2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS) | 978-1-6654-4935-9/21/$31.00 ©2021 IEEE | DOI: 10.1109/MASS52906.2021.00013

2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

Adaptive Deep Neural Network Ensemble for
Inference-as-a-Service on Edge Computing
Platforms

Yang Baif, Lixing Chen?, Letian ZhangT, Mohamed Abdel-Mottaleb®, Fellow, IEEE, Jie Xuf, Senior Member, IEEE,
fDepartment of Electrical and Computer Engineering, University of Miami, FL, USA
{Institute of Cyber Science and Technology, Shanghai Jiao Tong University, China

Abstract—The momentous enabling of deep learning (DL)-
powered mobile application is posing a soaring demand for
computing resources that can hardly be satisfied by mobile
devices. In this paper, we employ Edge Computing to deliver DL
inference services to mobile users, where Deep Neural Networks
(DNN5s) are configured on edge servers, processing inference tasks
received from mobile devices. A novel method called Adaptive
DNN Ensemble (ADE) is proposed to enhance the performance
of DL inference services. The core of ADE is the DNN ensemble
technique which improves the stability and accuracy of DL
inference. Due to the limited computing resources and service
response deadline, ADE needs to judiciously determine DNNs
to be included in the DNN ensemble, which poses a unique
DNN ensemble selection problem. In addition, because DNNs
exhibit performance variations for tasks with different features,
DNN ensemble selection also aims to reconfigure DNN ensembles
according to the feature of admitted tasks. We design an
online learning algorithm, Contextual Combinatorial Multi-Armed
Bandit (CC-MAB), to learn the DNN performance for tasks
with different features. We rigorously prove that the proposed
online learning algorithm is able to achieve asymptotic optimality.
Experiments are carried out on an edge computing testbed to
evaluate our method. Various implementation concerns, includ-
ing memory usage, time complexity, and DNN switching cost,
are considered. The results show that ADE outperforms other
benchmarks in terms of inference accuracy and can provide real-
time responses.

