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Abstract. We generalize Gruber–Sisto’s construction of the coned–off graph of a small
cancellation group to build a partially ordered set T C of cobounded actions of a given
small cancellation group whose smallest element is the action on the Gruber–Sisto coned–
off graph. In almost all cases T C is incredibly rich: it has a largest element if and only if it
has exactly 1 element, and given any two distinct comparable actions [Gy X] � [Gy Y ]
in this poset, there is an embeddeding ι : P (ω)→ T C such that ι(∅) = [Gy X] and ι(N) =
[G y Y ]. We use this poset to prove that there are uncountably many quasi–isometry
classes of finitely generated group which admit two cobounded acylindrical actions on
hyperbolic spaces such that there is no action on a hyperbolic space which is larger than
both.

1. Introduction

The study of acylindrical actions on hyperbolic spaces is a powerful tool for understand-
ing algebraic properties of groups that admit aspects of non-positive curvature. The class
of groups that admit such actions on non-elementary hyperbolic spaces, called acylindri-
cally hyperbolic groups, is incredibly rich, including non-elementary hyperbolic and rela-
tively hyperbolic groups, non-exceptional mapping class groups, Out(Fn) for n ≥ 2, and
non-directly decomposable, non-virtually cyclic right-angled Artin and Coxeter groups,
among many others. Moreover, the consequences of being acylindrically hyperbolic are
far-reaching. Such groups are SQ-universal, have non-abelian free normal subgroups, a
maximal finite normal subgroup, infinite dimensional second bounded cohomology, and a
well-developed small cancellation theory [7, 12,14,15].

A single acylindrically hyperbolic group will admit many different acylindrical actions on
different hyperbolic spaces, and it is natural to ask how these actions relate to each other.
This kind of question was made precise in [4], where the authors and Osin define a partial
order on the set of actions of a group on a metric space as follows: G y X � G y Y
if given any points x ∈ X, y ∈ Y , the map (G.y, dY ) → (G.x, dX) given by g.y 7→ g.x
is coarsely Lipschitz1. The largest action of a group in this partial ordering is always the
action on its Cayley graph and the smallest action is the action on a point.

Under this partial ordering, the set of (equivalence classes of) cobounded actions of a
given group G on metric spaces has a natural poset structure; we call this poset Acb(G) [1].

Date: May 7, 2020.
1Strictly speaking the partial order is on the set of classes of equivalent actions.
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Moreover, it is shown in [1] that Acb(G) is isomorphic (as a poset) to the set of (possibly)
infinite generating sets of G, which we call G(G).

Let H(G) ⊂ G(G) be the set of equivalence classes [X] of generating sets of G such
that Γ(G,X) is hyperbolic for some (equivalently, any) representative X of [X], and we
let AH(G) ⊂ H(G) be the set of equivalence classes [Y ] of generating sets of G such that
Γ(G, Y ) is hyperbolic and the action Gy Γ(G, Y ) is acylindrical.

1.1. Small cancellation groups. In this paper, we investigate the structure of H(G)
and AH(G) for the class of small cancellation groups. Small cancellation theory provides
a rich class of finitely generated groups which can be constructed to satisfy rather exotic
properties. Graphical small cancellation theory, a generalization of classical small cancel-
lation introduced by Gromov, is a tool that allows one to construct groups whose Cayley
graphs have prescribed subgraphs. In [13], it is shown that all infinitely presented Gr′(1

6
)

graphical small cancellation groups are acylindrically hyperbolic. Thus it is natural to look
for hyperbolic spaces on which such groups act acylindrically. We describe an uncountable
family of such spaces as a subset of G(G).

Let P = 〈S |r1, r2, . . .〉 be a presentation defining a group G where each ri is cyclically
reduced, and let R be the set of all cyclic conjugates of the ri and their inverses. Roughly,
a piece in r ∈ R is a subword of r that also appears as a subword of some distinct r′ ∈ R.
Let L be the union of S and the set of all initial subwords of all r ∈ R, and let P 4 be the
set of all words in G which are a product of at most 4 pieces. Let G4L(P) be the set of
equivalences classes [X] of generating sets with a representative P 4 ⊆ X ⊆ L. For each ri
let Ci be a cycle labelled by ri, and let Xi be the subset of X consisting of subwords of
the cyclic conjugates of ri. For each i and each x ∈ X±1i , add an edge to Ci between the
initial and terminal vertex of any subpath of Ci labeled by x. By doing so, for each i, we
get a new graph which we call CX

i .

Definition 1.1. The poset of thin cones T C(P) is the subset of all X ∈ G4L(P) with
the property that there exists a constant δ ≥ 0 such that, for every i, CX

i is δ-hyperbolic.

Given λ > 0, we say P satisfies the C ′(λ) small cancellation condition (or just P is
C ′(λ)) if the length of any piece in r is no longer that λ times the length of r.

It was shown by Gruber and Sisto in [13] that whenever P satisfies C ′(1
6
), then [L] ∈

H(G). Moreover, Coulon and Gruber show in [11] that if P is uniformly power-free,
that is, there is some n such that xn 6∈ L for all x ∈ F (S) \ {1}, then [L] ∈ AH(G),
and every infinite order element of G is loxodromic with respect to the action of G on
Cay(G,L)2. We will show that under a slightly stronger hypothesis, the same results can
be obtained for all elements of T C(P).

Theorem A. Let P = 〈S |r1, r2, . . .〉 be a C ′( 1
24

) presentation defining a group G. Then
T C(P) ⊂ H(G). Moreover, if G is uniformly power-free, then T C(P) ⊂ AH(G).

2In fact both of these results are proved in the much more general setting of graphical small cancellation
theory.
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By construction, [L] is the smallest element in T C(P), i.e., [L] is comparable to and
smaller than every other element of T C(P).

We note that our thin cones construction starts with the Gruber-Sisto action and then
builds larger actions. This is in contrast to previous constructions, as in [12] and [1],
which typically start with a given action and produce smaller actions. The main difficulty
in producing larger actions is in managing to construct spaces for the actions which are
hyperbolic.

We next describe the structure of T C(P). Recall that P(ω)/F in is the poset of equiv-
alence classes of subsets of N, where two subsets A,B ⊆ N are equivalent if |A4B| < ∞
and A ≤ B if |A \ B| < ∞. We note that P(ω)/F in contains a copy of P(ω), as follows.
Write N as a union of infinitely many infinite subsets A1, A2, . . .. Then the set of all subsets
of N equal to a union of Ai’s is an embedded copy of P(ω).

Theorem B. Let P = 〈S |r1, . . .〉 be a C ′( 1
24

) presentation of a group G. If P is uniformly
power-free, then T C(P) ⊆ AH(G). Moreover, if P is power-free but not uniformly so (for
every x ∈ F (S) \ {1} there exists an n such that xn 6∈ L), then T C(P) ⊆ H(G) \ AH(G).
Additionally, one of the following occurs.

(i) |T C(P)| = 1, which occurs if and only if each CP 4

i has bounded diameter, or,
equivalently, each ri is a product of a uniformly bounded number of pieces.

(ii) |T C(P)| = 2ℵ0, and T C(P) has the following structure:
• There exist [X], [Y ] ∈ T C(P) such that there is no [Z] ∈ T C(P) satisfying

[X] � [Z] and [Y ] � [Z].
• For every distinct pair [X], [Y ] ∈ T C(P) such that [X] � [Y ], there is an

embedding of posets P(ω)/F in ↪→ T C(P) such that for each [Z] ∈ P(ω)/F in,
[X] � [Z] � [Y ].
• Every [X] ∈ T C(P) which is not the minimal element is contained in an

uncountable chain and in an uncountable antichain in T C(P).

The first point of (ii) is particularly striking, since in many natural examples AH(G) is
known to have largest elements. Our next goal is use T C(P) to study the larger posets
H(G) and AH(G).

1.2. Accessibility. A largest element in H(G) (respectively, AH(G)) corresponds to a
“best” action (respectively, acylindrical action) of G on a hyperbolic space. If a largest
element in H(G) (respectively, AH(G)) exists, we say the group is H–accessible (respec-
tively, AH–accessible). Notice that if a group is not hyperbolic, then the action on its
Cayley graph will not be an element of either poset, and thus the largest element, if it exists,
will not be a proper cocompact action. All hyperbolic groups (and all their finitely gener-
ated subgroups), mapping class groups, fundamental groups of 3-manifolds, and a class of
CAT(0) cubical groups which includes all virtually special groups are AH–accessible [1,2].

One obstruction to AH–accessibility can be found by considering the set of loxodromic
elements in the different acylindrical actions. An acylindrical action of a group on a
hyperbolic space in which every element that is loxodromic in some acylindrical action on
a hyperbolic space is loxodromic in this action is called a universal acylindrical action.
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A group which does not admit a universal acylindrical action cannot be AH–accessible.
The first author used this obstruction in [5] to show that Dunwoody’s inaccessible group,
which is finitely generated but infinitely presented, is not AH–accessible. Moreover, in
[3], the authors construct 2ℵ0 quasi-isometry classes of torsion-free groups which do not
admit universal acylindrical actions. However, this is not the only obstruction to AH–
accessibility. In [1], an example is given of a finitely presented group which admits a
universal acylindrical action on a hyperbolic space but is neither H– nor AH–accessible.

By construction, the Gruber-Sisto action is a universal acylindrical action, which implies
that every element in T C(P) is a universal acylindrical action, as well.

Definition 1.2. A group G is weakly H–accessible (respectively, weakly AH–accessible)
if there exists an action (respectively, acylindrical action) of G on a hyperbolic space X
such that G y Γ(G, Y ) � G y X for all actions [Y ] ∈ H(G) (respectively, all actions
[Y ] ∈ AH(G)). We do not require that G y X corresponds to an element of H(G)
(respectively, AH(G)), that is, the action may not be cobounded.

Clearly, ifG isH–accessible, then it is weaklyH–accessible, and similarly, AH–accessibility
implies weak AH–accessibility.

Theorem C. If P = 〈S |R〉 is a presentation of a group G which satisfies C ′( 1
24

) and
has “enough pieces”, then there is an uncountable set U ⊂ T C(P) such that for any two
elements [X1], [X2] ∈ U , if a (not necessarily cobounded) action G y Y dominates G y
Γ(G,Xi) for i = 1, 2, then Y is not hyperbolic. In particular, G is not weakly H–accessible.

The exact nature of having “enough pieces” is defined precisely in the hypotheses of
Theorem 6.8.

Theorem C gives the first examples of groups which are not weakly H–accessible. We
also have the following immediate corollary.

Corollary D. There are 2ℵ0 quasi-isometry classes of finitely generated groups which admit
a universal acylindrical action on a hyperbolic space, but are neither H– nor AH–accessible.

Small cancellation constants. We have no reason to believe that our results cannot be
improved to C ′(1

6
) presentations. The current method can be used to prove all of the above

results in the C ′( 1
14

) setting (which is the largest λ such that Proposition 3.10 holds). Any
improvement beyond this seems to require a different approach, as this is the first time we
are able to apply known classifications of polygons in small cancellation groups. We choose
to work in the C ′( 1

24
) setting as it is still technically difficult, and presents many of the same

challenges as the C ′( 1
14

) setting, but avoids 25 additional pages of agonising case-by-case

proofs. Working in the C ′( 1
24

) setting is particularly helpful to rule out configurations as
in Lemma 5.3(iii), as otherwise there are many more possible configurations in Proposition
5.9, including zippers of positive length.

Plan of the paper. In Section 3 we give the construction of the new graphs we call “thin
cones.” For our results, the only necessary example of a thin cone is the laced cone of
Example 3.2. In this section, we also explain how to define certain paths in the Cayley
graph Cay(G,S), which we call essential S-paths, from geodesics in Cay(G,X).
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The central result in this section is Proposition 3.10, which states that polygons in
Cay(G,S) whose sides are either essential S–paths or geodesics are combinatorial geodesic
polygons. In particular, the classifications of triangles and quadrangles from [18] and [6]
can be directly applied to such polygons. Another key result is Lemma 3.13, which gives
a restriction on the length of the intersection of one of these paths with a given relator.
These fundamental tools are heavily used throughout the later sections.

In Section 4, we prove that bigons in Cay(G,X) are thin, which implies that Cay(G,X)
is hyperbolic. We do this by studying the corresponding essential S-bigon in Cay(G,S),
which has degenerate and non-degenerate parts. We study these two parts separately using
a technical condition (∗). The case where (∗) is not satisfied (Proposition 4.3) is the most
technical part of this argument.

In Section 5, we gather various properties of “long thin” quadrangles (cf. (9)) and prove
that they are either degenerate in the sense that the top and bottom intersect in a long
path (Proposition 5.6), or that they are non-degenerate but with a very rigidly controlled
form (Proposition 5.9). Under the assumption that our presentation is uniformly power-
free, we show that the action of the group on the new graph is acylindrical, which proves
Theorem A. The key here is to use the degenerate and non-degenerate cases separately to
argue that if there are too many different long thin quadrangles - corresponding to a failure
in the definition of acylindricity - then this must be because one relator is appearing in
many of these quadrangles in different guises. This then implies that this relator contains
a subword which is a large power, contradicting the uniformly power-free hypothesis.

The classification of “long thin” quadrangles in Section 5.1 is quite technical and can
be safely skipped on a first reading. The main result from Section 5.1 that will be used to
prove acylindricity in Section 5.2 is Theorem 5.1.

Finally we use the actions on laced cones, together with the Gruber–Sisto action to prove
Theorems B and C in Section 6. Intuitively, the idea is that if one laces a cone from left
to right, and from top to bottom, then any action larger than both of these has not been
laced at all, and so contains biLipschitz embedded cycles. This is first explained within the
context of thin cones in Lemma 6.3, and is a key part of the proof of Theorem B. This is
not sufficient to prove Theorem C, a point which is explained in Remark 6.4. We describe
the necessarily stronger hypotheses and prove Theorem C as Theorem 6.8.
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2016 semester, and by a Titchmarsh Research Fellowship from the University of Oxford.
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2. Preliminaries

2.1. Hyperbolicity. A geodesic metric space X is δ–hyperbolic if, for every geodesic
triangle with sides γ1, γ2, γ3 we have

γ1 ⊆ Nδ(γ2 ∪ γ3) := {x ∈ X | dX(x, γ2 ∪ γ3) ≤ δ} . (1)

We say a geodesic metric space is hyperbolic if it is δ–hyperbolic for some δ.
For a graph Γ equipped with the shortest path metric, Γ is δ–hyperbolic for some δ if

and only if there exists some δ′ such that for every geodesic bigon γ1, γ2 we have

γ1 ⊆ Nδ′(γ2), (2)

by [17, Theorem 2].

2.2. Acylindrically hyperbolic groups. An action of a group G by isometries on a
metric space X is acylindrical if for all ε > 0 there exist constants M,N ≥ 0 such that
for all x, y ∈ X with d(x, y) ≥ M , the number of elements g ∈ G satisfying d(x, gx) ≤ ε
and d(y, gy) ≤ ε is at most N . Recall that given a group G acting on a hyperbolic metric
space X, an element g ∈ G is loxodromic if the map Z → X defined by n 7→ gnx is a
quasi-isometric embedding for some (equivalently any) x ∈ X. However, an element of
G may be loxodromic for some actions and not for others. Consider, for example, the
free group on two generators acting on its Cayley graph and acting on the Bass-Serre tree
associated to the splitting F2 ' 〈x〉 ∗ 〈y〉. In the former action, every non-trivial element
is loxodromic, while in the latter action, no powers of x and y are loxodromic. An element
g of a group G is a generalized loxodromic if there is an acylindrical action of G on
a hyperbolic space X such that g acts loxodromically. A non-virtually cyclic group is
acylindrically hyperbolic if and only if it contains a generalized loxodromic element
[16]. An acylindrical action of a group on a hyperbolic space is a universal acylindrical
action if every generalized loxodromic element is loxodromic.

