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ABSTRACT. We generalize Gruber—Sisto’s construction of the coned—off graph of a small
cancellation group to build a partially ordered set TC of cobounded actions of a given
small cancellation group whose smallest element is the action on the Gruber—Sisto coned—
off graph. In almost all cases 7C is incredibly rich: it has a largest element if and only if it
has exactly 1 element, and given any two distinct comparable actions [G ~ X] <X [G ~ Y]
in this poset, there is an embeddeding ¢ : P(w) — 7C such that ¢(0)) = [G ~ X] and «(N) =
[G ~ Y]. We use this poset to prove that there are uncountably many quasi-isometry
classes of finitely generated group which admit two cobounded acylindrical actions on
hyperbolic spaces such that there is no action on a hyperbolic space which is larger than
both.

1. INTRODUCTION

The study of acylindrical actions on hyperbolic spaces is a powerful tool for understand-
ing algebraic properties of groups that admit aspects of non-positive curvature. The class
of groups that admit such actions on non-elementary hyperbolic spaces, called acylindri-
cally hyperbolic groups, is incredibly rich, including non-elementary hyperbolic and rela-
tively hyperbolic groups, non-exceptional mapping class groups, Out(F,,) for n > 2, and
non-directly decomposable, non-virtually cyclic right-angled Artin and Coxeter groups,
among many others. Moreover, the consequences of being acylindrically hyperbolic are
far-reaching. Such groups are SQ-universal, have non-abelian free normal subgroups, a
maximal finite normal subgroup, infinite dimensional second bounded cohomology, and a
well-developed small cancellation theory [7,12,14,15].

A single acylindrically hyperbolic group will admit many different acylindrical actions on
different hyperbolic spaces, and it is natural to ask how these actions relate to each other.
This kind of question was made precise in [4], where the authors and Osin define a partial
order on the set of actions of a group on a metric space as follows: G ~» X < G Y
if given any points = € X, y € Y, the map (G.y,dy) — (G.x,dx) given by g.y — g.x
is coarsely Lipschitz!. The largest action of a group in this partial ordering is always the
action on its Cayley graph and the smallest action is the action on a point.

Under this partial ordering, the set of (equivalence classes of) cobounded actions of a
given group G on metric spaces has a natural poset structure; we call this poset A (G) [1].

Date: May 7, 2020.
1Strict1y speaking the partial order is on the set of classes of equivalent actions.
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Moreover, it is shown in [1] that A4(G) is isomorphic (as a poset) to the set of (possibly)
infinite generating sets of G, which we call G(G).

Let H(G) C G(G) be the set of equivalence classes [X] of generating sets of G such
that I'(G, X) is hyperbolic for some (equivalently, any) representative X of [X], and we
let AH(G) C H(G) be the set of equivalence classes [Y] of generating sets of G such that
I'(G,Y) is hyperbolic and the action G ~ I'(G,Y) is acylindrical.

1.1. Small cancellation groups. In this paper, we investigate the structure of H(G)
and AH(G) for the class of small cancellation groups. Small cancellation theory provides
a rich class of finitely generated groups which can be constructed to satisfy rather exotic
properties. Graphical small cancellation theory, a generalization of classical small cancel-
lation introduced by Gromov, is a tool that allows one to construct groups whose Cayley
graphs have prescribed subgraphs. In [13], it is shown that all infinitely presented Gr’ (%)
graphical small cancellation groups are acylindrically hyperbolic. Thus it is natural to look
for hyperbolic spaces on which such groups act acylindrically. We describe an uncountable
family of such spaces as a subset of G(G).

Let P = (S |r1,rq,...) be a presentation defining a group G where each r; is cyclically
reduced, and let R be the set of all cyclic conjugates of the r; and their inverses. Roughly,
a piece in r € R is a subword of r that also appears as a subword of some distinct 7’ € R.
Let L be the union of S and the set of all initial subwords of all » € R, and let P* be the
set of all words in G which are a product of at most 4 pieces. Let G}(P) be the set of
equivalences classes [X] of generating sets with a representative P* C X C L. For each r;
let C; be a cycle labelled by 7;, and let X; be the subset of X consisting of subwords of
the cyclic conjugates of r;. For each i and each x € Xiﬂ, add an edge to C; between the
initial and terminal vertex of any subpath of C; labeled by x. By doing so, for each ¢, we
get a new graph which we call CX.

Definition 1.1. The poset of thin cones TC(P) is the subset of all X € G} (P) with
the property that there exists a constant § > 0 such that, for every i, CiX is §-hyperbolic.

Given A > 0, we say P satisfies the C’(\) small cancellation condition (or just P is
C’(N)) if the length of any piece in r is no longer that A times the length of 7.

It was shown by Gruber and Sisto in [13] that whenever P satisfies C'(3), then [L] €
H(G). Moreover, Coulon and Gruber show in [11] that if P is uniformly power-free,
that is, there is some n such that 2" ¢ L for all x € F(S) \ {1}, then [L] € AH(G),
and every infinite order element of G is loxodromic with respect to the action of G on
Cay(G, L)% We will show that under a slightly stronger hypothesis, the same results can
be obtained for all elements of TC(P).

Theorem A. Let P = (S|ri,72,...) be a C'(35) presentation defining a group G. Then
TC(P) C H(G). Moreover, if G is uniformly power-free, then TC(P) C AH(G).

2In fact both of these results are proved in the much more general setting of graphical small cancellation
theory.
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By construction, [L] is the smallest element in 7C(P), i.e., [L] is comparable to and
smaller than every other element of 7C(P).

We note that our thin cones construction starts with the Gruber-Sisto action and then
builds larger actions. This is in contrast to previous constructions, as in [12] and [1],
which typically start with a given action and produce smaller actions. The main difficulty
in producing larger actions is in managing to construct spaces for the actions which are
hyperbolic.

We next describe the structure of 7C(P). Recall that P(w)/Fin is the poset of equiv-
alence classes of subsets of N, where two subsets A, B C N are equivalent if |[AAB| < oo
and A < B if |A\ B| < co. We note that P(w)/Fin contains a copy of P(w), as follows.
Write N as a union of infinitely many infinite subsets A;, As, . ... Then the set of all subsets
of N equal to a union of A;’s is an embedded copy of P(w).

Theorem B. Let P = (S|r,...) be a C”(ﬁ) presentation of a group G. If P is uniformly
power-free, then TC(P) C AH(G). Moreover, if P is power-free but not uniformly so (for
every x € F(S)\ {1} there exists an n such that ™ & L), then TC(P) C H(G) \ AH(G).
Additionally, one of the following occurs.

(i) |TC(P)| = 1, which occurs if and only if each CF* has bounded diameter, or,
equivalently, each r; is a product of a uniformly bounded number of pieces.
(ii) [TC(P)| =28, and TC(P) has the following structure:
o There exist [X],[Y] € TC(P) such that there is no [Z] € TC(P) satisfying
(X] = [Z] and [Y] = [Z].
e For every distinct pair [X],[Y] € TC(P) such that [X] < [Y], there is an
embedding of posets P(w)/Fin < TC(P) such that for each [Z] € P(w)/Fin,
X] < 12] < [Y].
e Fvery [X] € TC(P) which is not the minimal element is contained in an
uncountable chain and in an uncountable antichain in TC(P).

The first point of (ii) is particularly striking, since in many natural examples AH(G) is
known to have largest elements. Our next goal is use TC(P) to study the larger posets

H(G) and AH(G).

1.2. Accessibility. A largest element in H(G) (respectively, AH(G)) corresponds to a
“best” action (respectively, acylindrical action) of G on a hyperbolic space. If a largest
element in H(G) (respectively, AH(G)) exists, we say the group is H—accessible (respec-
tively, AH—accessible). Notice that if a group is not hyperbolic, then the action on its
Cayley graph will not be an element of either poset, and thus the largest element, if it exists,
will not be a proper cocompact action. All hyperbolic groups (and all their finitely gener-
ated subgroups), mapping class groups, fundamental groups of 3-manifolds, and a class of
CAT(0) cubical groups which includes all virtually special groups are AH-accessible [1,2].

One obstruction to AH—accessibility can be found by considering the set of loxodromic
elements in the different acylindrical actions. An acylindrical action of a group on a
hyperbolic space in which every element that is loxodromic in some acylindrical action on
a hyperbolic space is loxodromic in this action is called a universal acylindrical action.
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A group which does not admit a universal acylindrical action cannot be AH—accessible.
The first author used this obstruction in [5] to show that Dunwoody’s inaccessible group,
which is finitely generated but infinitely presented, is not AH-accessible. Moreover, in
3], the authors construct 2% quasi-isometry classes of torsion-free groups which do not
admit universal acylindrical actions. However, this is not the only obstruction to AH-
accessibility. In [1], an example is given of a finitely presented group which admits a
universal acylindrical action on a hyperbolic space but is neither H— nor AH—accessible.

By construction, the Gruber-Sisto action is a universal acylindrical action, which implies
that every element in 7C(P) is a universal acylindrical action, as well.

Definition 1.2. A group G is weakly H—accessible (respectively, weakly AH—accessible)
if there exists an action (respectively, acylindrical action) of G on a hyperbolic space X
such that G ~ I'(G,Y) <X G ~ X for all actions [Y] € H(G) (respectively, all actions
Y] € AH(G)). We do not require that G ~ X corresponds to an element of H(G)
(respectively, AH(G)), that is, the action may not be cobounded.

Clearly, if G is H—accessible, then it is weakly H—accessible, and similarly, AH—accessibility
implies weak AH-accessibility.

Theorem C. If P = (S|R) is a presentation of a group G which satisfies C'(55) and
has “enough pieces”, then there is an uncountable set U C TC(P) such that for any two
elements [X1], [ X2] € U, if a (not necessarily cobounded) action G ~Y dominates G ~
(G, X;) fori=1,2, then'Y is not hyperbolic. In particular, G is not weakly H—accessible.

The exact nature of having “enough pieces” is defined precisely in the hypotheses of
Theorem 6.8.

Theorem C gives the first examples of groups which are not weakly H—accessible. We
also have the following immediate corollary.

Corollary D. There are 2% quasi-isometry classes of finitely generated groups which admit
a uniwersal acylindrical action on a hyperbolic space, but are neither H— nor AH—accessible.

Small cancellation constants. We have no reason to believe that our results cannot be
improved to C’(3) presentations. The current method can be used to prove all of the above
results in the C'(5;) setting (which is the largest A such that Proposition 3.10 holds). Any
improvement beyond this seems to require a different approach, as this is the first time we
are able to apply known classifications of polygons in small cancellation groups. We choose
to work in the C’ (i) setting as it is still technically difficult, and presents many of the same
challenges as the C’ (1—14) setting, but avoids 25 additional pages of agonising case-by-case
proofs. Working in the C’ (i) setting is particularly helpful to rule out configurations as
in Lemma 5.3(iii), as otherwise there are many more possible configurations in Proposition
5.9, including zippers of positive length.

Plan of the paper. In Section 3 we give the construction of the new graphs we call “thin
cones.” For our results, the only necessary example of a thin cone is the laced cone of
Example 3.2. In this section, we also explain how to define certain paths in the Cayley

graph Cay(G,S), which we call essential S-paths, from geodesics in Cay(G, X).
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The central result in this section is Proposition 3.10, which states that polygons in
Cay(G, S) whose sides are either essential S—paths or geodesics are combinatorial geodesic
polygons. In particular, the classifications of triangles and quadrangles from [18] and [6]
can be directly applied to such polygons. Another key result is Lemma 3.13, which gives
a restriction on the length of the intersection of one of these paths with a given relator.
These fundamental tools are heavily used throughout the later sections.

In Section 4, we prove that bigons in Cay(G, X) are thin, which implies that Cay(G, X)
is hyperbolic. We do this by studying the corresponding essential S-bigon in Cay(G, S),
which has degenerate and non-degenerate parts. We study these two parts separately using
a technical condition (x). The case where (x) is not satisfied (Proposition 4.3) is the most
technical part of this argument.

In Section 5, we gather various properties of “long thin” quadrangles (cf. (9)) and prove
that they are either degenerate in the sense that the top and bottom intersect in a long
path (Proposition 5.6), or that they are non-degenerate but with a very rigidly controlled
form (Proposition 5.9). Under the assumption that our presentation is uniformly power-
free, we show that the action of the group on the new graph is acylindrical, which proves
Theorem A. The key here is to use the degenerate and non-degenerate cases separately to
argue that if there are too many different long thin quadrangles - corresponding to a failure
in the definition of acylindricity - then this must be because one relator is appearing in
many of these quadrangles in different guises. This then implies that this relator contains
a subword which is a large power, contradicting the uniformly power-free hypothesis.

The classification of “long thin” quadrangles in Section 5.1 is quite technical and can
be safely skipped on a first reading. The main result from Section 5.1 that will be used to
prove acylindricity in Section 5.2 is Theorem 5.1.

Finally we use the actions on laced cones, together with the Gruber—Sisto action to prove
Theorems B and C in Section 6. Intuitively, the idea is that if one laces a cone from left
to right, and from top to bottom, then any action larger than both of these has not been
laced at all, and so contains biLipschitz embedded cycles. This is first explained within the
context of thin cones in Lemma 6.3, and is a key part of the proof of Theorem B. This is
not sufficient to prove Theorem C, a point which is explained in Remark 6.4. We describe
the necessarily stronger hypotheses and prove Theorem C as Theorem 6.8.
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2. PRELIMINARIES

2.1. Hyperbolicity. A geodesic metric space X is d—hyperbolic if, for every geodesic
triangle with sides vy, 72, 73 we have

71 € Ns(r2eUns) i={z € X | dx(z,72U73) <d}. (1)

We say a geodesic metric space is hyperbolic if it is —hyperbolic for some 4.
For a graph I' equipped with the shortest path metric, I' is d—hyperbolic for some ¢ if
and only if there exists some ¢’ such that for every geodesic bigon 7, v, we have

71 € No(72), (2)
by [17, Theorem 2].

