,
we denote by Gy, the set of V € & such that V = W. Moreover, for
all V,{W € & with V & W there is a specified subset pY;, = CW with
diamew (ply)) < €. There is also a projection plY : CW — 26V,
(Orthogonality.) & has a symmetric and anti-reflexive relation called
orthogonality: we write VLW when V, W are orthogonal. Also, whenever
V E W and W LU, we require that V 1LU. Finally, we require that for each
T € G and each U € &p for which {V € &7 | VLU} # ¢, there exists
W e &p — {T'}, so that whenever VLU and V = T, we have V £ W; we
say W is a container associated with T'e G and U € &p. Finally, if VLW,
then V, W are not E—comparable.

(Transversality and consistency.) If VW € & are not orthogonal and
neither is nested in the other, then we say V,W are transverse, denoted
VAW. There exists o > 0 such that if VAW, then there are sets pl, < CW
and p{¥ < CV each of diameter at most ¢ and satisfying:

min {dw (7w (z), pyy.), dv (v (2), oV )} < Ko

for all x € X.
For VW € G satisfying V E W and for all z € X', we have:

min {dW(WW(x),p“,/V),diamcv(wv(:ﬂ) U py(ww(x)))} < Ko.

Finally, if U £ V, then dw (p%, pl) < ko whenever W € & satisfies either
VCWor VAW and WxU.
(Finite complexity.) There exists n > 0, the complerity of X (with
respect to &), so that any set of pairwise-E—comparable elements has car-
dinality at most n.
(Large links.) There exist A > 1 and E > max{{, Ko} such that the follow-
ing holds. Let W € & and let z,2' € X. Let N = M, (7w (x), 7w (2')) +
A. Then there exists {Ti};—1,.. |n) S Gw — {W} such that for all T" €
Sy — {W}, either T € &7, for some 4, or dr(mr(x), 7r(z')) < E. Also,
dw (7w (), pyy) < N for each 1.
(Bounded geodesic image.) For all W e &, all V € Sy — {IW}, and all
geodesics «y of CW, either diamey (p}Y (7)) < E or v n Ng(p}y,) # &.
(Partial realization.) There exists a constant « with the following prop-
erty. Let {V;} be a family of pairwise orthogonal elements of &, and let
p; € my;(X) € CVj. Then there exists € X’ so that:

e dy,(z,pj) < a for all j,

o for each j and each V € & with V; — V, we have dv(x,p“f") < a, and

o if WAV; for some j, then dW(x,p“,/(,') < a.
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(9) (Uniqueness.) For each x > 0, there exists 6, = 6,(x) such that if
z,y € X and d(x,y) = 0,, then there exists V € & such that dy(z,y) > k.

Notation 2.2. Note that below we will often abuse notation by simply writing
(X, 6) or G to refer to the entire package of an hierarchically hyperbolic structure,
including all the associated spaces, projections, and relations given by the above
definition.

Notation 2.3. When writing distances in CU for some U € &, we often simplify
the notation slightly by suppressing the projection map =y, i.e., given xz,y € X
and p € CU we write dy(z,y) for dy(my(z), 7y (y)) and dy(x,p) for dy(my(x),p).
Note that when we measure distance between a pair of sets (typically both of
bounded diameter) we are taking the minimum distance between the two sets. For
distance/diameter, if the space in which the measurement is being made is not clear
from the context, we will denote it by a subscript. Given A ¢ X and U € & we let

my(A) denote |, 4 T (a).

Remark 2.4. In the setting of hierarchically hyperbolic spaces, we often encounter
maps which are well-defined only up to uniformly bounded error, in the following
sense. Given a map f: X — Y between quasi-geodesic spaces X, Y, there may be
multiple possible points in Y that one could define as f(x) for a particular x € X. If
the diameter of such possible points f(z) is uniformly bounded in Y over all x € X,
then we say that the map is coarsely well-defined, since we could arbitrarily make
a choice for each f(z) and the map would be well-defined up to uniformly bounded
error. For example, p¥ gives a coarsely well-defined map CU — CV'.

An important consequence of being a hierarchically hyperbolic space is the fol-
lowing distance formula, which relates distances in X’ to distances in the hyperbolic
spaces CU for U € 6. The notation {z}, means include z in the sum if and only
if x > s.

Theorem 2.5 (Distance formula for HHS; [BHS19]). Let (X, &) be a hierarchically
hyperbolic space. Then there exists sy such that for all s = sg, there exist C, K so
that for all x,y e X,

d(z,y) =k.c Z fdu(z, v},

UeG

We now recall an important construction of subspaces in a hierarchically hyper-
bolic space called standard product regions introduced in [BHS17b, Section 13] and
studied further in [BHS19]. First we define a consistent tuple, which will be used
to define the two factors in the product space.

Definition 2.6 (Consistent tuple). Fix x > 0, and let b € [Tyes 2€Y be a tuple
such that for each U € &, the coordinate by is a subset of CU with diam¢y (by) < k.
The tuple b is k-admissible it dy (by, 7y (X)) < & for all U € &. The k-admissible
tuple b is k—consistent if, whenever VAW,
min {dw(bw, pg/), dv(bv7 ,Oy/v)} <K
and whenever V £ W,
min {dw(bw,p%), diamcv(bv U p‘(/v(bw))} < K.

Definition 2.7 (Nested partial tuple (Fy7)). Recall 5y = {V e 6 |V c U}. Fix
K = ko and let Fyy be the set of k—consistent tuples in HVegU eV,
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Definition 2.8 (Orthogonal partial tuple (Ery) ). Let 64 = {V € & | VLU}u {4},
where A is a T—minimal element W such that V = W for all VLU (note that A
exists by the container axiom for an HHS, i.e., Definition 2.1.(3)). Fix k > ko, let
Ey be the set of k—consistent tuples in HVGG%}f{A} eV,

Definition 2.9 (Product regions in X). Given X and U € &, there is a coarsely
well-defined map ¢y : Fy x Ey — X which restricts to coarsely well-defined maps
o5, 95 Fu,Ey — X. Indeed, for each (a, b) € Fy x Ey, and each V € &, the
projection my (¢y (@, b)) is defined as follows. If V = U, then my (¢ (a@, b)) = ay. If
VLU, then 7y (¢ (@, b)) = by. If VAU, then my (¢y(@, b)) = pY. Finally, if U = V,
and U # V| let my (o (a, E)) = pY. The tuple (my (¢ (d, g)))\/eg €[lves 2¢V s
r—consistent (see [BHS19, Construction 5.10]), and therefore [BHS19, Theorem 3.1]
provides a point & € X such that dyw (7w (z), 7w (duv (@, E))) < 0, for all W € 6.
Moreover, the point x is coarsely unique in the sense that the set of all x which
satisfy dyw (mw (), 7w (¢u(@, b)) < 0. for each W € & has diameter at most 6,
in X. We define ¢y (d, l;) = x; the coarse uniqueness of x shows that this map is
coarsely well-defined. Fixing any e € Ey yields a map ¢5: Fy x {e} — X, and

# is defined analogously. We refer to Fiy x Ey as a product region, which we
denote Py;.

We often abuse notation slightly and use the notation Ey, Fyy, and Py to refer
to the image in X’ of the associated set. In [BHS19, Construction 5.10] it is proven
that these standard product regions have the property that they are “hierarchically
quasiconvex subsets” of X. We leave out the definition of hierarchical quasiconvex-
ity, because its only use here is that product regions have “gate maps,” as given by
the following in [BHS19, Lemma 5.5]:

Lemma 2.10 (Existence of coarse gates; [BHS19, Lemma 5.5]). If Y € X is k-
hierarchically quasiconvex and non-empty, then there exists a gate map for Y, i.e.,
for each © € X there exists g(x) € Y such that for all V € &, the set my(g(z))
(uniformly) coarsely coincides with the projection of wy (x) to the k(0)—quasiconvex
set my (V). The point g(x) € Y is called the gate of z in Y.

Remark 2.11 (Surjectivity of projections). As one can always change the hierar-
chical structure so that the projection maps are coarsely surjective [BHS19, Re-
mark 1.3], we will assume that & is such a structure. That is, for each U € &, if
7y is not surjective, then we identify CU with 7y (X).

We also need the notion of a hierarchy path, whose existence was proven in
[BHS19, Theorem 4.4] (although we use the word path, since they are quasi-geodesics,
typically we consider them as discrete sequences of points):

Definition 2.12. For R > 1, a path v in X is a R-hierarchy path if
(1) v 1is a (R, R)—quasigeodesic,
(2) for each W € &, my oy is an unparametrized (R, R)-quasigeodesic. An
unbounded hierarchy path [0,00) — X is a hierarchy ray.

We call a domain relevant to a pair of points, if the projections to that domain are
larger than some fixed (although possibly unspecified) constant depending only on
the hierarchically hyperbolic structure. We say a domain is relevant for a particular
quasi-geodesic if it is relevant for the endpoints of that quasi-geodesic.
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Proposition 2.13 ([BHS19, Proposition 5.17]). There exists v = 0 such that for
all z,y € X, all V € & with V relevant for (x,y), and all D-hierarchy paths -
joining x to y, there is a subpath o of v with the following properties:
(1) o C NV(PV>;
(2) 7|y is coarsely constant ony—a for allU € Gy UGy, i.e., it is a uniformly
bounded distance from a constant map.

Remark 2.14. Let z,y € X, and suppose V is relevant for (z,y). As Fy and Ey
consist of k—consistent tuples (for a fixed ) and ¢y : Fy x Eyy — X is only coarsely
well-defined, by appropriately increasing x to accomodate for the chosen constant
v in Proposition 2.13, we may assume that « is actually a subset of Py .

It is often convenient to work with equivariant hierarchically hyperbolic struc-
tures, we now recall the relevant structures for doing so. For details see [BHS19].

Definition 2.15 (Hierarchically hyperbolic groups). Let (X, &) be a hierarchically
hyperbolic space. An automorphism of (X,&) consists of a map g: X — X, to-
gether with a bijection g¢: & — & and, for each U € &, an isometry g*(U): CU —
C (g<>(U )) so that the following diagrams commute up to uniformly bounded error
whenever the maps in question are defined (i.e., when U,V are not orthogonal):

X - X’

Ty 1 ™a® @)
l 9*(U)

CU ——— C(g*())

and .
U
cv =L ey
L ot

cv Clg®(V))

Two automorphisms f, f’ are equivalent if f¢ = (f’)° and for all U € & we have
¢u = ¢f;. The set of all such equivalence classes forms the automorphism group of
(X,6), denoted Aut(X,S). A finitely generated group G is said to be a hierar-
chically hyperbolic group (HHG) if there is a hierarchically hyperbolic space (X, &)
and a group homomorphism G — Aut(X, &) so that the induced uniform quasi-
action of G on X is metrically proper, cobounded, and & contains finitely many
G-orbits. Note that when G is a hyperbolic group then, with respect to any word
metric, it inherits a hierarchically hyperbolic structure.

2.2. Acylindrical actions. We recall the basic definitions related to acylindrical
actions; the canonical references are [Bow08] and [Osil6]. We also discuss a partial
order on these actions which was recently introduced in [ABO19].

Definition 2.16 (Acylindrical). The action of a group G on a metric space X is
acylindrical if for any € > 0 there exist R, N > 0 such that for all x,y € X with
d(z,y) = R,

{g e G |d(z,g9x) < e and d(y,gy) <e}| < N.

Recall that given a group G acting on a hyperbolic metric space X, an element
g € G is lozodromic if the map Z — X defined by n — ¢"z is a quasi-isometric
embedding for some (equivalently any) z € X. However, an element of G may be
loxodromic for some actions and not for others. Consider, for example, the free
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group on two generators acting on its Cayley graph and acting on the Bass-Serre
tree associated to the splitting Fy ~ {(x) * (y). In the former action, every non-
trivial element is loxodromic, while in the latter action, no powers of z and y are
loxodromic.

