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ABSTRACT: We present a model of the global primary plastic
trade network (GPPTN) and report estimates of embodied
impacts including greenhouse gas (GHG) emissions, cumulative
fossil energy demand, and embedded carbon. The network is
constructed for 11 thermoplastic resins that account for the
majority of global primary plastic trade. A total of 170 million
metric tonnes (Mt) of primary plastics were traded in 2018,
responsible for 350 Mt of embodied GHG emissions, 8.9 exajoules
(EJ) of cumulative fossil energy demand and 95 Mt of embedded
carbon. In 2018, embodied GHG emissions for GPPTN were
comparable to annual carbon dioxide emissions of developed
nations like Italy and France. The cumulative fossil energy demand
of GPPTN was equivalent to 1.5 trillion barrels of crude oil and
the carbon embedded in GPPTN was equivalent to carbon in 118 Mt of natural gas or 109 Mt of petroleum. Statistical inference and
network measures provide evidence that a few key trade relationships account for a majority of plastic flows and subsequent
embodied impacts through the network. The significant embodied impacts and materials in GPPTN must be considered going
forward as policies are developed to improve the circularity and environmental sustainability of the plastics industry.
KEYWORDS: plastics, network analysis, life cycle assessment, circular economy, embodied energy, embodied carbon, embedded carbon

■ INTRODUCTION

Since their commercialization in the 1950s, the use of plastics
has exponentially increased. In 1950, 2 million metric tons
(Mt) of plastic were produced globally, compared to 360 Mt in
2018.1,2 Because of their low-cost, durability, and versatility,
plastics are an ideal material for consumer and industrial
applications. The diversity of plastic products, many of which
contain more than one type of material, renders recycling
plastic products difficult.3 Only 9% of all of the plastic wastes
ever generated have been recycled,1 with the vast majority of
plastic discarded to landfills and the environment where
accumulation occurs because plastic polymers do not readily
degrade.4,5 At our current rate of plastic waste generation,
increasing waste management capacity will not be sufficient to
reach plastic pollution goals alone; there is an urgent need to
take actions like limiting global virgin plastic production and
designing products and packaging for recyclability.6 Recent
studies with the aim of quantifying the plastic pollution
problem reported estimates of 4.8−12.1 Mt5 and 9.5 Mt7 of
plastics entered the marine environment, largely due to waste
mismanagement.
While plastic pollution of the environment poses a clear and

visible risk to ecosystems, the less obvious impacts from
embodied carbon emissions generated during energy-intensive
production processes of plastics have not been widely studied.

Plastics are derived from fossil fuels, accounting for 4% of
global petroleum consumption.3 Carbon is the predominant
element, by molar mass, in fossil fuel feedstocks (e.g., ethylene
or C2H4) that are used in the manufacturing of plastics. Upon
disposal of the manufactured plastic, the embedded carbon is
lost and must be reacquired from the environment through the
mining and refining of more fossil fuels to produce another
virgin plastic. Additional carbon impacts arise from the energy-
and emission-intensive processes required to convert fossil fuel
inputs to a plastic resin form that is then further transformed to
a plastic product for market. Plastics are on track to account for
15% of global greenhouse gas (GHG) emissions by 2050,8

with 61% of these GHG emissions caused by plastic resin
production.9 Converting a polyolefin resin (e.g., LLDPE,
HDPE, PP) into a flexible film suitable for packaging has been
estimated to cause an additional 19%−67% of embodied
GHGs compared to the initial resin production, highlighting
the carbon intensity of plastic manufacturing processes.10
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Tracking plastics across their life cycle is key to improving the
recovery and reutilization of plastic materials to achieve
sustainable development goals such as reducing plastic
pollution in natural environments and reducing global carbon
emissions.
To meet these goals, a first step is quantifying the scale of

plastic production, consumption, waste, and associated
embodied impacts. A comprehensive global analysis of plastics
across their life cycle between 1950 and 2015 reported
aggregate estimates of global primary plastic generation and
waste flows to be 8300 Mt and 5800 Mt, respectively.1

Detailed national estimates of plastic use and waste by resin
type and sector use have also been compiled for European
nations2 and the United States.11,12 These detailed national
estimates of different types of plastics across their life cycle
provide important information to accurately assess production
impacts and material recovery strategies, which both vary
based on the type of plastic. Existing work has provided a
macroscopic view of the plastics industry, with quantities
typically aggregated at a global or regional level. In some cases,
such as Wang et al.,13 studies have focused on a portion of the
plastics life cycle, paying particular attention to plastic products
and their end-of-life treatment. However, there is still a gap in
the literature exploring the resin production stage of the plastic
life cycle for the global economy, while retaining specificity
with regard to nation and polymer type.
International trade plays a critical role in making material

goods (including plastics) available, regardless of the point of
production. Network theory provides a formal mathematical
framework to analyze dependent relationships within a group
of interacting entities, making it an appealing framework to
study international trade. Advances in network science and
analysis have made it possible to evaluate material flows and
their embodied impacts at regional, national, and international
scales, understand network structure, and identify patterns of
connection.14−16 Recent studies13,17,18 have utilized a network
framework to study the impact of China’s plastic waste import
ban on the other nations participating in the global trade of
plastic waste. It is estimated that 110 Mt of plastic waste will be
displaced in the 10-year period following China’s import ban,
because of their previous role as the largest global importer of
plastic waste.17 The global plastic waste trade network was
found to exhibit small world and scale-free network structure,
which indicates the network is controlled by a few highly
connected and active countries that are central to interacting
with the rest of the less-connected countries.13 Because of
China’s significant share of global plastic waste imports,
followed by a sudden ban, other nations (Australia, Canada,
South Korea, and Japan) were left with a significant need to
improve domestic waste management capacity.18 Potential
policy responses include a ban on export of hazardous
materials, clear regulations for managing plastic waste before
export, and an import tax to fund improved recycling
infrastructure.17 More recently, Ren et al.19 evaluated the
structure of the international plastic resin trade network
(IPRTN) and observed small world network properties, which
means there is a short average path length between any two
countries in the network due to “hub” nodes that have
connections to many other countries. This study examined
resin-specific mass flows at a national scale and presented
results for various network metrics to describe behavior and
trends of the primary plastic trade network. However, their
mass flow model was not extended to include life cycle