2.2. Acylindrically hyperbolic groups. An action of a group G by isometries on a
metric space X is acylindrical if for all ¢ > 0 there exist constants M, N > 0 such that
for all z,y € X with d(x,y) > M, the number of elements g € G satisfying d(x,gz) < ¢
and d(y, gy) < € is at most N. Recall that given a group G acting on a hyperbolic metric
space X, an element g € G is loxodromic if the map Z — X defined by n — ¢"z is a
quasi-isometric embedding for some (equivalently any) x € X. However, an element of
G may be loxodromic for some actions and not for others. Consider, for example, the
free group on two generators acting on its Cayley graph and acting on the Bass-Serre tree
associated to the splitting Fy ~ () * (y). In the former action, every non-trivial element
is loxodromic, while in the latter action, no powers of x and y are loxodromic. An element
g of a group G is a generalized loxodromic if there is an acylindrical action of G on
a hyperbolic space X such that g acts loxodromically. A non-virtually cyclic group is
acylindrically hyperbolic if and only if it contains a generalized loxodromic element
[16]. An acylindrical action of a group on a hyperbolic space is a universal acylindrical
action if every generalized loxodromic element is loxodromic.

The following notions are discussed in detail in [1]. We give a brief overview here. Fix
a group G. Given a (possibly infinite) generating set X of G, let | - |x denote the word
metric with respect to X. Given two generating sets X and Y, we say X is dominated
by Y and write X XY if

sup |y|x < oo.
yey

Note that when X <Y, then the action G ~ I'(G,Y) provides more information about the
group than G ~ I'(G, X)), and so, in some sense, is a “larger” action. The two generating
sets X and Y are equivalent if X <Y and Y < X; when this happens we write X ~ Y.

We let G(G) be the set of all equivalence classes of generating sets of G and let H(G)
(respectively, AH(G)) be the set of equivalence classes of generating sets X of G such that
['(G, X) is hyperbolic (respectively, I'(G, X) is hyperbolic and the action G ~ I'(G, X) is
acylindrical), where I'(G, X)) is the Cayley graph of I' with respect to the generating set
X. We denote the equivalence class of X by [X]. The preorder < induces an order on
AH(G), which we also denote <. We say an equivalence class of generating sets is largest
if it is the largest element in (A)#H(G) under this ordering.
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Let A (G) be the set all equivalence classes of cobounded G-actions on geodesic metric
spaces. Given a cobounded action of G on a geodesic metric space S, a Svarc-Milnor
argument gives a (possibly infinite) generating set Y of GG such that there is a G-equivariant
quasi-isometry between S and I'(G,Y). We define

o: Au(G) — G(G) (3)

to be the map sending [G ~ S] to [Y], which is an isomorphism of posets by [1, Proposition
3.12]. Tt is clear that if G ~ S is an action (respectively, acylindrical action) on a hyperbolic

space, then [Y] € H(G) (respectively, AH(G)).

2.3. Small cancellation theory. Given a group GG which is generated by a symmetric
set X we denote the word metric on G with respect to X by dx and define |g| = dx(1,9)
for all g € G.

Given a set S, we denote by M(S) the free monoid over S. We define a formal inversion
in M(SUS™!) by the rule

en\—1 _ o—¢€ —€2 ,—€1
(s7's5? . .s5m) =8, .. 5528,

where we associate each s € S with s™L.

Let S be a set, and let F'(S) denote the free group freely generated by S. Let R be a
set of cyclically reduced elements of F'(S) (that is, each r € R is of minimal length in its
conjugacy class), and define R to be the closure of R under reduced cyclic conjugation and
inversion. A word u € F(S) is an initial subword of a r € F(S) if there exists some
t € F(S) such that r = ut is a reduced decomposition of r, i.e. the equality holds in F'(S)
and |r|g = |ulg + |t|g. A piece of R is a word u € F'(S) which is an initial subword of at
least two distinct elements of R. Given A > 0, we say that the presentation (S |R) satisfies
the C’(\) small cancellation condition if for any piece v which is an initial subword of
r € R we have

ulg < Alrls. (4)
A group G is called a C'(\) group if it admits a presentation (S |R) which satisfies the
C’(\) small cancellation condition. We will not assume that S is finite in general.

2.4. Diagrams.

Definition 2.1 (Diagram). A diagram is a finite, simply-connected, 2—dimensional CW
complex with an embedding into the plane, considered up to orientation-preserving home-
omorphisms of the plane. A diagram is called a disc diagram if it is homeomorphic to a
disc.

An arc in a diagram D is a maximal path of length at least 1 all of whose interior
vertices have valence 2 in D. An interior arc is an arc whose interior is contained in the
interior of D, and an exterior arc is an arc contained in the boundary of D. A face is
the image of a closed 2-cell of D. If I is a face, its interior degree i(II) is the number of
maximal interior arcs in its boundary. Likewise, its exterior degree e(II) is the number
of maximal exterior arcs. An interior face is one with exterior degree 0; an exterior
face is one with positive exterior degree.
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One key result we will use for diagrams is Strebel’s curvature formula [18]. Let D be a
disc diagram without vertices of degree 2. Then

6=2> (3—d(v)+ > (6-i(B)+ > (4—i(B))+ (6 — 2e(B) —i(B)). (5)
v e(B)=0

e(B)=1 e(B)>2

One obvious consequence of this is the following special case of Greendlinger’s lemma.

Lemma 2.2. Let D be a disc diagram. There is a face B C D whose boundary consists of
1 exterior arc and at most 3 interior arcs.

Proof. Replace all interior arcs and exterior arcs by edges, so that the resulting diagram
has no vertices of degree < 2. By (5) the only possible positive contribution from the right
hand side is from a face satisfying e(B) = 1 and i(B) < 3. Since the left hand side is
positive there must be such a face. O

We will use the classifications of certain diagrams very heavily throughout the paper,
and so we recall the definitions and main results here.

Definition 2.3. A (3, 7)—diagram is a diagram such that every interior vertex has valence
at least three and every interior face has interior degree at least seven.

Definition 2.4. A combinatorial geodesic n—gon (D, (7;);) is a (3, 7)-diagram D whose
boundary is a concatenation of immersed subpaths 7o, ...,7,-1 (called sides) such that
each boundary face whose exterior part is a single arc that is contained in one of the ~;
has interior degree at least 4. A valence 2 vertex that belongs to more than one side is
called a distinguished vertex. A face whose exterior part contains an arc not contained
in one of the sides is a distinguished face. A combinatorial geodesic n—gon is simple
if its boundary is a simple cycle, and non—degenerate if the same diagram cannot be
expressed as a combinatorial geodesic k—gon for any k < n.

We use the terms bigon, triangle and quadrangle in place of 2—, 3— and 4-gon respectively.

Theorem 2.5 (Strebel’s classification). A simple combinatorial geodesic bigon has the
form I below, a simple non—degenerate combinatorial triangle has one of the forms Iy, I3,

II, 111, IV orV:
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FiGURE 1. Combinatorial geodesic bigons and triangles. The dotted lines
indicate optional additional interior arcs; if they appear, there may be any
finite number of them.

Given a presentation (S |R), a diagram over this presentation is a diagram where all edges
are oriented and labelled by an element of S, and such that the label of the boundary of
any 2-cell is equal (as an element of F'(S)) to an element of R. If the edge e = xy is labelled
by s and is oriented from x to y then we say that the label of the directed edge (z,y) is
s and the label of the directed edge (y,x) is s7'. We denote this by Lab(z,y) = s and
Lab(y,z) = s~1. The label of a directed path P = (z = x¢,...,x, = y) (so each z;x;,; is
an edge) is

Lab(p) = T2y Lab(x;, zi11)

considered as a word in the free monoid M(S L S~'). Notice that since R contains all
cyclically reduced conjugates of the elements of R U R™! it does not matter which vertex
on the boundary we choose to start from or which orientation of the loop we choose, since
the resulting words are either all in R or all not in R.

The boundary word of a diagram D over a presentation (S |R) is the label of a shortest
length closed path P in the 1-skeleton of D whose image contains 0D. It is well-defined
up to formal inversion and cyclic permutation of letters.

Diagrams are the main tool for studying small cancellation groups. The existence of
diagrams with given boundary word is guaranteed by the Van-Kampen lemma.

Lemma 2.6. Let (S|R) be a C'(3) presentation, and let w € M(S U S™) represent the
identity in G = (S|R). There exists a diagram D over this presentation with boundary
word w in which the label of every interior arc is a piece.

3. CONED-OFF GRAPHS

One of the key difficulties of the paper is in using our geometric understanding of I'(G, S)
to prove results about geodesic polygons in I'(G, X). This section provides the vital bridge.
We construct paths in I'(G, S) associated to geodesics in I'(G, X'). While these paths need
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not be geodesics, they are sufficiently nice that we may apply the classifications of bigons
and quadrangles in C"(1/6) groups to our setting under the stronger C’(1/14) hypothesis.
The key result is Proposition 3.10, which allows us to apply the classification of triangles
and quadrangles from [18] and [6].

3.1. Constructing new graphs. Let P = (S|R) be a C’(3;) presentation, and define
G = F(S)/{R).> Enumerate R = {ry,rs,...}. Recall the following sets, which were
defined in the introduction:

e [ is the union of S and the set of all initial subwords of the cyclic conjugates of r;
and their inverses,

e P*is the set of all words in F'(S) which are a product of at most 4 pieces,

e G7(P) is the set of equivalences classes [X] of generating sets with a representative
P*C X CL,and

e for each i, X; is the subset of X consisting of subwords of the cyclic conjugates of
r; and ;'

For any [X] € G}(P) and any representative X of [X], G acts on the Cayley graph
['(G, X). We now give a more geometric description of this Cayley graph for a particular
representative X satisfying P* C X C L.

For each r; let C; be an oriented cyclic graph of length |r;| whose edges are labeled
by elements of S so that the concatenation of these labels (respecting the orientation) is
a cyclic conjugate of r;. Let X; be the subset of X consisting of subwords of the cyclic
conjugates of r;. For each ¢ and each z € Xz-il, add an edge to C; between the initial
and terminal vertex of any subpath of C; whose label (respecting the orientation) is x.
By doing so, for each i, we get a new graph which we call C. The cycles C; embed in
Cay(G, S), and Cay(G, X) is precisely the graph formed by replacing each embedded copy
of C; with an embedded copy of C¥.

Recall that the poset of thin cones TC(P) is the subset of all X € G} (P) with the
property that there exists a constant § > 0 such that for each i, C;X is d-hyperbolic.

We call each embedded copy of C* in Cay(G, X) a cone, the copies of C; in Cay(G, X)
the join of the cone, and the added edges cone edges. To distinguish between embedded
copies of C; in Cay(G, S) or Cay(G, X) and C; as a component of I', we call the embedded
copies of C; relators. Each relator R is the join of a unique cone which we denote R¥.
We call edges of I'(G, X) labeled by elements of X \ S cone edges; note that these are
the images of cone edges in C* under the embedding into Cay(G, X). We refer to edges
that are not cone edges (that is, the edges of Cay(G,S)) as S—edges. We use dg and dx
to denote the natural metrics on Cay(G, S) and Cay(G, X), respectively.

Remark 3.1. It is sufficient to replace the requirement that X O P* with the following
weaker condition: the diameter of any piece in any C; has uniformly bounded diameter

3We will implicitly assume throughout that every s € S appears in some r € R. If S’ is the set of s € S
which do not appear in any r € R, then G = F(S\ §')/ (R)) = F'(S’). All our results can be applied to
F(S\ S")/ {(R) and immediately lifted to the original presentation.
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in C#*. The graph Cay(G, X'), where X' = X U P, is G-equivariantly quasi-isometric to
Cay(G, X), and so X ~ X', which implies [X] € TC(P).
The obvious example of a thin cone is [L], the coned-off graph considered by Gruber

and Sisto [13]. Before continuing with more of the theory, let us pause to give one other
important example of a thin cone.

Example 3.2. Let P = (S|R) be a C’(5;) presentation. Enumerate R = {ry,rs,...}, let

C; be a cycle with label r;, set C; = cr 4, fix a vertex z; in each C; and define P; to be the
set of all paths in C; which connect two points y, z such that dg(x,y) = dg (74, 2). Now
set
X((z:);) =SuP*U| J{Lab(P) | PeP;} C L.
i>1
It is easy to see that the resulting graphs CiX are always 1-hyperbolic, and therefore
[LC((x;);)] € TC(P). We call LC((z;);) the laced cone based at (z;);.

CX((Zz')z‘)

Z; Z;

FIGURE 2. The construction of the laced cone based at (x;);.

3.2. Associated paths. In order to prove the hyperbolicity of spaces Cay(G, X) we
will show that all bigons are uniformly thin, and to prove acylindricity of actions G ~
Cay(G, X) we will need to study geodesic quadrangles. In preparation for both cases, we
will begin by constructing combinatorial geodesic bigons and quadrangles in Cay(G, S)
“associated to” geodesic bigons and quadrangles in Cay(G, X) using the small cancellation
assumptions. In order to do this, we must first define paths in Cay(G,.S) which are asso-
ciated to geodesics in Cay(G, X). In this subsection we present the construction of such
paths and record a few of their properties.