Definition 2.17 (Generalized loxodromic). An element of a group G is called
generalized loxodromic if it is loxodromic for some acylindrical action of G on a
hyperbolic space.

Remark 2.18. By [Osil6, Theorem 1.1}, every acylindrical action of a group on a
hyperbolic space either has bounded orbits or contains a loxodromic element. By
[Osil6, Theorem 1.4.(L4)] and Sisto [Sis16, Theorem 1], every generalized loxo-
dromic element is Morse, i.e., every quasi-geodesic with endpoints on the axis of
the element lies uniformly close to that axis (see Definition 2.22). Therefore, if a
group H does not contain any Morse elements, it does not contain any generalized
loxodromics, and thus H must have bounded orbits in every acylindrical action on
a hyperbolic space. This is the case when, for example, H is a non-trivial direct
product, that is, a direct product of two infinite groups.

Definition 2.19 (Universal acylindrical action). An acylindrical action of a group
on a hyperbolic space is a universal acylindrical action if every generalized loxo-
dromic element is loxodromic. Such an action is sometimes called a lozodromically
universal action.

Notice that if every acylindrical action of a group G on a hyperbolic space has
bounded orbits, then G does not contain any generalized loxodromic elements, and
the action of G on a point (which is acylindrical) is a universal acylindrical action.

The following notions are discussed in detail in [ABO19]. We give a brief overview
here. Fix a group G. Given a (possibly infinite) generating set X of G, let | - |x
denote the word metric with respect to X, and let I'(G, X) be the Cayley graph of
G with respect to the generating set X. Given two generating sets X and Y, we
say X is dominated by Y and write X <Y if

sup |y|x < oo.

yeyY
Note that when X <Y, the action G —~ I'(G,Y) provides more information about
the group than G —~ I'(G, X), and so, in some sense, is a “larger” action. The two
generating sets X and Y are equivalent if X <Y and Y < X; when this happens
we write X ~ Y.

Let AH(G) be the set of equivalence classes of generating sets X of G such that
I'(G, X)) is hyperbolic and the action G —~ I'(G, X) is acylindrical. We denote the
equivalence class of X by [X]. The preorder < induces an order on AH(G), which
we also denote <.

Definition 2.20 (Largest). We say an equivalence class of generating sets is largest
if it is the largest element in AH(G) under this ordering.

Given a cobounded acylindrical action of G on a hyperbolic space S, a Milnor—
Svarc argument gives a (possibly infinite) generating set Y of G such that there is a
G—equivariant quasi-isometry between G —~ S and G —~ I'(G,Y). By a slight abuse
of language, we will say that a particular cobounded acylindrical action G —~ S
on a hyperbolic space is largest, when, more precisely, it is the equivalence class of
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the generating set associated to this action through the above correspondence, [Y],
that is the largest element in AH(G).

Remark 2.21. By definition, every largest acylindrical action is a universal acylin-
drical action. To see this, notice that if [X] < [Y], then the set of loxodromic

elements in G —~ I'(G, X) must be a subset of the set of loxodromic elements in
G ~T(G,Y).

2.3. Stability. Stability is strong coarse convexity property which generalizes qua-
siconvexity in hyperbolic spaces and convex cocompactness in mapping class groups
[DT15]. In the general context of metric spaces, it is essentially the familiar Morse
property generalized to subspaces, so we begin there.

Definition 2.22 (Morse/stable quasigeodesic). Let X be a metric space. A quasi-
geodesic y < X is called Morse (or stable) if there exists a function N: RZ; — Rxq
such that if ¢ is a (K, C')—quasigeodesic in X with endpoints on ~, then

q< NN(K,C) (7)~

We call N the stability gauge for v and say v is N—stable if we want to record the
constants.

We can now define a notion of stable embedding of one metric space in another
which is equivalent to the one introduced by Durham and Taylor [DT15]:

Definition 2.23 (Stable embedding). We say a quasi-isometric embedding f: X —
Y between quasigeodesic metric spaces is a stable embedding if there exists a sta-
bility gauge N such that for any quasigeodesic constants K,C and any (K,C)-
quasigeodesic v < X, then f(v) is an N(K, C)-stable quasigeodesic in Y. We say
a subset X € Y is stable if it is undistorted and the inclusion map i: X — Y is a
stable embedding.

The following generalizes the notion of a Morse quasigeodesic to subgroups:

Definition 2.24 (Subgroup stability). Let H be a subgroup of a finitely generated
group G. We say H is a stable subgroup of G if some (equivalently, any) orbit map
of H into some (any) Cayley graph (with respect to a finite generating set) of G is
a stable embedding.

If for some h € G, H = (h) is stable, then we call h stable. Such elements are
often called Morse elements.

Stability of a subset is preserved under quasi-isometries. Note that stable sub-
groups are undistorted in their ambient groups and, moreover, they are quasiconvex
with respect to any choice of finite generating set for the ambient group.

3. ALTERING THE HIERARCHICALLY HYPERBOLIC STRUCTURE

The goal of this section is to prove that any hierarchically hyperbolic space
satisfying a technical assumption—the bounded domain dichotomy—admits a hi-
erarchically hyperbolic structure with unbounded products, i.e., every non-trivial
product region in the ambient space has unbounded factors; see Theorem 3.7 below.

In particular, this establishes that all hierarchically hyperbolic groups admit a
hierarchically hyperbolic group structure with unbounded products. It is for this
reason that our complete characterization of the contracting property in spaces
with unbounded products in Section 4 yields a characterization of the contracting
property for all hierarchically hyperbolic groups, as stated in Theorem D.
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3.1. Unbounded products. Fix a hierarchically hyperbolic space (X, S).
Let M > 0 and let @™ < & be the set of domains U € & such that there exists
V € & and W € & satisfying: U =V, diam(CV) > M, and diam(CW) > M.
Recall that a set of domains 4 < & is closed under nesting if whenever U € 4
and V £ U, then V € §l.

Lemma 3.1. For any M > 0, the set GM is closed under nesting.

Proof. Let U € &M and V = U. By definition of U € G| there exists Z € &M
with U £ Z and satisfying: diam(CZ) > M and there exists W € &% such that
diam(CW) > M. Since V & Z, it follows that V € G as desired. O

Definition 3.2 (Bounded domain dichotomy). We say (X, &) has the M -bounded
domain dichotomy if there exists M > 0 such that any U € & with diam(CU) > M
satisfies diam(CU) = oo. If the value of M is not important, we simply refer to the
bounded domain dichotomy.

Recall that for every hierarchically hyperbolic group (G, &), the set of domains &
contains finitely many G-orbits and each g € G induces an isometry CU — C(g°(U))
for each U € & (see Definition 2.15). It thus follows that every hierarchically
hyperbolic group has the bounded domain dichotomy. (Also, note that this property
implies the space is “asymphoric” as defined in [BHS17¢].)

Definition 3.3 (Unbounded products). We say that a hierarchically hyperbolic
space (X, &) has unbounded products if it has the bounded domain dichotomy and
the property that if U € & — {S} has diam(Fy) = oo, then diam(Ey) = .

3.2. Almost hierarchically hyperbolic spaces. In this section we introduce a
tool for verifying a space is hierarchically hyperbolic.
The following is a weaker version of the orthogonality axiom:

(3') (Bounded pairwise orthogonality) & has a symmetric and anti-reflexive
relation called orthogonality: we write V' L W when V, W are orthogonal.
Also, whenever V.C W and W L U, we require that V' L W. Moreover, if
V L W, then V,WW are not E—comparable. Finally, the cardinality of any
collection of pairwise orthogonal domains is uniformly bounded by &.

By [BHS19, Lemma 2.1], the orthogonality axiom (Definition 2.1, (3)) for an
hierarchically hyperbolic structure implies axiom (3"). However, the converse does
not hold; that is, the last condition of (3’) does not directly imply the container
statement in (3), and thus this is an a priori strictly weaker assumption. However,
as is proven in the appendix in Theorem A.1, this weakened version of the axiom
is enough to produce a hierarchically hyperbolic structure.

We now introduce the notion of an almost hierarchically hyperbolic space:

Definition 3.4 (Almost HHS). If (X, &) satisfies all axioms of a hierarchically
hyperbolic space except (3) and additionally satisfies axiom (3'), then (X, &) is an
almost hierarchically hyperbolic space.

In the appendix, Berlyne and Russell prove Theorem A.1, establishing that if
a space is almost hierarchically hyperbolic, then the associated structure can be
modified to obtain a hierarchically hyperbolic structure on the original space. This
result is used in our proof of Theorem 3.7.
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3.3. A new hierarchically hyperbolic structure. In this section we describe
a new hierarchically hyperbolic structure on hierarchically hyperbolic spaces with
the bounded domain dichotomy. We first describe the hyperbolic spaces that will
be part of the new structure.

Let (X,8) be a hierarchically hyperbolic space with the M-bounded domain
dichotomy. Recall that we define 8™ — & to be the set of U € & such that there
exists U = V with diam(CV) > M for which there exists a W € & satisfying
diam(CW) > M. For each U € &, define &Y = &y, similarly.

Remark 3.5 (Factored spaces). As defined in [BHS17a], given (X,8) and T < &
the factored space f‘g is the space obtained from X by coning-off each Fy x {e} for
all V e ¥ and all e € Ey,. Sometimes we abuse language slightly and refer to this as
the factored space obtained from & by collapsing ¥. In particular, when S is the
E-maximal element of &, then CS can be taken to be the space ﬁ@_{s}, which is
obtained from X by coning-off Fy x {e} for all U € & — {S} and all e € Ey.

We often consider the case of a fixed (X, &) and U € & and then apply this con-
struction to the hierarchically hyperbolic structure (Fy, &y;). For this application,
note that 7y (X) is quasi-isometric to f‘GU_{U}, by [BHS17a, Corollary 2.9], and
thus so is CU, by Remark 2.11.

Lemma 3.6. Let (X,8) be a hierarchically hyperbolic space and consider T c &
which is closed under nesting. Let v be a hierarchy path in (X, &). Then, the path
obtained by including vy < X < l?‘rz is an unparametrized quasi-geodesic. Moreover,
if for each W € T which is a relevant domain for v and for each e € Ey, we
modify the path through Fy x {e} by removing all but the first and last vertex of
the hierarchy path which passes through Fy x {e}, then the new path obtained, 7 is
a hierarchy path for (Fs,& — %).

Proof. The proof is by induction on complexity. Consider all the nest-minimal
elements Y < T which are relevant for ~; by Proposition 2.13 and Remark 2.14
for each such U there is a subpath of 7 which passes through a collection of slices
Fy x {e} within the product region associated to U. By [BHS19, Lemma 2.14]
there is a bounded (in terms of &) coloring of 4 with the property that all the
domains of a given color are pairwise transverse. Starting from (X, &), we take
one color at a time, together with all the domains nested inside domains of that
color, and create the factored space by coning off those domains. At each step, we
obtain a new hierarchically hyperbolic space with the property that in this space
the relevant domains for « are exactly the original ones except for those in the colors
we have coned off thus far. Since this path still travels monotonically through each
of the relevant domains, it is an unparametrized quasi-geodesic in the new factored
space. Thus the path 4 is a parametrized quasi-geodesic and thus a hierarchy path
in the new factored space (with constants depending only on the constants for the
original hierarchy path). Once the colors of { are exhausted, repeat one step up
the nesting lattice. Since the complexity of the hierarchically hyperbolic structure
and the coloring are both bounded, this will terminate after finitely many steps.
Finally we cone off any domains in ¥ which are not relevant for « to obtain the
space (f‘g, & — %). Through this final step 4 remains a uniform quality hierarchy
path since it is still a quasigeodesic. ([l
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The next result uses the above spaces to obtain a hierarchically hyperbolic struc-
ture with particularly nice properties from a given hierarchically hyperbolic struc-
ture.