I. INTRODUCTION

Smartphones and hand-held devices are now closely tied
to deep learning (DL) intelligence in many of their function-
alities, including speech-based assistants (e.g., Siri, Cortana)
and face recognition enabled phone-unlock (e.g., FaceID). This
trend is continuously driving the advance of deep learning
techniques for mobile devices. New-generation hardware, e.g.,
Apple neural engine [1], is designed to accelerate neural
network processing. Lightweight deep learning libraries (e.g.,
Tensorflow Lite [2] and Core ML [3]) are built to support
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DL applications on mobile devices. Novel deep learning
techniques, e.g. Deep Neural Network (DNN) compression
[4], [5] and knowledge distillation [6], help compress large-
scale DNN models into compact models that fit the size of
on-chip RAM. While these techniques enable mobile devices
to run DNNGs, they are unlikely to be universal solutions due
to the substantial heterogeneity of mobile devices in terms of
their computing capacities. A recent study by Facebook [7]
shows that over 50% mobile devices are using processors at
least six years old, limiting what is possible of DL services.
Besides, Running DL inferences frequently also drains the
battery fast [8], [9]. Therefore, external boosters become
necessary to realize the full potential of DL intelligence for
mobile devices. The recently emerged Edge Computing [10]
is envisioned to be a promising alternative for supporting
mobile DL intelligence [11], [12]. Being physically close to
users and leveraging fast network technologies such as 5G,
edge computing promises several benefits compared to the
traditional cloud-based computing paradigm, including lower
latency, higher energy efficiency, better privacy protection, and
reduced bandwidth consumption [13]. With the assistance of
computation offloading techniques [14], the edge computing
platform becomes an optimal site for providing DL services.
This paper proposes a novel mechanism to enhance the
performance of DL service on edge computing platforms. The
core of our mechanism is using DNN ensemble techniques
to improve the stability and accuracy of DL inference. The
DNN ensemble technique has been providing state-of-the-
art performances for many learning problems. For example,
the winning teams of ILSVRC (ImageNet Large-Scale Visual
Recognition Challenge) in the latest four consecutive years all
incorporate the DNN ensemble technique in their method [15].
Despite this advantage, using the DNN ensemble is originally
unfavorable to mobile applications because running multiple
DNNs requires a large amount of computing resources that
cannot be satisfied by resource-constrained mobile devices.
The deployment of edge computing platforms provides mobile
users the access to sufficient computing resources, making it
possible for trading computing resources for better inference
performances with the DNN ensemble technique.
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However, there exist several challenges to bring the DNN
ensemble technique to edge computing platforms. 1) The first
challenge is the limited computing resource at edge servers.
Although computing resources on the edge platform is much
powerful than mobile devices, it is still limited compared to
Cloud [16]. Therefore, running complicated DNN ensembles
is still prohibitive, and may incur large inference delay that is
unfriendly to latency-critical edge services. This requires the
operator to judiciously decide how many and which DNNs
to include in DNN ensembles, namely the DNN ensemble
selection problem. 2) The second challenge is the DNN
heterogeneity. The DNNs collected by a service provider may
come from different sources. This is a natural assumption
because the data collected by a single institution for training
DNNs is often limited. While data sharing is desirable for
application service developers to obtain high-quality DNNS, it
oftentimes leads to severe privacy issues, especially for clini-
cal, financial, social data. The trained DNN is a generalization
of structured knowledge that contains less privacy-sensitive
information, and therefore sharing DNNs is more welcomed
than directly sharing the source data. For example, Facebook
has disclosed the open-source release of its Deep Learning
Recommendation Model (DLRM) [17] but veils the source
data due to privacy concerns. Therefore, DNNs collected
by a service provider can be trained/validated on different
data sources with different DNN architectures by different
institutions, and hence achieving different performances. These
four “different”’s characterize the heterogeneity of DNNs and
further justify the necessity of DNN ensemble selection. 3)
The third challenge is the unknown in-use performance of
DNNs. While the DNN performance can be evaluated on
standard test data, one cannot guarantee that the users’ input
data comes from the same distribution as the standard test
data. The actual performance delivered by DNNs is only
revealed during implementation and needs to be learned over
time. 4) The fourth challenge is the variability of user tasks.
The features of inference tasks vary due to many external
factors. For example, consider the image as DNN input, the
device camera determines the noise and resolution of captured
images, and the time and location may affect the brightness
of images. Different DNNs usually have different sensitivity
to these factors and hence their inference qualities also vary
across tasks with different features. In other words, there is
no “master key” for all inference tasks and the discrimination
of the “right key” for certain inference tasks is crucial. This
requires the service provider to adaptively configure the DNN
ensemble with the best-fit DNNs for admitted tasks.

This paper presents an Inference-as-a-Service framework on
edge computing platforms to deliver DL inference services to
mobile users. The proposed framework utilizes DNN ensemble
techniques and aims to address the DNN ensemble selection
problem to improve the efficiency and quality of DL inference.
The key contributions are summarized as follows:

1) An Inference-as-a-Service framework is designed for
edge computing platforms. The proposed framework utilizes
DNN ensemble techniques for enhancing the DL inference
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quality. A unique problem, DNN ensemble selection, is in-
vestigated due to the limited edge computing resource. The
goal DNN ensemble selection is to adaptively configure the
DNN ensemble with DNNs that works the best for currently
admitted tasks.

2) We propose a method called Adaptive DNN Ensemble
(ADE) for solving the DNN ensemble selection problem. ADE
utilizes a novel multi-armed bandit algorithm called contextual
combinatorial multi-armed bandit (CC-MAB). It learns in-use
performances of DNNs and recruits DNNs into DNN ensem-
bles based on the features of admitted tasks. ADE judiciously
balances exploration ( i.e., learning DNN performance) and
exploitation (i.e., optimizing inference performance of DNN
ensembles based on the learned knowledge), and provides
asymptotic optimality.