embodied impacts of the plastic resins. This has left a gap in
the literature estimating the scale of embodied impacts
associated with plastic resin production in a spatially explicit
manner, which allows for tracking embodied impacts from
their point of origin to point of consumption. It has been
shown that international trade plays a role in environmental
burden shifting, particularly carbon emission generation,
because of the emission-intensive production of a good in
one country that is then traded and consumed in a separate
country.20

There exists a rich body of work on life cycle assessment of
plastic resin production. Information on life cycle energy use
and emissions for producing individual plastic resins is
available in both published LCA studies,21,22 as well as
commercial LCA databases.23 LCA studies focus on
normalized impacts (per unit mass) across the life cycle but
lack the network perspective needed to assess how plastic trade
displace material and environmental impacts across spatial
scales. Plastic trade networks represent conduits for not just
the physical movement of plastics but also associated
embodied impacts (resources and emissions). Modeling and
quantifying the origin and destination of plastics flows and
their embodied impacts is critical for establishing baseline
information and evaluating strategies toward developing a
circular economy of plastics.
The goal of this present study is to provide a quantitative

understanding of energy and GHG emissions embodied in
global primary plastic trade. Using publicly available UN
Comtrade data,24 we develop a network model of international
plastic trade focusing on 11 key thermoplastic resins, which
account for roughly half of total plastic production. We refer to
this network as the Global Primary Plastic Trade Network
(GPPTN). The network model, or GPPTN, is combined with
life cycle assessment to quantify the total energy and GHG
emissions embodied in global plastic trade. The modeling and
resulting analysis presented in this work provides key insights,
including (1) identification of key actors in the mobilization of
plastic resins, (2) first estimates of embodied energy and GHG
emissions in global primary plastic trade, (3) structure and
topology of the global plastic trade network, and (4) two
unique quantitative measures are presented: life cycle
“embedded carbon” for plastic resins traded and “edge stability
index” assessing fluctuations of trade relationships in the
network over the time period of the study (1995−2018).

■ METHODS
Data Acquisition, Processing, and GPPTN Construction.

Network analysis provides a computational framework to gather
insights about the role of individual countries, trade relationships
between countries, and structural characteristics governing the
interaction within the network. For GPPTN, each country was
modeled as a “node” and a trade relationship between two countries
was modeled as an “edge”. The trade data used for the creation of the
GPPTN was sourced from UN Comtrade Database24 for imports and
exports of 11 primary thermoplastics (LDPE, HDPE, PP, PVC, PET,
EPS, GGPS, PMMA, PC, PA, and LLDPE) over a 23-year time frame
(1995−2018). This list of thermoplastic resins for this study was
selected to be comprehensive and includes all six major plastic resins
and a few of the more frequently used resins from the “other” category
of the ASTM International Resin Identification Coding System,25

which are the recycling labels on products or packaging with the
number 1−7 contained within a triangle of arrows to distinguish the
type of plastic resin. Thermoplastics comprised ∼90% of the total
plastic trade quantity by weight, thermosets comprised 9%, and
bioplastics account for just under 1%. In addition, life cycle data were
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available for all of the thermoplastic resins studied, ensuring that the
modeled trade network was amenable for further analysis of embodied
environmental impacts. The workflow from data collection to network
construction was visualized in Figure S1 in the Supporting
Information (SI) .
Trade data include the importing country, exporting country,

quantity (metric tonnes), and market value ($1000 USD). The
Harmonized System 92 (HS92) six-digit commodity codes26 were
used to reference annual plastic trade data from the years 1995 to
2018. Harmonized trade flow data from CEPII BACI27 was utilized to
model the GPPTN. These data originally came from the UN
Comtrade database, but was modified slightly to reconcile the
differences in trade quantities reported by importers and exporters.
The harmonized trade flows account for the relative reliability of
countries as reporters, and the different techniques used by importers
and exporters to report the economic value of goods.27 It was found
that ∼5% of the reported imports and exports did not match in the
raw data from UN Comtrade, so the reconciled data is a small portion
of the total data utilized. Upon acquisition, data were cleaned and
processed in R statistical language (for details, see section S2 in the
SI) to develop adjacency matrices that were further utilized to develop
both unweighted and weighted directed networks of plastic resin trade
flows. The adjacency matrices formed to represent GPPTN have rows
representing the exporting countries and columns representing
importing countries. An element (i, j) in the matrix represents a
trade relationship between exporting country i and importing country
j. In the unweighted network, an element (i, j) takes on the value of 1
if there is trade between the two countries and a value of 0 otherwise.
In the weighted network, an element (i, j) represents the quantity of
plastic resins, embodied impacts, or embedded materials traded from
country i to country j.
Quantifying Embodied Impacts in GPPTN. To evaluate