Theorem 3.7. Every hierarchically hyperbolic space with the bounded domain di-
chotomy admits a hierarchically hyperbolic structure with unbounded products.

Proof. Let (X,8) be a hierarchically hyperbolic space. Let ¥ denote the =—
maximal element S together with the subset of & consisting of all U € & with
both Fy and Ey unbounded.

We begin to define our new hierarchically hyperbolic structure on X by taking
% as our index set. For each U € ¥ — {S} we set the associated hyperbolic space
Tu to be CU. For the top-level domain, S, we obtain a hyperbolic space, Tg, as
follows. By Lemma 3.1, &M is closed under nesting and hence XA@M is a hierarchi-
cally hyperbolic space. Moreover, since this hierarchically hyperbolic space has the
property that no pair of orthogonal domains both have diameter larger than M,
by [BHS17¢, Corollary 2.16] it is hyperbolic for some constant depending only on
(X,6) and M; we call this space Tg.

To avoid confusion, we use the notation dg for distance in 7g and the notation
des for distance in CS.

When U # S, the projections are as defined in the original hierarchically hyper-
bolic space. We take the projection mg to be the factor map X — Tg. If U € T
and U # S, then the relative projections are defined as in (X, &). For the remain-
ing cases the relative projections are as follows: p{ is defined to be 7y and pY is
defined to be the image of Fy under the factor map X — Tg.

We now check the axioms to verify that (X, %) is an almost hierarchically hy-
perbolic space (i.e., all the conditions of a hierarchically hyperbolic space except
for a weakened version of the orthogonality axiom). Once these axioms have been
verified, we can then invoke Theorem A.1 to conclude that the almost hierarchically
hyperbolic structure ¥ can be modified to yield an actual hierarchically hyperbolic
space. By construction, (X, T) satisfies the hypothesis of Corollary A.8, and there-
fore the associated modified hierarchically hyperbolic structure will have unbounded
products, as desired.

Projections: The only case to check is for the top-level domain S. Since 7g is
a factor map, it is coarsely Lipschitz and coarsely surjective.

Nesting: The partial order and projections are given by construction. The
diameter bound in the case of nesting projections is immediate from the bound
from (X, &), except in the case of pY% for V € T. The bound on the diameter of p¥
follows from the construction of Tg as a factor space and the fact that T < M.

Orthogonality: We now verify axiom (3’) is satisfied by this new structure. The
first three conditions are clear, since ¥ € & and thus they are inherited from the
hierarchically hyperbolic structure (X, S). For the last condition, any collection of
pairwise orthogonal domains in ¥ is also a collection of pairwise orthogonal domains
in & and thus by [BHS19, Lemma 2.2] has uniformly bounded size, verifying the
axiom.

Transversality and consistency: This axiom only involves domains which
are not nest-maximal, and hence holds using the original constants from the hier-
archically hyperbolic structure on (X, S).
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Partial realization: This axiom only involves domains which are not nest-
maximal, and hence holds using the original constants from the hierarchically hy-
perbolic structure on (X, &).

Finite complexity: This clearly holds by construction.

Large link axiom: Let A and E be the constants from the large link axiom
for (X,6), let W € T, and let z,2’ € X. Consider the set {T;} < Gy — {W}
provided by the large link axiom for (X,&). Since T; = W, it follows that Er, is
unbounded for each i. Let T € Ty — {W}. If dr(x,2’) > E - M, it follows that
Fr is unbounded. Furthermore, der(z,2’) > E, whence T = T; for some 4 by the
large link axiom for (X, &). Therefore Fr, is unbounded, and so T; € ¥. The result
follows.

Bounded geodesic image: For all domains in ¥ — {S}, the corresponding
hyperbolic spaces are unchanged from those in the original structure and thus the
axiom holds in these cases.

Hence the only case which it remains to check is when W = S. Suppose
is a geodesic in Tg, and V € T — {S} such that diamecy (p5 (7)) > E. The partial
realization axiom implies that there exists a hierarchy path ¥ ¢ X whose end-points
project under 7g to the end-points of . This projected path is a quasigeodesic by
Lemma 3.6. Since Tg is hyperbolic, the projected path lies uniformly close to 7. By
[BHS19, Proposition 5.17] we can replace 5 by an appropriate subpath for which
the only relevant domains are all nested in V; thus 4 < Py,. By definition, there is a
bounded distance between pY and ms(Py); thus mg(¥) (and hence «) is a bounded
distance from pY, as needed.

Uniqueness: Let £ > 0. We can take ¢/, > max{f,(k), M}, where 0,(r) is
the original constant from the uniqueness axiom for (X,&). Then if z,y € X
with d(z,y) > 6/, then uniqueness for (X,S) implies there exists U € & with
dey(z,y) > M. Either U € T or diam(CU) = o and Ey is bounded. We are
done in the first case. In the second case, by construction the factor space U of
Fy obtained by collapsing Ty is quasi-isometrically embedded in 7g and there is a
1-Lipschitz map from U to CU. Thus the lower bound on distance in CU provides
a lower bound on the distance in U , which, in turn, provides a lower bound in 7g,
as desired. |

Corollary 3.8. Fvery hierarchically hyperbolic group admits a hierarchically hy-
perbolic group structure with unbounded products.

Proof. Recall that every hierarchically hyperbolic group has the bounded domain
dichotomy. Accordingly, if we start with a hierarchically hyperbolic group, (G, &),
then Theorem 3.7 yields a hierarchically hyperbolic structure with unbounded prod-
ucts, (G,%T), where T is the structure from the proof of Theorem 3.7 with the
additional “dummy domains” added as provided at the end of that proof via The-
orem A.l. It remains only to show that this is a hierarchically hyperbolic group
structure. The action of G on itself, by left multiplication, is clearly metrically
proper and cobounded, and thus it only remains to show that ¥ contains finitely
many G-orbits. If U € G but U ¢ ¥, then either Fy; or Eyy must be bounded. Then
for each g € G, the same will be true for Fyy or Eyy, which shows that gU ¢ %.
Thus G-U < & —%. The result now follows from the fact that G has only finitely
many G-orbits and that any dummy domains added fall into only finitely many
orbits, as noted in Remark A.7. O
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4. CHARACTERIZATION OF CONTRACTING GEODESICS

For this section, fix a hierarchically hyperbolic space (X, &) with the bounded
domain dichotomy; denote the E=—maximal element S € &.

Definition 4.1 (Bounded projections). Let ) < X and D > 0. We say that ) has
D-bounded projections if for every U € & — {S}, we have diamy (Y) < D.

Definition 4.2 (Contracting). A subset 7 in a metric space X is said to be D—
contracting if there exist a map 7, : X — v < X and constants A, D > 0 satisfying:

(1) For any z € v, we have diamx (z v 7, (z)) < D;
(2) If z,y € X with dx(z,y) < 1, then diamx (7, (z) u 7, (y)) < D;
(3) For all z € X, if we set R = A - d(x,7), then diamx (7, (Bgr(z))) < D.

In this section, we will focus our attention to the case of Definition 4.2 where ~
is a quasigeodesic. In Section 6 we will consider results about arbitary subsets with
the contracting property.

We note that sometimes authors refer to any quasigeodesic satisfying (3) as
contracting. Nonetheless, for applications one also needs to assume the coarse
idempotence and coarse Lipschitz properties given by (1) and (2), so for convenience
we combine them all in one property.

A useful well-known fact is stability of contracting quasigeodesics. T'wo different
proofs of the following occur as special cases of the results [MM99, Lemma 6.1] and
[Beh06, Theorem 6.5]; this explicit statement is also in [DT15, Section 4].

Lemma 4.3. If v is a D—contracting (K, K)—quasigeodesic in a metric space X,
then v is D'—stable for some D' depending only on D and K.

The following result and argument both generalize and simplify the analogous
result for mapping class groups in [Beh06].

Theorem 4.4. Let (X, 8) be a hierarchically hyperbolic space. For any D > 0 and
K > 1 there exists a D' > 0 depending only on D and (X, &) such that the following
holds for every (K, K)—quasigeodesicy  X. If~ has D-bounded projections, then
is D'—contracting. Moreover, if (X, &) has the bounded domain dichotomy, then X
admits a hierarchically hyperbolic structure (X, %) with unbounded products where,
additionally, we have that if v is D—contracting, then v has D'~bounded projections.

Proof. First suppose that v has D-bounded projections. It follows immediately
from the definition that ~ is a hierarchically quasiconvex subset of X'. Hierarchical
quasiconvexity is the hypothesis necessary to apply [BHS17a, Lemma 5.5] (see
Lemma 2.10), which then yields existence of a coarsely Lipschitz gate map g: X —
v, i.e., for each x € X, the image g(z) € v has the property that for all U € &
the set 7y (g(z)) is a uniformly bounded distance from the projection of ny(z) to
Tu (7).

We will use g as the map to prove =y is contracting. Gate maps satisfy condition
(1) of Definition 4.2 by definition and condition (2) since they are coarsely Lipschitz.
Hence it remains to prove that condition (3) of Lemma 4.3 holds.

Fix a point z € X with dy(z,7) = By and let y € X be any point with dx (x,y) <
Bidx(z,7) for constants By and B; as determined below.

Since g is a gate map and « has D-bounded projections, for all U € & — {S} we
have dy(g(x), g(y)) < D. Thus, by taking a threshold L for the distance formula
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(Theorem 2.5) larger than D, we have

dx(g(2),8(y)) =x.c) ds(8(x), 8(y)),

for uniform constants K, C. Thus it suffices to prove that dg(g(x), g(y)) is bounded
by some uniform constant By. We also choose L to be larger than the constants in
Definition 2.1.(4).

By Definition 2.1.(1), the maps 7y are Lipschitz with a uniform constant. Taking
By sufficiently large, it follows that there exists U € & so that dy(z,g(z)) > L.
By choosing Bj to be sufficiently small, and applying the distance formula to the
pairs (z,y) and (z,g(z)), the fact that the projections 7y are Lipschitz implies
that the sum of the terms in the distance formula associated to (z, g(x)) is much
greater than the sum of those associated to (z,y). Having chosen By < %, we have
Sdu(z,g(x)) > 2> dy(x,y) > d(du(x,y) + L). Thus, there exists W € & for
which dw (z,g(z)) > dw(z,y) + L.

If W = S, then having dg(z, g(z)) > ds(z,y) + L (where we enlarge L if nec-
essary) would already show that the CS—geodesic between = and y was disjoint
from mg(y) and then hyperbolicity of CS would yield a uniform bound on the
ds((x). 9(1)).

Otherwise, we may assume W #.S. By the triangle inequality, we have dyw (y, g(z))
> L. Further, since, as noted above, the CW projections between g(z) and g(y)
are uniformly bounded, by choosing By large enough and B; small enough, we also
have dw (y,9(y)) > L.

By the bounded geodesic image axiom (Definition 2.1.(7)), any geodesic in CS
either has bounded projection to CU or satisfies m5(v) n Ng(p¥) # & for any
U € & — {S}. For any geodesic from mg(z) to mg(g(x)) (or from 7ws(y) to ms(g(y)),
the above argument implies that the first condition doesn’t hold for W. Thus, in
both cases, we know that any such geodesic must pass uniformly close to p‘év. Hence
the hyperbolicity of CS implies + is contracting, and the first implication holds.

We prove the second implication by contradiction. By Theorem 3.7, we obtain
a new structure (X,%) which has unbounded products. For every U € T — {S}
we have that both Fyy and Ey are unbounded, hence every U € T — {S} yields a
non-trivial product region Py = Ey x Fy which is uniformly quasi-isometrically
embedded in X.

Suppose v is contracting but doesn’t have D-bounded projections. Then we
obtain a sequence {U;} € ¥ — {S} with diam(wcy,(y)) — 0. Thus there is a
sequence of pairs of points z;,y; € v, so that dy, (x;,y;) = K;, with K; — . For
each i, let ¢; be a R-hierarchy path between xz;,y;. By [BHS19, Proposition 5.17],
there exists v > 0 depending only on R and (X, &), such that

diamUi (Qi mNy(PUi)) = Ki.