The following notions are discussed in detail in [1]. We give a brief overview here. Fix
a group G. Given a (possibly infinite) generating set X of G, let | · |X denote the word
metric with respect to X. Given two generating sets X and Y , we say X is dominated
by Y and write X � Y if

sup
y∈Y
|y|X <∞.

Note that when X � Y , then the action Gy Γ(G, Y ) provides more information about the
group than Gy Γ(G,X), and so, in some sense, is a “larger” action. The two generating
sets X and Y are equivalent if X � Y and Y � X; when this happens we write X ∼ Y .

We let G(G) be the set of all equivalence classes of generating sets of G and let H(G)
(respectively, AH(G)) be the set of equivalence classes of generating sets X of G such that
Γ(G,X) is hyperbolic (respectively, Γ(G,X) is hyperbolic and the action Gy Γ(G,X) is
acylindrical), where Γ(G,X) is the Cayley graph of Γ with respect to the generating set
X. We denote the equivalence class of X by [X]. The preorder � induces an order on
AH(G), which we also denote �. We say an equivalence class of generating sets is largest
if it is the largest element in (A)H(G) under this ordering.
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Let Acb(G) be the set all equivalence classes of cobounded G–actions on geodesic metric
spaces. Given a cobounded action of G on a geodesic metric space S, a Svarc-Milnor
argument gives a (possibly infinite) generating set Y of G such that there is a G–equivariant
quasi-isometry between S and Γ(G, Y ). We define

σ : Acb(G)→ G(G) (3)

to be the map sending [Gy S] to [Y ], which is an isomorphism of posets by [1, Proposition
3.12]. It is clear that if Gy S is an action (respectively, acylindrical action) on a hyperbolic
space, then [Y ] ∈ H(G) (respectively, AH(G)).

2.3. Small cancellation theory. Given a group G which is generated by a symmetric
set X we denote the word metric on G with respect to X by dX and define |g|X = dX(1, g)
for all g ∈ G.

Given a set S, we denote byM(S) the free monoid over S. We define a formal inversion
in M(S t S−1) by the rule

(sε11 s
ε2
2 . . . sεnn )−1 = s−εnn . . . s−ε22 s−ε11 ,

where we associate each s ∈ S with s+1.
Let S be a set, and let F (S) denote the free group freely generated by S. Let R be a

set of cyclically reduced elements of F (S) (that is, each r ∈ R is of minimal length in its
conjugacy class), and define R to be the closure of R under reduced cyclic conjugation and
inversion. A word u ∈ F (S) is an initial subword of a r ∈ F (S) if there exists some
t ∈ F (S) such that r = ut is a reduced decomposition of r, i.e. the equality holds in F (S)
and |r|S = |u|S + |t|S. A piece of R is a word u ∈ F (S) which is an initial subword of at

least two distinct elements of R. Given λ > 0, we say that the presentation 〈S |R〉 satisfies
the C ′(λ) small cancellation condition if for any piece u which is an initial subword of
r ∈ R we have

|u|S < λ |r|S . (4)

A group G is called a C ′(λ) group if it admits a presentation 〈S |R〉 which satisfies the
C ′(λ) small cancellation condition. We will not assume that S is finite in general.

2.4. Diagrams.

Definition 2.1 (Diagram). A diagram is a finite, simply-connected, 2–dimensional CW
complex with an embedding into the plane, considered up to orientation-preserving home-
omorphisms of the plane. A diagram is called a disc diagram if it is homeomorphic to a
disc.

An arc in a diagram D is a maximal path of length at least 1 all of whose interior
vertices have valence 2 in D. An interior arc is an arc whose interior is contained in the
interior of D, and an exterior arc is an arc contained in the boundary of D. A face is
the image of a closed 2-cell of D. If Π is a face, its interior degree i(Π) is the number of
maximal interior arcs in its boundary. Likewise, its exterior degree e(Π) is the number
of maximal exterior arcs. An interior face is one with exterior degree 0; an exterior
face is one with positive exterior degree.
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One key result we will use for diagrams is Strebel’s curvature formula [18]. Let D be a
disc diagram without vertices of degree 2. Then

6 = 2
∑
v

(3− d(v)) +
∑
e(B)=0

(6− i(B)) +
∑
e(B)=1

(4− i(B)) +
∑
e(B)≥2

(6− 2e(B)− i(B)). (5)

One obvious consequence of this is the following special case of Greendlinger’s lemma.

Lemma 2.2. Let D be a disc diagram. There is a face B ⊆ D whose boundary consists of
1 exterior arc and at most 3 interior arcs.

Proof. Replace all interior arcs and exterior arcs by edges, so that the resulting diagram
has no vertices of degree ≤ 2. By (5) the only possible positive contribution from the right
hand side is from a face satisfying e(B) = 1 and i(B) ≤ 3. Since the left hand side is
positive there must be such a face. �

We will use the classifications of certain diagrams very heavily throughout the paper,
and so we recall the definitions and main results here.

Definition 2.3. A (3, 7)–diagram is a diagram such that every interior vertex has valence
at least three and every interior face has interior degree at least seven.

Definition 2.4. A combinatorial geodesic n–gon (D, (γi)i) is a (3, 7)–diagram D whose
boundary is a concatenation of immersed subpaths γ0, . . . , γn−1 (called sides) such that
each boundary face whose exterior part is a single arc that is contained in one of the γi
has interior degree at least 4. A valence 2 vertex that belongs to more than one side is
called a distinguished vertex. A face whose exterior part contains an arc not contained
in one of the sides is a distinguished face. A combinatorial geodesic n–gon is simple
if its boundary is a simple cycle, and non–degenerate if the same diagram cannot be
expressed as a combinatorial geodesic k–gon for any k < n.

We use the terms bigon, triangle and quadrangle in place of 2–, 3– and 4–gon respectively.

Theorem 2.5 (Strebel’s classification). A simple combinatorial geodesic bigon has the
form I1 below, a simple non–degenerate combinatorial triangle has one of the forms I2, I3,
II, III1, IV or V :
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I1 I2 I3

II III1 IV V

Figure 1. Combinatorial geodesic bigons and triangles. The dotted lines
indicate optional additional interior arcs; if they appear, there may be any
finite number of them.

Given a presentation 〈S |R〉, a diagram over this presentation is a diagram where all edges
are oriented and labelled by an element of S, and such that the label of the boundary of
any 2-cell is equal (as an element of F (S)) to an element of R. If the edge e = xy is labelled
by s and is oriented from x to y then we say that the label of the directed edge (x, y) is
s and the label of the directed edge (y, x) is s−1. We denote this by Lab(x, y) = s and
Lab(y, x) = s−1. The label of a directed path P = (x = x0, . . . , xn = y) (so each xixi+1 is
an edge) is

Lab(p) = Πn−1
i=0 Lab(xi, xi+1)

considered as a word in the free monoid M(S t S−1). Notice that since R contains all
cyclically reduced conjugates of the elements of R ∪ R−1 it does not matter which vertex
on the boundary we choose to start from or which orientation of the loop we choose, since
the resulting words are either all in R or all not in R.

The boundary word of a diagram D over a presentation 〈S |R〉 is the label of a shortest
length closed path P in the 1–skeleton of D whose image contains ∂D. It is well–defined
up to formal inversion and cyclic permutation of letters.

Diagrams are the main tool for studying small cancellation groups. The existence of
diagrams with given boundary word is guaranteed by the Van-Kampen lemma.

Lemma 2.6. Let 〈S |R〉 be a C ′(1
6
) presentation, and let w ∈ M(S t S−1) represent the

identity in G = 〈S |R〉. There exists a diagram D over this presentation with boundary
word w in which the label of every interior arc is a piece.

3. Coned-off graphs

One of the key difficulties of the paper is in using our geometric understanding of Γ(G,S)
to prove results about geodesic polygons in Γ(G,X). This section provides the vital bridge.
We construct paths in Γ(G,S) associated to geodesics in Γ(G,X). While these paths need
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not be geodesics, they are sufficiently nice that we may apply the classifications of bigons
and quadrangles in C ′(1/6) groups to our setting under the stronger C ′(1/14) hypothesis.
The key result is Proposition 3.10, which allows us to apply the classification of triangles
and quadrangles from [18] and [6].

3.1. Constructing new graphs. Let P = 〈S |R〉 be a C ′( 1
24

) presentation, and define
G = F (S)/ 〈〈R〉〉.3 Enumerate R = {r1, r2, . . .}. Recall the following sets, which were
defined in the introduction:

• L is the union of S and the set of all initial subwords of the cyclic conjugates of ri
and their inverses,
• P 4 is the set of all words in F (S) which are a product of at most 4 pieces,
• G4L(P) is the set of equivalences classes [X] of generating sets with a representative
P 4 ⊆ X ⊆ L, and
• for each i, Xi is the subset of X consisting of subwords of the cyclic conjugates of
ri and r−1i .

For any [X] ∈ G4L(P) and any representative X of [X], G acts on the Cayley graph
Γ(G,X). We now give a more geometric description of this Cayley graph for a particular
representative X satisfying P 4 ⊆ X ⊆ L.

For each ri let Ci be an oriented cyclic graph of length |ri|S whose edges are labeled
by elements of S so that the concatenation of these labels (respecting the orientation) is
a cyclic conjugate of ri. Let Xi be the subset of X consisting of subwords of the cyclic
conjugates of ri. For each i and each x ∈ X±1i , add an edge to Ci between the initial
and terminal vertex of any subpath of Ci whose label (respecting the orientation) is x.
By doing so, for each i, we get a new graph which we call CX

i . The cycles Ci embed in
Cay(G,S), and Cay(G,X) is precisely the graph formed by replacing each embedded copy
of Ci with an embedded copy of CX

i .
Recall that the poset of thin cones T C(P) is the subset of all X ∈ G4L(P) with the

property that there exists a constant δ ≥ 0 such that for each i, CX
i is δ-hyperbolic.

We call each embedded copy of CX
i in Cay(G,X) a cone, the copies of Ci in Cay(G,X)

the join of the cone, and the added edges cone edges. To distinguish between embedded
copies of Ci in Cay(G,S) or Cay(G,X) and Ci as a component of Γ, we call the embedded
copies of Ci relators. Each relator R is the join of a unique cone which we denote RX .
We call edges of Γ(G,X) labeled by elements of X \ S cone edges; note that these are
the images of cone edges in CX

i under the embedding into Cay(G,X). We refer to edges
that are not cone edges (that is, the edges of Cay(G,S)) as S–edges. We use dS and dX
to denote the natural metrics on Cay(G,S) and Cay(G,X), respectively.

Remark 3.1. It is sufficient to replace the requirement that X ⊇ P 4 with the following
weaker condition: the diameter of any piece in any Ci has uniformly bounded diameter

3We will implicitly assume throughout that every s ∈ S appears in some r ∈ R. If S′ is the set of s ∈ S
which do not appear in any r ∈ R, then G = F (S \ S′)/ 〈〈R〉〉 ∗ F (S′). All our results can be applied to
F (S \ S′)/ 〈〈R〉〉 and immediately lifted to the original presentation.
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in CX
i . The graph Cay(G,X ′), where X ′ = X ∪ P 4, is G-equivariantly quasi-isometric to

Cay(G,X), and so X ∼ X ′, which implies [X] ∈ T C(P).

The obvious example of a thin cone is [L], the coned-off graph considered by Gruber
and Sisto [13]. Before continuing with more of the theory, let us pause to give one other
important example of a thin cone.

Example 3.2. Let P = 〈S |R〉 be a C ′( 1
24

) presentation. Enumerate R = {r1, r2, . . .}, let

Ci be a cycle with label ri, set Ci = CP 4

i , fix a vertex xi in each Ci and define Pi to be the
set of all paths in Ci which connect two points y, z such that dCi(xi, y) = dCi(xi, z). Now
set

X((xi)i) = S ∪ P 4 ∪
⋃
i≥1

{Lab(P ) | P ∈ Pi} ⊆ L.

It is easy to see that the resulting graphs CX
i are always 1–hyperbolic, and therefore

[LC((xi)i)] ∈ T C(P). We call LC((xi)i) the laced cone based at (xi)i.

Ci

xi

Ci = CP 4

i

xi

C
X((xi)i)
i

xi

Figure 2. The construction of the laced cone based at (xi)i.

3.2. Associated paths. In order to prove the hyperbolicity of spaces Cay(G,X) we
will show that all bigons are uniformly thin, and to prove acylindricity of actions G y
Cay(G,X) we will need to study geodesic quadrangles. In preparation for both cases, we
will begin by constructing combinatorial geodesic bigons and quadrangles in Cay(G,S)
“associated to” geodesic bigons and quadrangles in Cay(G,X) using the small cancellation
assumptions. In order to do this, we must first define paths in Cay(G,S) which are asso-
ciated to geodesics in Cay(G,X). In this subsection we present the construction of such
paths and record a few of their properties.

Let γ be any geodesic in Cay(G,X). Number the vertices x0, . . . , xm in the order they
occur on γ (in particular, this means that dX(xi, xj) = |i− j|).

Choose a subsequence xij of the xi such that xi0 = x0 and, for each j ≥ 1, xij is the last
vertex in the sequence such that xij−1

, xij−1+1, . . . , xij all lie on some common relator Rj.
By construction, ij > ij−1, since our standing assumption is that any pair of neighbouring
vertices in Cay(G,X) are contained in some common relator.

For convenience we write yj = xij . For each geodesic γ in Cay(G,X), we fix the following
data:
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y0
y1

y2

y3
y4

y5
y6

Figure 3. The dotted path is an S–path associated to γ (solid), a geodesic
in Cay(G,X). Outlined in grey are relators R1, . . . , R6.

• a choice of relators R1, . . . , Rl satisfying the above conditions; and
• a choice of geodesics Pj ⊂ Rj from yj−1 to yj.

We now define a path P in Cay(G,S) (which a priori is not embedded) from y0 = x0 to
yl = xm to be the concatenation of geodesics Pj from yj−1 to yj in Cay(G,S). We call P
the S–path associated to γ.

While there appear to be many choices here, they will not make much difference. If
there is a choice of relators Rj and Rj′ , then yj−1 and yj lie on the piece Rj ∩ Rj′ , so
dX(yj−1, yj) = 1. If there is a choice of geodesics Pj ⊂ Rj, then yj−1 and yj lie at antipodal
points on Rj, and we must choose which way to go around this relator.

We now consider self-intersections of P , which come in two types:

(i) a single closed subpath Q of P whose image in Cay(G,X) is a tree;
(ii) a pair of subpaths Q1, Q2 of P with the same endpoints, such that the image of

Q1 ∪Q2 in in Cay(G,X) is a tree.

We call a self-intersection of type (i) simple if the initial/terminal vertex of Q is not
contained in the interior of Q.

The complexity of these self-intersections is limited by the following proposition, which
we will prove via a series of lemmas.

Proposition 3.3. Any self-intersection of type (i) is contained in a union of at most 4
consecutive Pi. There are no self-intersections of type (ii).

We begin with a simple observation about the choice of relators.