Let v be any geodesic in Cay(G, X). Number the vertices zy, . .., z,, in the order they
occur on 7 (in particular, this means that dx(z;,z;) = |i — j|).

Choose a subsequence z;; of the x; such that x;, = xo and, for each j > 1, x;; is the last
vertex in the sequence such that z;,_,,z;,_,41,...,%;; all lie on some common relator R;.
By construction, ¢; > 4;_1, since our standing assumption is that any pair of neighbouring
vertices in Cay(G, X) are contained in some common relator.

For convenience we write y; = x;,. For each geodesic v in Cay(G, X ), we fix the following
data:
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FIGURE 3. The dotted path is an S—path associated to v (solid), a geodesic
in Cay(G, X). Outlined in grey are relators Ry, ..., Rs.

e a choice of relators Ry, ..., R; satisfying the above conditions; and

e a choice of geodesics P; C R; from y;_1 to y;.
We now define a path P in Cay(G, S) (which a priori is not embedded) from yy = o to
Y1 = T, to be the concatenation of geodesics P; from y;_; to y; in Cay(G,S). We call P
the S—path associated to 7.

While there appear to be many choices here, they will not make much difference. If
there is a choice of relators R; and Rj, then y;_; and y; lie on the piece R; N Rj/, so
dx(yj-1,y;) = 1. If there is a choice of geodesics P; C R;, then y,;_; and y; lie at antipodal
points on I7;, and we must choose which way to go around this relator.

We now consider self-intersections of P, which come in two types:

(i) a single closed subpath @ of P whose image in Cay(G, X) is a tree;
(ii) a pair of subpaths @, Q2 of P with the same endpoints, such that the image of
@1 U Q2 in in Cay(G, X) is a tree.
We call a self-intersection of type (i) simple if the initial/terminal vertex of @ is not
contained in the interior of Q).
The complexity of these self-intersections is limited by the following proposition, which
we will prove via a series of lemmas.

Proposition 3.3. Any self-intersection of type (i) is contained in a union of at most 4
consecutive P;. There are no self-intersections of type (ii).

We begin with a simple observation about the choice of relators.
Lemma 3.4. If R, = Ry, then k=1 or |l — k| > 4.

Proof. Suppose k # [, and assume without loss of generality that [ > k. It is clear that
consecutive relators defining the S-path are distinct by construction, so [ — k # 1. If
l — k = 2, then y; and yx1 are both in Rx N Rj.; and so are connected by an edge in
Cay(G, X). Thus they are consecutive vertices in v, which contradicts the choice of y in
the construction of the S-path. Finally, if | —k = 3 we claim that Ry N Ry N Ry o contains
a vertex. To see this, notice that if it does not, then there is a simple geodesic triangle
T whose boundary consists of subgeodesics (in Cay(G,S)) of Rg, Rgy1 and Ryio, but
this is easily seen to be impossible using the small cancellation assumption and Strebel’s
classification (Theorem 2.5). Specifically, by Lemma 2.2 there will always be a face F' in
any reduced diagram D with boundary T such that the boundary of F'is contained in:
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a union of a geodesic and at most 3 pieces, if OF is equal to one of Ry, Ry 1, Rjis; or
at most 5 pieces if not, both of which contradict the small cancellation assumption. It
follows that there is a path from y; to Yo contained in the union of pieces Ry N Ry, and
Ryio N Ryy3. Since Ry, = Riy3, 2 < dx (Y, Yr+2) < 1, which is a contradiction. O

Equipped with this we can now start limiting the self-intersections of type (i).

Lemma 3.5. Suppose P contains a closed subpath Q) of type (i) which intersects each of
P, ..., P; (not necessarily consecutive indices) in at least an edge, and is contained in their
union. Then either j —i < 3 or there exist k,l with i < k <1< j andl—k € {4,5,6}
such that each of Py and P, intersect () in an edge, and P, N P, contains a vertex in Q.

Proof. Let o be the initial/terminal vertex of (), which is contained in P; and P;. Let us
suppose for a contradiction that 7 — ¢ > 4, and that for all £, with i < k <[ < j and
Il —Fke{4,5,6}, Pk N Pl = (). We take a closed subpath of @ with J — ¢ minimal; that is,
ifi<i'<j <j,j/—i>4and P, NPy #0, theni=17 and j =y

First, suppose P, N (@ is contained in R+1 U P19 U P, 3. Then either j —i < 6, in which
case the conclusion holds with & = ¢ and | = j, or we can find a closed subpath of @)
contradicting the minimality assumption. In the latter case, we consider o as a point on
some Py with 1 <14 —i < 3 and take the closed subpath of @ starting at o which contains
the edge of P, N @ with end vertex o and ending at the original end of @ in P;.

Otherwise, let p be the point closest to o contained in P, N Q N (P U PHQ U Py3).
Consider a closed subpath of 7" with initial and terminal vertex p which starts in some Pj
with 1 <4’ —7 < 3 and finishes back at p in some P;; which contains the unique edge in @
with end vertex p on the geodesic connecting p to o in (). It follows by assumption that
j' > i+4. By minimality j' — ¢ < 3, so 4 < j' —i < 6, in which case the result holds with
k=iand | = j, since p € P, N P; and both P, and P; contain an edge in Q. O

Lemma 3.6. Suppose P contains a self-intersection Q) of type (i). If Q N P; and Q N P,
contain edges, Q N P, N P; contains a vertex, and |i — j| <6, then |i — j| < 3.

Proof. Firstly suppose |i — j| = 4 and consider a path in @ from y; to y;13. A case analysis
of the different possible configuration of such a subtree (see Figure 4) shows that this path
can be decomposed into two paths such that the first is contained in |J;_,(P; N Pyy;), and
the other is contained in |J?_,(P; N P;_;). By Lemma 3.4, each of these is a union of at
most 3 pieces contained in R; and R, respectively. Thus 3 < dx(y;, yi+3) < 2 which is a
contradiction.

Next suppose |[i —j| = 5. If PLN Py # 0 or Py N Piys # 0, then by considering
the appropriate subtree, we reach a contradiction as above. Thus we may assume that
P,N Py, =0 and Py NP5 = 0. Consider a path in @ from y; to y;14. As above,
a case analysis shows that this path can be decomposed into two paths such that the
first is contained in | J;_,(P; N Piy;), and the other is contained in | J;_,(P; N P;_;). Thus
4 < dx(yi,yirs) < 2 which is a contradiction.

Finally suppose |i — j| = 6. If P, N Py # 0 and |’ — j'| € {4,5}, then we are in one of
the previous two cases and reach a contradiction. Thus we may assume that if Py N Pj # 0,
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Yi+s

FIGURE 4. The 9 possible configurations when |i — j| = 4. Note that by
Lemma 3.4, all Ry, in the figure are distinct, except possibly R; and R, 4.

then |i' — j'| € {0,1,2,3,6}. Consider a path in 7" from y; to y;15. A case analysis again
shows that this path can be decomposed into two paths such that the first is contained in
U?:1(Pi N P;y;), and the other is contained in U?Zl(Pj N P;_;). Thus 5 < dx(yi, Yiys) < 2
which is a contradiction. U

Combining Lemma 3.6 with Lemma 3.5, we deduce that any self-intersection of type
(i) is contained in a union of at most 4 consecutive P; as follows. If T" intersects Ry and
R; in edges, and | — k£ > 4, then by Lemma 3.5 there exist £ < ¢ < j < [ satisfying the
hypotheses of Lemma 3.6, and so [ — k£ < 3, which is a contradiction.

In order to deal with self-intersections of type (ii), we introduce a refinement of the
S—path associated to 7. The essential S—path associated to 7, which we denote by
P.gs, is formed from P by removing the interiors of all self-intersections of type (i). By
definition P,.gs is connected and has the same end vertices as P (and therefore as v, as
well). We now prove that P, is embedded in Cay(G, S).
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FIGURE 5. The dotted path is an essential S—path associated to a 7 (solid).
Compare this to the S—path in Figure 3.

Lemma 3.7. Any point on a self-intersection of type (i) is at distance at most 2 from P,
in Cay(G,X). Moreover, if P, N P.gs # 0, then every vertex on P;\ P.ss is connected to
P;N P, by an edge in RX.

Proof. That the distance from any point on a self-intersections of type (i) to P.gs is uni-
formly bounded follows immediately from the fact that any such self-intersection is con-
tained in a union of at most 4 consecutive P, and that the initial /terminal vertex of such
a closed subpath must, by definition, lie on P..,. That the bound is 2 follows from a case
analysis of the possible configurations of such trees. We illustrate one instance of the worst-
case scenario in Figure 6 below. To prove the last statement, notice that if P, N P, # )
then there is a path from any vertex in P;\ P,.ss to P;N P, contained in Ulg:1 RN R;y or

in U?:1 R; N R;_;, and so by Lemma 3.4 they are connected by an edge in R:*. O

FIGURE 6. There is a path (dotted) from x to a point y € P.s, consisting of
a piece R; N R;;3 and the union of two pieces R; 11 N R; 9 and R;1 1 N R 3,
so the distance in Cay(G, X) from x to y is 2.

Lemma 3.8. Let P be an S-path constructed from geodesics P; in relators R; and let P,
be the corresponding essential S-path. If there exists an i such that Py N Py, = 0, then
dx(yi—1,y:;) = 1. Moreover, at most two consecutive P;’s can be disjoint from Pigs.

Proof. If P;N P.ss = () then P; is contained in a self-intersection of P of type (i) with the
additional property that the initial/terminal vertex of this self-intersection which is itself
contained in a union of paths P;,..., P;y; with [ < 3 by Lemmas 3.5 and 3.6. It is clear
that P;N P.ss and Pjy; N Py, are not empty, so ¢ # j, 7 +1 . Thus we have at most 2 choices
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for 7, and, it follows that P; is contained in a union of at most 3 pieces: the intersections
with the other paths in this self-intersection of P. Hence dx(y;_1,y;) = 1. O

Before continuing, we pause for one remark. The 1-skeleton of a reduced diagram can
be naturally embedded as a labelled subgraph of Cay(G, S), so given a face F in a reduced
diagram D whose boundary is explicitly fixed as a closed path in Cay(G,.S), we may make
sense of the statement JF is equal (or not equal) to a certain relator R. If 0F = R and R
is the join of a unique cone R, we may write (OF)% for this cone. This will be invaluable
when constructing diagrams to bound S—distances using the assumptions on thin cones.

Lemma 3.9. Let QQ be any closed path in Cay(G,S) and let D be any reduced diagram
with boundary Q. Let F be a face of D with e(F) > 1. Suppose there is a subpath o of

0D N OF such that o C P,,, and let I be the set of indices © such that Py N\« # 0, with
manimal and maximal elements 11,15, respectively.

(i) If OF # R; for alli € I, then iy — iy < 4.
(i) If OF = R, for some i € I, then OF # R; for all j € I\ {i}.
(iii) If, in addition, OF \ « is contained in a union of at most N pieces, then |I| <
4+ .

Proof. Assume iy — 1, > 2. By Lemma 3.7, the vertices y;, and y;,_1 are connected by
an edge in Cay(G, X) to points z; € N R;, and 23 € a N R;,_1, respectively. There is a
path in OF from z; to 23 which is contained in the union of pieces 0F N Ry, for k € I and
i1 < k <y — 1. Therefore, we have

(iz — 1) — il < dX(yilayléfl) < 2+ ’V

(2'2—1)—@1} |

; (6)

and so i3 — i3 — 1 < 3 and part (i) follows.

To prove (ii), suppose that 0F = R; = R; for some ¢ < j and R, # F for all k € [
satisfying ¢ < k < j. In this case, y; and y;_; lie on OF. By a slight modification of the
argument in (i), we see that

(7)

(7—1) =i <dx(yi,yj-1) < [

so j — i < 2. This contradicts Lemma 3.4.

For part (iii), first suppose OF ¢ {R;,, R;,}. By Lemma 3.7 there are paths which are a
union of at most 3 pieces in R;, (resp. R;,) connecting y;, and y;,—1 to two vertices of «,
extending these by pieces in F N R;, and OF N R;, respectively, we see that y;, and y;,
can be connected by edges in Cay(G, X) to the end vertices of a. Therefore

: ) N
(g — 1) — i1 <dx(Yiy, Yin—1) <2+ [Z—‘ ;

s0 iy — i1 < 34 [§] and [I| <4+ [§].
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Next suppose OF = R;,; the case OF = R;, is handled similarly. By (ii), 0F # R, for
all j € I\ {i1}. There is an edge connecting y;,_1 to OF so

(ig—l)—il
4 )
so ip —i; < 3 and || < 4. O

(iz — 1) —11 < dX(yilayZéfl) <1+ ’V

We are now ready to prove Proposition 3.3.

Proof of Proposition 3.3. The first statement follows immediately from Lemmas 3.5 and
3.6.

If P has a self-intersection of type (ii), then P,.;; must contain a simple cycle. We will
show that this is not possible. Suppose for a contradiction that C'is a simple cycle in P,
and let D be a reduced diagram with boundary C'.

Since D contains a face which contributes positively to the curvature formula (5), either
there is a face F'in D with e(F) =1 and 1 < i(F) < 3, or D is a single face F. In either
case, applying Lemma 3.9(iii) to o = 0F N 0D, we see that « is contained in a union of
either 5 pieces (if OF # R; for all i), or a geodesic and at most 4 pieces (if OF = R; for
some 7). Therefore, OF is contained in a union of either 8 pieces, or a geodesic and at most
7 pieces. Since the presentation P is C” (i), we see that

1 7 8
or| < |0F -4 — —
or) < oF|max {5+ 37,50}

which is a contradiction. O

In order to be able to utilise the small cancellation assumptions we will need to construct
combinatorial geodesic polygons. The following proposition shows that our essential S-
paths are suitable for this purpose.