Since 7 is contracting, it is uniformly stable by Lemma 4.3. Since ~ is uniformly
stable and the g; are uniform quasigeodesics, it follows that each g; is contained in a
uniform neighborhood of . Hence arbitrarily long segments of v are uniformly close
to the product regions Py;,. This contradicts the assumption that « is contracting
and completes the proof. ([l
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5. UNIVERSAL AND LARGEST ACYLINDRICAL ACTIONS

The goal of this section is to show that for every hierarchically hyperbolic group
(G, S) the poset AH(G) has a largest element. Recall that the action associated
to such an element is necessarily a universal acylindrical action.

We prove the following stronger result which, in addition to providing new largest
and universal acylindrical actions for cubulated groups, gives a single construc-
tion that recovers all previously known largest and universal acylindrical actions of
finitely presented groups that are not relatively hyperbolic.

The following is Theorem A of the introduction:

Theorem 5.1. Every hierarchically hyperbolic group admits a largest acylindrical
action.

Before giving the proof, we record the following result which gives a sufficient
condition for an action to be largest. This result follows directly from the proof
of [ABO19, Theorem 4.13]; we give a sketch of the argument here. Recall that an
action H — S is elliptic if H has bounded orbits.

Proposition 5.2 ([ABO19]). Let G be a group, {H1, ..., H,} a finite collection of
subgroups of G, and F be a finite subset of G such that F v (J;—, H;) generates
G. Assume that:
(1) T(G,F u (Ui, H;)) is hyperbolic and the action of G on it is acylindrical.
(2) Fach H; is elliptic in every acylindrical action of G on a hyperbolic space.

Then [F v (J;_, H;)] is the largest element in AH(G).

Proof. First notice that by assumption (1), [Fu(|;—, H;)] is an element of AH(G).
Let G —~ S be a cobounded acylindrical action of G on a hyperbolic space, .S, and
fix a basepoint s € S. Then there exists a bounded subspace B < S such that
Sc Ugegg - B. By assumption (2), the orbit H; - s is bounded for all i = 1,...,n.
Since |F| < o0, we know diam(F' - s) < oo and thus

K = max{diam(B),diam(H; - s),...,diam(H,, - s),diam(F - s)}
is finite. Let C' = {s' € S| d(¢',s) < 3K}, and let
Z={9eGlg-CnC+#J}

The standard Milnor-Svarc Lemma argument shows that Z is an infinite generating
set of G and there exists a G—equivariant quasi-isometry S — I'(G, Z). It is clear
that Z contains F, as well as H; for all i = 1,...,n and thus [Z] < [Fu (U;_, H;)].
The result follows. O

Proof of Theorem 5.1. Let (G, &) be a hierarchically hyperbolic group with finite
generating set F. By Corollary 3.8, there is a hierarchically hyperbolic group
structure (G, ¥) with unbounded products. Recall that S is the =-—maximal element
of T with associated hyperbolic space Tg. The action on Tg is acylindrical by
[BHS17b, Theorem K].

Moreover, the action of G on Tg is cobounded, so let B be a fundamental domain
for G ~ Ts and

U={Ue%|ns(Fy) c Band U is E-maximal in T — {S}}.
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Notice that U will contain at most one representative from each G-orbit of domains,
and so must be a finite set. Indeed, for a hierarchically hyperbolic group, this follows
from the fact that the action of G on ¥ is cofinite.

Let H; < G be the stabilizer of Fy;, for each U; € U. By a standard Milnor-Svarc
argument (see [ABO19] for details) there is a G-equivariant quasi-isometry between
I'(G,Fu (U, Hi)) and Tg, where n = |U|. Therefore condition (1) of Proposition
5.2 is satisfied.

By definition, each H; sits inside a non-trivial direct product in G, the prod-
uct region Py, associated to each U; € U. It follows that H,; must be elliptic in
every acylindrical action of G on a hyperbolic space (see Remark 2.18), satisfying
condition (2).

Therefore, by Proposition 5.2, the action is largest. ]

Remark 5.3. The proof of Theorem 5.1 can be extended to treat a number of groups
which are hierarchically hyperbolic spaces, but not hierarchically hyperbolic groups.
For example, it was shown in [BHS19, Theorem 10.1] that every fundamental group
of a compact 3—manifold with no Nil or Sol in its prime decomposition admits a
hierarchically hyperbolic space structure, which is constructed by first putting an
HHS structure on each geometric piece in the prime decomposition. However, as
explained in [BHS19, Remark 10.2] it is likely that such fundamental groups don’t
all admit hierarchically hyperbolic group structures. Nonetheless, the proof of the
above theorem works in this case by replacing the use of the fact that the action
of G on ¥ is cofinite, with the fact that for m (M), the set U is precisely the set
of E—maximal domains in the hierarchically hyperbolic structure on each of the
Seifert-fibered components of the prime decomposition of M, and so is finite.

Remark 5.4. There is an instructive direct proof of the universality of the above
action, using the characterization of contracting quasigeodesics in Section 4, which
we now give. We call an infinite order element contracting if its orbit is a contracting
quasigeodesic in the Cayley graph. Now, let g € G be an infinite order element and
consider the geodesic (g) in I'(G, F).

If {g) is contracting in I'(G, F'), then by Theorem 4.4 all proper projections are
bounded, and thus by the distance formula, ¢ is loxodromic for the action on 7g.

If (g is not contracting in I'(G, F), then there exists some U € ¥ such that
7w ({g)) is unbounded. Thus for any increasing sequence of constants (K;) with
K; — oo, there are sequences of pairs of points z;,y; € (g such that d(z;,y;) — o0
as i — oo and dy (x;,y;) = K;. For each i, let v; be an R-hierarchy path between x;
and y;. By definition, ~; is a uniform quasigeodesic. Then by [BHS19, Proposition
5.17], there exists v > 0 depending only on R and (X, %) such that diamy(y; n
N,(Py)) = K;. If g is a generalized loxodromic, then (g) is stable, by [Sis16], and
so the subgeodesic [z;,y;] stays within a uniform bounded distance of «;. Thus
arbitrarily long subgeodesics of {g) stay within a uniformly bounded distance of
a product region, Py. This contradicts (¢g) being Morse, and therefore g is not a
generalized loxodromic element.

This remark directly implies that the action on 7g is a universal acylindrical
action. (The universality of the action can also be proven using the classification
of elements of Aut(&) described in [DHS17].)

Another immediate consequence of the above remark is the following, which for
hierarchically hyperbolic groups strengthens a result obtained by combining [Osil6,
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Theorem 1.4.(L4)] and [Sis16, Theorem 1], which together prove that a generalized
loxodromic element in an acylindrically hyperbolic group is quasi-geodesically sta-
ble.

Corollary 5.5. Let (G, S) be a hierarchically hyperbolic group. An element g € G
is generalized loxodromic if and only if g is contracting.

The next result provides information about the partial ordering of acylindrical
actions. Of the groups listed below, the largest and universal acylindrical action
of the class of special CAT(0) cubical groups is new; the other cases were recently
established to be largest in [ABO19].

Corollary 5.6. The following groups admit acylindrical actions that are largest
(and therefore universal):

(1) Hyperbolic groups.

(2) Mapping class groups of orientable surfaces of finite type.

(3) Fundamental groups of compact three-manifolds with no Nil or Sol in their
prime decomposition.

(4) Groups that act properly and cocompactly on a special CAT(0) cube complez,
and more generally any cubical group which admits a factor system. This
includes right-angled Artin groups, right-angled Coxeter groups, and many
other examples as in [HS16].

Proof. With the exception of (3), by [BHS17b, BHS19, HS16] the above are all
hierarchically hyperbolic groups and therefore have the bounded domain dichotomy.
In case (3), where G is the fundamental group of a compact three-manifold with
no Nil or Sol in its prime decomposition, then while G is not always known to be a
hierarchically hyperbolic group, it has a hierarchically hyperbolic structure (X', &).
To see this, we use the fact that there is a group G’ which is quasi-isometric to G and
has a hierarchically hyperbolic structure with all of the associated hyperbolic spaces
infinite [BHS19, Theorem 10.1 & Remark 10.2]; thus by quasi-isometric invariance
of hierarchically hyperbolic structures [BHS19, Proposition 1.10], G does as well.
Since all of the associated hyperbolic spaces are infinite, (X, &) has the bounded
domain dichotomy, so the result follows. ]

We give an explicit description of these actions for each hierarchically hyperbolic
group in the corollary, in the sense that we describe the set 20 of domains which are
removed from the standard hierarchical structure of the group and whose associated
hyperbolic space is infinite diameter. Recall that the space Tg is constructed from
X by coning off all elements of T which consists of those components of & whose
associated product regions have both factors with infinite diameter. Coning off all
of ¥ yields a space which is is quasi-isometric to the space obtained by just coning
off & — 2.

(1) Hyperbolic groups have a canonical simplest hierarchically hyperbolic group
structure given by taking & = {S}, where CS is the Cayley graph of the
group with respect to a finite generating set. For this structure, 20 = ¢,
and the action on the Cayley graph is clearly largest.

(2) For mapping class groups, the natural hierarchically hyperbolic group struc-
ture & is the set of homotopy classes of non-trivial non-peripheral (possibly
disconnected) subsurfaces of the surface; the maximal element S is the sur-
face itself, and the hyperbolic space CS is the curve complex of S. For this
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structure 20 = ¢J. (Note that to form T one must remove the nest-maximal
collections of disjoint subsurfaces; the hyperbolic space associated to each
of these, except S, has finite diameter). Additionally, we emphasize that
although the new hyperbolic space Tg is not CS, it is quasi-isometric to CS,
the action on which is known to be universal. Universality of this action
was shown by Osin in [Osil6], and follows from results of Masur-Minsky
and Bowditch [Bow08, MM99].

(3) If M is a compact 3—manifold with no Nil or Sol in its prime decomposition
and G = m M, then 2U is exactly the set of vertex groups in the prime
decomposition that are fundamental groups of hyperbolic 3-manifolds (each
of which has exactly one domain in its hierarchically hyperbolic structure).

(4) If G is a group that acts properly and cocompactly on a special CAT(0)
cube complex X, then by [BHS17b, Proposition B], X has a G—equivariant
factor system. This factor system gives a hierarchically hyperbolic group
structure in which & is the closure under projection of the set of hyperplanes
along with a maximal element S, where CS is the contact graph as defined
in [Hagl4]. In this structure, 20 is the set of indices whose stabilizer in G
contains a power of a rank one element.

In the particular case of right-angled Artin groups, no power of a rank
one element will stabilize a hyperplane, so 20 = ¢F. In this case, the contact
graph CS is quasi-isometric to the extension graph defined by [KK14]. That
the action on the extension graph is a universal acylindrical action follows
from the work of [KK14] and the centralizer theorem for right-angled Artin
groups. This action is also shown to be largest in [ABO19].

We give a concrete example of the situation in the case of a right-angled
Coxeter group.

Example 5.7. Let G be the right-angled Coxeter group whose defining graph is
a pentagon. Then G = {a,b,c,d,e | [a,b],[b,c], [c,d],[d, €], [a,e],a?, b?, c2, d?, e?),
and the Cayley graph of G is the tiling of the hyperbolic plane by pentagons. We
consider the dual square complex to this tiling. To form the contact graph CS,
we start with the square complex and cone off each hyperplane carrier, which is
equivalent to coning off the hyperplane stabilizers in the Cayley graph. The result
is a quasi-tree. Thus a fundamental domain for the hierarchically hyperbolic group
structure of G is {U,, Uy, U, Uq, U, S} where U, is associated to the stabilizer of
the hyperplane labeled by v and S is associated to the contact graph described
above.