embodied impacts associated with the GPPTN, life cycle inventory
(LCI) estimates of embodied GHG emissions and fossil energy
demand for each of the 11 resins were sourced from the Ecoinvent
version 3.523 LCI database, accessed via SimaPro version 9.0.28 The
scope of this study and the life cycle inventory data used are taken
from the extraction of primary materials, such as crude oil, up to the
production of a primary plastic resin. Life cycle impacts of
transforming plastic resins into plastic products and their resulting
disposal are excluded from this study to present results solely focused
on primary plastic resins. Life cycle GHG emissions estimates for
individual resins were calculated using IPCC 100-year global warming
potential characterization factors and expressed as kg CO2-equivalent/
kg resin.29 Cumulative energy demand (CED) was used to calculate
the sum of direct and indirect energy required to perform the
extraction and manufacturing processes in the life cycle of a product
like a primary plastic.30,31 This measure was computed using CED
1.11 methodology, and the total life cycle energy requirements to
produce each primary plastic were expressed in terms of megajoules
per kilogram of resion (MJ/kg resin).32 Fossil CED is reported for
this study, which only includes energy captured from nonrenewable
fossil fuels. This methodological choice was made because Fossil CED
represents 90%−96% of energy demand for all primary plastics in this
study, except for PVC (∼80%), and will be referred to as embodied
energy for the remainder of this Article. The resulting life cycle GHG
emissions intensity and Fossil CEDs for the 11 thermoplastic resins
can be found in section S3 in the SI. These resin-specific LCI
estimates were used to translate the network model of primary plastic
mass traded into networks of embodied GHG emissions and
embodied energy, which were then visualized using Circos.33

The embodied energy and GHG emission characterization factors
and subsequent results presented in this work are subject to
uncertainty. In the absence of country-specific life cycle data for the
production of plastic resins, this study utilized estimates for North
American and European facilities that are readily available. This limits
the ability to explore variance in embodied impact intensity across
nations, which may arise from different feedstocks or processing
conditions.34 Compiling national life cycle inventories for plastic resin
production is key data needs that would provide insight into spatial

variations in embodied impacts and allow for identification of
improvement opportunities.

In addition to embodied energy and GHG emissions, we quantified
elemental carbon flows embedded within the GPPTN. Carbon is the
most basic building block in all plastic resins, and it is ultimately
wasted if there is no form of material recovery at the end-of-life of
plastics. As such, quantifying embedded carbon can provide insight
into the circularity potential for plastics measured as elemental
carbon. Embedded carbon flows were calculated by applying weights
representing the carbon content of individual resins. For example,
polyethylene resins are a chain of molecules represented by the
formula (C2H4)n and have a carbon content of 24 g C/28 g resin, or
85.7% by molecular weight. The carbon mass percentage was
multiplied by the quantity of resins traded along the edges of the
baseline network model to derive total embedded carbon for GPPTN.

Network Metrics. Network analysis includes many quantitative
measures, with unique reference names and formulations, to describe
important characteristics and behavior of a network. Centrality
measures are used to identify key actors in a network, which are the
countries most active or most important in facilitating the global trade
of plastic resins, in the context of GPPTN. Degree centrality35 is
simply a count of the number of edges connected to an individual
node. Each node in the network has a unique score for this measure.
For a directed graph or network, there can be a measure of in-degree
or out-degree centrality, because each edge is assigned a direction of
“incoming” or “outgoing”. In the context of a trade network, in-degree
is a count of relationships where the reference country is importing
goods and out-degree is a count of relationships where the reference
country is exporting goods. Total degree centrality refers to the sum
of in-degree and out-degree centrality measures or a count of all trade
partnerships. Strength centrality36 is a sum of all edge weights for an
individual node, and this measure can only be calculated for a
weighted network. In-strength and out-strength can be calculated for a
directed network, like in-degree and out-degree centrality. Again, in
the context of a trade network, in-strength centrality is a sum of all
imported goods by weight (quantity or economic value) and out-
strength is a sum of all exported goods by weight. Total strength
centrality is a sum of in-strength and out-strength measures or a sum
of imports and exports. The detailed descriptions and mathematical
formulations of basic network metrics (density, degree, strength,
betweenness, and eigenvector centrality) utilized in this study can be
found in section S5 in the SI.

Network Backbone. Large-scale networks such as GPPTN
encode vast amounts of information about nodes, edges, and their
weights that can have distributions spanning orders of magnitude,
which makes the identification of relevant network actors and
connections a challenge. Visualization of a network can provide quick
insight into the underlying information, but large-scale networks
contain too much information to be informative without undergoing a
meaningful simplification process. A network representation of nodes
with the highest number of connection or highest weighted
connections would be an oversimplification that ignores important
network interactions at smaller scales. The backbone algorithm37 was
formulated to extract edges that have the highest weights, while also
retaining relevant nodes and links that are critical to the structural
topology of the network. To do this, the algorithm examines one node
at a time and determines which edges of that node to retain, based on
local importance. Empirical edge weights of a node are compared to a
null model of edge weights, which are generated from a random
uniform distribution. A threshold parameter (α) is used as an
indicator of statistical significance to determine whether a given edge
for a node carries a statistically disproportionate weight, compared to
an edge weight generated from a random null model. This is an
important feature of the algorithm, because it identifies key actors and
connections in the network without ignoring the significance of small-
scale interactions to the overall structure and behavior of the network.

Community Detection. We utilized community detection to
uncover patterns of connectedness in GPPTN, specifically identifying
groups of nodes in the network that are more densely connected with
each other than with other nodes in the network. The subsection of
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countries, referred to as communities, represent subgroups that trade
more with each other than countries outside of their community.
While there are many different algorithms for community detection,
we used Louvain grouping,38 a popular iterative algorithm to identify
communities in the present work. Other grouping algorithms were
tested, but the Louvain community detection algorithm returned the
highest value for modularity. Modularity is a measure of the efficacy of
grouping algorithms, which is a score between −1 and 1 that indicates
how dense links are within communities, compared to density of links
outside of communities.
There are two iterative phases to the Louvain community detection

algorithm proposed by Blondel et al.38 The first step is to assign all
nodes to a distinct community, resulting in as many communities as
there are nodes. Then, node i is placed in a community with a
neighboring node that leads to a maximum gain in modularity. If there
is no gain in modularity, then node i remains in its own community.
This first phase process runs for all nodes until a local maximum
modularity is achieved. The second phase begins by constructing a
network of the communities derived from the first phase. The
weighted links inside a community and weighted links between
communities are examined and the iterative process of the first phase
is applied again, rearranging nodes between different communities
until a maximum modularity score is reached.
Mixing Patterns and Assortativity. Community detection is a