Proposition 3.10. Let Q be a closed path in Cay(G, S) which is a union of paths P, ... P"
each of which is either a geodesic in Cay(G,S) or an essential S-path of a geodesic in
Cay(G, X). Let D be a reduced diagram with boundary Q. Then D is a (possibly degener-
ate) combinatorial geodesic n-gon (cf. Definition 2.4).

Proof. 1t suffices to show that any face F' C D whose exterior side is completely contained
in some P!, satisfies i(F') > 4. Towards a contradiction, suppose i(F) < 3.

Then by Lemma 3.9, 9F N JD is contained in a union of either 5 pieces (if OF # F} for
any 7) or a geodesic and at most 4 pieces (if 9F = R! for some 7). Thus OF is contained in a
union of either 8 pieces or a geodesic and at most 7 pieces. Thus we obtain a contradiction

1 7 8

A very useful consequence of this is that cones are convex in Cay(G, X).
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Lemma 3.11. Let R be a relator in Cay(G, X). Any geodesic in Cay(G, X) with endpoints
in RX is contained in RX.

Proof. Suppose for a contradiction that there is a geodesic 7 of positive length in Cay (G, X)
such that both end vertices z, 2’ of 7/ are contained in a cone R* and v/ N R* = {x,2'}.
Consider an essential S—path P’ associated to ' which is a concatenation of geodesics
Pl,... P/ contained in relators R, ..., R;.

Suppose first that R = R/ for some i. Since v/ NRX = {x,2'}, and, by definition, each R}
contains at least two vertices y;_; and y} of 7/, we see that {z, 2’} = {y;_1, y;} and therefore
all of the vertices in 7/ are contained in R*. The choice of the relator R. then ensures
that there are only two vertices in 7/, so 7' is an edge e = xz’. Thus Lab(z,2') € X, and
e € RX, which is a contradiction.

Hence, we may assume R # R) for all k. Let 75 be a geodesic in Cay(G, S) from z to
2’ which is contained in R, and consider a reduced diagram D with boundary vs U P’. If
vs € P then | < dx(z,2") < HJ, so [ = 1. Therefore there is a path connecting x to 2’ in
Cay(G, S) which is a piece in RN R}. Thus za’ is an edge e in Cay(G, X), Lab(z,2') € X,
and e C R which is a contradiction. Otherwise, by Proposition 3.10, D is a combinatorial
geodesic bigon which contains a face, so contains a sub-bigon D’ with 9D’ C 9D which is
either a single face or has the form I; from Strebel’s classification.

Suppose F' is a face of D' with i(F) < 1. If OF # R} for any j = 1,2,...,[, then by
Lemma 3.9(i) OF' is contained in either a union of at most 7 pieces, or a geodesic and at
most 6 pieces. Both of these contradiction the small cancellation assumption. If OF = R}
for some j, then by applying Lemma 3.9(iii) to a = 0F N P’ we see that OF is contained
in a union of a geodesic and at most 6 pieces, which is again a contradiction since P is a
C’(5;) presentation. O

We now collect several lemmas about essential S—paths that will be useful in the con-
struction of associated bigons and quadrangles, as well as in the proof of hyperbolicity.

Lemma 3.12. Let P,.,, be an essential S—path associated to a geodesic v in Cay(G, X).

(i) For every relator R, RN P,y is empty or connected.
(ii) If R is a relator such that P.ss N R has diameter at least 3 in Cay(G, X), then
R = R; for some R; used in the construction of Pess.

Proof. To prove (i), suppose there is a relator R such that RN P, is not connected (so it is
clear from Lemma 3.11 that R is not one of the relators R;), and let ) be a positive length
subpath of P.ss with end vertices x, 2’ such that RN Q = {z,2’}. Let D be a reduced
diagram whose boundary is a simple cycle comprising a geodesic v in Cay(G,S) which is
contained in R and a subpath of P.s. Since 0D is the union of a geodesic in Cay(G, S) and
a subpath of P,,, by Proposition 3.10, D is a combinatorial geodesic bigon. By Strebel’s
classification, D is therefore of type I;. Choose F' C D. Then OF can be written as the
union of at most 2 interior pieces, 0F N~ and OF N P.s. By Lemma 3.9(iii), OF N P is
contained in a union of at most 5 pieces (since R # R; for all i), and so

7
OF| < |0F 13| + 57 [0F] (8)
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However, since v is a geodesic in Cay(G, S), we have |0F N~| < 1 |0F| which contradicts
(8).

For (ii), suppose R # R; for all j. Then by Lemma 3.9(i), P.;s N R is contained in a
union of at most 5 pieces R N R;, so the distance between the endpoints of P.,, N R is at
most 2. U

Lemma 3.13. Let P.gs be an essential S—path associated to a geodesic v in Cay(G, X).
For every relator R; used in the construction of the path we have |Pogs N R;| < 3 |Ry|.
Moreover, if R; N\ P.ss # 0, then y; and y;_1 can be connected by an edge in Cay(G, X) t
the initial and terminal vertices of P, N R;, respectively.

o

Proof. Consider all the vertices z;, ..., x; contained in R;. Since the set of indices appearing
in this list is a subinterval of {0,...,m} by Lemma 3.11, we have y; = x;. Moreover, if we
define the set of all vertices contained in R;_; to be z,,...,z,, we have ¢ < j + 1, since

for any two distinct relators, R and S if xy, x; € RN .S with k < [ then there is a path in
RN S connecting zy, to z; and so | — k < dx(zx, ;) = 1.

Moreover, q < k, for otherwise we contradict the choice of R; in the construction of the
S—path associated to . Hence, y;-1 € Ri-1 N R; N {x;,xj11}.

Let z, 2’ be the initial and terminal endpoints of R; N P.,,, respectively. If y;_; does not
lie on P.g,, then it follows from the proof of Lemma 3.7 that y;_; is connected by an edge
to the point z. Similarly, if y; does not lie on P.,,, then it is connected to 2’ by an edge.

If y;_1 lies on P.g, we will show that there is a path connecting z to y;_; which is
contained in the union of at most 3 pieces Ry N R;, and thus y;_; can be connected to z
by an edge. To this end, assume that any geodesic from z and y; cannot be connected
by the union of at most 3 pieces Ry N R;, and let j be the smallest index such that y; is
connected to P.ss N R; by an edge. By assumption, 7 < ¢ — 4. However, this implies that
3 <dx(yj,yi—1) <1+ @J, which is a contradiction. Similarly, if y; lies on P.,,, then there
is a path connecting 2’ to y; which is contained in the union of at most 3 pieces R; N Ry,
and so y; can be connected to 2z’ by an edge.

It follows that P,,;NR; is contained in the union of the geodesic P; and at most six pieces
R;NR;. Since P.ssN R; is connected by Lemma 3.12(i), we have |P.ss N R;| < (% + 2%) | R;].

O

4. HYPERBOLICITY OF CONED-OFF GRAPHS
The main goal of this section is the following theorem.

Theorem 4.1. Let P = (S|ri,r2,...) be a C'(3;) presentation of a group G. Then
TC(P) C H(G).

To prove the theorem, we show for any thin cone X, every geodesic bigon in Cay(G, X)
satisfies (2) with &' = 7 + 20, where d is a hyperbolicity constant of the cones Ci¥ in
the sense of (1): for every geodesic triangle in Ci¥ each side is contained in the closed
d—neighborhood of the other two. This suffices to deduce hyperbolicity by [17, Theorem
2].
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We study geodesic bigons in Cay(G, X) by first defining associated bigons in Cay(G, S),
called essential S—bigons. These associated bigons have degenerate and non-degenerate
parts, and we study these two parts separately using a technical condition (x). The case
where (%) is not satisfied (Proposition 4.3) is the most technical part of this argument.

4.1. Essential S—bigons. Given two vertices x,2’ € Cay(G, X) which are contained in
distinct cones, and a pair of geodesics 4! from x to 2’ and 72 from 2’ to z in Cay(G, X).
We define an S—bigon corresponding to (y!,~?) to be (P!, P?) where P' and P? be S-
paths corresponding to v and +?, respectively. We analogously define essential S—bigons
(PL., P2.) corresponding to (v!,7?). Note that P!, P!, and ' have the same endpoints,

and thus (P!, P?) and (PL, P2,) are bigons in Cay(G, X). Moreover, by Proposition 3.10,

(PL., P2.) is a combinatorial geodesic bigon in Cay(G, S).

We append the superscript ¢t = 1,2 to any notation already defined in Section 3 for an
(essential) S—path; for example, the vertices of 4* will be denoted z! and relators used in
the construction of P* will be denoted R}.

The essential S—bigon PL U P2 is composed of (possibly degenerate) maximal subpaths

€SS €SS

Sy, ..., Sk contained in PL, NP2  and simple cycles By, ..., B;, which are formed by taking
closures of connected components of PL U P2 \ Ule Si. Let & = {5,...,Sk} and

B:{Bl,...,Bl}.

FIGURE 7. Subdividing the bigon Ag into pieces. The (possibly degenerate)
segments are elements of S and the simple cycles are elements of B.

By construction, the simple cycles B; are bigons. Moreover, any reduced diagram D
with boundary B; is a combinatorial geodesic bigon (see Definition 2.4) by Proposition
3.10.

Our goal is to prove that for each 4, ! is contained in the closed 7 + 2§-neighborhood
of 2.

Lemma 4.2. Suppose consecutive edges of Pl are contained in R} and R, with i < 7.
Then dx (y},yh ;) < 2.

Proof. Let = be the common end vertex of the two edges. By Lemma 3.13, dx(y},z) <1
and dx(x,y; ;) < 1. The result follows by the triangle inequality. O

By Lemmma 4.2, we need only consider 7 such that PL N R} contains an edge, up to
increasing the hyperbolicity constant by 1. We now split into two cases depending on
whether the following condition is satisfied.

Condition (x): There exists some j such that Rj = R and either
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(xq) PL,N R} N P2, contains an edge; or

€ss €ss

(%) there is a face F' C D such that each of 9F N P}, ,N R} and 9F N P7,, N R} contains
an edge.

Notice that (*,) and (x;) are mutually exclusive: if both occurred then R} would contain
an edge in a segment and edges on each of OF N P}, N R and 9F N P2, N R:. This is

€ess ess
not possible as such a subgraph must have a vertex of degree at least 3 and R} is a simple

cycle.

PQA

€8s

FIGURE 8. One possible configuration satisfying case (a) of (x).

R = R?

Pl

€SS

ess

FIGURE 9. Two possible configurations satisfying case (b) of (x).

Proposition 4.3. Suppose i does not satisfy (x). Then 7} is contained in the closed 6
neighborhood of ~2.

Proof. Let D be a diagram whose boundary is the bigon Ag. If R} = OF for some face
F C D, then, since (%) fails, P2, N JF is contained in a union of 5 pieces dF N R?

€SS

with 1 < m < 5 by Lemma 3.9(i) (see Figure 10 (left)). Moreover, P2, N OF cannot be
contained in union of at most 4 pieces in 0F. To see this, notice that JF is the union of
OF N PL_, which has length less than % |OF| by Lemma 3.13, at most 2 internal arcs and

N pieces OF N R, and so
3 2 N
F -+ — 4+ — F|.
|0 |<(4+24+24)|8 |

This is a contradiction if N < 4. Assume j; < ... < js5. By Lemma 3.7 there is an edge in

X connecting 32, to some vertex v on R; N OF, and edges connecting y; ; and y; to the
end vertices of F N PL_. Each of these end vertices is connected to v by an edge in X,

ess’
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\_

2
R]S

FIGURE 10. Two cases of the proof of Proposition 4.3, when R! = OF (left)
and when R} # OF (right).

since there are paths in D connecting them which are the union of at most 4 pieces (one
internal arc and at most 3 pieces R]zm NOF). Hence

max {dx (y;_1,v2,), dx (¥}, v2,) } <3,
and 50 7} C Bes(y3,) C No(7°).

If R} # OF for all F' C D, then by splitting PL, N R} into its intersections with bigons
and pieces, then since (x,) fails, we deduce that PL, N R} is contained in: some number
M of pieces which are the intersection of R} with boundaries of faces F' C D; and some
number N of pieces which are intersections of R; and relators R} (see Figure 10 (right)).
We first show that M < 2, i.e., there are at most two faces I, Fy in D such that 0F,, N R}
contains an edge. Notice that if there were at least three, then since PL N R} is connected,

€SS
there is a face F' C D such that F N PL, is contained in the piece R} N OF, and so

3 3
F -+ — F
or| < (4 5;) ol

which is a contradiction. We next show that N < 5. To see this, notice that if R?l N RZ-1
and R3 N R; contain edges with j, > j;, then

(J2 —i) —Jﬂ

(j2—1)—75 < dx(yf-l,yi_ﬁ <2+ "
SO (]2— 1) _.jl S 3.

We have shown that PL, N R} is contained in at most two pieces OF,, N R} and at most
5 pieces B3 N R, and so dx (y}_,,y) <2+ [1] = 4.

Define v} ; to be an end vertex of R} N PL_ which is connected to y} ; by an edge. If
v, € P2, then v} | is connected to an end vertex of some R? N P2, by a piece. Thus
dx(yi_1,7%) < 3.