Lemma 3.4. If Rk = Rl, then k = l or |l − k| ≥ 4.

Proof. Suppose k 6= l, and assume without loss of generality that l > k. It is clear that
consecutive relators defining the S-path are distinct by construction, so l − k 6= 1. If
l − k = 2, then yk and yk+1 are both in Rk ∩ Rk+1 and so are connected by an edge in
Cay(G,X). Thus they are consecutive vertices in γ, which contradicts the choice of yk in
the construction of the S-path. Finally, if l−k = 3 we claim that Rk∩Rk+1∩Rk+2 contains
a vertex. To see this, notice that if it does not, then there is a simple geodesic triangle
T whose boundary consists of subgeodesics (in Cay(G,S)) of Rk, Rk+1 and Rk+2, but
this is easily seen to be impossible using the small cancellation assumption and Strebel’s
classification (Theorem 2.5). Specifically, by Lemma 2.2 there will always be a face F in
any reduced diagram D with boundary T such that the boundary of F is contained in:
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a union of a geodesic and at most 3 pieces, if ∂F is equal to one of Rk, Rk+1, Rk+2; or
at most 5 pieces if not, both of which contradict the small cancellation assumption. It
follows that there is a path from yk to yk+2 contained in the union of pieces Rk ∩Rk+1 and
Rk+2 ∩Rk+3. Since Rk = Rk+3, 2 ≤ dX(yk, yk+2) ≤ 1, which is a contradiction. �

Equipped with this we can now start limiting the self-intersections of type (i).

Lemma 3.5. Suppose P contains a closed subpath Q of type (i) which intersects each of
Pi, . . . , Pj (not necessarily consecutive indices) in at least an edge, and is contained in their
union. Then either j − i ≤ 3 or there exist k, l with i ≤ k ≤ l ≤ j and l − k ∈ {4, 5, 6}
such that each of Pk and Pl intersect Q in an edge, and Pk ∩ Pl contains a vertex in Q.

Proof. Let o be the initial/terminal vertex of Q, which is contained in Pi and Pj. Let us
suppose for a contradiction that j − i ≥ 4, and that for all k, l with i ≤ k ≤ l ≤ j and
l − k ∈ {4, 5, 6}, Pk ∩ Pl = ∅. We take a closed subpath of Q with j − i minimal; that is,
if i ≤ i′ ≤ j′ ≤ j, j′ − i′ ≥ 4 and Pi′ ∩ Pj′ 6= ∅, then i = i′ and j = j′.

First, suppose Pi ∩Q is contained in Pi+1 ∪ Pi+2 ∪ Pi+3. Then either j − i ≤ 6, in which
case the conclusion holds with k = i and l = j, or we can find a closed subpath of Q
contradicting the minimality assumption. In the latter case, we consider o as a point on
some Pi′ with 1 ≤ i′− i ≤ 3 and take the closed subpath of Q starting at o which contains
the edge of Pi ∩Q with end vertex o and ending at the original end of Q in Pj.

Otherwise, let p be the point closest to o contained in Pi ∩ Q ∩ (Pi+1 ∪ Pi+2 ∪ Pi+3).
Consider a closed subpath of T with initial and terminal vertex p which starts in some Pi′
with 1 ≤ i′− i ≤ 3 and finishes back at p in some Pj′ which contains the unique edge in Q
with end vertex p on the geodesic connecting p to o in Q. It follows by assumption that
j′ ≥ i+ 4. By minimality j′− i′ ≤ 3, so 4 ≤ j′− i ≤ 6, in which case the result holds with
k = i and l = j′, since p ∈ Pi ∩ Pj′ and both Pi and Pj′ contain an edge in Q. �

Lemma 3.6. Suppose P contains a self-intersection Q of type (i). If Q ∩ Pi and Q ∩ Pj
contain edges, Q ∩ Pi ∩ Pj contains a vertex, and |i− j| ≤ 6, then |i− j| ≤ 3.

Proof. Firstly suppose |i− j| = 4 and consider a path in Q from yi to yi+3. A case analysis
of the different possible configuration of such a subtree (see Figure 4) shows that this path
can be decomposed into two paths such that the first is contained in

⋃3
l=1(Pi ∩ Pi+l), and

the other is contained in
⋃3
l=1(Pj ∩ Pj−l). By Lemma 3.4, each of these is a union of at

most 3 pieces contained in Ri and Rj respectively. Thus 3 ≤ dX(yi, yi+3) ≤ 2 which is a
contradiction.

Next suppose |i− j| = 5. If P1 ∩ Pi+4 6= ∅ or Pi+1 ∩ Pi+5 6= ∅, then by considering
the appropriate subtree, we reach a contradiction as above. Thus we may assume that
Pi ∩ Pi+4 = ∅ and Pi+1 ∩ Pi+5 = ∅. Consider a path in Q from yi to yi+4. As above,
a case analysis shows that this path can be decomposed into two paths such that the
first is contained in

⋃3
l=1(Pi ∩ Pi+l), and the other is contained in

⋃3
l=1(Pj ∩ Pj−l). Thus

4 ≤ dX(yi, yi+4) ≤ 2 which is a contradiction.
Finally suppose |i− j| = 6. If Pi′ ∩ Pj′ 6= ∅ and |i′ − j′| ∈ {4, 5}, then we are in one of

the previous two cases and reach a contradiction. Thus we may assume that if Pi′∩Pj′ 6= ∅,
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Ri

Ri+1

Ri+2 Ri+3

Ri+4

yi

yi+3

(a)

Ri

Ri+1

Ri+2

Ri+3

Ri+4

yi

yi+3

(b)

Ri

Ri+1
Ri+2

Ri+3

Ri+4

yi

yi+3

(c)

Ri

Ri+1

Ri+2 Ri+3

Ri+4

yi

yi+3

(d)

Ri

Ri+1

Ri+2

Ri+3

Ri+4

yi

yi+3

(e)

Ri

Ri+1

Ri+2
Ri+3

Ri+4

yi

yi+3

(f)

Ri

Ri+1
Ri+2

Ri+3

Ri+4

yi

yi+3

(g)

Ri

Ri+1

Ri+2

Ri+3

Ri+4

yi

yi+3

(h)

Ri

Ri+1

Ri+2

Ri+3

Ri+4

yi

yi+3

(i)

Figure 4. The 9 possible configurations when |i − j| = 4. Note that by
Lemma 3.4, all Rk in the figure are distinct, except possibly Ri and Ri+4.

then |i′ − j′| ∈ {0, 1, 2, 3, 6}. Consider a path in T from yi to yi+5. A case analysis again
shows that this path can be decomposed into two paths such that the first is contained in⋃3
l=1(Pi ∩ Pi+l), and the other is contained in

⋃3
l=1(Pj ∩ Pj−l). Thus 5 ≤ dX(yi, yi+5) ≤ 2

which is a contradiction. �

Combining Lemma 3.6 with Lemma 3.5, we deduce that any self-intersection of type
(i) is contained in a union of at most 4 consecutive Pi as follows. If T intersects Rk and
Rl in edges, and l − k ≥ 4, then by Lemma 3.5 there exist k ≤ i < j ≤ l satisfying the
hypotheses of Lemma 3.6, and so l − k ≤ 3, which is a contradiction.

In order to deal with self-intersections of type (ii), we introduce a refinement of the
S–path associated to γ. The essential S–path associated to γ, which we denote by
Pess, is formed from P by removing the interiors of all self-intersections of type (i). By
definition Pess is connected and has the same end vertices as P (and therefore as γ, as
well). We now prove that Pess is embedded in Cay(G,S).



ACTIONS OF SMALL CANCELLATION GROUPS ON HYPERBOLIC SPACES 15

y0
y1

y2

y3
y4

y5
y6

Figure 5. The dotted path is an essential S–path associated to a γ (solid).
Compare this to the S–path in Figure 3.

Lemma 3.7. Any point on a self-intersection of type (i) is at distance at most 2 from Pess
in Cay(G,X). Moreover, if Pi ∩ Pess 6= ∅, then every vertex on Pi \ Pess is connected to
Pi ∩ Pess by an edge in RX

i .

Proof. That the distance from any point on a self-intersections of type (i) to Pess is uni-
formly bounded follows immediately from the fact that any such self-intersection is con-
tained in a union of at most 4 consecutive Pi and that the initial/terminal vertex of such
a closed subpath must, by definition, lie on Pess. That the bound is 2 follows from a case
analysis of the possible configurations of such trees. We illustrate one instance of the worst-
case scenario in Figure 6 below. To prove the last statement, notice that if Pi ∩ Pess 6= ∅
then there is a path from any vertex in Pi \Pess to Pi ∩Pess contained in

⋃3
l=1Ri ∩Ri+l or

in
⋃3
l=1Ri ∩Ri−l, and so by Lemma 3.4 they are connected by an edge in RX

i . �

Pi

Pi+1

Pi+2

Pi+3

x

y

Figure 6. There is a path (dotted) from x to a point y ∈ Pess consisting of
a piece Ri ∩ Ri+3 and the union of two pieces Ri+1 ∩ Ri+2 and Ri+1 ∩ Ri+3,
so the distance in Cay(G,X) from x to y is 2.

Lemma 3.8. Let P be an S-path constructed from geodesics Pi in relators Ri and let Pess
be the corresponding essential S-path. If there exists an i such that Pi ∩ Pess = ∅, then
dX(yi−1, yi) = 1. Moreover, at most two consecutive Pi’s can be disjoint from Pess.

Proof. If Pi ∩ Pess = ∅ then Pi is contained in a self-intersection of P of type (i) with the
additional property that the initial/terminal vertex of this self-intersection which is itself
contained in a union of paths Pj, . . . , Pj+l with l ≤ 3 by Lemmas 3.5 and 3.6. It is clear
that Pj∩Pess and Pj+l∩Pess are not empty, so i 6= j, j+ l . Thus we have at most 2 choices



16 ABBOTT AND HUME

for i, and, it follows that Pi is contained in a union of at most 3 pieces: the intersections
with the other paths in this self-intersection of P . Hence dX(yi−1, yi) = 1. �

Before continuing, we pause for one remark. The 1-skeleton of a reduced diagram can
be naturally embedded as a labelled subgraph of Cay(G,S), so given a face F in a reduced
diagram D whose boundary is explicitly fixed as a closed path in Cay(G,S), we may make
sense of the statement ∂F is equal (or not equal) to a certain relator R. If ∂F = R and R
is the join of a unique cone RX , we may write (∂F )X for this cone. This will be invaluable
when constructing diagrams to bound S–distances using the assumptions on thin cones.

Lemma 3.9. Let Q be any closed path in Cay(G,S) and let D be any reduced diagram
with boundary Q. Let F be a face of D with e(F ) ≥ 1. Suppose there is a subpath α of
∂D ∩ ∂F such that α ⊆ Pess, and let I be the set of indices i such that Pi ∩ α 6= ∅, with
minimal and maximal elements i1, i2, respectively.

(i) If ∂F 6= Ri for all i ∈ I, then i2 − i1 ≤ 4.
(ii) If ∂F = Ri for some i ∈ I, then ∂F 6= Rj for all j ∈ I \ {i}.

(iii) If, in addition, ∂F \ α is contained in a union of at most N pieces, then |I| ≤
4 + dN

4
e.

Proof. Assume i2 − i1 ≥ 2. By Lemma 3.7, the vertices yi1 and yi2−1 are connected by
an edge in Cay(G,X) to points z1 ∈ α ∩ Ri1 and z2 ∈ α ∩ Ri2−1, respectively. There is a
path in ∂F from z1 to z2 which is contained in the union of pieces ∂F ∩ Rk for k ∈ I and
i1 < k ≤ i2 − 1. Therefore, we have

(i2 − 1)− i1 ≤ dX(yi1 , yi2−1) ≤ 2 +

⌈
(i2 − 1)− i1

4

⌉
, (6)

and so i2 − i1 − 1 ≤ 3 and part (i) follows.
To prove (ii), suppose that ∂F = Ri = Rj for some i < j and Rk 6= F for all k ∈ I

satisfying i < k < j. In this case, yi and yj−1 lie on ∂F . By a slight modification of the
argument in (i), we see that

(j − 1)− i1 ≤ dX(yi, yj−1) ≤
⌈

(j − 1)− i1
4

⌉
, (7)

so j − i ≤ 2. This contradicts Lemma 3.4.
For part (iii), first suppose ∂F 6∈ {Ri1 , Ri2}. By Lemma 3.7 there are paths which are a

union of at most 3 pieces in Ri1 (resp. Ri2) connecting yi1 and yi2−1 to two vertices of α,
extending these by pieces in ∂F ∩ Ri1 and ∂F ∩ Ri2 respectively, we see that yi1 and yi2
can be connected by edges in Cay(G,X) to the end vertices of α. Therefore

(i2 − 1)− i1 ≤ dX(yi1 , yi2−1) ≤ 2 +

⌈
N

4

⌉
,

so i2 − i1 ≤ 3 + dN
4
e and |I| ≤ 4 + dN

4
e.
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Next suppose ∂F = Ri1 ; the case ∂F = Ri2 is handled similarly. By (ii), ∂F 6= Rj for
all j ∈ I \ {i1}. There is an edge connecting yi2−1 to ∂F so

(i2 − 1)− i1 ≤ dX(yi1 , yi2−1) ≤ 1 +

⌈
(i2 − 1)− i1

4

⌉
,

so i2 − i1 ≤ 3 and |I| ≤ 4. �

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. The first statement follows immediately from Lemmas 3.5 and
3.6.

If P has a self-intersection of type (ii), then Pess must contain a simple cycle. We will
show that this is not possible. Suppose for a contradiction that C is a simple cycle in Pess
and let D be a reduced diagram with boundary C.

Since D contains a face which contributes positively to the curvature formula (5), either
there is a face F in D with e(F ) = 1 and 1 ≤ i(F ) ≤ 3, or D is a single face F . In either
case, applying Lemma 3.9(iii) to α = ∂F ∩ ∂D, we see that α is contained in a union of
either 5 pieces (if ∂F 6= Ri for all i), or a geodesic and at most 4 pieces (if ∂F = Ri for
some i). Therefore, ∂F is contained in a union of either 8 pieces, or a geodesic and at most
7 pieces. Since the presentation P is C ′( 1

24
), we see that

|∂F | < |∂F |max

{
1

2
+

7

24
,

8

24

}
which is a contradiction. �

In order to be able to utilise the small cancellation assumptions we will need to construct
combinatorial geodesic polygons. The following proposition shows that our essential S-
paths are suitable for this purpose.

Proposition 3.10. Let Q be a closed path in Cay(G,S) which is a union of paths P 1, . . . , P n

each of which is either a geodesic in Cay(G,S) or an essential S-path of a geodesic in
Cay(G,X). Let D be a reduced diagram with boundary Q. Then D is a (possibly degener-
ate) combinatorial geodesic n-gon (cf. Definition 2.4).

Proof. It suffices to show that any face F ⊆ D whose exterior side is completely contained
in some P t

ess satisfies i(F ) ≥ 4. Towards a contradiction, suppose i(F ) ≤ 3.
Then by Lemma 3.9, ∂F ∩ ∂D is contained in a union of either 5 pieces (if ∂F 6= F t

i for
any i) or a geodesic and at most 4 pieces (if ∂F = Rt

i for some i). Thus ∂F is contained in a
union of either 8 pieces or a geodesic and at most 7 pieces. Thus we obtain a contradiction

|∂F | < |∂F |max

{
1

2
+

7

24
,

8

24

}
.