way to identify groups of nodes within the network that prefer to
trade among themselves, which can be described as a local preferential
attachment. To measure preferential attachment of the entire
network, the assortativity39,40 measure is utilized in this work. The
function of this measure is to quantify an indicator of similarity and
measure the preference of nodes to attach to similar nodes within the
entire network. Assortativity coefficients, with respect to total degree,
in-degree, out-degree, total strength, in-strength, and out-strength, are
computed. The assortativity coefficient is a number between −1 and
1, where positive numbers correspond to a network wherein nodes
with similar attribute values have a tendency to interact with each
other. For example, an assortativity coefficient close to 1, measured
using in-degree values, indicates nodes with high in-degree scores
have a tendency to interact together and nodes with a low in-degree
score have a tendency to interact together. Conversely, a negative
assortativity coefficient value for in-degree indicates that nodes with a
high score of in-degree have a tendency to interact with nodes with a
low score for in-degree centrality.
Edge Stability. To measure the edge stability of a network or a

node of interest, we defined a novel metric called “edge stability”,
which is defined as a ratio of edges that are active over a time period
to the total number of times the edges could be active in the time
period of interest. An active edge simply refers to an edge where there
is a nonzero value, indicating there is trade along the edge between
two partner countries. Trade may occur in one year between two
countries, but may not occur again in the following year. This measure
provides insight into the timespan that countries consistently engage
in trade with their partners and the rate of change of partnerships
within the network. We proposed the following procedure to calculate
the edge stability score at the network level using annual plastic trade
data.
The formulation of edge stability begins with defining the time

period of interest. We introduced t to represent the length of time to
analyze in years. The reference year, y, is the last year of the time
period for computing an edge stability score. Using these variables,
the time period will span from (y − t + 1, y). For example, the three-
year stability score for 2018 will analyze the stability of the network
moving from the year 2016 to 2018. Here, t = 3 and y is 2018. After
the time period of interest is defined, we computed the ratio of active
edges to potential active edges. The number of edges where trade
occurs in the network, for all years in the time period, were counted
and summed for all of the nodes in the network and referred to as
active edges, a. The potential active edges for the time period, amax,
was calculated by multiplying the total number of unique edges that
were active at least once during the time period by the number of
years in the time period, t. Dividing the measured number of active

edges, a, by the potential unique active edges, amax, yields a range of
values bounded between [1/t, 1] that we refer to as the edge stability
score and is assigned the variable s:

=s a
amax

i
k
jjjjj

y
{
zzzzz (1)

An edge stability score of 1/t indicates a network that is perfectly
unstable, i.e., each unique edge is only active once for the time period
of interest. An edge stability score of 1 indicates a perfectly stable
network where every unique edge is active in all years of the time
period.

Network Topology. For topological analysis of the GPPTN, we
specifically examined whether the network follows power-law
behavior. Power-law behavior in real-world networks can provide
evidence that a large concentration of activity in the network is taken
into account by just a few nodes. In the context of the GPPTN, this
would mean that a small number of countries account for a large
percentage of plastic resins traded. Following the procedure outlined
by Clauset et al.41 and implementation in R,42 we evaluated the
distributions of edge weight, in-degree, out-degree, total degree, in-
strength, out-strength, and total strength in the GPPTN. The
distribution for GPPTN is compared to synthetic data derived from
power-law, exponential, and log-normal distributions. Synthetic data
are generated for each distribution type with governing parameters
that best fit the original empirical datasets. To determine whether the
GPPTN data fits a particular type of distribution, the empirical
distribution and reference distribution type must be compared. The
Kolmogorov-Smirnoff test is a two-sample nonparametric test of the
null hypothesis that vectors x and y come from the same continuous
distribution43 and was used to determine which synthetic distribution
has the closest fit to the empirical datasets.

After conducting KS testing, there is the possibility that an
empirical dataset is a plausible fit to multiple distribution types. To
provide further clarity, log-likelihood ratio testing is utilized. For this
purpose, point-wise log-likelihood estimates were calculated for
whether a data point is drawn from a particular distribution type.
This is a helpful secondary confirmation step to conclusively
determine between two likely underlying distribution types.

■ RESULTS AND DISCUSSION
Plastics Trade and Embodied GHG Emissions. Analysis

of the GPPTN reveals that 170 million metric tonnes (Mt) of
primary plastics were traded globally in 2018, with associated
embodied GHG impacts of 307 Mt CO2 equivalent. LDPE,
HDPE, PP, and LLDPE accounted for ∼67% by mass of traded
thermoplastics and ∼50% of embodied GHG emissions. A
visual breakdown of the quantities of each resin traded and
associated embodied GHGs for 2018 can be seen in Figure 1.
Figure 1 is organized in descending order, based upon

quantity of the resin traded. The fifth-, sixth-, seventh-, and
eighth-most traded resins (PVC, PET, PC, and Nylon-66,
respectively) have greater embodied GHG emissions than the
fourth most traded resin (LLDPE). The total embodied GHG
emissions of traded PVC and PET are similar to HDPE and
PP, with the latter resins having nearly double the trade
volume, compared to PVC and PET. Most of the resins
examined in this study have a similar GHG intensity value (see
section S3 in the SI) of ∼2 kg CO2 equiv/kg of resin. PVC and
PET have moderately greater life cycle GHG intensity of 3.64
and 3.16 kg CO2 eq/kg of resin, respectively. PET and PVC
represent significant portions of the total embodied GHGs
across GPPTN due to their greater than average GHG
intensity values and moderate trade volume, relative to the
other resins examined. PC has the greatest life cycle GHG
intensity. Despite a relatively smaller trade volume, PC
represents a significant portion of embodied GHGs across
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GPPTN, because of its very high GHG intensity (8.64 kg
CO2/kg of resin).
Embodied Energy and Embedded Carbon in GPPTN.