Consider the hyperplane J, that is labeled by b. Then the stabilizer of Jp is the
subgroup generated by the star of the vertex b, which is {(a,b,c). This subgroup
contains the infinite order element ac. As G is a hyperbolic group, all infinite order
elements are generalized loxodromic, but ac is not loxodromic for the action on the
contact graph since its axis lies in a hyperplane stabilizer that has been coned-off.
Thus the action on the contact graph is not universal.

Let Uy, € G be the element associated to Stab(J). Then Stab(Jy) = {(a,b,c |
[a,b],[b,c]) ~ Dy x Z/2Z ~ Fy, x Ey, is a product region, and the maximal
orthogonal component Ey;, is bounded. Thus U, € 20, as is U, for each vertex v of
the defining graph. The contact graph associated to (Fy,,Syp,) is a line, and the
element ac is loxodromic for the action on this space.



88 C. ABBOTT, J. BEHRSTOCK, AND M. DURHAM

Note that once 20 has been removed from &, the resulting hierarchically hyper-
bolic structure is (G, {S}), the canonical hierarchically hyperbolic structure for a
hyperbolic group, in which CS =T'(G,{a,b,c,d, e}).

6. CHARACTERIZING STABILITY

In this section, we will give several characterizations of stability which hold in any
hierarchically hyperbolic group. In fact, we will characterize stable embeddings of
geodesic metric spaces into hierarchically hyperbolic spaces with unbounded prod-
ucts. One consequence of this will be a description of points in the Morse boundary
of a proper geodesic hierarchically hyperbolic space with unbounded products as the
subset of the hierarchically hyperbolic boundary consisting of points with bounded
projections.

6.1. Stability. While it is well-known that contracting implies stability [Beh06,
DMS10,MM99], the converse is not true in general. Nonetheless, in several impor-
tant classes of spaces the converse holds, including in hyperbolic spaces, CAT(0)
spaces, the mapping class group, and Teichmiiller space [Sull4,Beh06,DT15,Min96].
We record the following corollary of Theorem 4.4 which gives a relationship between
stability and contracting subsets that holds in a fairly general context.

Corollary 6.1. Suppose that (X, &) has unbounded products, Y is a hyperbolic
metric space, and i: Y — X is a (K,C)—quasi-isometric embedding. Then i(Y)
is N—stable if and only if i(Y) is D—contracting, where N and D determine each
other.

Proof. First assume that i()) is D—contracting. Since i: Y — X is a (K, C)—quasi-
isometric embedding, to show that i(}))) is N-stable for some gauge N = N(D),
we need only show that the (quasigeodesic) image i(7) of every geodesic v in ) is
N(K,C)-stable. Since i(Y) is D-contracting and 4(Y) is hyperbolic, i(v) is D'~
contracting for some D’ depending only on D, K, C, and the hyperbolicity constant
of Y. Lemma 4.3 shows that i(vy) is therefore N—stable, with N depending only on
D, as desired. (Note that the assumption on unbounded products is not necessary
for this implication.)

For the other direction, the fact that X has unbounded products implies that i())
has bounded projections, since otherwise one could find large segments of quasi-
geodesics contained inside product regions with unbounded factors, contradicting
stability. The result now follows from Theorem 4.4. O

The following provides a general characterization of stability in HHSs, a special
case of which is Theorem B.

Corollary 6.2. Leti: Y — X be a quasi-isometric embedding from a metric space
into a hierarchically hyperbolic space (X, &) with unbounded products. The following
are equivalent:

(1) 7 is a stable embedding;
(2) i(Y) has uniformly bounded projections;
(3) mgoi: Y — CS is a quasi-isometric embedding.

Proof. That item (2) implies (3) follows from the distance formula and the assump-
tion that ¢ is a quasi-isometric embedding.
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The hypothesis of item (1) implies that ) is hyperbolic. Moreover, since (2)
implies (3), the hypothesis of (2) also implies that Y is hyperbolic. Thus items (1)
and (2) are equivalent via Corollary 6.1 and Theorem 4.4.

We now prove that (3) implies (2). Suppose for a contradiction that for any
integer N there exists U € & — {S} and z,y € i(}) satistying dy(z,y) > N. Now,
we consider a hierarchy path + between z and y. Applying the bounded geodesic
image axiom (Definition 2.1.(7)) to the associated CS—geodesic between mg o i(x)
and 7g o0 i(y) it follows that this C.S—geodesic has non-trivial intersection with the
ball of radius F about the set p%. Indeed, this yields that there exist points 2/, 4’ on
the geodesic which are both distance at most F from pg; by [BHS19, Lemma 5.17]
we can assume that z and y were chosen so that 2’ and y' also satisfy dg(z,2') < E
and dg(y,y’) < E. Thus, we have that ds(z,y) < 4E. The hypothesis in (3) implies
that there is a uniform bound on dy(x,y). The distance formula then implies a
uniform bound on dy (x,y) for any W € &, contradicting the fact that we chose
dy (z,y) to be large. O

6.2. The Morse boundary. In the rest of this section, we turn to studying the
Morse boundary and use this to give a bound on the stable asymptotic dimension of
a hierarchically hyperbolic space. We begin by describing two notions of boundary.

In [DHS17], Durham, Hagen, and Sisto introduced a boundary for any hierarchi-
cally hyperbolic space. We collect the relevant properties we need in the following
theorem:

Theorem 6.3 (Theorem 3.4 and Proposition 5.8 in [DHS17]). If (X, &) is a proper
hierarchically hyperbolic space, then there exists a topological space 0X such that
0XUX = X compactifies X, and the action of Aut(X, &) on X extends continuously
to an action on X.

Moreover, if Y is a hierarchically quasiconvex subspace of X, then, with respect
to the induced hierarchically hyperbolic structure on ), the limit set of AY of Y in
0X is homeomorphic to 0) and the inclusion map i: Y — X extends continuously
to an embedding 0i: 0Y — 0X.

Building on ideas in [CS15], Cordes introduced the Morse boundary of a proper
geodesic metric space [Corl7], which was then refined further by Cordes—Hume in
[CH17]. The Morse boundary is a stratified boundary which encodes the asymptotic
classes of Morse geodesic rays based at a common point. Importantly, it is a quasi-
isometry invariant and generalizes the Gromov boundary of a hyperbolic space
[Corl7].

We briefly discuss the construction of the Morse boundary and refer the reader
to [Corl7, CH17] for details.

Consider a a proper geodesic metric space X with a basepoint e € X. Given a
stability gauge N : R;O — R, define a subset XéN) c X to be the collection of
points y € X such that e and y can be connected by an N-stable geodesic in X.
Each such XéN) is 0 y—hyperbolic for some é5 > 0 depending on N and X [CH17,
Proposition 3.2]; here, we use the Gromov product definition of hyperbolicity, as
XgN) need not be connected. Moreover, any stable subset of X embeds in XéN)
for some N [CH17, Theorem A.V].

The set of stability gauges admits a partial order: N; < N, if and only if
Ni(K,C) < No(K,C) for all constants K,C. In particular, if Ny < Ns, then
X & X,
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Since each XéN) is Gromov hyperbolic, each admits a Gromov boundary 8X6(N).
Take the direct limit with respect to this partial order to obtain a topological space
0sX called the Morse boundary of X.

We fix (X, 6), a hierarchically hyperbolic structure with unbounded products.

Definition 6.4. We say A € 0X has bounded projections if for any e € X, there
exists D > 0 such that any R-hierarchy path [e, A\] has D-bounded projections.
Let 0.X denote the set of points A € 0X with bounded projections.

The boundary 0X contains dCU for each U € &, by construction. The next
lemma shows that the boundary points with bounded projections are contained
in 0CS, as a subset of 0X, where S is the T—maximal element. In general, the
set of boundary points with bounded projections may be a very small subset of
0CS. For instance, in the boundary of the Teichmiiller metric, these points are a
proper subset of the uniquely ergodic ending laminations and have measure zero
with respect to any hitting measure of a random walk on the mapping class group.

Lemma 6.5. The inclusion 0.X < 0CS holds for any (X,8) with unbounded
products where S is the E—maximal element of . Moreover, if X is also proper,
then for any D > 0 there exists D' > 0 depending only on D and (X,S) such
that if () € X is a sequence with x, — \ € X such that [e,x,] has D-bounded
projections for some e € X and each n, then [e, \] has D'~bounded projections.

Proof. Let A € d.X. If [e,A] is an R-hierarchy path, then [e, A] has an infinite
diameter projection to some CU, see, e.g., [DHS17, Lemma 3.3]. As A has bounded
projections, we must have U = S. Since mg([e, A\]) = CS is a quasigeodesic ray, the
first statement follows.

Now suppose that X is also proper. For each n, let v, = [e,z,] be any R-
hierarchy path between e and x, in X. The Arzela-Ascoli theorem implies that
after passing to a subsequence, 7, converges uniformly on compact sets to some
R/-hierarchy path v with R’ depending only on R and (X, &). Hence v has D'~
bounded projections for some D’ depending only on D and (X, &). Moreover, since
xn — Ain CS, it follows that mg(7y) is asymptotic to A in CS.

If [e,\] is any other R’-hierarchy path, it follows from uniform hyperbolicity
of the CU and the definition of hierarchy paths that dff*“s(v,[e, A]) is uniformly
bounded for all U € &. Since v has D’-bounded projections, the distance formula
implies that [e, A\] has D"-bounded projections for some D" depending only on D
and (X, &), as required. |

6.3. Bounds on stable asymptotic dimension. The asymptotic dimension of
a metric space is a coarse notion of topological dimension which is invariant under
quasi-isometry. Introduced by Cordes—Hume [CH17], the stable asymptotic dimen-
sion of a metric space X is the maximal asymptotic dimension of a stable subspace
of X.

The stable asymptotic dimension of a metric space X is always bounded above
by its asymptotic dimension. Behrstock, Hagen, and Sisto [BHS17a] proved that
all proper hierarchically hyperbolic spaces have finite asymptotic dimension (and
thus have finite stable asymptotic dimension, as well). The bounds on asymptotic
dimension obtained in [BHS17a] are functions of the asymptotic dimension of the
top level curve graph.
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In the following theorem, we prove that a hierarchically hyperbolic space (X, &)
has finite stable asymptotic dimension under the assumption that asdim(CS) < o,
where CS' is the hyperbolic space associated to the E-maximal domain S in &.

Recall that asymptotic dimension is monotonic under taking subsets. Thus, if X’
is assumed to be proper, so that asdim(CS) < oo, then X' (and therefore its stable
subsets) have finite asymptotic dimension by [BHS17a]. Here, using some geometry
of stable subsets we obtain a sharper bound on asdim,(X’) than asdim(X).

Theorem 6.6. Let (X, &) be a hierarchically hyperbolic space with unbounded prod-
ucts such that CS has finite asymptotic dimension, where S is the =—mazximal el-
ement of 6. Then asdim,(X) < asdim(CS). Moreover, if X is also proper and
geodesic, then there exists a continuous bijection i 0sX — 0. X.

Proof. By [CH17, Lemma 3.6], for any stability gauge N there exists N’ such
that X is N'-stable. Hence, there exists D’ > 0 depending only on N’ and
(X,6) such that ™) has D'-bounded projections. By Corollary 6.2, it follows
that the projection 7g: XS(N) — (S is a quasi-isometric embedding with constants
depending only on D’ and (X, &). Since every stable subset of X embeds into some
XN [CH17, Theorem A.V], the first conclusion then follows from the definition of
stable asymptotic dimension.

Now suppose that X is proper.

Since each XE(N) is stable in X', these sets have bounded projections by Corol-
lary 6.2; from this it follows that Xe(N) is hierarchically quasiconvex for each V.
Hence by [DHS17, Proposition 5.8], the canonical embedding i(™): xN o ox
extends to an embedding ). 5X6(N) — 0X.