�

A very useful consequence of this is that cones are convex in Cay(G,X).
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Lemma 3.11. Let R be a relator in Cay(G,X). Any geodesic in Cay(G,X) with endpoints
in RX is contained in RX .

Proof. Suppose for a contradiction that there is a geodesic γ′ of positive length in Cay(G,X)
such that both end vertices x, x′ of γ′ are contained in a cone RX and γ′ ∩ RX = {x, x′}.
Consider an essential S–path P ′ associated to γ′ which is a concatenation of geodesics
P ′1, . . . P

′
l contained in relators R′1, . . . , R

′
l.

Suppose first that R = R′i for some i. Since γ′∩RX = {x, x′}, and, by definition, each R′i
contains at least two vertices y′i−1 and y′i of γ′, we see that {x, x′} = {yi−1, yi} and therefore
all of the vertices in γ′ are contained in RX . The choice of the relator R′i then ensures
that there are only two vertices in γ′, so γ′ is an edge e = xx′. Thus Lab(x, x′) ∈ X, and
e ∈ RX , which is a contradiction.

Hence, we may assume R 6= R′k for all k. Let γS be a geodesic in Cay(G,S) from x to
x′ which is contained in R, and consider a reduced diagram D with boundary γS ∪ P ′. If
γS ⊆ P ′ then l ≤ dX(x, x′) ≤ d l

4
e, so l = 1. Therefore there is a path connecting x to x′ in

Cay(G,S) which is a piece in R∩R′1. Thus xx′ is an edge e in Cay(G,X), Lab(x, x′) ∈ X,
and e ⊂ RX which is a contradiction. Otherwise, by Proposition 3.10, D is a combinatorial
geodesic bigon which contains a face, so contains a sub-bigon D′ with ∂D′ ⊆ ∂D which is
either a single face or has the form I1 from Strebel’s classification.

Suppose F is a face of D′ with i(F ) ≤ 1. If ∂F 6= R′j for any j = 1, 2, . . . , l, then by
Lemma 3.9(i) ∂F is contained in either a union of at most 7 pieces, or a geodesic and at
most 6 pieces. Both of these contradiction the small cancellation assumption. If ∂F = R′j
for some j, then by applying Lemma 3.9(iii) to α = ∂F ∩ P ′ we see that ∂F is contained
in a union of a geodesic and at most 6 pieces, which is again a contradiction since P is a
C ′( 1

24
) presentation. �

We now collect several lemmas about essential S–paths that will be useful in the con-
struction of associated bigons and quadrangles, as well as in the proof of hyperbolicity.

Lemma 3.12. Let Pess be an essential S–path associated to a geodesic γ in Cay(G,X).

(i) For every relator R, R ∩ Pess is empty or connected.
(ii) If R is a relator such that Pess ∩ R has diameter at least 3 in Cay(G,X), then

R = Rj for some Rj used in the construction of Pess.

Proof. To prove (i), suppose there is a relator R such that R∩Pess is not connected (so it is
clear from Lemma 3.11 that R is not one of the relators Ri), and let Q be a positive length
subpath of Pess with end vertices x, x′ such that R ∩ Q = {x, x′}. Let D be a reduced
diagram whose boundary is a simple cycle comprising a geodesic γ in Cay(G,S) which is
contained in R and a subpath of Pess. Since ∂D is the union of a geodesic in Cay(G,S) and
a subpath of Pess, by Proposition 3.10, D is a combinatorial geodesic bigon. By Strebel’s
classification, D is therefore of type I1. Choose F ⊆ D. Then ∂F can be written as the
union of at most 2 interior pieces, ∂F ∩ γ and ∂F ∩ Pess. By Lemma 3.9(iii), ∂F ∩ Pess is
contained in a union of at most 5 pieces (since R 6= Ri for all i), and so

|∂F | < |∂F ∩ γ|+ 7

24
|∂F | . (8)
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However, since γ is a geodesic in Cay(G,S), we have |∂F ∩ γ| ≤ 1
2
|∂F | which contradicts

(8).
For (ii), suppose R 6= Rj for all j. Then by Lemma 3.9(i), Pess ∩ R is contained in a

union of at most 5 pieces R ∩ Rj, so the distance between the endpoints of Pess ∩ R is at
most 2. �

Lemma 3.13. Let Pess be an essential S–path associated to a geodesic γ in Cay(G,X).
For every relator Ri used in the construction of the path we have |Pess ∩Ri| < 3

4
|Ri|.

Moreover, if Ri ∩ Pess 6= ∅, then yi and yi−1 can be connected by an edge in Cay(G,X) to
the initial and terminal vertices of Pess ∩Ri, respectively.

Proof. Consider all the vertices xj, . . . , xk contained inRi. Since the set of indices appearing
in this list is a subinterval of {0, . . . ,m} by Lemma 3.11, we have yi = xk. Moreover, if we
define the set of all vertices contained in Ri−1 to be xp, . . . , xq, we have q ≤ j + 1, since
for any two distinct relators, R and S if xk, xl ∈ R ∩ S with k < l then there is a path in
R ∩ S connecting xk to xl and so l − k ≤ dX(xk, xl) = 1.

Moreover, q < k, for otherwise we contradict the choice of Ri in the construction of the
S–path associated to γ. Hence, yi−1 ∈ Ri−1 ∩Ri ∩ {xj, xj+1}.

Let z, z′ be the initial and terminal endpoints of Ri ∩ Pess, respectively. If yi−1 does not
lie on Pess, then it follows from the proof of Lemma 3.7 that yi−1 is connected by an edge
to the point z. Similarly, if yi does not lie on Pess, then it is connected to z′ by an edge.

If yi−1 lies on Pess, we will show that there is a path connecting z to yi−1 which is
contained in the union of at most 3 pieces Ri′ ∩ Ri, and thus yi−1 can be connected to z
by an edge. To this end, assume that any geodesic from z and yi cannot be connected
by the union of at most 3 pieces Ri′ ∩ Ri, and let j be the smallest index such that yj is
connected to Pess ∩ Ri by an edge. By assumption, j ≤ i − 4. However, this implies that
3 ≤ dX(yj, yi−1) ≤ 1 + d3

4
e, which is a contradiction. Similarly, if yi lies on Pess, then there

is a path connecting z′ to yi which is contained in the union of at most 3 pieces Ri ∩ Ri′ ,
and so yi can be connected to z′ by an edge.

It follows that Pess∩Ri is contained in the union of the geodesic Pi and at most six pieces
Ri∩Ri′ . Since Pess∩Ri is connected by Lemma 3.12(i), we have |Pess ∩Ri| < (1

2
+ 6

24
) |Ri|.

�

4. Hyperbolicity of coned-off graphs

The main goal of this section is the following theorem.

Theorem 4.1. Let P = 〈S |r1, r2, . . .〉 be a C ′( 1
24

) presentation of a group G. Then
T C(P) ⊆ H(G).

To prove the theorem, we show for any thin cone X, every geodesic bigon in Cay(G,X)
satisfies (2) with δ′ = 7 + 2δ, where δ is a hyperbolicity constant of the cones CX

i in
the sense of (1): for every geodesic triangle in CX

i each side is contained in the closed
δ–neighborhood of the other two. This suffices to deduce hyperbolicity by [17, Theorem
2].
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We study geodesic bigons in Cay(G,X) by first defining associated bigons in Cay(G,S),
called essential S–bigons. These associated bigons have degenerate and non-degenerate
parts, and we study these two parts separately using a technical condition (∗). The case
where (∗) is not satisfied (Proposition 4.3) is the most technical part of this argument.

4.1. Essential S–bigons. Given two vertices x, x′ ∈ Cay(G,X) which are contained in
distinct cones, and a pair of geodesics γ1 from x to x′ and γ2 from x′ to x in Cay(G,X).
We define an S–bigon corresponding to (γ1, γ2) to be (P 1, P 2) where P 1 and P 2 be S–
paths corresponding to γ1 and γ2, respectively. We analogously define essential S–bigons
(P 1

ess, P
2
ess) corresponding to (γ1, γ2). Note that P t, P t

ess and γt have the same endpoints,
and thus (P 1, P 2) and (P 1

ess, P
2
ess) are bigons in Cay(G,X). Moreover, by Proposition 3.10,

(P 1
ess, P

2
ess) is a combinatorial geodesic bigon in Cay(G,S).

We append the superscript t = 1, 2 to any notation already defined in Section 3 for an
(essential) S–path; for example, the vertices of γt will be denoted xti and relators used in
the construction of P t will be denoted Rt

i.
The essential S–bigon P 1

ess∪P 2
ess is composed of (possibly degenerate) maximal subpaths

S1, . . . , Sk contained in P 1
ess∩P 2

ess and simple cycles B1, . . . , Bl, which are formed by taking

closures of connected components of P 1
ess ∪ P 2

ess \
⋃k
i=1 Si. Let S = {S1, . . . , Sk} and

B = {B1, . . . , Bl}.

S1
B1

S2
B2

S3

B3

B4

S4

S5

Figure 7. Subdividing the bigon AS into pieces. The (possibly degenerate)
segments are elements of S and the simple cycles are elements of B.

By construction, the simple cycles Bi are bigons. Moreover, any reduced diagram D
with boundary Bi is a combinatorial geodesic bigon (see Definition 2.4) by Proposition
3.10.

Our goal is to prove that for each i, γ1i is contained in the closed 7 + 2δ–neighborhood
of γ2.

Lemma 4.2. Suppose consecutive edges of P 1
ess are contained in R1

i and R1
i′ with i < i′.

Then dX(y1i , y
1
i′−1) ≤ 2.

Proof. Let x be the common end vertex of the two edges. By Lemma 3.13, dX(y1i , x) ≤ 1
and dX(x, y1i′−1) ≤ 1. The result follows by the triangle inequality. �

By Lemmma 4.2, we need only consider i such that P 1
ess ∩ R1

i contains an edge, up to
increasing the hyperbolicity constant by 1. We now split into two cases depending on
whether the following condition is satisfied.

Condition (∗): There exists some j such that R1
i = R2

j and either
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(∗a) P 1
ess ∩R1

i ∩ P 2
ess contains an edge; or

(∗b) there is a face F ⊆ D such that each of ∂F ∩P 1
ess∩R1

i and ∂F ∩P 2
ess∩R2

j contains
an edge.

Notice that (∗a) and (∗b) are mutually exclusive: if both occurred then R1
i would contain

an edge in a segment and edges on each of ∂F ∩ P 1
ess ∩ R1

i and ∂F ∩ P 2
ess ∩ R2

j . This is

not possible as such a subgraph must have a vertex of degree at least 3 and R1
i is a simple

cycle.

R1
i = R2

j

F F ′

P 1
ess

P 2
ess

Figure 8. One possible configuration satisfying case (a) of (∗).

F

R1
i = R2

j

P 1
ess

P 2
ess

F

P 1
ess

P 2
ess

R1
i = R2

j

Figure 9. Two possible configurations satisfying case (b) of (∗).

Proposition 4.3. Suppose i does not satisfy (∗). Then γ1i is contained in the closed 6
neighborhood of γ2.

Proof. Let D be a diagram whose boundary is the bigon AS. If R1
i = ∂F for some face

F ⊆ D, then, since (∗b) fails, P 2
ess ∩ ∂F is contained in a union of 5 pieces ∂F ∩ R2

jm

with 1 ≤ m ≤ 5 by Lemma 3.9(i) (see Figure 10 (left)). Moreover, P 2
ess ∩ ∂F cannot be

contained in union of at most 4 pieces in ∂F . To see this, notice that ∂F is the union of
∂F ∩ P 1

ess, which has length less than 3
4
|∂F | by Lemma 3.13, at most 2 internal arcs and

N pieces ∂F ∩R2
j , and so

|∂F | <
(

3

4
+

2

24
+
N

24

)
|∂F | .

This is a contradiction if N ≤ 4. Assume j1 < . . . < j5. By Lemma 3.7 there is an edge in
X connecting y2j3 to some vertex v on R2

j3
∩ ∂F , and edges connecting y1i−1 and y1i to the

end vertices of ∂F ∩ P 1
ess. Each of these end vertices is connected to v by an edge in X,
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y1i−1

v1i−1
y1i

v1i

v

y2j3

∂F = R1
i

γ

P 1
ess

P 2
ess

F

R1
i

R2
j3

y1i−1

v1i−1

w1
i−1

P 1
ess

P 2
ess

y1i

v1i

Figure 10. Two cases of the proof of Proposition 4.3, when R1
i = ∂F (left)

and when R1
i 6= ∂F (right).

since there are paths in D connecting them which are the union of at most 4 pieces (one
internal arc and at most 3 pieces R2

jm ∩ ∂F ). Hence

max
{
dX(y1i−1, y

2
j3

), dX(y1i , y
2
j3

)
}
≤ 3,

and so γ1i ⊂ B6(y
2
j3

) ⊂ N6(γ
2).

If R1
i 6= ∂F for all F ⊂ D, then by splitting P 1

ess ∩ R1
i into its intersections with bigons

and pieces, then since (∗a) fails, we deduce that P 1
ess ∩ R1

i is contained in: some number
M of pieces which are the intersection of R1

i with boundaries of faces F ⊂ D; and some
number N of pieces which are intersections of R1

i and relators R2
j (see Figure 10 (right)).

We first show that M ≤ 2, i.e., there are at most two faces F1, F2 in D such that ∂Fm∩R1
i

contains an edge. Notice that if there were at least three, then since P 1
ess∩R1

i is connected,
there is a face F ⊂ D such that ∂F ∩ P 1

ess is contained in the piece R1
i ∩ ∂F , and so

|∂F | <
(

3

4
+

3

24

)
|∂F | ,

which is a contradiction. We next show that N ≤ 5. To see this, notice that if R2
j1
∩ R1

i

and R2
j2
∩R1

i contain edges with j2 > j1, then

(j2 − 1)− j1 ≤ dX(y2j1 , y
2
j2−1) ≤ 2 +

⌈
(j2 − 1)− j1

4

⌉
so (j2 − 1)− j1 ≤ 3.

We have shown that P 1
ess ∩R1

i is contained in at most two pieces ∂Fm ∩R1
i and at most

5 pieces R2
j ∩R1

i , and so dX(y1i−1, y
1
i ) ≤ 2 + d7

4
e = 4.

Define v1i−1 to be an end vertex of R1
i ∩ P 1

ess which is connected to y1i−1 by an edge. If
v1i−1 ∈ P 2

ess, then v1i−1 is connected to an end vertex of some R2
j ∩ P 2

ess by a piece. Thus

dX(y1i−1, γ
2) ≤ 3.

If v1i−1 6∈ P 2
ess, then it lies in the boundary of a face F ⊆ D, and there is a path which

is the union of at most 2 pieces in ∂F from v1i−1 to an end vertex w1
i−1 of P 2

ess ∩ ∂F . If
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∂F = R2
j for some j, then dX(w1

i−1, γ
2) ≤ 1 by Lemma 3.13. Otherwise, ∂F ∩ P 2

ess is a

union of exactly five pieces ∂F ∩ R2
j by Lemma 3.9(i), as above. In this case, there is a

path from w1
i−1 to an end vertex of some P 2

ess ∩ R2
j which is contained in a piece, and so

dX(y1i−1, γ
2) ≤ 1 + d3

4
e + 1 = 3. The same analysis proves that dX(y1i , γ

2) ≤ 4, and thus
γ1i ⊆ N5(γ

2).
�

Proposition 4.4. Suppose i satisfies (∗). Then γ1i ⊆ N6+2δ(γ
2
j ).