Figure 2 presents a visualization of the embodied energy
(Figure 2a) and embedded carbon (Figure 2b) in a GPPTN.
The visualizations in Figures 2a and 2b include the top 75
countries ranked by total strength. In total, GPPTN represents
7566 links with a total embodied fossil energy of 8.9 exajoules
(EJ) and 94.5 Mt of embedded carbon. The two network
visualizations in Figure 2 are quite similar, with only a few
countries changing one place in rank order. A majority of the
leading nodes in total strength (clockwise order in the Figure 2
visualizations starting with China) export more plastics than
they import, with the few exceptions being China, India, and
Italy. The top five importers of primary plastic resins and
associated embodied energy for 2018 are China, Germany, the
USA, Italy, and India. Saudi Arabia is the leading exporter with
an almost-exclusive exporting role in the GPPTN. The next
largest exporters include the USA, South Korea, Germany, and
Belgium, all of whom export more resins than they import. The
largest embodied energy transfer is from Canada to the USA,
with a magnitude of 3.16 million GJ corresponding to the
export of LLDPE.
Figure 2 shows circos visualizations with links weighted in

width by embodied energy (Figure 2a) and embedded carbon
(Figure 2b) for the GPPTN in 2018. Country names are
abbreviated using ISO three-digit codes. Full names with their
associated codes can be found in Table S1 in the SI. An export
from a country is indicated by a white space between the
colored semicircle segment next to each country’s name and
the incoming colored bands from other countries. If, instead,
the space is filled with a colored segment, this represents an
import. Two countries that visually illustrate the difference
between importer and exporter are China, a net importer, and
Saudi Arabia, a net exporter. The size of the colored semicircle
segments represents the total trade of a country. The color of

this segment is the same as the incoming colored bands
representing flows to a country.
The life cycle estimates in this study have been presented in

the context of a network, showing the mobilization of plastic
resins and subsequent embodied impacts and materials along
their trade routes. Net importers of plastic resins can be viewed
as importing embedded carbon but exporting or offloading
associated embodied impacts (e.g., GHG emissions, embodied
energy) to the countries where the plastic resins were
manufactured. Previous studies focusing on the transfer of
embodied impacts across national boundaries have shown that
developed countries have a tendency to import more
embodied carbon emissions from developing nations that
have a tendency to rely on carbon-intensive manufacturing.20,46

Developing and developed countries, as categorized by United
Nations Statistics Division, account for equal shares of exports
in GPPTN, while developing nations import ∼30% more
primary plastics than developed nations.47

Network Density and Growth. Over the analysis period
(1995−2018), the number of nodes in the network only
increased from 194 to 215. The number of edges in the
network increased more drastically during this time period,
growing from 4538 (in 1995) to 7701 (in 2017). Network
density for the GPPTN has increased for the majority of the
timespan, with a peak in 2010 and a relatively steady network
density score in subsequent years (see section S5 in the SI).
The increase in network density indicates that countries are
forming more trade relationships with countries that already
participate in the GPPTN. With 200+ countries participating
in the network, the GPPTN has almost-unanimous global
participation. The stabilization of network density (∼0.16) in
the period of 2010−2018 suggests that the network has
reached a saturation point. By observing total network
throughput and average edge weight over the time period in
this study, linear growth can be observed (see section S5 in the
SI). There is not a similar stabilization of throughput or
average edge weight as was the case for network density in the
period from 2010 to 2018. Interpreting these analyses together
indicates that the global primary plastic production and
consumption continue to steadily increase, but the number
of countries and trade relationships involved in the primary
thermoplastic market are remaining steady.

Edge Stability. Figure 3 shows the normalized edge
stability scores for the GPPTN. A steady decrease in
normalized edge stability score with the length of time
increment can be seen. This suggests that, generally, countries
retain a majority of trade partners from year to year, but over a
longer period, nodes are less likely to continue to participate in
the same trade relationships. However, a normalized edge
stability score of 0.47 over a 12-year time period indicates that
there is a core group of trade partnerships that remain active
for longer periods of time.

Network Backbone and Community Detection. The
“backbone” algorithm37 was used to simplify the GPPTN to
identify the most important nodes and edges in 2018 (see
Figure 4). In creating the backbone, nodes with a total strength
of >1 Mt are retained, accounting for 79% of nodes, 9.6% of
edges, and 78% of the quantity of trade flow in GPPTN. The
percentage of edges retained is much smaller than nodes
retained because a majority of plastic is traded along a few
edges with high weights. The nodes in Figure 4 are colored by
their community and sized by their total strength. Utilizing the
Louvain community detection algorithm,38 there were four

Figure 1. Quantity of resins traded and associated embodied GHG
emissions for GPPTN in 2018. The resins are organized in
descending order of quantity of resins traded. The error bars
represent the 95% confidence interval, obtained using Monte Carlo
simulations, accounting for uncertainty of life cycle GHG intensity
data. Along the horizonal axis of this chart are the abbreviations of the
resins included in the study. Full resin names are as follows in the
same order as the horizontal axis: low-density polyethylene, high-
density polyethylene, polypropylene, linear low-density polyethylene,
polyvinyl chloride, polyethylene terephthalate, polycarbonate, poly-
amide 6,6 (Nylon), general purpose polystyrene, expandable
polystyrene, and poly(methyl methacrylate).
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communities identified within the GPPTN in 2018. The
largest community (111 countries) identified are the orange

nodes, representing countries in Southeast Asia, The Middle
East, and Africa. The green nodes represent a community

Figure 2. (a) 2018 GPPTN embodied energy and (b) 2018 GPPTN embedded carbon.
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among countries from Western Europe (47 countries). The
yellow nodes represent the community of countries in North
America, South America, and the Caribbean Islands (49
countries). Lastly, the gray-colored community (9 countries) is
the smallest and consists of countries from Eastern Europe,
such as Russia and Ukraine. Identifying communities highlights
countries with dense trade interactions and provides insight
into the subcommunity trade patterns present in the GPPTN.
China, the USA, and Germany are the largest nodes in their
respective communities and standout as focal points of these
communities when analyzing the backbone of the GPPTN.