If v} | € P2, then it lies in the boundary of a face FF C D, and there is a path which

is the union of at most 2 pieces in OF from v} ; to an end vertex w} ; of P2, NAF. If
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oF = R? for some j, then dx(w} ;,7?) < 1 by Lemma 3.13. Otherwise, 0F N P%_ is a
union of exactly five pieces 0F N R? by Lemma 3.9(i), as above. In this case, there is a
path from w; | to an end vertex of some P2 N R? which is contained in a piece, and so

dx(yi_1,7*) < 1+ [2] +1 = 3. The same analysis proves that dy(y;,7*) < 4, and thus

vi € N5(72).
O

Proposition 4.4. Suppose i satisfies (x). Then 7 € Neyos(77)-

Proof. 1t suffices to show that dx (y;_;,y7 ;) < 3 and dx(y;_;,y7 ) < 3, since the geodesic
quadrangle with vertices y; ;,%;,%7, 97, is contained in a single cone which is é-hyperbolic.

Let v; ; and v} be the end vertices of R} N P, and define v ;,v; analagously. By
Lemma 3.13, y! | and y; are each connected by an edge to v} ; and v}, respectively, and
similarly for y? | and y?.

Suppose (#,) holds (see Figure 8). If v; ; = v}, then dx(y; ,,%; ;) < 2. Since R} and
R? have exactly the same intersections with segments, and their intersections with essential
paths are connected, if v} ; # v7_; then they cannot both lie on a segment. It follows from
the small cancellation assumption and the fact that PL N R} is connected that the only
way PL_ N R} can contain PL_NOF for some face F in D is if 9F = R}. Since R} contains

this is impossible. Thus there is a face F' in D such

an edge in a segment of PL N P2 |
that v} ,v? | € F. It follows that dx (v} ,,v? ;) <1, and dx(y; ;,y; ;) < 3. The same
reasoning proves dx(y;, yJQ) < 3 as required.

Now suppose (*) holds (see Figure 9). If R} = OF, then the pairs v} ,v? ; and

J
v}, v} are either equal or connected by an internal arc in D. If R} # OF, then the pairs

v} ,v? | and v}, v? are either equal or connected by a piece F N R:. Thus, in either case,

i—1) Yj—1 7
dx (Yi—1,Y7-1) < 3 and dx(y;,y7) < 3

g

Theorem 4.1 follows from Propositions 4.3 and 4.4, and Lemma 4.2.

5. ACYLINDRICITY OF ACTIONS ON CONED-OFF GRAPHS

In this section, we show that if G is uniformly power-free, then 7C(P) C AH(G) (The-
orem 5.11). Recall that an action of a group G by isometries on a metric space Z is
acylindrical if for all ¢ > 0 there exist constants M, N > 0 such that for all z,y € Z
with d(x,y) > M, the number of elements g € G satisfying d(z, gx) < € and d(y, gy) < ¢
is at most N. The proof of acylindricity will rely heavily on the following classification of
essential quadrangles.

5.1. Essential S-quadrangles. Let Qx = (7v!,7%,73,74%) be a geodesic quadrangle in
Cay(G, X), so the terminal vertex of 4" is the initial vertex of 4! with indices considered
modulo 4. Proving acylindricity relies on studying “long, thin” quadrangles in Cay(G, X),
which we make precise by requiring that

min {Ix(v"), Ix(v*)} > 3max {ix(v*), Ix(v*)} + 25, (9)
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where [x(«) denotes the length of the path a in Cay(G,X). All of the results in this
section will be under the assumption that (9) holds.

To each 7' associate an S-path P. We call (P!, P?, P3 P') an S—quadrangle as-
sociated to Qx. We analogously define Qs = (PL,, P2, P32  PL)) to be an essential
S—quadrangle associated to Qx. We say (Q', Q% @3, Q") is an essential S—quadrangle if
it is an essential S-quadrangle associated to some geodesic quadrangle in Cay(G, X). As
for bigons, we append the superscript ¢ = 1,2, 3,4 to any notation previously defined in

Section 3.
Our goal for the rest of this subsection is the following theorem.

Theorem 5.1. Let Qs = (PL,, P2, P32 PL)) be an essential S-quadrangle associated
to a geodesic quadrangle (v',v? v, v*) satisfying (9). Either there exist i,j such that
R} = R}, or Pl NP3 contains a path whose end vertices are at distance at least

max {Ix(v?), Ix(v*)} + 6 apart in Cay(G, X).

Our starting point is the classification of combinatorial geodesic quadrangles from [6],
which we are able to use thanks to the following Lemma.

Lemma 5.2. Let () be a simple closed path in an essential S-quadrangle Qg. A reduced
diagram D with boundary Q) is a (possibly degenerate) combinatorial geodesic quadrangle.

Proof. This follows immediately from Proposition 3.10. O

We now recall some features of the classification of combinatorial geodesic quadrangles
from [6] which we will require to prove that the action of G on Cay(G, X) is acylindrical.
The key results we will use to limit the possibilities are Lemmas 3.12(ii) and 3.13.

We will need to use the notions of edge and face reductions in diagrams introduced in
6, §3.2]. We sketch the ideas here, and refer the reader to [6, §3.2] for a more detailed
discussion.

e Given a diagram D with an edge e such that D \ e is not connected, reducing
the edge e is the process of collapsing e to a vertex to obtain a diagram D’, then
removing this vertex and reattaching copies of it to each connected component of
D'\ e to obtain a collection of at least 2 diagrams.

e Given a diagram D with a face F' such that D \ F' is not connected, reducing
the face F' is the process of first adding an edge e to ' whose endpoints are on
OF NOD such that D \ e is not connected, then reducing this edge. Notice that in
each of the new diagrams D’ formed, there is a face F’ coming from F'.

Let us collect a few basic observations about faces in (possibly degenerate) combinatorial
geodesic quadrangles from Strebel’s classification [18] and [6, §3]:
Lemma 5.3. For a combinatorial geodesic quadrangle, the following hold.

(i) For each consecutive pair of sides, there is at most one face whose exterior boundary
intersects both sides in edges and is contained in their union and whose interior
degree at least 3. No such face has interior degree more than 4.
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(ii) For each pair of opposite (non-consecutive) sides, there are at most two faces whose
exterior boundary intersects both sides in edges and is contained in their union
and whose interior degree at least 3. There can only be one such face with interior
degree at least 4, and there are no such faces with higher interior degree.

(iii) If the exterior boundary of a face contains an edge and is contained in a single
side, then the face has interior degree at most 6.

(iv) If a face has no exterior boundary, then it has interior degree either 7 or 8.

Notice that Lemmas 3.9 and 3.13, along with the small cancellation assumption, im-
mediately rule out the last two possibilities for faces in diagrams whose boundaries are
(contained in) essential S-quadrangles.

Lemma 5.4. Let (PL,, P2, P2, PL.) be an essential S-quadrangle associated to a geodesic

quadrangle (v, 72,73, 1) satisfying (9). If there exist r,s such that R> = R} = R, then
there exist i,j such that R = R} = R?.

Proof. Let x', 2% be the end vertices of 7', where 22 € 7?. Suppose R*> = R! = R for
some r, s. For t = 2,4, define Q" to be the path obtained from the shortest subpath of P?,,
connecting some vertex z' on P? to 2% (respectively P2 to z!).

It is clear that @' is embedded in Cay(G,S) and satisfies all the same conditions as an
essential S-path. Since the chosen subpath has minimal length, either 22 = 22 (respectively,
24 = z') or 2% (respectively 2?) is also contained in another relator R? (respectively R%).
We either have |r — /| =1 or z? is the initial /terminal vertex of a self-intersection of type
(i) in P2 In the former case, ¥* and z* both lie on R? N R? and dx (%, 2') < 1, while in
the latter case, Lemma 3.7 implies that dx (72, 2%) < 1. The same analysis can be used to
show dx (7%, 2%) < 1. Thus

dx (2%, 2%) > Ix (") — dx (2%, 2%) — dx (2%, 2") > max {Ix(7*), Ix(v*) } + 23, (10)

where the last inequality follows by (9).

Choose an S-geodesic vg from 22 to 2*. Since 2%, 2* € R, vg is necessarily contained in
R. Consider the quadrangle (vs, Q? PL,, Q%). Since 7g is contained in R, it is clear by
construction that Q! intersects vs only at the vertex 2 for t = 2, 4.

Case 1: vsN PL, = 0. Let Q be a simple cycle in the quadrangle (vs, Q% PL,, Q%)
containing vs. Let D be a diagram with boundary ). By construction, R intersects Q?
and Q* only at z? and 2%, respectively. Thus, if there is a face ' C D with OF = R, then
since our small cancellation assumption rules out case (iii) above, the exterior boundary of
F must be contained in g and PL, (see Figure 11(A)). Therefore F' must belong to case

(ii) above and satisfy i(F) < 4, and so the end vertices of PL_ N R are at X-distance at
most 1 from 22

2

and 2* respectively. In this case, it follows from Lemma 3.12(ii) and (10)
that R = R} for some i.

If no face in D satisfies OF = R, then for ¢t = 2,4, there is no face whose exterior
boundary contains edges in both g and Q' and is contained in their union. To see this,
note that if F' was such a face, then i(F) < 4 by (i) above, so dF is a union of 0F N Q"
and at most 5 pieces (the fifth being 0F N~vs = 0F N R). Applying Lemmas 3.9 and 3.13,
we see that JF is either contained in the union of at most 11 pieces or a geodesic and the
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union of at most 11 pieces, both of which contradict the small cancellation assumption.
By a similar argument, no face can have its exterior boundary contained in g and PL..
It follows that any face whose boundary intersects yg in an edge must intersect at least
two additional sides of ) in an edge. There can be at most two such faces, and so g is
contained in a union of at most two pieces. Thus dx (22, 2*) < 1, which contradicts (10).
Case 2: vs N PL_ # 0. If 22, 2% € y5 N PL,, then it follows from Lemma 3.12(ii) and
(10) that R = R} for some 4, so suppose that 2* & ysN PL.. Let @ be a simple cycle in the
quadrangle (vs, Q% PL,, @*) containing z2. It is clear that @ is contained in v* U PL_ UQ?.
No face in a diagram with this boundary can have its exterior boundary contained in only
one side, or in a pair of sides if one of those is vg. Indeed, if such a face F' existed, then,
as above, OF must be contained in a union of either at most 11 pieces, or 11 pieces and a
geodesic, both of which contradict the small cancellation assumption. It follows that the

face F' containing z? must intersect Pl (see Figure 11(B)).

(a)

FIGURE 11. (A) Proof of Lemma 6.8 in the case where y5 N PL_ = () and
there is a face F' such that 0F = R. (B) Proof of Lemma 6.8 in the case
where 5 N PL, # (). The dotted path is g, and the boundary of the shaded
region is R.

Thus PL, N (RNAIF) # 0, and hence dx (2% P') < 1. Applying the same argument to

2% if necessary, it follows from Lemma 3.12(ii) and (10) that R = R} for some i.

Applying this argument to P2 instead of PL_, it follows that R = R? for some 5. This

€Sss ess?

completes the proof. O

Lemma 5.5. Let (PL,, P2 P3_. PL.)) be an essential S—quadrangle associated to a geo-

ess? €ess? ess? €SS

desic quadrangle (v*,~%,73,7%). Let Q be a simple cycle in the quadrangle, and let D be
a diagram with boundary Q). Suppose F' is a face of D such that OF shares an edge with
at most 2 essential paths, Pl and PL.,, and i(F) < 4. If z is an end vertex of OF N P/,

€SS ess’?

with r € {t,t'}, then dx(z,~") < 3.

Proof. Suppose OF shares an edge with P’ , and let z be an end vertex of P! N OF.

€ess? €SS

If there exists ¢ such that OF = R}, then the result follows by Lemma 3.7. Otherwise,
OF N P!, is contained in 1 < s < 5 pieces R! N JF by Lemma 3.9.

€SS
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If s > 2, then there is a point y € ~" that is connected to JF N PZ,
Cay(G, X), and thus dx(y,z) <1+ [2] =3.
To complete the proof, we will show that the case s = 1 is not possible. First, if

OF N P!, does not contain an edge, then OF is contained in the union of at most 5

pieces (at most 4 interior pieces and the exterior piece OF N P,.), which contradicts the

small cancellation assumption. Thus, OF N P’ must contain an edge. If OF = RE-/ for

€ss
some j, then OF \ (OF N P,) is contained in the union of at most 5 pieces, and so

|0F N PL,| > 12|0F|, which contradicts Lemma 3.13. If OF # R for all j, then OF N P,

by an edge in

€ess €ess
is contained in the union of at most 5 pieces, by Lemma 3.9, and so OF is contained in the

union of at most 10 pieces, contradicting the small cancellation bound. Il

We are now ready to prove Theorem 5.1 in two steps (Propositions 5.6 and 5.10). We
begin with the “degenerate” case.

Proposition 5.6. If Qx = (7', 7%,7%,7?) satisfies (9) and the essential quadrangle Qs =
(PL,, P2, P3. . P! associated to Qx does not admit a simple cycle Q which intersects

ess? ess? ess? €SS

each P, in an edge, then one of the following occurs:

i) there exist i,j such that R} = R3; or
J () J
(i) PL, N P2, contains a subpath whose end vertices are at X ~distance at most

max {Ix(7?),lx(v")} + 3
from the end vertices of v*.

Proof. We will assume that (i) does not hold, and deduce that (ii) does. The proof is in 4
steps:

a) Prove PL NP3 #0.

b) Prove PL, N P2 is connected.