Proof. It suffices to show that dX(y1i−1, y
2
j−1) ≤ 3 and dX(y1i−1, y

2
j−1) ≤ 3, since the geodesic

quadrangle with vertices y1i−1, y
1
i , y

2
j , y

2
j−1 is contained in a single cone which is δ-hyperbolic.

Let v1i−1 and v1i be the end vertices of R1
i ∩ P 1

ess, and define v2j−1, v
2
j analagously. By

Lemma 3.13, y1i−1 and y1i are each connected by an edge to v1i−1 and v1i , respectively, and
similarly for y2j−1 and y2j .

Suppose (∗a) holds (see Figure 8). If v1i−1 = v2j−1, then dX(y1i−1, y
2
j−1) ≤ 2. Since R1

i and

R2
j have exactly the same intersections with segments, and their intersections with essential

paths are connected, if v1i−1 6= v2j−1 then they cannot both lie on a segment. It follows from

the small cancellation assumption and the fact that P 1
ess ∩ R1

i is connected that the only
way P 1

ess∩R1
i can contain P 1

ess∩∂F for some face F in D is if ∂F = R1
i . Since R1

i contains
an edge in a segment of P 1

ess ∩ P 2
ess, this is impossible. Thus there is a face F in D such

that v1i−1, v
2
j−1 ∈ ∂F . It follows that dX(v1i−1, v

2
j−1) ≤ 1, and dX(y1i−1, y

2
j−1) ≤ 3. The same

reasoning proves dX(y1i , y
2
j ) ≤ 3 as required.

Now suppose (∗b) holds (see Figure 9). If R1
i = ∂F , then the pairs v1i−1, v

2
j−1 and

v1i , v
2
j are either equal or connected by an internal arc in D. If R1

i 6= ∂F , then the pairs

v1i−1, v
2
j−1 and v1i , v

2
j are either equal or connected by a piece ∂F ∩Ri. Thus, in either case,

dX(y1i−1, y
2
j−1) ≤ 3 and dX(y1i , y

2
j ) ≤ 3

�

Theorem 4.1 follows from Propositions 4.3 and 4.4, and Lemma 4.2.

5. Acylindricity of actions on coned-off graphs

In this section, we show that if G is uniformly power-free, then T C(P) ⊆ AH(G) (The-
orem 5.11). Recall that an action of a group G by isometries on a metric space Z is
acylindrical if for all ε > 0 there exist constants M,N ≥ 0 such that for all x, y ∈ Z
with d(x, y) ≥ M , the number of elements g ∈ G satisfying d(x, gx) ≤ ε and d(y, gy) ≤ ε
is at most N . The proof of acylindricity will rely heavily on the following classification of
essential quadrangles.

5.1. Essential S-quadrangles. Let QX = (γ1, γ2, γ3, γ4) be a geodesic quadrangle in
Cay(G,X), so the terminal vertex of γi is the initial vertex of γi+1 with indices considered
modulo 4. Proving acylindricity relies on studying “long, thin” quadrangles in Cay(G,X),
which we make precise by requiring that

min
{
lX(γ1), lX(γ3)

}
≥ 3 max

{
lX(γ2), lX(γ4)

}
+ 25, (9)



24 ABBOTT AND HUME

where lX(α) denotes the length of the path α in Cay(G,X). All of the results in this
section will be under the assumption that (9) holds.

To each γi associate an S-path P i. We call (P 1, P 2, P 3, P 4) an S–quadrangle as-
sociated to QX . We analogously define QS = (P 1

ess, P
2
ess, P

3
ess, P

4
ess) to be an essential

S–quadrangle associated to QX . We say (Q1, Q2, Q3, Q4) is an essential S–quadrangle if
it is an essential S-quadrangle associated to some geodesic quadrangle in Cay(G,X). As
for bigons, we append the superscript t = 1, 2, 3, 4 to any notation previously defined in
Section 3.

Our goal for the rest of this subsection is the following theorem.

Theorem 5.1. Let QS = (P 1
ess, P

2
ess, P

3
ess, P

4
ess) be an essential S-quadrangle associated

to a geodesic quadrangle (γ1, γ2, γ3, γ4) satisfying (9). Either there exist i, j such that
R1
i = R3

j , or P 1
ess ∩ P 3

ess contains a path whose end vertices are at distance at least

max {lX(γ2), lX(γ4)}+ 6 apart in Cay(G,X).

Our starting point is the classification of combinatorial geodesic quadrangles from [6],
which we are able to use thanks to the following Lemma.

Lemma 5.2. Let Q be a simple closed path in an essential S-quadrangle QS. A reduced
diagram D with boundary Q is a (possibly degenerate) combinatorial geodesic quadrangle.

Proof. This follows immediately from Proposition 3.10. �

We now recall some features of the classification of combinatorial geodesic quadrangles
from [6] which we will require to prove that the action of G on Cay(G,X) is acylindrical.
The key results we will use to limit the possibilities are Lemmas 3.12(ii) and 3.13.

We will need to use the notions of edge and face reductions in diagrams introduced in
[6, §3.2]. We sketch the ideas here, and refer the reader to [6, §3.2] for a more detailed
discussion.

• Given a diagram D with an edge e such that D \ e is not connected, reducing
the edge e is the process of collapsing e to a vertex to obtain a diagram D′, then
removing this vertex and reattaching copies of it to each connected component of
D′ \ e to obtain a collection of at least 2 diagrams.
• Given a diagram D with a face F such that D \ F is not connected, reducing

the face F is the process of first adding an edge e to F whose endpoints are on
∂F ∩ ∂D such that D \ e is not connected, then reducing this edge. Notice that in
each of the new diagrams D′ formed, there is a face F ′ coming from F .

Let us collect a few basic observations about faces in (possibly degenerate) combinatorial
geodesic quadrangles from Strebel’s classification [18] and [6, §3]:

Lemma 5.3. For a combinatorial geodesic quadrangle, the following hold.

(i) For each consecutive pair of sides, there is at most one face whose exterior boundary
intersects both sides in edges and is contained in their union and whose interior
degree at least 3. No such face has interior degree more than 4.
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(ii) For each pair of opposite (non-consecutive) sides, there are at most two faces whose
exterior boundary intersects both sides in edges and is contained in their union
and whose interior degree at least 3. There can only be one such face with interior
degree at least 4, and there are no such faces with higher interior degree.

(iii) If the exterior boundary of a face contains an edge and is contained in a single
side, then the face has interior degree at most 6.

(iv) If a face has no exterior boundary, then it has interior degree either 7 or 8.

Notice that Lemmas 3.9 and 3.13, along with the small cancellation assumption, im-
mediately rule out the last two possibilities for faces in diagrams whose boundaries are
(contained in) essential S-quadrangles.

Lemma 5.4. Let (P 1
ess, P

2
ess, P

3
ess, P

4
ess) be an essential S-quadrangle associated to a geodesic

quadrangle (γ1, γ2, γ3, γ4) satisfying (9). If there exist r, s such that R2
r = R4

s = R, then
there exist i, j such that R = R1

i = R3
j .

Proof. Let x1, x2 be the end vertices of γ1, where x2 ∈ γ2. Suppose R2
r = R4

s = R for
some r, s. For t = 2, 4, define Qt to be the path obtained from the shortest subpath of P t

ess

connecting some vertex zt on P 2
r to x2 (respectively P 4

s to x1).
It is clear that Qt is embedded in Cay(G,S) and satisfies all the same conditions as an

essential S-path. Since the chosen subpath has minimal length, either z2 = x2 (respectively,
z4 = x1) or z2 (respectively z4) is also contained in another relator R2

r′ (respectively R4
s′).

We either have |r − r′| = 1 or z2 is the initial/terminal vertex of a self-intersection of type
(i) in P 2. In the former case, γ2 and z2 both lie on R2

r ∩ R2
r′ and dX(γt, zt) ≤ 1, while in

the latter case, Lemma 3.7 implies that dX(γ2, z2) ≤ 1. The same analysis can be used to
show dX(γ4, z4) ≤ 1. Thus

dX(z2, z4) ≥ lX(γ1)− dX(x2, z2)− dX(z4, x1) ≥ max
{
lX(γ2), lX(γ4)

}
+ 23, (10)

where the last inequality follows by (9).
Choose an S-geodesic γS from z2 to z4. Since z2, z4 ∈ R, γS is necessarily contained in

R. Consider the quadrangle (γS, Q
2, P 1

ess, Q
4). Since γS is contained in R, it is clear by

construction that Qt intersects γS only at the vertex zt for t = 2, 4.
Case 1: γS ∩ P 1

ess = ∅. Let Q be a simple cycle in the quadrangle (γS, Q
2, P 1

ess, Q
4)

containing γS. Let D be a diagram with boundary Q. By construction, R intersects Q2

and Q4 only at z2 and z4, respectively. Thus, if there is a face F ⊂ D with ∂F = R, then
since our small cancellation assumption rules out case (iii) above, the exterior boundary of
F must be contained in γS and P 1

ess (see Figure 11(A)). Therefore F must belong to case
(ii) above and satisfy i(F ) ≤ 4, and so the end vertices of P 1

ess ∩ R are at X–distance at
most 1 from z2 and z4 respectively. In this case, it follows from Lemma 3.12(ii) and (10)
that R = R1

i for some i.
If no face in D satisfies ∂F = R, then for t = 2, 4, there is no face whose exterior

boundary contains edges in both γS and Qt and is contained in their union. To see this,
note that if F was such a face, then i(F ) ≤ 4 by (i) above, so ∂F is a union of ∂F ∩ Qt

and at most 5 pieces (the fifth being ∂F ∩ γS = ∂F ∩R). Applying Lemmas 3.9 and 3.13,
we see that ∂F is either contained in the union of at most 11 pieces or a geodesic and the
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union of at most 11 pieces, both of which contradict the small cancellation assumption.
By a similar argument, no face can have its exterior boundary contained in γS and P 1

ess.
It follows that any face whose boundary intersects γS in an edge must intersect at least
two additional sides of Q in an edge. There can be at most two such faces, and so γS is
contained in a union of at most two pieces. Thus dX(z2, z4) ≤ 1, which contradicts (10).

Case 2: γS ∩ P 1
ess 6= ∅. If z2, z4 ∈ γS ∩ P 1

ess, then it follows from Lemma 3.12(ii) and
(10) that R = R1

i for some i, so suppose that z2 6∈ γS ∩P 1
ess. Let Q be a simple cycle in the

quadrangle (γS, Q
2, P 1

ess, Q
4) containing z2. It is clear that Q is contained in γS∪P 1

ess∪Q2.
No face in a diagram with this boundary can have its exterior boundary contained in only
one side, or in a pair of sides if one of those is γS. Indeed, if such a face F existed, then,
as above, ∂F must be contained in a union of either at most 11 pieces, or 11 pieces and a
geodesic, both of which contradict the small cancellation assumption. It follows that the
face F containing z2 must intersect P 1

ess (see Figure 11(B)).

z2
z4

Q2 Q4

γS

F

P 1
ess ∩R
(a)

F

z2

γX

z4

Q2 Q4

P 1
ess

(b)

Figure 11. (A) Proof of Lemma 6.8 in the case where γS ∩ P 1
ess = ∅ and

there is a face F such that ∂F = R. (B) Proof of Lemma 6.8 in the case
where γS ∩P 1

ess 6= ∅. The dotted path is γS, and the boundary of the shaded
region is R.

Thus P 1
ess ∩ (R ∩ ∂F ) 6= ∅, and hence dX(z2, P 1) ≤ 1. Applying the same argument to

z4 if necessary, it follows from Lemma 3.12(ii) and (10) that R = R1
i for some i.

Applying this argument to P 3
ess instead of P 1

ess, it follows that R = R3
j for some j. This

completes the proof. �

Lemma 5.5. Let (P 1
ess, P

2
ess, P

3
ess, P

4
ess) be an essential S–quadrangle associated to a geo-

desic quadrangle (γ1, γ2, γ3, γ4). Let Q be a simple cycle in the quadrangle, and let D be
a diagram with boundary Q. Suppose F is a face of D such that ∂F shares an edge with
at most 2 essential paths, P t

ess and P t′
ess, and i(F ) ≤ 4. If z is an end vertex of ∂F ∩ P r

ess

with r ∈ {t, t′}, then dX(z, γr) ≤ 3.

Proof. Suppose ∂F shares an edge with P t
ess, and let z be an end vertex of P t

ess ∩ ∂F .
If there exists i such that ∂F = Rt

i, then the result follows by Lemma 3.7. Otherwise,
∂F ∩ P t

ess is contained in 1 ≤ s ≤ 5 pieces Rt
i ∩ ∂F by Lemma 3.9.
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If s ≥ 2, then there is a point y ∈ γt that is connected to ∂F ∩ P t
ess by an edge in

Cay(G,X), and thus dX(y, z) ≤ 1 +
⌈
5
4

⌉
= 3.

To complete the proof, we will show that the case s = 1 is not possible. First, if
∂F ∩ P t′

ess does not contain an edge, then ∂F is contained in the union of at most 5
pieces (at most 4 interior pieces and the exterior piece ∂F ∩ P t

ess), which contradicts the
small cancellation assumption. Thus, ∂F ∩ P t′

ess must contain an edge. If ∂F = Rt′
j for

some j, then ∂F \ (∂F ∩ P t′
ess) is contained in the union of at most 5 pieces, and so

|∂F ∩ P t′
ess| > 19

24
|∂F |, which contradicts Lemma 3.13. If ∂F 6= Rt′

j for all j, then ∂F ∩ P t′
ess

is contained in the union of at most 5 pieces, by Lemma 3.9, and so ∂F is contained in the
union of at most 10 pieces, contradicting the small cancellation bound. �

We are now ready to prove Theorem 5.1 in two steps (Propositions 5.6 and 5.10). We
begin with the “degenerate” case.

Proposition 5.6. If QX = (γ1, γ2, γ3, γ4) satisfies (9) and the essential quadrangle QS =
(P 1

ess, P
2
ess, P

3
ess, P

4
ess) associated to QX does not admit a simple cycle Q which intersects

each P t
ess in an edge, then one of the following occurs:

(i) there exist i, j such that R1
i = R3

j ; or

(ii) P 1
ess ∩ P 3

ess contains a subpath whose end vertices are at X–distance at most

max
{
lX(γ2), lX(γ4)

}
+ 3

from the end vertices of γ1.

Proof. We will assume that (i) does not hold, and deduce that (ii) does. The proof is in 4
steps:

a) Prove P 1
ess ∩ P 3

ess 6= ∅.
b) Prove P 1

ess ∩ P 3
ess is connected.

c) Let F be any face in a disc diagram whose boundary intersects both P 1
ess and P 3

ess

in an edge. Then prove one of the following occurs: F intersects one of P 2
ess or P 4

ess

in an edge; or F contains a point in P 1
ess ∩ P 3

ess and satisfies e(F ) = 1, i(F ) = 2,
and D is a combinatorial geodesic triangle of type III1 or V .

d) Deduce that (ii) holds.

Step a) Note that by Lemma 5.4, if R1
i 6= R3

j for all i, j then R2
k 6= R4

k′ for all k, k′, as well.

As in the proof of Lemma 5.5, let x be the initial endpoint of γ1, so that x ∈ γ1 ∩ γ2.
Since QS does not admit a simple cycle which intersects each P t

ess in an edge, P t
ess∩P t′

ess 6=
∅ for either (t, t′) = (1, 3) or (t, t′) = (2, 4). To complete step a) we show that (t, t′) = (1, 3).