Network Degree, Strength and Mixing Pattern.
Investigating the degree and strength distributions for the
GPPTN aids in characterizing trade patterns for the network.
Histograms of degree and strength distributions are provided
in section S5 in the SI. The majority of the countries do not
significantly participate in exporting primary plastics, according
to out-strength and out-degree analysis. The in-strength
analysis provides similar results, suggesting that the majority
of trade in the network is attributable to a handful of key
nodes. In contrast, the in-degree shows a different behavior.
Almost all countries in the network participate in importing
plastics, and many of the nodes have over 50 incoming edges.
This is also intuitive as plastic products are ubiquitous, so there
is demand for all countries to import plastics for consumption.
The limited number of countries that control the supply of

Figure 3. Normalized edge stability scores, representing the
proportion of trade relationships that remain active over a time
period, ranging from 2-year to 12-year measures. Edge stability scores
are plotted as box and whisker ranges, because each possible iteration
of n-year edge stability score were computed and plotted. For three-
year edge stability measures, possible ranges include but are not
limited to 1995−1997, 1996−1998, 2010−2012, and 2016−2018.

Figure 4. Backbone filter applied to the GPPTN for 2018. Nodes are sized by total strength (sum of all imports and exports, in Mt) and the
thickness of each link is determined by the edge weight (aggregate quantity of plastic resins traded between the two connected nations, in Mt).
Nodes with a total strength of >1 Mt of plastic resins traded are labeled. Nodes are colored according to the four Louvain communities identified.
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primary plastics can be focused on when to develop strategies
to reduce primary plastic production impacts.
To assess patterns of connection in the network, assortativity

coefficients were calculated with respect to in-degree, out-
degree, total degree, in-strength, out-strength, and total
strength. The assortativity coefficient with the greatest
magnitude was −0.333 when calculating assortativity, with
respect to total degree, indicating that countries that have few
trade relationships have a moderate propensity to trade with
countries that have more trade relationships.
Statistical Distribution Testing. Statistical distribution

testing was utilized to assess edge weight, in-degree, out-
degree, in-strength, and out-strength distributions for the
GPPTN from 1995 to 2018. KS-testing was utilized to examine
the fit of empirical data distributions to exponential, log-
normal, and power-law distributions. Power-law behavior was
the distribution type observed to be the best fit for all tested
distributions (see section S6 in the SI). When assessing the
distribution of best fit for out-strength, where power-law and
exponential distributions were plausible distributions types,
log-likelihood ratio tests were utilized to provide clarity. Figure
5 shows the inverse cumulative density plot of edge weights for
the GPPTN. The observation of power-law behavior indicates
that a small number of edges account for a majority of trade in
the network. This is consistent with the vast reduction of edges
using the backbone algorithm, where 9.6% of the edges in the
network constituted the network backbone.

■ CONCLUSION
The analysis presented in this work fills a knowledge gap by
providing estimates of life cycle environmental impacts
embodied in global primary plastic trade. While the focus of
our work is on embodied energy and GHG emissions, the
framework can be extended to incorporate other life cycle
impacts. The quantity of GHGs embodied in GPPTN (350
Mt) is on par with CO2 emissions of developed nations such as
Italy and France.44 Embodied energy in GPPTN (8.9 exajoules

(EJ)) is estimated to be equivalent to 1.5 trillion barrels of
crude oil, 230 billion cubic meters of natural gas, or 407 Mt of
coal.45 The carbon embedded in GPPTN (94.5 Mt) is
estimated to be the same as the carbon equivalent in 118 Mt of
natural gas or 109 Mt of petroleum.
This work has also provided evidence that the majority of

the GPPTN is controlled by a handful of key countries, with
increasing concentration of trade activity by top countries
throughout the time period of the study. Implementing circular
economy strategies for plastic production and management in
key countries (China, the USA, Germany, Saudi Arabia, and
South Korea) would have a ripple effect throughout the rest of
the network. China’s plastic waste ban in 2018 provides
evidence that policy changes in a large node can have
cascading impacts on all other countries in the global plastic
waste trade network.13,17,18 As such, improving circularity for
the majority of plastic trade may only require interventions in a
few key countries that participate in the GPPTN.
Strategies to reduce embodied impacts of globally traded

plastics will need to address both technological and behavioral
changes, including but not limited to utilizing renewable
energy, recycling and switching to biomass feedstocks, and
reducing consumption.9 Recycled plastic resins have been
shown to have lower embodied energy and emissions than
virgin resins.48−51 Increasing access to the material recovery
infrastructure and advancing recycling technology is a key
strategy to reduce both plastic pollution52 and embodied
impacts associated with virgin plastics. New technologies
capable of chemically recycling plastics to recover monomers
in an economic and environmentally promising manner have
been proposed and deemed technically feasible.53−57 However,
success in chemically recycling plastics requires high rates of
recycling and subsequent recovery to take advantage of
economies of scale and become cost-competitive with virgin
plastic production. Improvements to collection and sorting
infrastructure are necessary to provide sufficient quantities of
clean input plastics to justify implementation of chemical

Figure 5. Complementary cumulative distribution function plot of edge weights in 2018 for the GPPTN. Edge weights represent the quantity of
plastic traded between two countries, which were rank ordered from smallest to largest and are colored in orange. The blue circles are synthetic
data points derived from a power-law distribution with parameters that were calculated based on empirical data. KS-tests resulted in a p-value of
>0.10, indicating a good fit, because no statistically significant difference was observed between the empirical edge weight data and the synthetic
edge weight data fit to a power-law distribution. A strong overlap can be seen beginning at the xmin value of 105 Mt, indicating that power-law
behavior is observed for the tail of the edge weight distribution.
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recycling technologies. Future work could focus on under-
standing the interaction between the GPPTN and plastic waste
trade network to identify opportunities to invest in infra-
structure that can facilitate a circular plastics economy, wherein
secondary plastics are used as production inputs in countries
that are already established as dominant producers of virgin
primary plastic resins.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssuschemeng.1c05236.