€ss €ss

c¢) Let F be any face in a disc diagram whose boundary intersects both P and P2

in an edge. Then prove one of the following occurs: F intersects one of P2 or P,

in an edge; or F contains a point in PL N P23 and satisfies e(F) = 1, i(F) = 2,

and D is a combinatorial geodesic triangle of type I11; or V.

d) Deduce that (ii) holds.

Step a) Note that by Lemma 5.4, if R} # RS for all 4, j then R} # Ry, for all k, k', as well.
As in the proof of Lemma 5.5, let = be the initial endpoint of 4!, so that x € v1 N ~2.

Since Qg does not admit a simple cycle which intersects each P/, in an edge, P!, NP, #

() for either (¢,¢') = (1,3) or (¢,t") = (2,4). To complete step a) we show that (¢,¢') = (1, 3).
Suppose P2 N P:. # (0, and let v be the vertex on P2, N P closest to z along P2

€SS €SS €SS €SS €ess”

Let e be the edge in P2, N P2, containing v as an end vertex, and choose relators R?

and R} containing e. By assumption, R} # Rj, for any j’, so by Lemma 3.9, P4 N R is
contained in a union of at most 5 pieces. By Lemma 3.7, there is an edge connecting a
vertex in 7! to a vertex in one of these pieces, hence dx (%, v) < 1+ (ﬂ = 3. Similarly,
dx(v?,v) < 3. Therefore, dx(v*,v*) < 6, which contradicts (9). Therefore, P%, N P2

ess ess Q)
and Pelss N Pegss 7é @
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Step b) If PL N P2 is not connected, then there is a disc diagram D whose boundary

is contained in PL, N P3_. Recall that D must be a diagram of type [; in Strebel’s
classification. Let I’ be a face with e(F) = 1 and i(F) < 1. If there is no i such that
OF = R}, then by Lemmas 3.9 and 3.13
5) 1 3
Fl<(2+=4+2)0F
or| < (55 + 5+ ) 1071,
which is a contradiction. Similarly there is some j such that O0F = R;’? contradicting our
assumption that (i) fails.
Step c¢) Now suppose D is a disc diagram whose boundary is contained in PL UP2 UP3

€SS €SS €SS
and contains an edge in each. Let F' be the face containing the vertex in PL, NP2 _NoD.

If OF does not contain an edge in P then (as in step b)) either OF = R} = R} for some
i,7 (which is a contradiction), or

5 18 i(F)
|OF| < |OF| (24+24+ 51 ),

and so i(F') > 2. Thus D is of type I11;, IV or V, and the boundaries of all other faces
in D intersect P2, in an edge. To see that D is not of type IV note that in a type IV
diagram there is a face F” satisfying e(F’) = 1 and i(F’) = 4 whose external boundary is
contained in one of the P, , but no such faces can exist in an essential S—triangle (see the
remark after Lemma 5.3).

Step d) Let z,y be the end vertices of PL, N P2  where z is closest to the initial
vertex v! of PL . Since we are assuming (9) it suffices to prove that dx(x,7?) < 11 and
dx(y,~v*) < 11. Either z € P2, or there exists a disc diagram D as described in step c).

Case d)(i): z € P2,. If x € P2 and the two edges in P%_ with = as an end vertex do

not lie in a common R, then dx(z,7?) < 1 by Lemma 3.7. If they do lie in a common R},
then either R} is not equal to any R or not equal to any R?, and without loss of generality
we may assume the former is true. Let Q* denote the subpath of P2 connecting v! to .
If R NQ?*C PL, then there is a path from z to the other end vertex of R N Q? which is
a union of at most 5 pieces, so by Lemma 3.7

d
dx(z,7%) < [Z-‘ +1=3.

Otherwise there is a combinatorial geodesic bigon B whose boundary is contained in Q2 U
PL_.. Let F be the face in B whose boundary contains the point on Q% closest to z along
P2, s0 e(F) =i(F) =1 and JF contains an edge in Q* N RZ. If F # R} then OF is a
union of at most 5 pieces (coming from its intersection with Q%) one additional piece from
its internal boundary and a path of length less than % |OF| from its intersection with PL
which contradicts the small cancellation assumption. For the same reasoning there must
be some 7 such that OF = R} contradicting the assumption that R? is not equal to any R}.

Case d)(ii): = ¢ P2,. Let F be the face in D whose boundary contains . Without
loss of generality we may assume that there is no i such that F = R}, so OF N PL_ is
contained in the union of at most 5 pieces. When D is not of type V' there is a path of
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length at most 2 connecting = to one of the end vertices ' of 9F N P2_. When D is of
type V there is a face F’ neighbouring F' and a path of length at most 2 connecting x to
one of the end vertices ' of OF' N P2 . If OF (respectively OF”) is equal to one of the RZ,
then by Lemma 3.7, dx(x,7?) < 3. Otherwise, pick k such that 2’ € R? and notice that
by Figure 4 there is a path from some vertex in 42 to 2’ which is a union of at most three
pieces in RZ. Thus dx (7% z) < 3. Similarly, we may deduce that dx(v*,y) < 3. O
In what follows, we say a vertex of a quadrangle Q = (QL,,, Q%,,Q3..,Q%.,) is distin-
guished if it is the end vertex of some @7,,. In a reduced diagram D with boundary Q,
we say a face F' of D is distinguished if there is a distinguished vertex in the interior of its
exterior boundary. Let us first rule out two scenarios using the assumption (9).
Lemma 5.7. Suppose Qs = (PL,, P . P2 Pl ) is an essential S—quadrangle associated

to (71,92, 93, 91) and (9) holds. If there is a diagram D with boundary Qs admitting an
internal arc connecting Py, to Pl then there exist i,j such that R} = RS,

€SS €ess’

Proof. Suppose for a contradiction that D is such a diagram containing an internal arc o
and that for all 7,7, R} # R3. Let F', F® be the faces in D such that o = 9F"' NOF?,
and for t = 2,4 let z' be the unique vertex in P N a. We claim that dx (7%, 2") <5 for
t = 2,4. Once this is verified we obtain a contradiction to (9), since

dX(’yQ,fy‘l) < dX(fyz, 22) + dX(z2,z4) + dX(z4,’y4) < 11.

If e(F) = 2, then by Lemma 5.5 we have dx (7, 2") < 3 for t = 2,4, and so we may assume
OF* contains an edge of P for s = 1,3. If there exists some r such that R? N P2 has an
end vertex in OF®, then dx (% 2%) > 1 by Lemma 3.7, so we may also assume this does
not happen. Under these assumptions, (OF' NOF?) N P2 is strictly contained in some R2.

Suppose there is another face F' ¢ {F', F3} such that OF N R? contains an edge. If the
boundary of this face contains an end vertex v of R*N P2, then there is an edge connecting
7? to v by Lemma 3.7, and since there is a path from v to 22 which is contained in a union
of two pieces in R?, it follows that vz? is an edge. Thus dx(7?,2%) < 2. Otherwise, since
OF # R? and e(F) = i(F) € {1,2}, OF is the union of P3_ N OF and at most 3 pieces,
contradicting the small cancellation assumption.

Hence we may now assume that R* N P2 consists of two subpaths N*® of P2 N PS,_ for

s = 1,3 and the pieces R?2 N F* for t = 2,4. If both of the N* have diameter at least 3 in

Cay(G, X), then it follows from Lemma 3.12(ii) that R} = R} = R? for some i, j, which is
a contradiction. If, without loss of generality, N' has diameter at most 2, then there is a
path from 2 to 22 of length at most 4 in X consisting of a path of length at most 2 (from
72 to an end vertex of RZ N P2 contained in N'), a path of length at most 2 to a vertex
in OF' N N!, and an edge connecting this vertex to z2. O

Lemma 5.8. If Qs = (PL,, P2, P2 PL.) is an essential S—quadrangle associated to

ess? €ess? ess? €SS

(Y1923, %,91) and (9) holds, then no diagram whose boundary is contained in Qg has the
form of Figure 12 below.
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Qs N P2,

Qs N P,

FIcURE 12. A diagram containing a zipper of length 0 whose ends are of
type 1. Optional internal arcs are indicated by dotted lines.

Proof. Suppose for a contradiction that D is such a diagram. Then D has four faces B!
such that dB' N D’ intersects both P!, and P'}'. We now show that (9) excludes this
possibility.

Let 22 be the vertex in P2, NOB' N IB?% and let z* be the vertex in PL. NoB3> N IB*.
There is a path from 22 to 2* in T'(G, X') which is a union of at most 3 pieces in B! and
OB*, so dx (2%, 2z%) < 2. By Lemma 5.5, there are points y*> € v* and y* € v such that
dx(yt, 2') < 3 for t = 2,4, and thus dx(y?,y*) < 8. Therefore,

Ix(m) < dx(z,v°) +dx (¥, y") + dx(v*, o) < 2max {Ix(+?), Ix(v") } + 8,

which contradicts the assumption (9). O

Proposition 5.9. If the essential quadrangle (PL,, P2, P2, PL.) associated to (7', 72,73, ~v*)

ess? €ess? ess? €SS

admits a simple cycle Q which intersects each P!, in at least an edge and (9) holds, then
any diagram D with boundary Q and no internal arc connecting P2 to P*  has one of the

ess ess
forms given in Figure 13.

€23 QNP3 €34

— 1 ——
€1,2 Q N Pess €1,3 €1,4

F1GURE 13. Diagrams with boundary () have the following form: the tripods
marked (T) and (f) are optional, and e, denotes the number of interior arcs
with end vertices in P!, and P,. When the tripod does not appear, the

segments marked * may have length 0.
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Proof. Using Lemma 5.3 we see that every face of () has external boundary which intersects
at least two of the sides P!

ess*

For 1 <t <t <4, define E; ¢ to be the set of edges in D which have one end vertex in
P! and the other in P’ , and let e, = |E;»|. By assumption ey, = 0. Notice that no

€SS ess?

two edges in E;y can have an end vertex in common. Indeed, if this were the case, then
there would be a face F' C D whose boundary is contained in at most 2 pieces and its

intersection with P’ (or P%.), which contradicts Lemma 3.13.

For each t (considered modulo 4) let v' be the vertex in @ N P!, N P! and whenever

Eir11 # 0, choose e € Ey;.q such that the end vertex of e’ on P! is furthest from o'
along P!

Case 1. If there is an interior arc o connecting P to P32 (i.e., e; 3 > 0) consider the two
diagrams D, D4 obtained by removing the closure of « in D and then reattaching a copy of
it to each connected component of D\ @. The two resulting diagrams D; are combinatorial
geodesic triangles with sides P!, N Q, PL,NID" and the union of P2, NdD" and «. Using
Strebel’s classification, the triangle D? is of type: I if and only if €19 = ea3 = 0; I3, I] or
I11, if and only if at least one of e; 5, €23 # 0 and () does not appear (with /17, happening
if and only if the segment marked * has length 0); and V' if and only if (1) does appear.
Recall that the triangle cannot be of type IV by Lemma 5.3(iii). A similar analysis can
be done for D*,

Case 2. Suppose that e;3 = 0. Let us prove that there is a face whose boundary
intersects both PL_ and P2 in edges. If this is the case then we can add an internal
arc connecting PL_ to P2 to D and obtain a new combinatorial geodesic quadrangle D"
satisfying all the properties of Lemma 5.3, so we may follow the same analysis as in Case
1.

Suppose for a contradiction that no face intersects both PL, and P32 in edges. Let
D' be the subdiagram of D whose boundary consists of e’ and the subpath of @ N PZ,,
between e'~! N P! and e' N P! for each t. By construction, D’ does not contain v for
any t such that e;;1 > 0, and no pair of consecutive sides in D’ are connected by an
edge (see Figure 13). The diagram D’ is special in the sense of [6, Definition 3.14], but it
cannot be extraordinary, as all such diagrams have faces which intersect only one side of
the quadrangle and this is prohibited in our case by Lemma 5.3(iii). Hence, D’ is a zipper,
and this zipper has length 0 and both ends are of type 1 (any other zipper has a face which
intersects only one side of the quadrangle). But such a diagram is not possible by Lemma

5.8. U

Notice that the assumption (9) is only used in the above proof when e; 3 = €24 = 0. We

are now ready to deal with the “non-degenerate” case of Theorem 5.1.

Proposition 5.10. If an essential quadrangle (PL,, P2, P3 . P ) associated to a geodesic
quadrangle Qs = (v, 7%, 73, v*) satisfying (9) admits a simple cycle Q which intersects each
Pl in an edge, then there exist i,j such that R} = R3.

€SS

Proof. If e5 4 # 0 then the conclusion holds by Lemma 5.7, so we may apply Proposition
5.9.
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Let us assume for a contradiction that R} # R? for all 7, 5. Now consider a diagram D
with boundary @), which necessarily has one of the forms given in Figure 13.

Case 1: e; 3 > 3. In this case, there are two faces F, F' C D whose boundaries intersect
in an internal arc in D such that e(F) = i(F) = e(F') = i(F') = 2 and the exterior
boundary of each face has one connected component in P and another in P2 _. If F or
OF" is not one of the R} or R?, then its boundary is a union of at most 12 pieces by Lemma
3.9, which is a contradiction. If OF = R} and dF’ = R}, for some i,4, then let o be the
subpath P2, N (OF UJF') and define J to be the set of indices such that R? contains an
edge in . Let ji,j» be the minimal (resp. maximal) elements of .J. By Lemma 3.7, y?,
and y%_l are connected to o by edges. Now « is contained in a union of at most 5 pieces
in OF and at most 5 pieces in JF’, hence

. . 5)
(2—1)—5n< dX(?J?lay?g—l) <2+2 L—J = 6.