Suppose P 2
ess ∩ P 4

ess 6= ∅, and let v be the vertex on P 2
ess ∩ P 4

ess closest to x along P 2
ess.

Let e be the edge in P 2
ess ∩ P 4

ess containing v as an end vertex, and choose relators R2
i

and R4
j containing e. By assumption, R2

i 6= R4
j′ for any j′, so by Lemma 3.9, P 4

ess ∩ R2
i is

contained in a union of at most 5 pieces. By Lemma 3.7, there is an edge connecting a
vertex in γ4 to a vertex in one of these pieces, hence dX(γ4, v) ≤ 1 +

⌈
5
4

⌉
= 3. Similarly,

dX(γ2, v) ≤ 3. Therefore, dX(γ2, γ4) ≤ 6, which contradicts (9). Therefore, P 2
ess ∩P 4

ess = ∅
and P 1

ess ∩ P 3
ess 6= ∅.
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Step b) If P 1
ess ∩ P 3

ess is not connected, then there is a disc diagram D whose boundary
is contained in P 1

ess ∩ P 3
ess. Recall that D must be a diagram of type I1 in Strebel’s

classification. Let F be a face with e(F ) = 1 and i(F ) ≤ 1. If there is no i such that
∂F = R1

i , then by Lemmas 3.9 and 3.13

|∂F | <
(

5

24
+

1

24
+

3

4

)
|∂F | ,

which is a contradiction. Similarly there is some j such that ∂F = R3
j contradicting our

assumption that (i) fails.
Step c) Now suppose D is a disc diagram whose boundary is contained in P 1

ess∪P 2
ess∪P 3

ess

and contains an edge in each. Let F be the face containing the vertex in P 1
ess ∩ P 3

ess ∩ ∂D.
If ∂F does not contain an edge in P 2

ess then (as in step b)) either ∂F = R1
i = R3

j for some
i, j (which is a contradiction), or

|∂F | < |∂F |
(

5

24
+

18

24
+
i(F )

24

)
,

and so i(F ) ≥ 2. Thus D is of type III1, IV or V , and the boundaries of all other faces
in D intersect P 2

ess in an edge. To see that D is not of type IV note that in a type IV
diagram there is a face F ′ satisfying e(F ′) = 1 and i(F ′) = 4 whose external boundary is
contained in one of the P t

ess, but no such faces can exist in an essential S–triangle (see the
remark after Lemma 5.3).

Step d) Let x, y be the end vertices of P 1
ess ∩ P 3

ess where x is closest to the initial
vertex v1 of P 1

ess. Since we are assuming (9) it suffices to prove that dX(x, γ2) ≤ 11 and
dX(y, γ4) ≤ 11. Either x ∈ P 2

ess or there exists a disc diagram D as described in step c).
Case d)(i): x ∈ P 2

ess. If x ∈ P 2
ess and the two edges in P 2

ess with x as an end vertex do
not lie in a common R2

k, then dX(x, γ2) ≤ 1 by Lemma 3.7. If they do lie in a common R2
k,

then either R2
k is not equal to any R1

i or not equal to any R3
j , and without loss of generality

we may assume the former is true. Let Q2 denote the subpath of P 2
ess connecting v1 to x.

If R2
k ∩Q2 ⊆ P 1

ess then there is a path from x to the other end vertex of R2
k ∩Q2 which is

a union of at most 5 pieces, so by Lemma 3.7

dX(x, γ2) ≤
⌈

5

4

⌉
+ 1 = 3.

Otherwise there is a combinatorial geodesic bigon B whose boundary is contained in Q2 ∪
P 1
ess. Let F be the face in B whose boundary contains the point on Q2 closest to x along
P 2
ess, so e(F ) = i(F ) = 1 and ∂F contains an edge in Q2 ∩ R2

k. If ∂F 6= R2
k then ∂F is a

union of at most 5 pieces (coming from its intersection with Q2) one additional piece from
its internal boundary and a path of length less than 3

4
|∂F | from its intersection with P 1

ess,
which contradicts the small cancellation assumption. For the same reasoning there must
be some i such that ∂F = R1

i contradicting the assumption that R2
k is not equal to any R1

i .
Case d)(ii): x 6∈ P 2

ess. Let F be the face in D whose boundary contains x. Without
loss of generality we may assume that there is no i such that ∂F = R1

i , so ∂F ∩ P 1
ess is

contained in the union of at most 5 pieces. When D is not of type V there is a path of
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length at most 2 connecting x to one of the end vertices x′ of ∂F ∩ P 2
ess. When D is of

type V there is a face F ′ neighbouring F and a path of length at most 2 connecting x to
one of the end vertices x′ of ∂F ′ ∩ P 2

ess. If ∂F (respectively ∂F ′) is equal to one of the R2
k,

then by Lemma 3.7, dX(x, γ2) ≤ 3. Otherwise, pick k such that x′ ∈ R2
k and notice that

by Figure 4 there is a path from some vertex in γ2 to x′ which is a union of at most three
pieces in R2

k. Thus dX(γ2, x) ≤ 3. Similarly, we may deduce that dX(γ4, y) ≤ 3. �

In what follows, we say a vertex of a quadrangle Q = (Q1
ess, Q

2
ess, Q

3
ess, Q

4
ess) is distin-

guished if it is the end vertex of some Qj
ess. In a reduced diagram D with boundary Q,

we say a face F of D is distinguished if there is a distinguished vertex in the interior of its
exterior boundary. Let us first rule out two scenarios using the assumption (9).

Lemma 5.7. Suppose QS = (P 1
ess, P

2
ess, P

3
ess, P

4
ess) is an essential S–quadrangle associated

to (γ1, γ2, γ3, γ4) and (9) holds. If there is a diagram D with boundary QS admitting an
internal arc connecting P 2

ess to P 4
ess, then there exist i, j such that R1

i = R3
j .

Proof. Suppose for a contradiction that D is such a diagram containing an internal arc α
and that for all i, j, R1

i 6= R3
j . Let F 1, F 3 be the faces in D such that α = ∂F 1 ∩ ∂F 3,

and for t = 2, 4 let zt be the unique vertex in P t
ess ∩ α. We claim that dX(γt, zt) ≤ 5 for

t = 2, 4. Once this is verified we obtain a contradiction to (9), since

dX(γ2, γ4) ≤ dX(γ2, z2) + dX(z2, z4) + dX(z4, γ4) ≤ 11.

If e(F ) = 2, then by Lemma 5.5 we have dX(γt, zt) ≤ 3 for t = 2, 4, and so we may assume
∂F s contains an edge of P s

ess for s = 1, 3. If there exists some r such that R2
r ∩P 2

ess has an
end vertex in ∂F s, then dX(γ2, z2) ≥ 1 by Lemma 3.7, so we may also assume this does
not happen. Under these assumptions, (∂F 1∩∂F 3)∩P 2

ess is strictly contained in some R2
r .

Suppose there is another face F 6∈ {F 1, F 3} such that ∂F ∩R2
r contains an edge. If the

boundary of this face contains an end vertex v of R2
r∩P 2

ess, then there is an edge connecting
γ2 to v by Lemma 3.7, and since there is a path from v to z2 which is contained in a union
of two pieces in R2

r , it follows that vz2 is an edge. Thus dX(γ2, z2) ≤ 2. Otherwise, since
∂F 6= R2

r and e(F ) = i(F ) ∈ {1, 2}, ∂F is the union of P 3
ess ∩ ∂F and at most 3 pieces,

contradicting the small cancellation assumption.
Hence we may now assume that R2

r ∩ P 2
ess consists of two subpaths N s of P 2

ess ∩ P s
ess for

s = 1, 3 and the pieces R2
r ∩ F t for t = 2, 4. If both of the N s have diameter at least 3 in

Cay(G,X), then it follows from Lemma 3.12(ii) that R2
r = R1

i = R3
j for some i, j, which is

a contradiction. If, without loss of generality, N1 has diameter at most 2, then there is a
path from γ2 to z2 of length at most 4 in X consisting of a path of length at most 2 (from
γ2 to an end vertex of R2

r ∩ P 2
ess contained in N1), a path of length at most 2 to a vertex

in ∂F ′ ∩N1, and an edge connecting this vertex to z2. �

Lemma 5.8. If QS = (P 1
ess, P

2
ess, P

3
ess, P

4
ess) is an essential S–quadrangle associated to

(γ1, γ2, γ3, γ4) and (9) holds, then no diagram whose boundary is contained in QS has the
form of Figure 12 below.
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QS ∩ P 1
ess

QS ∩ P 2
ess

QS ∩ P 3
ess

QS ∩ P 4
essz2 z4

B1

B2
B3

B4

Figure 12. A diagram containing a zipper of length 0 whose ends are of
type 1. Optional internal arcs are indicated by dotted lines.

Proof. Suppose for a contradiction that D is such a diagram. Then D has four faces Bt

such that ∂Bt ∩ D′ intersects both P t
ess and P t+1

ess . We now show that (9) excludes this
possibility.

Let z2 be the vertex in P 2
ess ∩ ∂B1 ∩ ∂B2 and let z4 be the vertex in P 4

ess ∩ ∂B3 ∩ ∂B4.
There is a path from z2 to z4 in Γ(G,X) which is a union of at most 3 pieces in ∂B1 and
∂B4, so dX(z2, z4) ≤ 2. By Lemma 5.5, there are points y2 ∈ γ2 and y4 ∈ γ4 such that
dX(yt, zt) ≤ 3 for t = 2, 4, and thus dX(y2, y4) ≤ 8. Therefore,

lX(γ1) ≤ dX(x, y2) + dX(y2, y4) + dX(y4, x′) ≤ 2 max
{
lX(γ2), lX(γ4)

}
+ 8,

which contradicts the assumption (9). �

Proposition 5.9. If the essential quadrangle (P 1
ess, P

2
ess, P

3
ess, P

4
ess) associated to (γ1, γ2, γ3, γ4)

admits a simple cycle Q which intersects each P t
ess in at least an edge and (9) holds, then

any diagram D with boundary Q and no internal arc connecting P 2
ess to P 4

ess has one of the
forms given in Figure 13.

(†) (‡)

Q ∩ P 1
ess

Q ∩ P 2
ess

Q ∩ P 3
ess

Q ∩ P 4
ess∗ ∗

v1

v2 v3

v4
e1

e2 e3

e4

e1,2

e2,3 e3,4

e1,4e1,3

Figure 13. Diagrams with boundaryQ have the following form: the tripods
marked (†) and (‡) are optional, and et,t′ denotes the number of interior arcs
with end vertices in P t

ess and P t′
ess. When the tripod does not appear, the

segments marked ∗ may have length 0.
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Proof. Using Lemma 5.3 we see that every face of Q has external boundary which intersects
at least two of the sides P t

ess.
For 1 ≤ t < t′ ≤ 4, define Et,t′ to be the set of edges in D which have one end vertex in

P t
ess and the other in P t′

ess, and let et,t′ = |Et,t′ |. By assumption e2,4 = 0. Notice that no
two edges in Et,t′ can have an end vertex in common. Indeed, if this were the case, then
there would be a face F ⊂ D whose boundary is contained in at most 2 pieces and its
intersection with P t

ess (or P t′
ess), which contradicts Lemma 3.13.

For each t (considered modulo 4) let vt be the vertex in Q ∩ P t
ess ∩ P t+1

ess , and whenever
Et,t+1 6= ∅, choose et ∈ Et,t+1 such that the end vertex of et on P t

ess is furthest from vt

along P t
ess.

Case 1. If there is an interior arc α connecting P 1
ess to P 3

ess (i.e., e1,3 > 0) consider the two
diagrams D2, D4 obtained by removing the closure of α in D and then reattaching a copy of
it to each connected component of D\α. The two resulting diagrams Dt are combinatorial
geodesic triangles with sides P t

ess∩Q, P 1
ess∩∂Dt and the union of P 3

ess∩∂Dt and α. Using
Strebel’s classification, the triangle D2 is of type: I2 if and only if e1,2 = e2,3 = 0; I3, II or
III2 if and only if at least one of e1,2, e2,3 6= 0 and (†) does not appear (with III2 happening
if and only if the segment marked ∗ has length 0); and V if and only if (†) does appear.
Recall that the triangle cannot be of type IV by Lemma 5.3(iii). A similar analysis can
be done for D4.

Case 2. Suppose that e1,3 = 0. Let us prove that there is a face whose boundary
intersects both P 1

ess and P 3
ess in edges. If this is the case then we can add an internal

arc connecting P 1
ess to P 3

ess to D and obtain a new combinatorial geodesic quadrangle D′′

satisfying all the properties of Lemma 5.3, so we may follow the same analysis as in Case
1.

Suppose for a contradiction that no face intersects both P 1
ess and P 3

ess in edges. Let
D′ be the subdiagram of D whose boundary consists of et and the subpath of Q ∩ P t

ess

between et−1 ∩ P t
ess and et ∩ P t

ess for each t. By construction, D′ does not contain vt for
any t such that et,t+1 > 0, and no pair of consecutive sides in D′ are connected by an
edge (see Figure 13). The diagram D′ is special in the sense of [6, Definition 3.14], but it
cannot be extraordinary, as all such diagrams have faces which intersect only one side of
the quadrangle and this is prohibited in our case by Lemma 5.3(iii). Hence, D′ is a zipper,
and this zipper has length 0 and both ends are of type 1 (any other zipper has a face which
intersects only one side of the quadrangle). But such a diagram is not possible by Lemma
5.8. �

Notice that the assumption (9) is only used in the above proof when e1,3 = e2,4 = 0. We
are now ready to deal with the “non-degenerate” case of Theorem 5.1.

Proposition 5.10. If an essential quadrangle (P 1
ess, P

2
ess, P

3
ess, P

4
ess) associated to a geodesic

quadrangle QS = (γ1, γ2, γ3, γ4) satisfying (9) admits a simple cycle Q which intersects each
P t
ess in an edge, then there exist i, j such that R1

i = R3
j .

Proof. If e2,4 6= 0 then the conclusion holds by Lemma 5.7, so we may apply Proposition
5.9.
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Let us assume for a contradiction that R1
i 6= R3

j for all i, j. Now consider a diagram D
with boundary Q, which necessarily has one of the forms given in Figure 13.

Case 1: e1,3 ≥ 3. In this case, there are two faces F, F ′ ⊂ D whose boundaries intersect
in an internal arc in D such that e(F ) = i(F ) = e(F ′) = i(F ′) = 2 and the exterior
boundary of each face has one connected component in P 1

ess and another in P 3
ess. If ∂F or

∂F ′ is not one of the R1
i or R3

j , then its boundary is a union of at most 12 pieces by Lemma

3.9, which is a contradiction. If ∂F = R1
i and ∂F ′ = R1

i′ for some i, i′, then let α be the
subpath P 3

ess ∩ (∂F ∪ ∂F ′) and define J to be the set of indices such that R3
j contains an

edge in α. Let j1, j2 be the minimal (resp. maximal) elements of J . By Lemma 3.7, y3j1
and y3j2−1 are connected to α by edges. Now α is contained in a union of at most 5 pieces
in ∂F and at most 5 pieces in ∂F ′, hence

(j2 − 1)− j1 ≤ dX(y3j1 , y
3
j2−1) ≤ 2 + 2

⌈
5

4

⌉
= 6.