3) We build an edge computing testbed to evaluate the per-
formance ADE. The experiment is performed on the WIDER-
attribute dataset [18] with a variety of pre-trained DNNs. In
particular, we optimize implementation schemes for running
DNN ensembles on the edge server and reduce DNN switching
costs incurred by reconfigurations of DNN ensembles. The
experimental results show that ADE improves the inference
accuracy by 11.3% over the most-capable DNN.

The rest of this paper is organized as follows: Section
IT gives the system model and defines the DNN ensemble
selection problem. Section III designs our online learning
algorithm. Section IV gives the experimental results, followed
by conclusions in Section V.

II. SYSTEM MODEL
A. Edge Computing Platform

Our Inference-as-a-Service framework is compatible with
most edge computing systems. Let us consider a general multi-
access edge computing (MEC) system [10], [19] with multiple
edge sites, multiple mobile users, and multiple DL services.
The MEC system operator manages computing resources
on edge servers using virtualization techniques, e.g., virtual
machines (VMs) and containers. To provide DL services on
an edge site, the service provider requests computing resources
(e.g., VMs) from the edge server using certain mechanisms,
e.g, resource rental planning [20]. When the computing re-
source is allocated, the service provider configures its appli-

\
\_ J

Inference-as-a-Service

Access Points & Edge Servers

e s

/,T\\\ /ZR Inference tasks S y
* L i DNN
Task offloading 55 % { Ensemble
H ' S ; \ tasks TTTTTmTgmmrmemeeoes
PN AN Available DNNs i
A c@o%o DNN
Q i i m)p Ensemble
LAl @@0 DNN Selection
H jproperty
Mobile devices \ Y,

Fig. 1: Illustration of the system model.
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cation on the edge server and users covered by the edge site
can send DL inference tasks to the edge server. The focus
of our work is enhancing the performance of DL inference
services on the edge server, and this problem is independent
for each DL service provider once the computing resource on
the edge server is allocated. Without loss of generality, we
present our method for one DL inference service on one edge
server. Fig. 1 illustrates the considered system model.

The DL service provider collects a set of DNN models,
indexed by M = {1,2,..., M}, and stores them on the edge
server. We assume that all available DNNs can be stored on the
edge server since the storage is less likely to be a constraint
nowadays due to its low price. The operational timeline for the
service provider is discretized into time slots t = 1,2,...,T
(e.g., a few seconds per slot). In each time slot ¢, users offload
inference tasks to the edge server. The task offloading decision
is made by users and hence is assumed to be an independent
process. We let X* = {2} ;V:fl be the inference tasks admitted
by the edge server at the beginning of time slot ¢, where
N is the total number of admitted inference tasks. The edge
service provider then loads DNNs into the edge server RAM
(or VRAM if GPU is used) to process the admitted tasks.

B. Inference with DNN Ensembles

Using the DNN ensemble technique, the service provider
runs multiple DNNs on the edges server and fuses outputs of
individual DNNs to generate a final inference result. While the
DNN ensemble improves the inference quality, it also incurs
higher resource usage and time complexity due to running
multiple DNNs. Consider the limited computing capacity on
the edge server and the potential requirements on the response
time, it is not always possible to include all available DNNs in
the DNN ensemble. Therefore, we limit the number of DNNs
that can be included in the DNN ensemble, denoted by B.
The value of B should be chosen to guarantee that running
any B DNNs in M will not exceed the computing capacity
of the edge server and will not incur inference delay larger
than the response deadline. Let S* = {st,s5,...} C M with
|St| < B be the DNN ensemble selected in time slot ¢. The
admitted inference tasks are forwarded to each DNN in S* and
the outputs of DNNs are combined by a fusion rule (discussed
in the next subsection) to generate a final result.