Thus, in total, « is contained in a union of at most 9 pieces (since one element of .J
could contribute a piece in each of OF and OF’), hence one of OF or OF’ is a union
of at most 4 pieces which intersect «, two internal arcs in D, and PL N «. Therefore,
|0F| < (2 + &) |0F|, which is a contradiction.

Hence we may assume OF = R} and OF' = R? for some i, j. Now let J' be the set of
j" such that F N P2 contains an edge in RY, and let ji and jj be the minimal /maximal
elements of J'. Note that j is not in the interval ji,...,j5. Assume j < ji; the other
possibility can be handled in the same way. There are edges connecting y?’ and yi_l to

oF NP3

€ess?

and so

Gm =),

- i< U= 1)~ < dxlyhul ) <2+ [

We conclude that j}, — ji < 3. Therefore, OF is the union of 9F N R} and a union at most
4 pieces in F N P2, and two internal arcs in D. Thus [0F| < (2 + 2) |0F|, which is a
contradiction.

Case 2. From now on we assume that e; 3 < 2. Let 2, 2" be the end vertices of v*, with
x € %, 2’ € v*. For each t define vertices 241 € P! | 2**Ht € Pitl as follows. If (1) is
present ((1) when ¢ = 3,4), define them to be the vertices contained in the tripod, so in
this case z%% = 2!, for example. If the tripod does not appear and E; ;.1 # 0, define them
to be the end vertices of e'. Finally, if the tripod does not appear and E;1 = 0, define
them both to be v!. See Figure 14 for one possible configuration. The proof will be in two
steps: first we show dx({z"?, 221}, {234 2*3}) < 8, and then we show dx(2°71* ~%) < 4
and dy(2*°71,v%) <4 for s = 2,4. This contradicts (9).
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23,2 23,4

221 = 223 Fy Fy F3

512

FIGURE 14. One possibility for the 25! and 2z/t1¢

Label the interior arcs in E?* by ay, ap (when they exist) so that «; starts closer to v?
along P, than o?. Let us define a path of length at most 8 connecting one of {z'?, 2%1}
to one of {z%% 2*3} in the worst case scenario, which is when e** = 2. Now z3? and 22
lie on the boundary of a unique face F; C D. Since 0F] is not simultaneously one of the
R} and one of the R}, by Lemma 3.9, there are paths in F connecting one of z*? or
252 to any vertex of o which are unions of at most 6 pieces in OF;. This implies that
dx({z*?%,21?} , 1) < 2. Similarly, there is a path from any vertex in a; to any vertex in ay
which is a union of at most 7 pieces in 0F; (the neighbour of 0F; whose boundary contains
1), and there is a path from any vertex in ay to one of {z3* 24} which is a union of
at most 6 pieces in 0F3 (the neighbour of OF, whose boundary contains as). Combining
these observations we see that dx({z"?, 221}, {234, 243}) < 8, as required.

For the second step, we will bound dx(z*!,~?); all the other bounds can be found in
the same way. Note that if the tripod (1) is present or e'? # 0, then dx(z*!,7?) < 3
by Lemma 5.5. Hence the only case we have to consider is 2%! = v!. The remainder
of the argument closely follows the second half of Lemma 5.7. Let D be a diagram with
boundary Qs containing D as a subdiagram. Let F' be the unique face in D whose boundary
contains v!'. If there is some R? such that P2, = R?, then dx(v? v') < 2 by Lemma 3.7.
If this does not happen, but for some r/, P2, N R? has an end vertex v in OF, then
dx(v3,v") < dx(v*v) +dx(v,0') < 2+ [2] = 4, by Lemmas 3.7 and 3.9(1). We may
now assume that there is some r such that P2, N R? (strictly) contains dF N P2%,. We
deduce that there is no other face F' C D such that 9F’ N R? contains an edge using the
penultimate paragraph of the proof of Lemma 5.7. Using the final paragraph of the same
proof, we see that either there exist 7, j such that R} = Rg? which is a contradiction, or one

of the subpaths N* = RN P2 N P, (s = 1,3) has diameter at most 2. Therefore,

dx(v?,v') < dx(v*, N*) + diam(N°®) + dx (N*,v') <2424+ 1 =5,
where the bound on dx(v?, N®) comes from Lemma 3.7 and the bound on dx(N*, v')

follows since N* contains one of the two end vertices of the piece R N IF. U

5.2. Acylindricity. We are now ready to use the classification of essential quadrangles
from the previous section to prove that if G is uniformly power-free, then 7C(P) C AH(G).
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Theorem 5.11. Let P = (S |ri,7a,...) be a presentation for a C'(3;) group G. If G is
uniformly power-free and [X] € TC(P), then G ~ Cay(G, X) is acylindrical.

Proof. As [X] € TC(P), it follows from Theorem 4.1 that Cay(G, X) is hyperbolic.

Let N be the uniformly power-free constant, that is, the constant such that no subpath
of a relator is labelled by an N-th power of a non-trivial word.

Fix € > 0. Let z,y € Cay(G, X) such that

dx(z,y) = 3e + 25.
Let 7' be a geodesic from z to y in Cay(G, X), and let g € G\ {1} be such that
dx(z,gr) <e and dx(y,gy) <e. (11)

By [16, Lemma 2.4], it suffices to show that there is a uniform bound on the number of
such g. Fix a geodesic 7! in Cay(G, X) from y to x. For each g satisfying (11), let 42 be a
geodesic from z to gz in Cay(G, X), let v* be a geodesic from gy to y in Cay(G, X), and
let v* be the geodesic gy!' with the opposite orientation. Define Qx = (v*,v%,73,v%) to be
the quadrangle associated to the choice of z,y and g, and let Qg = (PL,, P%,, P2, P..) be

an essential quadrangle associated to Qx where P2 is g Pl with the opposite orientation.
By construction,

min{lx(v'),Ix(7v°)} > 3max{lx (%), Ix(v")} + 25,

so Qx is a “long, thin quadrangle” which satisfies (9). Thus we can apply the classification
of quadrangles from Section 5.1. By Theorem 5.1, either there exists some ¢ and some j

such that R} = R3, or P, N gP., contains a path whose end vertices are at distance at

most € + 3 from x and y, respectively, in Cay(G, X).

Case 1. Suppose there exist i, j such that R} = R?. For each g yielding a diagram in this

case we have R; = R} = gR;}, where the last inequality follows because Pg, is gP.,, with

the opposite orientation. If there are more than N (3¢ + 22)? such g, then at least N + 1
different g satisfy R} = gle» for some fixed 7, 7. If glel» = R! = ggle-, then g; 'go € Aut(C),
where C' C T' is the cycle corresponding to R;. Hence |Aut(C)| > N + 1, contradicting the

uniformly power-free assumption.
Case 2. Suppose Case 1 does not hold. Then for each g yielding such a diagram, PL_NgP}

€ess ess
contains a path whose end vertices are at distance at most €+ 3 from x and y, respectively,

in Cay(G, X). Fix a subpath P of P),_ starting at the last vertex within distance ¢ +4 of =

ess
and ending at the first vertex within distance € +4 of y. It is clear that the end vertices of

this path are at least £+ 17 far apart in Cay(G, X), and that P is a subpath of gPL _ for all

€SS

g under consideration. The element ¢ is uniquely determined by the length of the subpath
of gPL, connecting gz to the starting point of P on PL_. Suppose there are more than

N (3e 4 22) such different elements g. Then there is some ¢ and N + 1 different starting

points 2, ...,zy of P on R} N PL_ such that one of the following occurs.

(i) The label of the subpath of P! starting at zy is equal to an initial subword of the
label of P
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(ii) The label of P is equal to an initial subword of the label of the subpath P! starting
at zg.

Let us show that the second option cannot happen. If it does, then there is some g and
some i such that P C gP' N gPJ,. Since we are not in case 1, gR} # R; for any j, and
so P is contained in a union of at most 5 pieces gR; N le-. Thus its end vertices are at
distance at most [2] =2 in X, which is a contradiction.

Therefore, there exist | # m such that 0 < r = dg(2, z,) < + |P| and the label of P
has an initial subword which is the N—th power of the label of its initial subpath of length
r. This contradicts the uniformly power free assumption.

O

Proof of Theorem A. Let P be a C' (i) presentation for a group G. Then it follows from
Theorem 4.1 that TC(P) C H(G). If P is additionally uniformly power-free, then 7C(P) C
AH(G) by Theorem 5.11. O

6. THIN CONES AND (A)H—-INACCESSIBILITY

The goal of this section is to prove Theorems B and C, which will be done in subsections
6.1 and 6.2, respectively.

6.1. The structure of the subposet 7C(P). Throughout this section P = (S|R) is
a C'(3;) presentation, each element of r; is cyclically reduced in F(S) and we enumerate
R = {ry,r3,...}. Define R to be the set of all cyclically reduced conjugates of the r; and
their inverses. For each ¢ we define C; to be a cyclic graph whose label is r;. We define L
to be the set of all initial subwords of elements of R and P* to be the set of words which
are a product of at most k pieces.

Recall that given Y C F(S), CY is the graph obtained from C; by adding an edge
connecting any two vertices in C; such that there is a path between them whose label is in
Y. We use the shorthand C; = CF".

Let us recall the construction of the laced cone from Example 3.2.

Definition 6.1. For each i, fix a vertex z; in C;, and define P; to be the set of all paths
in C; which connect two points y, z such that dg(7,y) = dg (24, 2). Set

LC((x;);) = SUP*U| J{Lab(P) | PeP;} C L.
i>1
We call LC((z;);) the laced cone based at (x;); (cf. Figure 2).
It is clear that [LC((z;);)] € TC(P). We now begin our study of the poset TC(P).

Lemma 6.2. |TC(P)| =1 if and only if each C; is a union of a uniformly bounded number
of pieces (or equivalently P* = L for some k).

Proof. Tt is clear that if each C; is a union of a uniformly bounded number of pieces M,
then for any X C P* the C{* have uniformly bounded diameter M /4, and therefore X is
equivalent in 7C(P) to the smallest thin cone, L.
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Now suppose this is not the case. For each j € N, let w; be the label of a subpath P; in

some Cy; of length at most ’T;j | such that w ¢ P%. If this cannot be done for some j, then

L C P¥. Without loss of generality, we may assume the map j +— ; is injective. Let z; and
w; be the end vertices of P;, and consider any laced coned-off graph I' = Cay(G, X ((x;);)).

By Lemma 3.11, the cones Cg((mi)i) isometrically embed into I', so dx((z,),)(1,w;) > j for

i

all j, while dr(1,w;) = 1. Therefore [ X ((z;):)] A [L]. O
We next show that 7C(P) has a largest element if and only if it has exactly one element.

Lemma 6.3. If |[TC(P)| # 1 then there are two elements [X],[Y] € TC(P) such that no
[Z] € TC(P) satisfies both [X] < [Z] and [Y] =< [Z].

Proof. Applying Lemma 6.2, if [TC(P)| # 1, then for each j € N there is some Cy(;
whose boundary word cannot be written as a product of fewer than 165 relators. Thus

d; = diam(Cj(j)) > 2j. Choose x;(j), yi(j) € Ci(y) satisfying

d.
Ao (Ti), Vi) = {EJJ ,

and fix a vertex z; = y; € C; for any 7 which is not equal to one of the i(j). Consider the
laced cones X = LC((x;);) and Y = LC((v:):)-

Suppose for a contradiction that there is some [Z] € TC(P) such that [X] < [Z] and
Y] < [Z]. For any representative Z of [Z] there is a constant K such that

1
dz(a,b) > 7 ax {dx(a,b),dy(a,b)} — K (12)

holds for all a,b € G.
Now suppose a, b are contained in a common cone CZ. If d%(a, b) < L%JJ then by

Lemma 3.11 either dx(a,b) = d%(a, b) or dy(a,b) = d%(a,b). If d%(m b) > Lﬁj’

2
then either dx(a,b) > %L%]j or dy(a,b) > %L%j Since in either case d%(a,b) <d; =
diam(Cj(;)), it follows from Lemma 3.11 that max{dx(a,b),dy(a,b)} > %dci(j>(a, b). Com-

bining this with (12), we have

1
dm(d, b) > dZ(a'a b) > ﬁdm(aa b)
Hence the Cj(;) are uniformly biLipschitzly embedded in Cay(G, Z), so if Z is a thin cone
in [Z], by Lemma 3.11 Cay(G,Z) contains biLipschitzly embedded cycles of arbitrary
diameter. However, this implies that Cay(G, Z) is not hyperbolic and hence by Theorem
4.1, Z is not equivalent to any element of 7C(P), contradicting our assumption. O

Remark 6.4. It is not possible to infer from Lemma 6.3 that G is not H—accessible since
there are cobounded actions G ~ Z such that o([G ~ Z]) does not contain any thin
cones. In the proof of the lemma we need to assume that Z is a thin cone in order to apply
Lemma 3.11. Later we will give a stronger hypothesis from which we can deduce that a
group is not H-accessible.
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We next show that for every element of 7C(P) \ {[L]} there is another element [Y] €
TC(P) which is incomparable to [X]. Recall that given X C F(S), X; is the set of all
elements of X which are the initial subword of a cylically reduced conjugate of either r; or
its inverse.

Lemma 6.5. For all [X] € TC(P)\ {[L]} there exists a [Y] € TC(P) such that [X]| A [Y]
and [Y] A [X].