By Corollary 6.2 and Lemma 6.5, we have i) <8XE(N)) c 0.X < dCS. Let

F 0sX — 0.X be the direct limit of the iV Since it is injective on each stratum,
7 is injective.

To prove surjectivity, let A € 0.X. Let e € X and fix a hierarchy path [e, A].
Since A € 0.X, [e, A\] has D-bounded projections for some D > 0. Let z,, € [e, A]
be such that x, — X in X. If [e, x,] is a sequence of geodesics between e and z,,,
then, by properness, the Arzela—Ascoli theorem, and passing to a subsequence if
necessary, there exists a geodesic ray v: [0,00) — X with y(0) = e such that [e, x,]
converges on compact sets to y. Since each [e, z,] has D-bounded projections, it
follows that « has D’-bounded projections for some D’ depending only on D and
(X,6). Moreover, by hyperbolicity of CS and the construction of v we have that
d8gus(r5(y), [e, A]) is uniformly bounded and thus, by the distance formula, so is
ditaus(~ [e, A]). Since [(zn)] = [y] by construction, it follows that i(y) = A, as
required.

Continuity of i) for each N follows from [DHS17, Proposition 5.8], as above.
This and the definition of the direct limit topology implies continuity of i |

The following corollary is immediate:

Corollary 6.7. If G is a hierarchically hyperbolic group, then G has finite stable
asymptotic dimension.
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6.4. Random subgroups. Let G be any countable group and p a probability mea-
sure on GG whose support generates a non-elementary semigroup. A k—generated ran-
dom subgroup of G, denoted I'(n) is defined to be the subgroup (w},w?,... , wk) <
G generated by the n*" step of k independent random walks on G, where k € N.
For other recent results on the geometry of random subgroups of acylindrically
hyperbolic groups, see [MS19].

Following Taylor-Tiozzo [TT16], we say a k—generated random subgroup I'(n) of
G has a property P if

P[I'(n) has P]—1 as n — oo.

Theorem 6.8. Let (X, 6) be an HHS for which the E-mazimal element, S, has CS
infinite diameter, and consider G < Aut(X, &) which acts properly and cocompactly
on X via the orbit map. Then any k—generated random subgroup of G stably embeds
n X.

Proof. By [BHS17b, Theorem K], G acts acylindrically on CS. Let I'(n) be gener-
ated by k independent random walks as above. Now, [TT16, Theorem 1.2] implies
that I'(n) a.a.s. quasi-isometrically embeds into CS, and hence I'(n) is hyperbolic.
Moreover, the distance formula implies that I'(n) is undistorted in G and any orbit
of T'(n) in X has bounded projections by the distance formula. By Theorem 4.4,
having bounded projections implies contracting; thus any orbit of I'(n) in X is
a.a.s. contracting, which gives the conclusion by Corollary 6.1. (Note that the di-
rections of Theorem 4.4 and Corollary 6.1 used here do not require that (X, &) has
unbounded products.) O

In particular, one consequence is a new proof of the following result of Maher—
Sisto. This result follows from the above, together with Rank Rigidity for HHG
([DHS17, Theorem 9.14]) which implies that a hierarchically hyperbolic group which
is not a direct product of two infinite groups has CS infinite diameter.

Corollary 6.9 (Maher—Sisto; [MS19]). If G is a hierarchically hyperbolic group
which is not the direct product of two infinite groups, then any k—generated random
subgroup of G is stable.

7. CLEAN CONTAINERS

The clean container property is a condition related to the orthogonality axiom.
In Proposition 7.2 this property is shown to hold for many, but not all, hierarchically
hyperbolic groups. Unlike earlier versions of this paper, this condition is no longer
needed to prove the main theorems of the earlier sections. However, we keep the
content in this paper since this property has found independent interest and is used
elsewhere.

Definition 7.1 (Clean containers). In a hierarchically hyperbolic space (X, &) for
each T' € & and each U € &p with {V € &1 | V L U} # & the orthogonality
axiom provides a container. If, for each U, such a container can be chosen to be
orthogonal to U, then we say that (X, &) has clean containers.

We first describe some interesting examples with clean containers. Then we show
that this property is preserved under some combination theorems for hierarchically
hyperbolic spaces. We refer the reader to [BHS19, Sections 8 & 9] and [BHS17a,
Section 6] for details on the structure in the new spaces.
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Proposition 7.2. The following spaces admit hierarchically hyperbolic structures
with clean containers.

(1) Hyperbolic groups.

(2) Mapping class groups of orientable surfaces of finite type.

(3) Special cubical groups, and more generally, any cubical group which admits
a factor system.

(4) m (M), for M a compact 3-manifold with no Nil or Sol in its prime de-
composition.

Proof. Hierarchically hyperbolic structures for these spaces were constructed in
[BHS17b] and [BHS19].

(1) The statement is immediate for hyperbolic groups, as they each admit
a hierarchically hyperbolic structure with no orthogonality, and thus the
container axiom is vacuous.

(2) For mapping class groups, in the standard structure, a container for do-
mains orthogonal to a given subsurface U is the complementary subsurface,
which is orthogonal to U.

(3) The statement follows immediately from [BHS17b, Proposition B] and
[HS16, Corollary 3.4].

(4) Given a geometric 3-manifold M of the above form, m (M) is quasi-isometric
to a (possibly degenerate) product of hyperbolic spaces, and so has clean
containers by Proposition 7.3. Given an irreducible non-geometric graph
manifold M, the hierarchically hyperbolic structure comes from considering
m1(M) as a tree of hierarchically hyperbolic spaces with clean containers
and hence has clean containers by Proposition 7.5. Finally, the general
case of a non-geometric 3—manifold M follows immediately from Proposi-
tion 7.4 and the fact that 71 (M) is hyperbolic relative to its maximal graph
manifold subgroups. O

Proposition 7.3. The product of two hierarchically hyperbolic spaces which both
have clean containers has clean containers.

Proof. Let (Xp,Sp) and (X1,61) be hierarchically hyperbolic spaces with clean
containers. In the hierarchically hyperbolic structure (Xy x X1, &) given by [BHS19,
Theorem 8.27] there are two types of containers, those that come from one of the
original structures and those that do not. Containers of the first type are clean, as
both original structures have clean containers.

The second type of container consists of new domains obtained as follows. Given
a domain U € G;, a new domain Vi is defined with the property that it contains
under nesting any domain in &; which is orthogonal to U and also any domain in

&,;41. Thus, by construction V; is a container for everything orthogonal to U. As
Vu L U, the result follows. O

Proposition 7.4. If G is hyperbolic relative to a collection of hierarchically hyper-
bolic spaces which all have clean containers, then G is a hierarchically hyperbolic
space with clean containers.

Proof. That G is a hierarchically hyperbolic space follows from [BHS19, Theorem
9.1]. In the hierarchically hyperbolic structure on G, no new orthogonality relations
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are introduced, and thus all containers are containers in the hierarchically hyper-
bolic structure of one of the peripheral subgroups. As each of these structures have
clean containers, it follows that G does, as well. O

The following example relies on the combination theorem [BHS19, Theorem 8.6].
We provide this as another example of hierarchically hyperbolic spaces with clean
containers, but since we don’t rely on this elsewhere in the paper, we refer to
that reference for the relevant definitions. Nonetheless, we include a full proof
for the expert, since it is short. (We note that after this paper was circulated,
Berlai and Robbio proved a combination theorem under weaker conditions than
[BHS19, Theorem 8.6] and, in the process, also proved that if all the vertex spaces
have clean containers, then so does the combined space, see [BR, Theorem A].)

Proposition 7.5. Let T be a tree of hierarchically hyperbolic spaces satisfying the
hypotheses of [BHS19, Theorem 8.6], so that X (T) is hierarchically hyperbolic. If
for each v € T, the hierarchically hyperbolic space (X,,S,) has clean containers,
then so does X (T).

Proof. This follows immediately from the proof of [BHS19, Theorem 8.6] and the
fact that edge-hieromorphisms are full and preserve orthogonality. In the notation
from that result, we note that, if &, has clean containers for each v € T, then
the domain A4, € &, described in the proof also has the property that A, L U,.

Therefore, as edge-hieromorphisms are full and preserve orthogonality, [4,] L [U].
O

The following uses the notion of hierarchically hyperbolically embedded subgroups
introduced in [BHS17a]; see also [DGO17] for the related notion of hyperbolically
embedded subgroups.

Proposition 7.6. Let (G,S) be a hierarchically hyperbolic group with clean con-
tainers, and let H be a hierarchically hyperbolically embedded subgroup of (G,S).
Then there exists a finite set F' < H — {1} such that for all N< H with FAN =
and H/N is hyperbolic, the group G/N, obtained by quotienting by the normal
closure, is a hierarchically hyperbolic group with clean containers.

Proof. Recall that in the hierarchically hyperbolic structure (G/N, & y) obtained in
[BHS17a, Theorem 6.2] (and in the notation used there), two domains U,V € Gy
satisfy U = 'V (respectively U L V) if there exists a linked pair {U,V} with U € U
and V € V such that U = V (respectively U L V). Let T € &Gy and U € (Gy)r
with V = {V € &7 | V L U} # ¢J. To prove the container axiom, we consider
domains T,U,V € & such that T e T, U € U and V € V for all V € V, and such
that any pair is a linked pair. Then the orthogonality axiom for (G, &) provides
a domain W such that W 2 V and W = T. As (G,S) has clean containers,
we also have that W L U. This implies that pg and pg/ are coarsely equal by
[DHS17, Lemma 1.5], and so {U, W} is a linked pair. Therefore, W L U. O

APPENDIX A. ALmosT HHSS ARE HHSs
By DANIEL BERLYNE AND JACOB RUSSELL

The main result in this appendix is that every almost HHS structure can be pro-
moted to an HHS structure. Recall that, as introduced in Section 3.2, an almost
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HHS is a space which satisfies all the axioms of an HHS except for the orthog-
onality axiom, which is instead replaced by a weaker axiom without a container
requirement. In Theorem A.1, we show that an almost HHS structure can be made
into an actual HHS structure by adding appropriately chosen “dummy domains” to
serve as the containers. This result provides a useful method for producing an HHS
structure while only needing to verify the weaker axioms of an almost HHS. This
method is used in the main text in the proof of Theorem 3.7, where it is shown that
every hierarchically hyperbolic space with the bounded domain dichotomy admits
an HHS structure with unbounded products.

Theorem A.1l. Let (X, &) be an almost HHS. There exists an HHS structure R
for X so that & < R, and if W € R — & then the associated hyperbolic space for
W is a single point.

To prove Theorem A.1, we will need to collect three additional tools about almost
HHSs. Each of these tools was proved in the setting of hierarchically hyperbolic
spaces, but they continue to hold in the almost HHS setting. Indeed, the only
use of the containers in their proofs is [BHS19, Lemma 2.1], which proves that the
cardinality of any collection of pairwise orthogonal domains is uniformly bounded
by the complexity of the HHS.

The first tool says the relative projections of orthogonal domains coarsely co-
incide. Note, pg/ and pg are both defined when WhQ or W & @ and V(@ or
V.

Lemma A.2 ([DHS17, Lemma 1.5]). Let (X, &) be an almost HHS. If W,V € &
with W LV, and Q € & with pg and pg both defined, then dQ(pg,pg) < 2Ko
where kg is the constant from the consistency axiom of S.

The second tool we will need is the realization theorem for almost HHSs. The
realization theorem characterizes which tuples in the product [ [,,.g CV are coarsely
the image of a point in X'. Essentially, it says if a tuple (by) € [ [,g CV satisfies
the consistency inequalities of an almost HHS (see Definition 2.6), then there exists
a point x € X such that 7y (z) is uniformly close to by for each V € &.