Raw sourced data, further methodological details and
supplementary results (PDF)

■ AUTHOR INFORMATION
Corresponding Author
Vikas Khanna − Department of Civil and Environmental
Engineering, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, United States; Department of Chemical
and Petroleum Engineering, University of Pittsburgh,
Pittsburgh, Pennsylvania 15261, United States; orcid.org/
0000-0002-7211-5195; Phone: +1-412-624-9604;
Email: khannav@pitt.edu

Authors
Joseph Zappitelli − Department of Civil and Environmental
Engineering, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, United States

Elijah Smith − Department of Industrial Engineering,
University of Pittsburgh, Pittsburgh, Pennsylvania 15261,
United States

Kevin Padgett − Department of Chemical and Petroleum
Engineering, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, United States

Melissa M. Bilec − Department of Civil and Environmental
Engineering, University of Pittsburgh, Pittsburgh,
Pennsylvania 15261, United States; orcid.org/0000-
0002-6101-6263

Callie W. Babbitt − Golisano Institute for Sustainability,
Rochester Institute of Technology, Rochester, New York
14623, United States; orcid.org/0000-0001-5093-2314

Complete contact information is available at:
https://pubs.acs.org/10.1021/acssuschemeng.1c05236

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work is supported by the U.S. National Science
Foundation, under Grant No. 1934824. Any opinion, results,
conclusions, or recommendations detailed in this material are
those of the author(s) and do not necessarily reflect the views
of the National Science Foundation.

■ REFERENCES
(1) Geyer, R.; Jambeck, J. R.; Law, K. L. Production, use, and fate of
all plastics ever made. Science Advances 2017, 3 (7), e1700782.
(2) PlasticsEurope. PlasticsThe Facts 2019: An analysis of European
plastics production, demand and waste data, 2019.
(3) Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: challenges
and opportunities. Philos. Trans. R. Soc., B 2009, 364 (1526), 2115−
2126.

(4) He, P.; et al. Municipal solid waste (MSW) landfill: A source of
microplastics? -Evidence of microplastics in landfill leachate. Water
Res. 2019, 159, 38−45.
(5) Jambeck, J. R.; et al. Plastic waste inputs from land into the
ocean. Science 2015, 347 (6223), 768−771.
(6) Borrelle, S. B.; et al. Predicted growth in plastic waste exceeds
efforts to mitigate plastic pollution. Science 2020, 369 (6510), 1515−
1518.
(7) Ryberg, M. W.; et al. Global environmental losses of plastics
across their value chains. Resources, Conservation and Recycling 2019,
151, 104459.
(8) WEF. The New Plastics EconomyRethinking the Future of
Plastics; Ellen MacArthur Foundation: World Economic Forum, 2016.
(9) Zheng, J.; Suh, S. Strategies to reduce the global carbon footprint
of plastics. Nat. Clim. Change 2019, 9 (5), 374−378.
(10) Poovarodom, N.; Ponnak, C.; Manatphrom, N. Impact of
Production and Conversion Processes on the Carbon Footprint of
Flexible Plastic Films. Packag. Technol. Sci. 2015, 28 (6), 519−528.
(11) Heller, M. C.; Mazor, M. H.; Keoleian, G. A. Plastics in the US:
toward a material flow characterization of production, markets and
end of life. Environ. Res. Lett. 2020, 15 (9), 094034.
(12) Di, J.; et al. United States plastics: Large flows, short lifetimes,
and negligible recycling. Resources, Conserv. Recycl. 2021, 167, 105440.
(13) Wang, C.; et al. Structure of the global plastic waste trade
network and the impact of China’s import Ban. Resources, Conserv.
Recycl. 2020, 153, 104591.
(14) Vora, N.; et al. Rewiring the Domestic U.S. Rice Trade for
Reducing Irrigation ImpactsImplications for the Food−Energy−
Water Nexus. ACS Sustainable Chem. Eng. 2021, 9 (28), 9188−9198.
(15) Fan, Y.; et al. The state’s role and position in international
trade: A complex network perspective. Economic Modelling 2014, 39,
71−81.
(16) De Benedictis, L. et al. Network Analysis of World Trade Using
the BACI-CEPII Dataset. SSRN Electron. J. 2014, Banque de France
Working Paper No. 471, DOI: 10.2139/ssrn.2374354.
(17) Brooks, A. L.; Wang, S.; Jambeck, J. R. The Chinese import ban
and its impact on global plastic waste trade. Sci. Adv. 2018, 4 (6),
eaat0131.
(18) Huang, Q.; et al. Modelling the global impact of China’s ban on
plastic waste imports. Resources, Conserv. Recycl. 2020, 154, 104607.
(19) Ren, Y.; et al. Spatiotemporal evolution of the international
plastic resin trade network. J. Cleaner Prod. 2020, 276, 124221.
(20) Zhong, Z.; Jiang, L.; Zhou, P. Transnational transfer of carbon
emissions embodied in trade: Characteristics and determinants from a
spatial perspective. Energy 2018, 147, 858−875.
(21) Associates, F. Life Cycle Impacts for Postconsumer Recycled
Resins: PET, HDPE, and PP; The Association of Plastic Recyclers,
2018.
(22) Associates, F. Cradle-to-Gate Life Cycle Analysis of High Density
Polyethylene (HDPE) Resin; American Chemistry Council, Plastics
Division, 2020.
(23) Weidema, B. P. B. C.; Hischier, R.; Mutel, C.; Nemecek, T.;
Reinhard, J.; Vadenbo, C.; Wernet, G. Overview and Methodology:
Data Quality Guideline for the Ecoinvent Database Version, Vol. 3; Swiss
Centre for Life Cycle Inventories, 2013.
(24) United Nations. UN Comtrade Database, 2019.
(25) Standard Practice for Coding Plastic Manufactured Articles for
Resin Identification, ASTM Standard No. ASTM D7611/D7611M-
20. In 2020 ASTM Annual Book of Standards; ASTM International,
West Conshohocken, PA, 2020, www.astm.org.
(26) Harmonized Commodity and Coding System; Customs
Cooperation Council (CCC), 1987.
(27) Gaulier, G.; Zignago, S. BACI: International Trade Database at
the Product-Level; CEPII Working Paper 2020-23, 2010.
(28) PRe  Sustainability SimaPro Software, Version 9.0, 2019.
(29) Stocker, T. Q. D.; Plattner, G.; Tignor, M.; Allen, S.; Boschung,
J.; Nauels, A.; Xia, Y.; Bex, B.; Midgley, B. IPCC, 2013 Climate
Change: The Physical Science Basis; Contribution of Working Group I