Thus, in total, α is contained in a union of at most 9 pieces (since one element of J
could contribute a piece in each of ∂F and ∂F ′), hence one of ∂F or ∂F ′ is a union
of at most 4 pieces which intersect α, two internal arcs in D, and P 1

ess ∩ α. Therefore,
|∂F | <

(
3
4

+ 6
24

)
|∂F |, which is a contradiction.

Hence we may assume ∂F = R1
i and ∂F ′ = R3

j for some i, j. Now let J ′ be the set of

j′ such that ∂F ∩ P 3
ess contains an edge in R3

j′ , and let j′1 and j′2 be the minimal/maximal
elements of J ′. Note that j is not in the interval j′1, . . . , j

′
2. Assume j < j′1; the other

possibility can be handled in the same way. There are edges connecting y3j and y3j′2−1
to

∂F ∩ P 3
ess, and so

j′2 − j′1 ≤ (j′2 − 1)− j ≤ dX(y3j , y
3
j′2−1

) ≤ 2 +

⌈
(j′2 − 1)− j

4

⌉
.

We conclude that j′2 − j′1 ≤ 3. Therefore, ∂F is the union of ∂F ∩R1
i and a union at most

4 pieces in ∂F ∩ P 3
ess and two internal arcs in D. Thus |∂F | <

(
3
4

+ 6
24

)
|∂F |, which is a

contradiction.

Case 2. From now on we assume that e1,3 ≤ 2. Let x, x′ be the end vertices of γ1, with
x ∈ γ2, x′ ∈ γ4. For each t define vertices zt,t+1 ∈ P t

ess, z
t+1,t ∈ P t+1

ess as follows. If (†) is
present ((‡) when t = 3, 4), define them to be the vertices contained in the tripod, so in
this case z2,3 = z2,1, for example. If the tripod does not appear and Et,t+1 6= ∅, define them
to be the end vertices of et. Finally, if the tripod does not appear and Et,t+1 = ∅, define
them both to be vt. See Figure 14 for one possible configuration. The proof will be in two
steps: first we show dX({z1,2, z2,1} , {z3,4, z4,3}) ≤ 8, and then we show dX(zs−1,s, γs) ≤ 4
and dX(zs,s−1, γs) ≤ 4 for s = 2, 4. This contradicts (9).
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F1 F2 F3

v1

v2 v3

z4,1 = z1,4 = v4

z3,2

z1,2

z3,4

z4,3

z2,1 = z2,3

Figure 14. One possibility for the zt,t+1 and zt+1,t.

Label the interior arcs in E2,4 by α1, α2 (when they exist) so that α1 starts closer to v1

along P 1
ess than α2. Let us define a path of length at most 8 connecting one of {z1,2, z2,1}

to one of {z3,4, z4,3} in the worst case scenario, which is when e2,4 = 2. Now z3,2 and z1,2

lie on the boundary of a unique face F1 ⊆ D. Since ∂F1 is not simultaneously one of the
R1
i and one of the R3

j , by Lemma 3.9, there are paths in ∂F connecting one of z3,2 or

z1,2 to any vertex of α1 which are unions of at most 6 pieces in ∂F1. This implies that
dX({z3,2, z1,2} , α1) ≤ 2. Similarly, there is a path from any vertex in α1 to any vertex in α2

which is a union of at most 7 pieces in ∂F2 (the neighbour of ∂F1 whose boundary contains
α1), and there is a path from any vertex in α2 to one of {z3,4, z1,4} which is a union of
at most 6 pieces in ∂F3 (the neighbour of ∂F2 whose boundary contains α2). Combining
these observations we see that dX({z1,2, z2,1} , {z3,4, z4,3}) ≤ 8, as required.

For the second step, we will bound dX(z2,1, γ2); all the other bounds can be found in
the same way. Note that if the tripod (†) is present or e1,2 6= 0, then dX(z2,1, γ2) ≤ 3
by Lemma 5.5. Hence the only case we have to consider is z2,1 = v1. The remainder
of the argument closely follows the second half of Lemma 5.7. Let D be a diagram with
boundaryQS containingD as a subdiagram. Let F be the unique face in D whose boundary
contains v1. If there is some R2

r such that P 2
ess = R2

r , then dX(γ2, v1) ≤ 2 by Lemma 3.7.
If this does not happen, but for some r′, P 2

ess ∩ R2
r′ has an end vertex v in ∂F , then

dX(γ2, v1) ≤ dX(γ2, v) + dX(v, v1) ≤ 2 +
⌈
5
4

⌉
= 4, by Lemmas 3.7 and 3.9(i). We may

now assume that there is some r such that P 2
ess ∩ R2

r (strictly) contains ∂F ∩ P 2
ess. We

deduce that there is no other face F ′ ⊂ D such that ∂F ′ ∩ R2
r contains an edge using the

penultimate paragraph of the proof of Lemma 5.7. Using the final paragraph of the same
proof, we see that either there exist i, j such that R1

i = R3
j which is a contradiction, or one

of the subpaths N s = R2
r ∩ P 2

ess ∩ P s
ess (s = 1, 3) has diameter at most 2. Therefore,

dX(γ2, v1) ≤ dX(γ2, N s) + diam(N s) + dX(N s, v1) ≤ 2 + 2 + 1 = 5,

where the bound on dX(γ2, N s) comes from Lemma 3.7 and the bound on dX(N s, v1)
follows since N s contains one of the two end vertices of the piece R2

r ∩ ∂F . �

5.2. Acylindricity. We are now ready to use the classification of essential quadrangles
from the previous section to prove that if G is uniformly power-free, then T C(P) ⊆ AH(G).
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Theorem 5.11. Let P = 〈S |r1, r2, . . .〉 be a presentation for a C ′( 1
24

) group G. If G is
uniformly power-free and [X] ∈ T C(P), then Gy Cay(G,X) is acylindrical.

Proof. As [X] ∈ T C(P), it follows from Theorem 4.1 that Cay(G,X) is hyperbolic.
Let N be the uniformly power-free constant, that is, the constant such that no subpath

of a relator is labelled by an N–th power of a non-trivial word.
Fix ε > 0. Let x, y ∈ Cay(G,X) such that

dX(x, y) = 3ε+ 25.

Let γ1 be a geodesic from x to y in Cay(G,X), and let g ∈ G \ {1} be such that

dX(x, gx) ≤ ε and dX(y, gy) ≤ ε. (11)

By [16, Lemma 2.4], it suffices to show that there is a uniform bound on the number of
such g. Fix a geodesic γ1 in Cay(G,X) from y to x. For each g satisfying (11), let γ2 be a
geodesic from x to gx in Cay(G,X), let γ4 be a geodesic from gy to y in Cay(G,X), and
let γ3 be the geodesic gγ1 with the opposite orientation. Define QX = (γ1, γ2, γ3, γ4) to be
the quadrangle associated to the choice of x, y and g, and let QS = (P 1

ess, P
2
ess, P

3
ess, P

4
ess) be

an essential quadrangle associated to QX where P 3
ess is gP 1

ess with the opposite orientation.
By construction,

min{lX(γ1), lX(γ3)} ≥ 3 max{lX(γ2), lX(γ4)}+ 25,

so QX is a “long, thin quadrangle” which satisfies (9). Thus we can apply the classification
of quadrangles from Section 5.1. By Theorem 5.1, either there exists some i and some j
such that R1

i = R2
j , or P 1

ess ∩ gP 1
ess contains a path whose end vertices are at distance at

most ε+ 3 from x and y, respectively, in Cay(G,X).

Case 1. Suppose there exist i, j such that R1
i = R3

j . For each g yielding a diagram in this

case we have R1
i = R3

j = gR1
j , where the last inequality follows because P 3

ess is gP 1
ess with

the opposite orientation. If there are more than N(3ε + 22)2 such g, then at least N + 1
different g satisfy R1

i = gR1
j for some fixed i, j. If g1R

1
j = R1

i = g2R
1
j , then g−11 g2 ∈ Aut(C),

where C ⊆ Γ is the cycle corresponding to R1
i . Hence |Aut(C)| ≥ N + 1, contradicting the

uniformly power-free assumption.

Case 2. Suppose Case 1 does not hold. Then for each g yielding such a diagram, P 1
ess∩gP 1

ess

contains a path whose end vertices are at distance at most ε+3 from x and y, respectively,
in Cay(G,X). Fix a subpath P of P 1

ess starting at the last vertex within distance ε+4 of x
and ending at the first vertex within distance ε+ 4 of y. It is clear that the end vertices of
this path are at least ε+17 far apart in Cay(G,X), and that P is a subpath of gP 1

ess for all
g under consideration. The element g is uniquely determined by the length of the subpath
of gP 1

ess connecting gx to the starting point of P on P 1
ess. Suppose there are more than

N(3ε + 22) such different elements g. Then there is some i and N + 1 different starting
points z0, . . . , zN of P on R1

i ∩ P 1
ess such that one of the following occurs.

(i) The label of the subpath of P 1
i starting at z0 is equal to an initial subword of the

label of P
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(ii) The label of P is equal to an initial subword of the label of the subpath P 1
i starting

at z0.

Let us show that the second option cannot happen. If it does, then there is some g and
some i such that P ⊆ gP 1

i ∩ gP 1
ess. Since we are not in case 1, gR1

i 6= R1
j for any j, and

so P is contained in a union of at most 5 pieces gR1
i ∩ R1

j . Thus its end vertices are at

distance at most d5
4
e = 2 in X̂, which is a contradiction.

Therefore, there exist l 6= m such that 0 < r = dS(zl, zm) ≤ 1
N
|P | and the label of P

has an initial subword which is the N–th power of the label of its initial subpath of length
r. This contradicts the uniformly power free assumption.

�

Proof of Theorem A. Let P be a C ′( 1
24

) presentation for a group G. Then it follows from
Theorem 4.1 that T C(P) ⊂ H(G). If P is additionally uniformly power-free, then T C(P) ⊂
AH(G) by Theorem 5.11. �

6. Thin cones and (A)H–inaccessibility

The goal of this section is to prove Theorems B and C, which will be done in subsections
6.1 and 6.2, respectively.

6.1. The structure of the subposet T C(P). Throughout this section P = 〈S |R〉 is
a C ′( 1

24
) presentation, each element of ri is cyclically reduced in F (S) and we enumerate

R = {r1, r2, . . .}. Define R to be the set of all cyclically reduced conjugates of the ri and
their inverses. For each i we define Ci to be a cyclic graph whose label is ri. We define L
to be the set of all initial subwords of elements of R and P k to be the set of words which
are a product of at most k pieces.

Recall that given Y ⊂ F (S), CY
i is the graph obtained from Ci by adding an edge

connecting any two vertices in Ci such that there is a path between them whose label is in
Y . We use the shorthand Ci = CP 4

i .
Let us recall the construction of the laced cone from Example 3.2.

Definition 6.1. For each i, fix a vertex xi in Ci, and define Pi to be the set of all paths
in Ci which connect two points y, z such that dCi(xi, y) = dCi(xi, z). Set

LC((xi)i) = S ∪ P 4 ∪
⋃
i≥1

{Lab(P ) | P ∈ Pi} ⊆ L.

We call LC((xi)i) the laced cone based at (xi)i (cf. Figure 2).

It is clear that [LC((xi)i)] ∈ T C(P). We now begin our study of the poset T C(P).

Lemma 6.2. |T C(P)| = 1 if and only if each Ci is a union of a uniformly bounded number
of pieces (or equivalently P k = L for some k).

Proof. It is clear that if each Ci is a union of a uniformly bounded number of pieces M ,
then for any X ⊆ P 4, the CX

i have uniformly bounded diameter M/4, and therefore X is
equivalent in T C(P) to the smallest thin cone, L.
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Now suppose this is not the case. For each j ∈ N, let wj be the label of a subpath Pj in

some Cij of length at most
|rij |
2

such that w 6∈ P 4j. If this cannot be done for some j, then
L ⊆ P 8j. Without loss of generality, we may assume the map j 7→ ij is injective. Let xj and
wj be the end vertices of Pj, and consider any laced coned-off graph Γ = Cay(G,X((xi)i)).

By Lemma 3.11, the cones C
X((xi)i)
ij

isometrically embed into Γ, so dX((xi)i)(1, wj) ≥ j for

all j, while dL(1, wj) = 1. Therefore [X((xi)i)] 6� [L]. �

We next show that T C(P) has a largest element if and only if it has exactly one element.

Lemma 6.3. If |T C(P)| 6= 1 then there are two elements [X], [Y ] ∈ T C(P) such that no
[Z] ∈ T C(P) satisfies both [X] � [Z] and [Y ] � [Z].

Proof. Applying Lemma 6.2, if |T C(P)| 6= 1, then for each j ∈ N there is some Ci(j)
whose boundary word cannot be written as a product of fewer than 16j relators. Thus
dj = diam(Ci(j)) ≥ 2j. Choose xi(j), yi(j) ∈ Ci(j) satisfying

dCi(j)(xi(j), yi(j)) =

⌊
dj
2

⌋
,

and fix a vertex xi = yi ∈ Ci for any i which is not equal to one of the i(j). Consider the
laced cones X = LC((xi)i) and Y = LC((yi)i).

Suppose for a contradiction that there is some [Z] ∈ T C(P) such that [X] � [Z] and
[Y ] � [Z]. For any representative Z of [Z] there is a constant K such that

dZ(a, b) ≥ 1

K
max {dX(a, b), dY (a, b)} −K (12)

holds for all a, b ∈ G.
Now suppose a, b are contained in a common cone CZ . If dCi(j)(a, b) ≤ b

dj
2
c then by

Lemma 3.11 either dX(a, b) = dCi(j)(a, b) or dY (a, b) = dCi(j)(a, b). If dCi(j)(a, b) > b
dj
2
c,

then either dX(a, b) > 1
2
bdj

2
c or dY (a, b) > 1

2
bdj

2
c. Since in either case dCi(j)(a, b) ≤ dj =

diam(Ci(j)), it follows from Lemma 3.11 that max{dX(a, b), dY (a, b)} ≥ 1
2
dCi(j)(a, b). Com-

bining this with (12), we have

dCi(j)(a, b) ≥ dZ(a, b) ≥ 1

2K
dCi(j)(a, b).

Hence the Ci(j) are uniformly biLipschitzly embedded in Cay(G,Z), so if Z is a thin cone
in [Z], by Lemma 3.11 Cay(G,Z) contains biLipschitzly embedded cycles of arbitrary
diameter. However, this implies that Cay(G,Z) is not hyperbolic and hence by Theorem
4.1, Z is not equivalent to any element of T C(P), contradicting our assumption. �

Remark 6.4. It is not possible to infer from Lemma 6.3 that G is not H–accessible since
there are cobounded actions G y Z such that σ([G y Z]) does not contain any thin
cones. In the proof of the lemma we need to assume that Z is a thin cone in order to apply
Lemma 3.11. Later we will give a stronger hypothesis from which we can deduce that a
group is not H–accessible.
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We next show that for every element of T C(P) \ {[L]} there is another element [Y ] ∈
T C(P) which is incomparable to [X]. Recall that given X ⊆ F (S), Xi is the set of all
elements of X which are the initial subword of a cylically reduced conjugate of either ri or
its inverse.

Lemma 6.5. For all [X] ∈ T C(P) \ {[L]} there exists a [Y ] ∈ T C(P) such that [X] 6� [Y ]
and [Y ] 6� [X].