C. Fusion Rule and Utility

The edge service provider derives utilities by providing
better inference quality, e.g., prediction accuracy. Without
loss of generality, this paper considers DL-based classification
problem as a DL inference service. Note that our method can
be easily extended to other DL services with very slight mod-
ification on the fusion processes. For classification problems,
the output of a DNN m € M for a task 2§ € X' is a
vector of classification confidences ¢, (z) = {cm i (2}) s,
where K is the total number of classes and ka(lz) denotes
the confidence of class k being the true class for task a:§
DNN m gives the rank-1 classification result defined as
U, ; = argmaxy cm k(7). Let y¢ be the ground truth of
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task x§ and then the classification correctness of DNN m for
xt is 1{g}, ; = y:} where 1{-} is an indicator function. If
the service provider only uses DNN m for inference, then
the final result g% for task 2% is g% « g, ;. However, the
service provider may run multiple DNNs with DNN ensemble
techniques and hence a fusion rule is needed to combine
outputs of multiple DNNs. We utilize weighted confidence
as our fusion rule. We note that other fusion rules are also
compatible with our method. The weighted confidence method
jointly considers the confidence outputs ¢,,,(z"),Vm € S* of
selected DNNs based on their accuracy ¢f,, ; £ Pr{gl, ; = yi}
for task x§ Although these accuracy values are unknown to
the service provider a priori, we will design an online learning
algorithm to learn this information (elaborated later in the
paper). The weighted confidence of DNN ensemble for class
k is calculated by:

t t
_ EnLeSt qm,jc””-,k(‘z’.j)
S ¢

meSt qm, 7
The final inference result for z’ is determined by g}
arg max, 6k(1§) We generalize the fusion process into a
mapping function §§ = f(z%,8% q}) which maps task zf,
DNN ensemble S*, and DNNs’ accuracy ¢ £ {q!, ;}mem
to an inference result g}j The reward for task x§ is defined as
the correctness of its inference result

u(zh, S, q) = 1{f(2},8", q}) = y}} (1)

Given the set of admitted tasks X* in time slot ¢, the expected
reward for the service provider in time slot ¢ is

UXxh,8hq) =,  Elu(} S q))]

2

zfeXt
where ¢* = {q} };V:tl is DNNs’ accuracy for all tasks in X*.

D. Problem Formulation and Oracle Solution

The service provider aims to maximize its expected reward
in a total of 7T time slots by selecting the best-fit DNN
ensembles {S?*}7_, in T time slots. The DNN ensemble
selection problem is formally defined as:

. t t t
Pl {gg?il s U(X* S q") (3a)
st. St C M,|SY < BVt (3b)

The main difficulty for solving the above problem is the
unknown DNN accuracy q° for user tasks. Therefore, 421
is not merely a long-term optimization problem, but involves
learning of DNN accuracy during the DNN ensemble selec-
tion. We assume for now the existence of an oracle that
knows precisely the DNN accuracy for user tasks and give
an oracle solution to &21. With the oracle information, £?1 is
fully decoupled for each time slot and can be divided into T’
independent subproblems, one for each time slot ¢ as follows:

P2 max E[U(X", S q")], st. 8" C M,|S"| < B.

However, it is still difficult, if not impossible, to solve the
per-slot problem £?2 optimally due to the obscured fusion
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process. The performance of DNN ensembles depends on
many factors, e.g., the orthogonality and complementary of
DNNSs’ training/validation data [21], which are unknown and
difficult to characterize analytically. Therefore, it is extremely,
if not impossible, to give an analytical solution to Z?2.
Fortunately, previous studies [21], [22] have provided valuable
empirical experience on how to pick a good DNN ensemble.
Basically, we need to answer two questions: “How many
DNNs should be included in the ensemble?” and “What kind
of DNNs are preferred to be included in the ensemble?”.

1) Determining Ensemble Size: Earlier studies [23], [24]
show that adding members to an ensemble has a diminishing
return effect and the error reduction appears to reach a
plateau after 25 members. More recent work [25] suggests
that the ideal number of members in an ensemble should be
similar to the number of classes in the classification problem.
Further adding members into the ensemble may deteriorate the
accuracy. Usually, the number of classes in image classification
problems is much larger than the number of DNNs that can
be loaded on the edge server. Therefore adding a DNN to an
ensemble is always beneficial, which means that |St| = B, Vt.