Proof. Let [X] be any element of TC(P) other than [L], the smallest element. By Lemma
6.3, there exists [Z] € TC(P) such that [Z] £ [X]. Let Z be a thin cone in [Z]. Since
[X] £ [L], there exists an infinite set {i(j) | j € N} and a sequence of elements w;(;) € L
such that sup; [wyj)|x = oo. Similarly, since [Z] A [X], there exists an infinite set {7'(k) |
k € N} and a sequence of elements wj, ;) € Xy such that supy [w} |z = co. Let I be
an infinite subset of {i'(k) | k € Z} such that {i(j) | j € Z} \ [ is infinite. Define

(L il
e Zywy ifl=14'(k) € I for some k.

Let Y = (J, Y}, it is clear that Y is a thin cone. Now [X] Z [Y], as for all [ such that
= i(j) ¢ I, we have wy;) € Li) = Yi(j), which implies that sup; |w;)|y = 1, while
sup; |wi(;)|x = oo. Similarly, [Y] A [X] since for all [ such that [ = ¢'(k) € I, we have
Wiy € Xiry, which implies that supy [wj[x = 1, while supy [wj v = |wiglz =
0.
Recall that P(w)/Fin is the poset of equivalence classes of subsets of N, where two

subsets A, B C N are equivalent if [AAB| < co and A < B if |A\ B| < co. Our next goal
is to show that TC(P) is large.

Proposition 6.6. For any distinct elements [X'],[X?] € TC(P) such that [X'] < [X?],
there is an embedding of posets ¢: P(w)/Fin — TC(P) such that for each [A] € P(w)/Fin,
o([0]) = [X'] 2 o([4]) =2 [X?] = (IN]).

Proof. Let P = (S|ry,...) be a C'(3;) presentation. Let [X'],[X?] € TC(P) be two
distinct elements satisfying [X'] < [X?]. We have X' ~ X! U X?  so by possibly changing
representatives of the equivalence classes, we may assume without loss of generality that

X? C X' Since X? # X' there is an infinite set I = {n(i)} C N and a sequence of
elements w,,(;) € XS(i) such that

SUp Wy ()| x1 = o0. (13)
n(i)el

Given a subset A C N, let [, = {n(i) € I |i € A} C I. Define
oA X ifjglorjels
PUAXY i jel\y
Let X4 = ;X2 By construction, [X“] € TC(P). Consider the map
¢: P(w)/Fin — TC(P)
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defined by
[A] = [XA].

We first show that ¢ is well-defined. Suppose A, B C N are equivalent in P(w)/Fin, i.e,
|AAB| < co. It suffices to consider the case B = AU {b}. Then X* and X differ only
in X! and X. Recall that elements of X;' and X7 are labels of the edges added to the
cycle Cy. Since Cj has only finitely many vertices, it follows that | X4AX?| < oo, and so
[XA] ~ [XP].

We next show ¢ is injective. Suppose A, B C N are not equivalent in P(w)/Fin, i.e.,
|AAB| = co. We may assume without loss of generality that B\ A is infinite. We will show
that X“ and X? are not equivalent. Since B\ A is infinite, there is an infinite subsequence
(n(i,k)) of (n(i)) such that wyry € X[, = Xpip while X5, 0 = X2, . Since the
sequence (n(i, k)) is infinite, we must have n(i, k) — oo as k — oo, and so by (13) we have

Sllip |wn(i,k)|XB = Sll:p |wn(i,k)|X2 = 0Q.

Therefore X4 & XB.

Finally, we show ¢ is order-preserving. Suppose [A],[B] € P(w)/Fin satisfy [A] <
[B]. By changing representatives, we may assume that A C B. It then follows from the
definition that X4 D XZ and so [X4] < [X5].

Finally, by construction X' 2 X4 D X2 for all [A] € P(w)/Fin, and so [X1] < [X4] <
[X?] for all [A] € P(w)/Fin. Moreover, by construction ¢(f) = [X?] = [X'] and ¢(N) =
(XN = [X7). O

Proposition 6.7. Every [X] € TC(P) which is not the smallest element is contained in
an uncountable chain and in an uncountable antichain in TC(P).

Proof. Recall that [L] € TC(P) is the smallest element, and let [X] € TC(P) such that
X o L. By Proposition 6.6, there is an embedding of posets ¢: P(w)/Fin — TC(P) such
that [L] < ¢([A4]) = [X] for all [A] € P(w)/Fin. Since P(w)/Fin contains uncountable
chains, [X] is contained in an uncountable chain.

To show that [X] is contained in an uncountable antichain, first choose some [Y] € TC(P)
such that [X] and [Y] are incomparable, which exists by Lemma 6.5. Since [X] and [Y]
are incomparable, there exist subsequences (n(i)) and (n'(j)) of the natural numbers and
words wy,;) € Xn() and w;,(j) € Y, (;) such that

SUP [wn(s)|y = 00 (14)

and
sup |wy(j)|x = oo. (15)
J
There are two cases to consider. If [{n(i)}A{n’(j)}| = oo, then by passing to sub-
sequences we may assume that {n(i)} N {n'(j)} = 0. In this case, given A C N, let
Iy ={n(i)|ie A} and Ja = {n'(j) | j € A}. If |{n(i)}D{n'(j)}| < oo, then by passing
to subsequences, we may assume that {n(i)} = {n’(j)}. In this case, given A C N, let
Iy={n(i)|ie A} and J4 ={n(i) |i & A}.
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In either case, define

X, ifkely
Wh=RY, ifkely.
L, else

Let W4 = L, W¥%. Define a map
¢: P(w)/Fin — TC(P)
by
[A] = (WA,
By a similar argument as in the proof of Proposition 6.6, this map is well-defined.

We now show that if [A],[B] € P(w)/Fin are incomparable, then [W4] and [W?] are
incomparable in TC(P). Suppose A, B C N satisfy |A\ B| = oo and |B \ A| = co.

If [{n(i)}A{n'(j)}| = oo, then for i € A\ B, consider the subsequence of words wy,;) €
Wﬁi) = X, and for j € B\ A consider the sibsequence w;l,(j) € Wff( i = Y, (j)- Since
A\ B and B\ A are both infinite sets, these are both infinite sequences of words. Applying
(14) yields

sup |wn(i)|WB = sup |wn(i)|Y = 00,
so WB Z WA, Similarly, applying (15) yields

sup |w;z’(j)|WA = sup |w:z’(j)|X = 00,
J J

and so W4 £ WEB. Therefore, [W4] and [W5] are incomparable.

If [{n(i)}A{n'(j)}| < oo, then since B\ A C A, a similar argument shows that [I¥/4]
and [WP] are incomparable.

Suppose [A] € P(w)/Fin is such that A % () and A # N. Then A€ is an infinite set,
and a similar argument shows that [X] and [W4] are incomparable and [Y] and [W4] are
incomparable.

Therefore, for any antichain {[4,]} in P(w)/Fin, {{W4]} is an antichain in 7C(P)
which can be extended to include [X] and [Y]. Since P(w)/Fin contains uncountable
antichains, the result follows.

Il
Proof of Theorem B. If G is uniformly power-free then Theorem 5.11 implies that TC(P) C
AH(G).
Part (i) is Lemma 6.2, while part (ii) follows from Propositions 6.6 and 6.7.
O

6.2. H— and AH—inaccessible groups. In this section, we construct examples of groups
that are neither H— nor AH-accessible. We in fact prove an even stronger result: there is
no largest (not necessarily cobounded) action under the partial ordering on a hyperbolic
space. Moreover, our examples are all groups which admit universal acylindrical actions.
Our main tool is to use thin cones to construct many “sufficiently different” actions of a
group on hyperbolic spaces. We then show that if the group admits an action that is larger
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than all of these different actions in the partial ordering, it cannot be on a hyperbolic
space.

Theorem 6.8. Let P = (S|R) be a C'(5) presentation where each r € R is cyclically
reduced. Suppose that for every n there is some r, € R, which is not a proper power,
satisfying

1

lim |r,|g =400 and inf Iral3 > 0,
n—ro0 n=o0 p(1mn) 10gy |7 ¢

where p(ry,) is the length of the longest piece in r,. Then G = F(S)/ {(R)) does not admit

a largest action on a hyperbolic space.

The strategy of the proof is to use the two laced cones considered in Lemma 6.3 to prove
that if G ~ Z is an action such that for any [X] € TC(P),

dX(ga h) < KdZ(ga h’) + Ca
then Y does not have exponential divergence, and hence it is not hyperbolic.

Proof. Fix z € Z, and for each n let C,, denote the labelled cyclic subgraph of Cay(G, S)
which contains the vertex 1o and has label 7, when read from 1;. We denote by C,, the
induced subgraph of Cay(G, S U P?*) with the same vertex set as C,. Using the proof of
Lemma 6.3 we find [X], [Y] € TC(P) and K; > 1 such that for all a, b in a common C,, we

have
1

de—(a,b) — Ky < dz(a.z,b.2). (16)
2K,
Moreover, since the orbit map g — g¢.z is Ky—Lipschitz, we have
dz(a.z,b.2) < Kyde, (a,b) + Ko. (17)

Set K = max {K;, Ky}.
Define f : N — R by f(n) = nz/logy(n). By hypothesis, there is an infinite subset
I C N such that for all n €
S(rnls)

p(rn)
Therefore, for all pairs of vertices a,b in C,,, we have
d b d b
da(a’ b) Z Cn(a/7 ) Z € Cn(a’7 )
4p(ry) 4f(lrnlg)

For each n choose a,, b, with dc, (a,, b,) maximal (in particular, it is greater than 5 |r,|g).
From the above equation we see that

>e>0.

. s £ rals .

el b) 2 13 7 )
Let P! and P? be the two different embedded paths in C,, from a,, to b,, and for k = 1,2,
let ¢* be a path in Z obtained by connecting the images of consecutive vertices of P* under
the orbit map g — g.z by geodesics of length at most 2K. This is possible by (17). The

length of the path ¢ is at most 2K |r,|4. Let ¢ be a geodesic connecting a,,.z and b,.z in

(18)
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Z and let m,, be the midpoint of ¢. By [10, Proposition 3.H.1.6], since Z is d-hyperbolic,
dz(mp, q¥) < dlog,(2K |rn|s) + 1, therefore there exist points ¢, d, € C, such that

2K) 'dg(cp, dn) < dg(cn.z, dn.z) < 2010gy(2K |1n|g) + 2 + 4K. (19)
Moreover, for all n sufficiently large, dlog, (2K |r,|q) +1+2K < %LKA%E)' We claim that
dz({cn.z,dp.2} ,{an.2,b,.2}) > ( c > Irals . (20)

96K/ f(|rnls)

To see this, suppose that that dz(c,.z,a,.2) < (%LK) féT:JfS); the other possibilities are

similar. Then

€ > |Tn|s

dz(an.z,my) = dz(an.z,cn.2) + dz(cn.z, my) < 2 (

96K/ f(lrals)’
and so dz(a,.z,b,.2) <4 (55%) fémfs). However, by (16), this implies that
€ |7a] € 7]
de(ay, by <8K< ) 5 :(—) s_
et B <S8 568 ) 7ty ~ \12) 7l

which contradicts (18). Thus (20) holds.

From (19) we see that there is a path in C,, from ¢, to d, which is a union of at most
16K (61ogy (2K |ry|g) + 1 + 2K) pieces. Since this path contains either a, or b,, and each
piece has length at most p(r,) < e ' f(|r,]g) in C,, we see that

1656 'K (logy (2K |rn|g) + 1+ 2K) f(|rnlg) > do, (cn, dn)
Z an({Cna dn} 3 {anv bn})
€ |ralg

> —7
N 96K2f(|7“n|5)

where the final inequality follows from (20). Thus there exists some M > 1, such that for
all n sufficiently large we have

1
2
M f(|rnlg)” logy [rals = M rnls -
However, this contradicts the definition of f, since for all sufficiently large n € I,

‘Tn’s
f(lrnlg)?logs |7nlg

We conclude by building the first examples of universally acylindrically hyperbolic groups
which are neither weakly H— nor weakly AH—accessible.

> €*log, |rn|g > M. O

Theorem 6.9. There are uncountably many quasi-isometry classes of finitely generated
acylindrically hyperbolic groups admitting a universal acylindrical action but no largest
action on a hyperbolic space.
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Proof. By Theorems 5.11 and 6.8 it suffices to define a uniformly power free C’ (i) pre-
1
sentation P = (a,b, c|ry,...) such that |r,|q — co and z#glmls > 1.
The number of cube-free binary words of length n is at least 25! by [9, Theorem 7]. For

each n > 6 enumerate 2" different cube-free words of length 9n in {a,b}”" as w!, ... w?"

and define
rl =17, cw’ € F(a,b,c).

We claim that there is some ng such that P = (a, b, ¢ ‘T;LO, Tl 41 -- - suffices. First, each r/,
is cube-free. If w? is a subword of 7/, then w must contain a ¢ and have length in F(a, b, c)
which is a multiple of 9n + 1, but this implies that two of the w’ are equal, which is a
contradiction.

Secondly, the length of the word r], is at least 9n2", and any piece in 7/, is a subword
of some w! cwi*! (with 4 considered modulo 2"), and so has length at most 18n + 1. Since
n > 6, 9n2" > 576n > 384n + 24 = 24(18n + 1). Thus (a,b,c|rg, %, .. .) satisfies C'(5;).
Moreover, there exists some ng > 6 such that for all n > ny,

1 n
Ak (9m)b2} .
p(ry)logy ] — (18n 4+ 1)(n +logy(9n +1)) —
Now take r, = 7}, ,,, for all m > 1. Taking various sparse infinite subcollections R

of {r, | n > np} and using Bowditch’s taut loop spectrum [8] as an invariant we obtain
uncountably many quasi-isometry classes of groups satisfying the hypotheses of the theo-
rem. U
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