Theorem A.3 (The realization of consistent tuples, [BHS19, Theorem 3.1]). Let
(X,6) be an almost HHS. There exists a function 7: [0,00) — [0,00) so that if

(bv)ves is a k—consistent tuple, then there exists x € X so that dy (z,by) < 7(k)
forallV e &.

The last result we need is that the relative projections of an almost HHS also
satisfy the inequalities in the consistency axiom.

Lemma A.4 (p—consistency, [BHS19, Proposition 1.8]). Let & be an almost HHS
structure for X and V,\W,Q € &. Suppose WhQ or W = Q and WAV or W Z V.
Then we have the following, where kg is the constant from the consistency axiom
of (X,6).
(1) If QAV, then min{dg(pl), ), dv (o, ptY )} < 2s0.
(2) If Q =V, then min{dv (o, p{¥), diam(pf} L pf (pt}))} < 20.
We are now ready to prove that every almost HHS is an HHS (Theorem A.1).

If (X,6) is an almost HHS, then the only HHS axiom that is not satisfied is the
container requirement of the orthogonality axiom. The most obvious way to address
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this is to add an extra element to & every time we need a container. That is, if
V,W e & with V & W and there exists some @ = W with @ L V, then we add
a domain Dx‘//v to serve as the container for V in W, i.e., every @ nested into W
and orthogonal to V' will be nested into DI‘//V. However, this approach is perilous as
once a domain @ is nested into Dj,, we may now need a container for @ in Dj;!
To avoid this, we add domains D% where V is a pairwise orthogonal set of domains
nested into W; that is, D}}V contains all domains ) that are nested into W and
orthogonal to all V' € V. This allows for all the needed containers to be added at
once, avoiding an iterative process.

Proof of Theorem A.1l. Let (X,&) be an almost HHS and let £ > 0 be the maxi-
mum of all the constants in &. Let V denote a non-empty set of pairwise orthogonal
elements of & and let W € &. We say the pair (W,V) is a container pair if the
following are satisfied:

e forall VeV, VeEW,
e there exists Q £ W such that Q L V for all V e V.

Let © denote the set of all container pairs. We will denote a pair (W,V) € © by
DY,

Let R = G u®. We will prove X has a hierarchically hyperbolic space structure
with index set R. Since (X, &) is an almost HHS, we can continue to use the spaces,
projections, and relations for elements of G. Thus we only define new projections,
relative projections, and relations when elements of © are involved. If DY, € D,
then the associated hyperbolic space, CDY, will be a single point.

Projections: For DVW € ®, the projection map is just the constant map to the
single point in CD%.

Nesting: Let Q € & and D}j,, DX € D.

e Define QE D}, f QEW in S and Q LV forall VeV,

e Define DY, = Qif W EQ in &.

e Define DY, = DR if W £ T in & and for all R € R either R L W or there
exists VeV with R= V.

These definitions ensure T is still a partial order and maintain the E—maximal
element of & as the E—maximal element of fR.
Since the hyperbolic spaces associated to elements of ® are points, define pgv =
w

CDY, for evervy Q € R and DY, € © with Q@ = DY,. The downwards relative
projection pgw : CDY, — CQ can be defined arbitrarily.

If DY, € © and Q € & with D}, © @, then V & Q in & for each V € V. Thus we

\% \4
define pgw = Uvey pg. Lemma A.2 ensures that pgw has diameter at most 4F.
In this case, we define pgv :CQ — CD% as the constant map to the single point
w

in CDY,.

Finite complexity: First consider a nesting chain of the form D“f‘} = D‘l,}[? =
R l)vn

= My -

Claim A.5. The length of D% c D% [ D“f‘}"” is bounded above by E? + E.

Proof. For each V € | J;_, Vi, we have V = W and hence V &£ W. As D“,}[}"1 = D“f‘}'
for each i € {2,...,n}, every element of V; must therefore be nested into an element
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of V;_1. Denote the elements of V; by V{,. V,; Since each V; is a pairwise
orthogonal subset of &, we have k; < E for each i € {1,...,n} by the bounded
pairwise orthogonality axiom of an almost HHS (Definition 3.4). We define a V-
nesting chain to be a maximal chain of the form V" £ Vﬁ;l C---cV} for some
me{l,...,n}and j; € {1,...,k;}, with i € {1,...,m}. Since the elements of V; are
pairwise orthogonal for each i € {1,...,n}, if V/" is the =-minimal element of a
V-nesting chain, then V" is nested mto exactly one element of V; for each i < m.
This implies that each V-nesting chain is determined by its =-minimal element.
Further, the set of E—minimal elements of V—nesting chains is pairwise orthogonal.
By the bounded pairwise orthogonality axiom of an almost HHS, this implies there
exist at most E V-nesting chains.

In order for D% # D%“, either k;11 < k; or there exists j; € {1,...,k;},
Jit1 € {1,...,k;i11} such that Vj:ll - VJZ Thus, every step up the chain D},}[} =
D%}" [ D%}”’ results in either a strict decrease in k; (the cardinality of V;) to
k;11 (the cardinality of V; ;1) or a strict step down one of the V-nesting chains. Note
that k; may increase when we encounter a strict step down one of the V-nesting
chains, since multiple elements of V;;; may be nested into the same element of
V;. Such an increase in k; corresponds to the nesting chain branching into multiple
chains, which may only happen at most F — k; times, as there are at most F
V-nesting chains. Hence, the length of D},)Vl o DVW2 [ DVW" is bounded by
k1 + (E — k1) = E plus the total number of times a strict decrease can occur across
all of the V—nesting chains.

Each V-nesting chain V" C V-m*1 E - E V1 contains at most E distinct
elements of G by the finite complex1ty of G. Bounded pairwise orthogonality implies
there are at most E different V-nesting chains, thus the number of steps of the

chain D}/)Vl C DV2 . D},}[}‘ where there is a strict decrease within one of the
V-nesting chains is at most E2. This bounds the length of Dv1 = Dv2 R D},}[}‘
by E? + E. O

We now consider a nesting chain of the form Dvl1 c DV2 c - DV In
this case, W1 E W5 E --- E W,,, but not all of these nestmgs must be proper Let
1 =141 < iy <--- < iy be the minimal subset of {1,...,n} such that if i; <4 < ij41,

then W, = W;. Thus W;, € W;, = --- & W, , and k < E by finite complexity of
G. Claim A.5 established that |i; —ij41| < E? + E, so n < k(E? + E) < E® + E?,
that is, any Z—chain of elements of © has length at most E3 + E2.

Finally, since any &——chain of elements of R can be partitioned into a &=—chain
of elements of ® and a Z—chain of elements of &, any C—chain in R has length at
most E? + E? + E.

Orthogonality: Two elements DV DR € ® are orthogonal if W L T in &. Let
Q € & and DY, € ©. Define Q L DV 1f7 in &, either W L @ or Q = V for some
V e V. These deﬁnitions7 plus the deﬁnition of nesting, imply for all W, V,Q € fR,
ifW 1L Vand Q EV, then W L V. We now verify that R satisfies the container
requirements of the orthogonality axiom.

Let W,V e 6 with Vo Wand {QeRw:QLV}#Z, ie, (W, {V})isa
container pair. In this case, the container of V' in W for R is D‘{,“,/ ) We now show
containers exist for situations involving elements of ©. We split this into three
subcases.
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Case 1 (DY, € © and Q € & with DY, £ Q). Since (W, V) is a container pair, there
exists Pe & with P W and V L P for all V € V. Suppose that D},}V requires a
container in @, that is, there is an element U of R that is orthogonal to DVW and

nested in Q. We verify that (Q, {P}) is a container pair and Dép} is a container of
DVW in Q.

IfTe®withT L DY, and TE Q, then T L W or T =V for some V € V.
In either case, we have T L P, so (Q,{P}) is a container pair and T' £ Dgp}. It
DF € ® with D} € Q and DF L DY, then T L W and T = Q. Since P = W,
this implies 7' L P. Therefore, (Q, {P}) is again a container pair, and D¥ = D{QP}.

Case 2 (DY, DF¥ € ® where DY, = DF). Since (W,V) is a container pair, there
exists P € G so that P= W and P L V for all V € V. Since D%,;V - D:,@, it follows
that for all R € R, either R 1 W or there exists V € V so that R £ V. In both
cases, R L P. Thus P = R u {P} is a pairwise orthogonal collection of elements of
&. Suppose that D},’V requires a container in DX, that is, there is an element U of
R that is orthogonal to DY, and nested in D¥. We verify that (T, P) is a container
pair and D] © DF is a container for DY, in DF.

If Q € G satisfies @ = D:,@ and D% 1 @, then either Q@ L W or Q E V for some
V e V. In both cases, @ L P. Further, we must have Q £ T and @) 1 R for each
Re R as Q = DF. Thus (T,P) is a container pair and Q = DJ. On the other
hand, if DS € © satisfies DCZ2 s D},)V and DS = Dgpz, then Q@ L W, Q = T, and
for each R € R either R L Q or there exists Z € Z with R = Z. Since (Q, 2) is a
container pair, there exists U € & such that U £ @ and ULZ for all Z € Z. Since
Q LW, wealsohave U L PasU = @Q and P = W. For each R € R, either R 1 ()
or there exists Z € Z with R = Z. In both cases, R 1 U. Thus, U is orthogonal
to all elements of P = R u {P} and moreover U C Q = T, so (T, P) is a container

pair. Furthermore, DS c DF = D?U{P} since DS C DF and P1Q. We have
therefore shown that DZF) is a container for D% in D}a.

Case 3 (DF € ® and Q € & with Q = DF). This implies Q@ = RuU{Q} is a pairwise
orthogonal set of elements of &. Further, suppose that ) requires a container in
D}a, that is, there is an element of R that is orthogonal to () and nested in D:,@.
We verify that (T, Q) is a container pair and D% is a container for @ in DF.

Suppose there exists V € & with V £ DF and V L Q. Then V = T and V
is orthogonal to all the elements of R u {Q}. Thus (7, Q) is a container pair, so
D exists and V = DZ. Now suppose there exists D}j, = DR such that DY, L Q.
Since (W, V) is a container pair, there exists U € & with U £ W and U orthogonal
to each element of V. As DY, = DX, for each R e R either R L W or there exists
V € V such that R = V. In both cases, R 1 U. Further, as Q 1 D%, we have
Q1L WorQcV for some V e V. In both cases, Q L U. Therefore U is orthogonal
to every element of Q, and moreover U = W = T since DI‘,}V = D;’ﬁ. Thus (T, Q) is
a container pair and U E D%. Now, for each R € R, either R L W or R V for
some V e V. Since Q = R U {Q} and Q LW, this implies DY, = D. Thus, (T, Q)
is a container pair and D% is a container for @ in D?.

Transversality: An element of R is transverse to an element of ® whenever it
is not nested or orthogonal. Since the hyperbolic spaces associated to elements of
® are points, we only need to define the relative projections from an element of ©
to an element of G. Let DY, € ® and @ € & and suppose DY, AQ. This implies
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W £ @Q and W &£ Q. We define pg‘\’;" based on the G-relation between ) and the
elements of V.

IfQ LV forall VeV, then QE W as Q = W would imply Q = DY
4

Thus we must have QAW , so we define pgw =00

IfVAQ or V & @ for some V € V, then pg exists and we define pg‘\’)" to

be the union of all the pg for V € V with VAQ or V & Q. Lemma A.2

4
ensures ng has diameter at most 4F in this case.

If Q = V for some V, then @ L D}, which contradicts QhDY,,, so this case
does not occur.

Consistency: Since the only elements of SR whose associated spaces are not
points are in &, the first two inequalities in the consistency axiom for (X, &) imply
the same two inequalities for (X, 9R). To verify the final clause of the consistency
axiom, we need to check that if Q, R,T € fR such that Q ©— R with p¥ and p?
both defined, then dT(pgf?, pR) is uniformly bounded in terms of E. We can assume
T € & as CT has diameter zero otherwise. We can further assume at least one of )
and R is an element of ®, as we already have the consistency axiom for elements

of &.