2) Identify Best-fit DNNs: A variety of ensemble selection
methods are investigated in the literature. For example, [26]
selects classifiers according to their local accuracy, and [21]
measures the diversity of classifiers and selects the most
independent classifiers to construct ensembles. However, from
the experiments of these works, it is observed that the results
are strongly affected by the applied data. A recent work [22]
compared the performance of a variety of ensemble selection
methods. The results indicate that in most cases picking the
classifiers with the highest accuracy to build the ensemble
classifier will produce the best inference performance.

Heuristic Rule: Based on the above observations, the
solution to &2 becomes picking B DNNs that are expected
to have the highest accuracy for the admitted tasks X, i.e.,

1

max —

t + ¢
st Nt j=1 qm,jv s.t. S c M,‘S | < B.

@)

Therefore, our DNN ensemble selection problem becomes
learning the accuracy of collected DNNs. However, DNNs
usually have different performance for tasks with different
features. For example, in image classification problems, the
resolution, brightness, hue, and contrast of images may affect
the performance of DNNs. This should be considered when
learning the DNN accuracy. Hereinafter, we call these features
the context of inference tasks. In the following, we propose an
online algorithm to learn the DNN accuracy based on the task
context, and cast the DNN ensemble selection into a Contex-
tual Combinatorial Multi-armed Bandit (MAB) problem [27].

III. ADAPTIVE DNN ENSEMBLE VIA CONTEXTUAL
COMBINATORIAL MAB
A. Context-parameterized Accuracy

This paper considers simple context information, e.g. image
resolution and contrast, that can be directly observed with-
out processing inference tasks, and hence using the context
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does not incur extra computation burdens. The underlying
assumption for using context is that a DNN will have similar
performance for inference tasks with similar contexts. This
assumption is natural and can be partially verified by the
experiment in Section IV. This allows us to learn the DNN
accuracy for a group of inference tasks with similar context,
which significantly improves the learning efficiency. We let
w) € Q denote the context associated with task z7%, where Q
is the context space. We slightly abuse the notation of DNN
accuracy qfnﬂ ; by defining the context-parameterized accuracy
qm(w§), i.e., the accuracy of DNN m for task x§ depends on
the context w’. We let fi,,(w) = E[g,n(w)] be the expected
accuracy of DNN m for inference tasks with the context
w. The oracle knows the expected accuracy fim,(w) for an
arbitrary context w, and selects DNNs B DNNs that have the
highest expected accuracy for admitted tasks:
*t 1
S, € argmax Nt
mGM\UE.’fle*t

Nt

E t —
jzlﬂm(wj)v bflw-w
i=1%i

We let S* = {s}",..., 57"} denote the oracle DNN ensem-
ble decision in time slot . In practice, the service provider
does not have a priori knowledge on the context-parameterized
accuracy, and a learning algorithm is needed to learn this
accuracy information. Next, we show our learning method,
Adaptive DNN Ensemble (ADE).

B. CC-MAB for Adaptive DNN Ensemble

ADE is designed based on the framework of contextual
combinatorial MAB (CC-MAB). The operations of ADE in
each time slot ¢ are as follows: (i) the service provider observes
the context w! of each inference tasks 2 € X* admitted by
the edge server. (ii) A DNN ensemble S? is selected based on
the context of admitted tasks and the estimated DNN accuracy
learned from previous time slots. (iii) The inference tasks are
forwarded into each DNN in the selected DNN ensemble,
and outputs of individual DNNs are fused to final inference
results that are returned to users. (iv) At the end of the time
slot, the ground-truths of inference tasks are observed and
the estimated context-parameterized accuracy for each selected
DNN is updated.

Obtaining precise estimations of context-parameterized ac-
curacy for a DNN requires an adequate collection of inference
results for tasks with different contexts. Note that the perfor-
mance of a DNN is revealed only when it is selected and used
in the DNN ensemble, and therefore the purpose of selecting
a DNN can be either exploration, i.e., to learn the accuracy
of DNN for tasks with a particular context, or exploitation,
i.e., to select DNNs that are expected to deliver the highest
accuracy. An important designing goal in MAB problems is
balancing the tradeoff between exploration and exploitation.