Proof. Let [X] be any element of T C(P) other than [L], the smallest element. By Lemma
6.3, there exists [Z] ∈ T C(P) such that [Z] 6� [X]. Let Z be a thin cone in [Z]. Since
[X] 6� [L], there exists an infinite set {i(j) | j ∈ N} and a sequence of elements wi(j) ∈ Li(j)
such that supj |wi(j)|X =∞. Similarly, since [Z] 6� [X], there exists an infinite set {i′(k) |
k ∈ N} and a sequence of elements w′i′(k) ∈ Xi′(k) such that supk |w′i′(k)|Z = ∞. Let I be

an infinite subset of {i′(k) | k ∈ Z} such that {i(j) | j ∈ Z} \ I is infinite. Define

Yl =

{
Ll if l 6∈ I
Zi′(k) if l = i′(k) ∈ I for some k.

Let Y =
⋃
l Yl, it is clear that Y is a thin cone. Now [X] 6� [Y ], as for all l such that

l = i(j) 6∈ I, we have wi(j) ∈ Li(j) = Yi(j), which implies that supj |wi(j)|Y = 1, while
supj |wi(j)|X = ∞. Similarly, [Y ] 6� [X] since for all l such that l = i′(k) ∈ I, we have
w′i′(k) ∈ Xi′(k), which implies that supk |w′i′(k)|X = 1, while supk |w′i′(k)|Y = |w′i′(k)|Z =
∞. �

Recall that P(ω)/F in is the poset of equivalence classes of subsets of N, where two
subsets A,B ⊆ N are equivalent if |A4B| <∞ and A ≤ B if |A \B| <∞. Our next goal
is to show that T C(P) is large.

Proposition 6.6. For any distinct elements [X1], [X2] ∈ T C(P) such that [X1] � [X2],
there is an embedding of posets φ : P(ω)/F in ↪→ T C(P) such that for each [A] ∈ P(ω)/F in,
φ([∅]) = [X1] � φ([A]) � [X2] = φ([N]).

Proof. Let P = 〈S |r1, . . .〉 be a C ′( 1
24

) presentation. Let [X1], [X2] ∈ T C(P) be two
distinct elements satisfying [X1] � [X2]. We have X1 ∼ X1 ∪X2, so by possibly changing
representatives of the equivalence classes, we may assume without loss of generality that
X2 ⊂ X1. Since X2 6∼ X1, there is an infinite set I = {n(i)} ⊂ N and a sequence of
elements wn(i) ∈ X2

n(i) such that

sup
n(i)∈I

|wn(i)|X1 =∞. (13)

Given a subset A ⊆ N, let IA = {n(i) ∈ I | i ∈ A} ⊂ I. Define

XA
j =

{
X2
j if j 6∈ I or j ∈ IA

X1
j if j ∈ I \ IA

.

Let XA = tjXA
j . By construction, [XA] ∈ T C(P). Consider the map

φ : P(ω)/F in→ T C(P)
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defined by
[A] 7→ [XA].

We first show that φ is well-defined. Suppose A,B ⊆ N are equivalent in P(ω)/F in, i.e,
|A4B| < ∞. It suffices to consider the case B = A ∪ {b}. Then XA and XB differ only
in XA

b and XB
b . Recall that elements of XA

b and XB
b are labels of the edges added to the

cycle Cb. Since Cb has only finitely many vertices, it follows that |XA4XB| <∞, and so
[XA] ∼ [XB].

We next show φ is injective. Suppose A,B ⊆ N are not equivalent in P(ω)/F in, i.e.,
|A4B| =∞. We may assume without loss of generality that B\A is infinite. We will show
that XA and XB are not equivalent. Since B \A is infinite, there is an infinite subsequence
(n(i, k)) of (n(i)) such that wn(i,k) ∈ XA

n(i,k) = X1
n(i,k) while XB

n(i,k) = X2
n(i,k). Since the

sequence (n(i, k)) is infinite, we must have n(i, k)→∞ as k →∞, and so by (13) we have

sup
k
|wn(i,k)|XB = sup

k
|wn(i,k)|X2 =∞.

Therefore XA 6∼ XB.
Finally, we show φ is order-preserving. Suppose [A], [B] ∈ P(ω)/F in satisfy [A] ≤

[B]. By changing representatives, we may assume that A ⊆ B. It then follows from the
definition that XA ⊇ XB, and so [XA] � [XB].

Finally, by construction X1 ⊇ XA ⊇ X2 for all [A] ∈ P(ω)/F in, and so [X1] � [XA] �
[X2] for all [A] ∈ P(ω)/F in. Moreover, by construction φ(∅) = [X∅] = [X1] and φ(N) =
[XN] = [X2]. �

Proposition 6.7. Every [X] ∈ T C(P) which is not the smallest element is contained in
an uncountable chain and in an uncountable antichain in T C(P).

Proof. Recall that [L] ∈ T C(P) is the smallest element, and let [X] ∈ T C(P) such that
X 6∼ L. By Proposition 6.6, there is an embedding of posets φ : P(ω)/F in ↪→ T C(P) such
that [L] � φ([A]) � [X] for all [A] ∈ P(ω)/F in. Since P(ω)/F in contains uncountable
chains, [X] is contained in an uncountable chain.

To show that [X] is contained in an uncountable antichain, first choose some [Y ] ∈ T C(P)
such that [X] and [Y ] are incomparable, which exists by Lemma 6.5. Since [X] and [Y ]
are incomparable, there exist subsequences (n(i)) and (n′(j)) of the natural numbers and
words wn(i) ∈ Xn(i) and w′n′(j) ∈ Yn′(j) such that

sup
i
|wn(i)|Y =∞ (14)

and
sup
j
|wn′(j)|X =∞. (15)

There are two cases to consider. If |{n(i)}4{n′(j)}| = ∞, then by passing to sub-
sequences we may assume that {n(i)} ∩ {n′(j)} = ∅. In this case, given A ⊆ N, let
IA = {n(i) | i ∈ A} and JA = {n′(j) | j ∈ A}. If |{n(i)}4{n′(j)}| < ∞, then by passing
to subsequences, we may assume that {n(i)} = {n′(j)}. In this case, given A ⊆ N, let
IA = {n(i) | i ∈ A} and JA = {n(i) | i 6∈ A}.
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In either case, define

WA
k =


Xk if k ∈ IA
Yk if k ∈ JA
Lk else

.

Let WA = tkW k
A. Define a map

φ : P(ω)/F in→ T C(P)

by
[A] 7→ [WA].

By a similar argument as in the proof of Proposition 6.6, this map is well-defined.
We now show that if [A], [B] ∈ P(ω)/F in are incomparable, then [WA] and [WB] are

incomparable in T C(P). Suppose A,B ⊆ N satisfy |A \B| =∞ and |B \ A| =∞.
If |{n(i)}4{n′(j)}| =∞, then for i ∈ A \ B, consider the subsequence of words wn(i) ∈

WA
n(i) = Xn(i) and for j ∈ B \ A consider the sibsequence w′n′(j) ∈ WB

n′(j) = Yn′(j). Since

A\B and B \A are both infinite sets, these are both infinite sequences of words. Applying
(14) yields

sup
i
|wn(i)|WB = sup

i
|wn(i)|Y =∞,

so WB 6� WA. Similarly, applying (15) yields

sup
j
|w′n′(j)|WA = sup

j
|w′n′(j)|X =∞,

and so WA 6� WB. Therefore, [WA] and [WB] are incomparable.
If |{n(i)}4{n′(j)}| < ∞, then since B \ A ⊆ Ac, a similar argument shows that [WA]

and [WB] are incomparable.
Suppose [A] ∈ P(ω)/F in is such that A 6∼ ∅ and A 6∼ N. Then Ac is an infinite set,

and a similar argument shows that [X] and [WA] are incomparable and [Y ] and [WA] are
incomparable.

Therefore, for any antichain {[Aα]} in P(ω)/F in, {[WAα ]} is an antichain in T C(P)
which can be extended to include [X] and [Y ]. Since P(ω)/F in contains uncountable
antichains, the result follows.

�

Proof of Theorem B. If G is uniformly power-free then Theorem 5.11 implies that T C(P) ⊆
AH(G).

Part (i) is Lemma 6.2, while part (ii) follows from Propositions 6.6 and 6.7.
�

6.2. H– and AH–inaccessible groups. In this section, we construct examples of groups
that are neither H– nor AH–accessible. We in fact prove an even stronger result: there is
no largest (not necessarily cobounded) action under the partial ordering on a hyperbolic
space. Moreover, our examples are all groups which admit universal acylindrical actions.
Our main tool is to use thin cones to construct many “sufficiently different” actions of a
group on hyperbolic spaces. We then show that if the group admits an action that is larger
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than all of these different actions in the partial ordering, it cannot be on a hyperbolic
space.

Theorem 6.8. Let P = 〈S |R〉 be a C ′( 1
24

) presentation where each r ∈ R is cyclically
reduced. Suppose that for every n there is some rn ∈ R, which is not a proper power,
satisfying

lim
n→∞

|rn|S = +∞ and inf
n→∞

|rn|
1
2
S

p(rn) log2 |rn|S
> 0,

where p(rn) is the length of the longest piece in rn. Then G = F (S)/ 〈〈R〉〉 does not admit
a largest action on a hyperbolic space.

The strategy of the proof is to use the two laced cones considered in Lemma 6.3 to prove
that if Gy Z is an action such that for any [X] ∈ T C(P),

dX(g, h) ≤ KdZ(g, h) + C,

then Y does not have exponential divergence, and hence it is not hyperbolic.

Proof. Fix z ∈ Z, and for each n let Cn denote the labelled cyclic subgraph of Cay(G,S)
which contains the vertex 1G and has label rn when read from 1G. We denote by Cn the
induced subgraph of Cay(G,S ∪ P 4) with the same vertex set as Cn. Using the proof of
Lemma 6.3 we find [X], [Y ] ∈ T C(P) and K1 ≥ 1 such that for all a, b in a common Cn we
have

1

2K1

dCn(a, b)−K1 ≤ dZ(a.z, b.z). (16)

Moreover, since the orbit map g 7→ g.z is K2–Lipschitz, we have

dZ(a.z, b.z) ≤ K2dCn(a, b) +K2. (17)

Set K = max {K1, K2}.
Define f : N → R by f(n) = n

1
2/ log2(n). By hypothesis, there is an infinite subset

I ⊆ N such that for all n ∈ I
f(|rn|S)

p(rn)
≥ ε > 0.

Therefore, for all pairs of vertices a, b in Cn, we have

dCn(a, b) ≥ dCn(a, b)

4p(rn)
≥ εdCn(a, b)

4f(|rn|S)
.

For each n choose an, bn with dCn(an, bn) maximal (in particular, it is greater than 1
3
|rn|S).

From the above equation we see that

dCn(an, bn) ≥ ε

12

|rn|S
f(|rn|S)

. (18)

Let P 1
n and P 2

n be the two different embedded paths in Cn from an to bn, and for k = 1, 2,
let qkn be a path in Z obtained by connecting the images of consecutive vertices of P k

n under
the orbit map g 7→ g.z by geodesics of length at most 2K. This is possible by (17). The
length of the path qkn is at most 2K |rn|S. Let ` be a geodesic connecting an.z and bn.z in
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Z and let mn be the midpoint of `. By [10, Proposition 3.H.1.6], since Z is δ-hyperbolic,
dZ(mn, q

k
n) ≤ δ log2(2K |rn|S) + 1, therefore there exist points cn, dn ∈ Cn such that

(2K)−1dCn(cn, dn) ≤ dZ(cn.z, dn.z) ≤ 2δ log2(2K |rn|S) + 2 + 4K. (19)

Moreover, for all n sufficiently large, δ log2(2K |rn|S)+1+2K ≤ ε
96K

|rn|S
f(|rn|S)

. We claim that

dZ({cn.z, dn.z} , {an.z, bn.z}) ≥
( ε

96K

) |rn|S
f(|rn|S)

. (20)

To see this, suppose that that dZ(cn.z, an.z) <
(

ε
96K

) |rn|S
f(|rn|S)

; the other possibilities are

similar. Then

dZ(an.z,mn) = dZ(an.z, cn.z) + dZ(cn.z,mn) < 2
( ε

96K

) |rn|S
f(|rn|S)

,

and so dZ(an.z, bn.z) < 4
(

ε
96K

) |rn|S
f(|rn|S)

. However, by (16), this implies that

dCn(an, bn) < 8K
( ε

96K

) |rn|S
f(|rn|S)

=
( ε

12

) |rn|S
f(|rn|S)

,

which contradicts (18). Thus (20) holds.
From (19) we see that there is a path in Cn from cn to dn which is a union of at most

16K(δ log2(2K |rn|S) + 1 + 2K) pieces. Since this path contains either an or bn, and each
piece has length at most p(rn) ≤ ε−1f(|rn|S) in Cn, we see that

16δε−1K (log2(2K |rn|S) + 1 + 2K) f(|rn|S) ≥ dCn(cn, dn)

≥ dCn({cn, dn} , {an, bn})

≥ ε |rn|S
96K2f(|rn|S)

,

where the final inequality follows from (20). Thus there exists some M ≥ 1, such that for
all n sufficiently large we have

Mf(|rn|S)2 log2 |rn|S ≥
1

M
|rn|S .

However, this contradicts the definition of f , since for all sufficiently large n ∈ I,

|rn|S
f(|rn|S)2 log2 |rn|S

≥ ε2 log2 |rn|S > M2. �

We conclude by building the first examples of universally acylindrically hyperbolic groups
which are neither weakly H– nor weakly AH–accessible.

Theorem 6.9. There are uncountably many quasi-isometry classes of finitely generated
acylindrically hyperbolic groups admitting a universal acylindrical action but no largest
action on a hyperbolic space.
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Proof. By Theorems 5.11 and 6.8 it suffices to define a uniformly power free C ′( 1
24

) pre-

sentation P = 〈a, b, c |r1, . . .〉 such that |rn|S →∞ and
|rn|

1
2
S

p(rn) log2|rn|S
≥ 1.

The number of cube-free binary words of length n is at least 2
n
9
+1 by [9, Theorem 7]. For

each n ≥ 6 enumerate 2n different cube-free words of length 9n in {a, b}9n as w1
n, . . . w

2n

n

and define

r′n = Π2n

i=1cw
i
n ∈ F (a, b, c).

We claim that there is some n0 such that P =
〈
a, b, c

∣∣r′n0
, r′n0+1 . . .

〉
suffices. First, each r′n

is cube-free. If w3 is a subword of r′n, then w must contain a c and have length in F (a, b, c)
which is a multiple of 9n + 1, but this implies that two of the win are equal, which is a
contradiction.

Secondly, the length of the word r′n is at least 9n2n, and any piece in r′n is a subword
of some wincw

i+1
n (with i considered modulo 2n), and so has length at most 18n+ 1. Since

n ≥ 6, 9n2n ≥ 576n > 384n + 24 = 24(18n + 1). Thus 〈a, b, c |r′6, r′7, . . .〉 satisfies C ′( 1
24

).
Moreover, there exists some n0 ≥ 6 such that for all n ≥ n0,

|r′n|
1
2
S

p(r′n) log2 |r′n|S
≥ (9n)

1
2 2

n
2

(18n+ 1)(n+ log2(9n+ 1))
≥ 1.

Now take rm = r′n0+m
for all m ≥ 1. Taking various sparse infinite subcollections R

of {rn | n ≥ n0} and using Bowditch’s taut loop spectrum [8] as an invariant we obtain
uncountably many quasi–isometry classes of groups satisfying the hypotheses of the theo-
rem. �
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