Case 1 (Q= R T).

Assume Q € & and R = DY, € D. Fix V € V. Since D}, = R = T and
p?&’ = Uvev p%., we have p¥. < p?g’)" = plt. Since V L @, Lemma A.2 says
dr(pff, p7) < dr(pf, pF) < 2F.

Assume Q = DI‘,)V e® and Re &. Fix V € V. In this case, p¥ c p? since
DVW = @Q = T. Since D}}V =Q < R, we have V& W & R. Thus, the
consistency axiom for & says dr(p3, p&) < dr(p¥, p¥) < E.

Assume Q = DY, € © and R = DY, € ®. Thus W = W’ & T and
consistency in & implies dT(p%/,p%V/) < E. Fix V€ Vand V' € V.
Consistency in & also implies dr(p¥, p)¥) < E and dT(p¥/,p7W/) < E.
Since p¥. < p2 and pY¥’ < p2, we have

dr(p, p) < dr(p¥, Py ) < dr(py, p)

/

+diam(py) + dr(py , pr ) +diam(pf”) +dr(p} . pY ) < 5E.

Case 2 (Q = R, RAT, and Q £ T). In this case we have either QAT or Q = T

Assume Q € & and R = DY, € ©. Since D), = R is transverse to T we
cannot have T £ V for any V € V (this would imply DY, L T). If V. L T
for all Ve V, then WAT (as shown in the proof of transversality) and

4
PRt = plT)W = p¥¥. Since Q E R = DY, we have Q = W and consistency in

G implies dT(p?,pﬁ) = dT(pTQ,pZVY) < E. If instead there exists V € V so
4

that VAT or V & T, then p¥. < p?"" =plt. Since QE R=D},,Q LV

and Lemma A.2 gives dT(p%pﬁ) < dﬂp%p%) < 2F.

Assume Q = D}j, € © and R € &. As before, T & V for all V € V. First

assume there exists V € V so that VT or V = T'. This occurs when either
DY, = Q = T or QAT and not every element of V is orthogonal to 7. In
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both cases, p¥. = p?y" = pg and consistency in & implies dT(pg,pg) <
dr(p¥,p%) < 2E because V.£ W & R. Now assume 7 L V for all
V e V. This can only occur when DI‘,)V = (Q is transverse to 7. In this
case, WAT and p? = p?y‘/ = p¥. Since W £ R, consistency in & implies
dr(pf, p3) = dr(pf, p}Y) < E.

e Assume @ = DY, € © and R = D%,’V,, € ®. As before, T & V for all
VeVuV. If pft = pi¥ ', then we have the first case of transversality, that
is, W/AT and V' L T for all V' € V. Thus, if p& = p:,W/, then the result
reduces to the previous bullet, replacing R with W’. We can therefore
assume plt # plV " meaning we have the second case of transversality where
there exists V' € V' so that V' is either transverse to or properly nested
into T'.

Suppose p? # py¥ too. This implies there also exists V € V so that
V' is either transverse to or properly nested into 7. Furthermore, p¥ c
p? and p¥/ c pf. Now, Dy, D%/, implies V! 1 W or V' is nested
into an element of V. If V/ L W, then V 1L V' and Lemma A.2 implies
dT(pg,pg) < dT(p¥,p¥/) < 2E. If V' is nested into an element of V, then
either V' &£ V or V' L V since V is a pairwise orthogonal subset of &. By
applying consistency in & when V/ = V or Lemma A.2 when V' 1 V| we
have dr(pF, pf) < dr(p}, pf) < 2E.

Now suppose p? = p¥. Then DY, © DI‘,}V/, implies V! 1L W or V' is
nested into W. Applying Lemma A.2 if V/1W, or consistency in & if
V' £ W, we again obtain dT(pTQ,pg) <dp(plV, p¥') < 2E.

Uniqueness, bounded geodesic image, large links: Since the only elements
of ! whose associated spaces are not points are in &, these axioms for (X', R) follow
from the fact that they hold in (X, &).

Partial realization: Let T1,...,T), be pairwise orthogonal elements of R, and
let p; € CT; for each i € {1,...,n}. Without loss of generality, assume 71, ..., T € &
and Tgy1,...,T, €D where k € {0,...,n}. If k =0 (resp. k = n), then each T; € D
(resp. T; € G).

Vi

Forie{k+1,...,n}, let T; = D}/}VZ and let ¢; be any point in pW:Vi < CW,.
Since T1, ..., T, are pairwise orthogonal, it follows that Wy, ..., W, are pairwise
orthogonal too, and for each j € {1,...,k}, T; is either nested into an element of
some V;; or orthogonal to all Wi 1, ..., W,,. Without loss of generality, assume that
T1,...,T; are nested into elements of V,,, 1 U+ UV, and Ty v, ..o, Thoy W1, -, Wiy
are pairwise orthogonal, where | <k, m <n,and n—m <I[. If [ =0, then n =m
and each T} is orthogonal to every W;. Otherwise, for each j € {1,...,1}, T} is
nested in some W; for i € {m + 1,...,n}. In both cases, T1,..., Tk, Wgi1,..., Wy,
are pairwise orthogonal elements of &. We can therefore use the partial realization
axiom in & on the points p1,..., Pk, qk+1,---,qm to produce a point x € X with
the following properties:

(1) dp,(z,p;) < Eforie {1,...,k};

(2) dw,(z,¢q;) < Eforie{k+1,...,m};

(3) forallie {1,...,k} if QAT or T; = Q, then dg(x, py) < E;

(4) for allie {k+1,...,m} if QAW; or W; = Q, then dg(z, ppy’) < E.
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Now, for Q € &, define b € CQ as follows. Let V = |J;_, ., Vs and Vg = {V €
V:VAQ or V& Q). If Vg # &, then define by to be any point in UVer pg. Since
V is a collection of pairwise orthogonal elements of &, the diameter of UVGVQ pg is
at most 2F by Lemma A.2. If either Q £ V for some Ve Vor Q LV forall VeV
then define by = mg(x). Since V is a collection of pairwise orthogonal elements of
G, these two cases encompass all elements of &.

Claim A.6. The tuple (bg)ges is 3E—consistent.

Proof. Let R,Z € &. Recall that if by = wz(x) and by = 7r(z), then the F—
consistency inequalities for b and by are satisfied by the consistency axiom of
(X, 6). Thus we can assume that there exists V € V so that either V & Z or VA Z.
Fix V € V so that bz € py. We need to verify the consistency inequalities when
RANZ, Rz Z,and Z & R.

Consistency when RhZ: Assume RhZ. If R LV, V E R, or RE V then
either Lemma A.2 or consistency in & implies dZ(p‘Z/, pg) < 2E. Since by € pg,
we have dz(bz, p%) < 3E. Now suppose RAV so that Vg is non-empty. In this
case, br € Uyey,, Pk and so by is within 2 of pj;. Now, if dz(bz, pF) > 3E, then
dz(p%,p%) > 2E. Thus p-consistency (Lemma A.4) implies dr(pk, p%) < E. It
follows that dr(br, p%) < 3E by the triangle inequality.

Consistency when R T Z: Assume R = Z. As before, if R L V, V £ R,
or R £ V then dz(pY, p%) < 2F and we have dz(bz,p%) < 3E. Thus, we can
assume RAV so that bg is within 2E of p%. Now, if dz(bz, p%) > 3E, then
dz(pY,p%) > 2E, and p-consistency implies diam(p}% U p%4(pY)) < E. However,
this implies diam(bgr U p%(bz)) < 3E since bz € py and dg(br, p}) < 2E.

Consistency when Z C R: Assume Z = R. If R is orthogonal to all elements
of V, then R 1 V implies V' 1 Z which contradicts the assumption that V = Z or
VAZ. On the other hand, if there exists V' € V so that R & V', then either R L V
(if V' LV)or ReV (if V/ = V). But this implies either V' L Z or Z £ V, both of
which give a contradiction if VAZ or V & Z. There must therefore be an element
of V that is either properly nested in or transverse to R, and we can repeat the
same argument as in the previous case, switching the roles of R and Z. O

Let y € X be the point produced by applying the realization theorem (Theorem
A.3) in & to the tuple (bg). We claim y is a partial realization point for p1,...,p,
in R. Since CD“/)I}; is a single point, y satisfies the first requirement of the partial
realization axiom in R for pgy1,...,pn. For i < k, T; is either nested into an
element of V,;, 41 U -+ UV, or orthogonal to all Wy, 1,...,W,. This implies T; is
either nested into an element of V or orthogonal to all elements of V. In both cases
br, = mr,(z), and we have that 77, (y) is uniformly close to 7z, (z), which is in turn
FE—close to p;.

Now, let Q € & with QAT; or T; = Q for some i € {1,...,n}. We verify
do(y, pg) is uniformly bounded when ¢ < k and ¢ > k separately.

Assume ¢ < k, so that T; € 6. If i < k and bg = mg(x), then dQ(y,pg) is
bounded by item (3). If i < k and bg # mg(x), then by € pg, for some V e V
and T; is either orthogonal to or nested into V. If T; LV then dQ(bQ,pg") < 3E

by Lemma A.2. If T; © V then dQ(bQ,ij) < 2F by consistency. The result then
follows from the triangle inequality since mg(y) is uniformly close to bg.
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DY
Now assume ¢ > k, so that T; = D}jvl e®. If DVWZ = @, then pg c pQWi for
Dy
all V e V;. Since bg is within 2E of any pg for V' e V;, this bounds dg(y, pQwi)
uniformly. On the other hand, if DVWZ AQ, then either @ L V for all V € V; or there

Vi
Wi

i

D
exists V € V; so that VAQ or V (. In the latter case, pg < pg and we are

finished since bg is within 2E of pg, giving a uniform bound on the distance from
v, v
W,

DYi D
mQ(y) to pg ‘. In the former case, we must have W;h@ and pQW'i is equal to pg’i.
If bg = mg(x) then we are done by item (4). Otherwise, there exists V' € V —V; so
that V'AQ or V! & @Q and bg € pgl. Since V' L W;, it follows that pgl is within

\Z

i

i

D
2F of pg/i. Thus bg, and hence 7o (y), is uniformly close to pg/i = pQWi. This
concludes the proof of Theorem A.1.

Remark A.7. We say G is an almost HHG if there exists an almost HHS (X, &)
such that G and (X, &) satisfy the definition of a hierarchically hyperbolic group
where ‘HHS’ is replaced with ‘almost HHS’. The above proof shows that if (G, &)
is an almost HHG, then the structure R from Theorem A.l is an HHG structure
for G.

The following corollary gives criteria for the HHS structure from Theorem A.1
to have unbounded products. This is the version of Theorem A.1 that is applied in
Theorem 3.7 to prove that every hierarchically hyperbolic space with the bounded
domain dichotomy admits an HHS structure with unbounded products.

Corollary A.8. Let (X,T) be an almost HHS with the bounded domain dichotomy.
If for every non-=-maximal domain V € T, there exist W,Q € X so that W £V,
Q LV, and diam(CW) = diam(CQ) = oo, then the HHS structure R obtained by
applying Theorem A.1 to T has unbounded products.

Proof. Assume for every non—E—maximal domain V' € T, there exist W, Q € T so
that W =V, Q L V and diam(CW) = diam(CQ) = . Let R be the HHS structure
obtained from ¥ using Theorem A.1. If V € ¥ and V is not E—maximal, then
the above property implies that Fy and Ey are both infinite diameter. Thus, we
need only verify unbounded products for elements of R — ¥. Using the notation of
Theorem A.1, let D = D}, € R — T and assume diam(Fp) = c. Now, V L D},
for all V € V, and by construction of ¥, there exists @ € T so that Q@ £ V and
diam(CQ) = o0. Since @ L DY, this implies diam(Ep) = c0. Therefore (X, %R) is
an HHS with unbounded products. (Il
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