ACS Sustainable Chemistry & Engineering pubs.acs.org/journal/ascecg Research Article

https://doi.org/10.1021/acssuschemeng.1c05236
ACS Sustainable Chem. Eng. 2021, 9, 14927−14936

14935

https://pubs.acs.org/doi/10.1021/acssuschemeng.1c05236?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acssuschemeng.1c05236/suppl_file/sc1c05236_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vikas+Khanna"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-7211-5195
https://orcid.org/0000-0002-7211-5195
mailto:khannav@pitt.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joseph+Zappitelli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Elijah+Smith"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Kevin+Padgett"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Melissa+M.+Bilec"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6101-6263
https://orcid.org/0000-0002-6101-6263
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Callie+W.+Babbitt"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-5093-2314
https://pubs.acs.org/doi/10.1021/acssuschemeng.1c05236?ref=pdf
https://doi.org/10.1126/sciadv.1700782
https://doi.org/10.1126/sciadv.1700782
https://doi.org/10.1098/rstb.2008.0311
https://doi.org/10.1098/rstb.2008.0311
https://doi.org/10.1016/j.watres.2019.04.060
https://doi.org/10.1016/j.watres.2019.04.060
https://doi.org/10.1126/science.1260352
https://doi.org/10.1126/science.1260352
https://doi.org/10.1126/science.aba3656
https://doi.org/10.1126/science.aba3656
https://doi.org/10.1016/j.resconrec.2019.104459
https://doi.org/10.1016/j.resconrec.2019.104459
https://doi.org/10.1038/s41558-019-0459-z
https://doi.org/10.1038/s41558-019-0459-z
https://doi.org/10.1002/pts.2118
https://doi.org/10.1002/pts.2118
https://doi.org/10.1002/pts.2118
https://doi.org/10.1088/1748-9326/ab9e1e
https://doi.org/10.1088/1748-9326/ab9e1e
https://doi.org/10.1088/1748-9326/ab9e1e
https://doi.org/10.1016/j.resconrec.2021.105440
https://doi.org/10.1016/j.resconrec.2021.105440
https://doi.org/10.1016/j.resconrec.2019.104591
https://doi.org/10.1016/j.resconrec.2019.104591
https://doi.org/10.1021/acssuschemeng.1c00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.1c00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acssuschemeng.1c00776?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.econmod.2014.02.027
https://doi.org/10.1016/j.econmod.2014.02.027
https://doi.org/10.2139/ssrn.2374354
https://doi.org/10.2139/ssrn.2374354
https://doi.org/10.2139/ssrn.2374354?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1126/sciadv.aat0131
https://doi.org/10.1126/sciadv.aat0131
https://doi.org/10.1016/j.resconrec.2019.104607
https://doi.org/10.1016/j.resconrec.2019.104607
https://doi.org/10.1016/j.jclepro.2020.124221
https://doi.org/10.1016/j.jclepro.2020.124221
https://doi.org/10.1016/j.energy.2018.01.008
https://doi.org/10.1016/j.energy.2018.01.008
https://doi.org/10.1016/j.energy.2018.01.008
http://www.astm.org
pubs.acs.org/journal/ascecg?ref=pdf
https://doi.org/10.1021/acssuschemeng.1c05236?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, 2013.
(30) Frischknecht, R.; et al. Cumulative energy demand in LCA: the
energy harvested approach. Int. J. Life Cycle Assess. 2015, 20 (7), 957−
969.
(31) Huijbregts, M. A. J.; et al. Is Cumulative Fossil Energy Demand
a Useful Indicator for the Environmental Performance of Products?
Environ. Sci. Technol. 2006, 40 (3), 641−648.
(32) Jungbluth, N. F. R. Cumulative Energy Demand 1.11; Swiss
Centre for LCI: LCIA Implementation: Final Report Ecoinvent 2000,
2003.
(33) Krzywinski, M.; Schein, J.; Birol, I.; Connors, J.; Gascoyne, R.;
Horsman, D.; Jones, S. J.; Marra, M. A. Circos: An Information
Aesthetic for Comparative Genomics. Genome Res. 2009, 19, 1639.
(34) Center for International Environmental Law. The Hidden Costs
of a Plastic Planet, 2019.
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