The pseudocode of ADE is presented in Algorithm 1. ADE
starts by partitioning the context space into small uniform hy-
percubes, i.e., creating groups of similar contexts. Specifically,
a partition Ap is created on the context space ) given the
time horizon 7. We consider a bounded context space that
can be written as Q £ [0,1]P, where D is the dimension of
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Fig. 2: Illustration of context partition and counter update.
We only show the update of counter C! ()\), the update for
Et . (X\) is similar.

context space ). ADE splits the context space 2 into (k)P
hypercubes A, A € Ar with identical size of 7 x -+ x 7L
The parameter hp is an important algorithm parameter to
be designed for determining the number of hypercubes in
the partition. For each task x?, ADE determines hypercube
X € Arp that context Lu;- belongs to, i.e., wﬁ € )\3- holds. Let
A= {/\; é-\’:il collect hypercubes for all admitted tasks. ADE
keeps two counters, counter C¢ () and counter EY, ()), for
each pair of DNN m € M and hypercube A € Ap. C! (X)
records the number of tasks with context in hypercube A that
have been processed by DNN m up to time slot ¢; and E?, (\)
records the number of tasks with context in hypercube A that
are correctly classified by DNN m (i.e., g5, ; = y7, 7 < t) up
to time slot ¢. Fig. 2 illustrates the context partition and the
counter update. In time slot ¢, the accuracy g, (A) of DNN m
for tasks with context in hypercube A is estimated by:

Gm(N) = E,,(X)/CP(A)

Consider a tasks z% with context wi € A
accuracy of DNN m for % is G (Af).

In each time slot, ADE is either in an exploration or
exploitation phase. In the exploration phase, ADE selects a
set of random DNNs that has not been selected often and
aims to learn more precise accuracy for selected DNNs. In
the exploitation phase, ADE chooses a set of DNNs which is
expected to deliver the highest accuracy for admitted tasks.
To determine the correct phase in a time slot, ADE first
checks whether the context hypercubes have been sufficiently
explored to give a precise accuracy estimation. For DNN m,
its under-explored hypercubes are identified based on C,, (\):

Ant={xeAr | CL,(\) <K(1)} @

where K (t) is a control function to determine whether the
context hypercube has been sufficiently explored. The function
K (t) needs to be appropriately designed to balance exploration
and exploitation. Based on the under-explored hypercubes of
DNNs A Vm and the admitted tasks X* in time slot ¢, we
define under-explored DNNs in time slot ¢ as:

Mot ={m e M|Tzt € X' wh e X and N € ALt} (8)

(6)

t the estimated

j7
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Algorithm 1 Adaptive DNN Ensemble with CC-MAB

1: Input: time horizon T, algorithm parameters hr, K(t);

2: Initialization create partition Ap; set Cp,(A)
0, B (A\) =0,YA € Ap,m € M;

3:fort=1,...,T do

4: Observe context w’ € € of each task 1:§ € Xt and

j
find context hypercube A’ such that w € A} holds;

5: Get M"? as defined in (8) and set I! = |M"®t[;

6: if MUt =£ () then > Exploration

7: if ! > B then

8: S* + randomly select B DNNs in M'¢;

9: else:

10: St « select all {* DNNs in M"! and B — [*
additional DNNs as in (9);

11: end if

12: else: St < select B DNNs as in (10); > Exploitation

13: end if

14: Observe the ground truth of the inference tasks;

15: for each m € St and A € {\{}I do o Updates

16: Update counters: CY, (N), EY,(\);

17: Update estimation: G, (A\) = EY (X)/CL (N);

18: end for

19: end for

Given under-explored DNNs M"! ADE determines the
phase of the current time slot.

Exploration: If the set of under-explored DNNs is non-empty,
ie., M"! £ (, ADE enters exploration. Let ! = |M"?|
be the number of under-explored DNNs. If [! > B DNNG,
then ADE randomly selects B DNNs from MY If [t <
B, ADE selects all I! DNNs in M". As budget B is not
fully utilized, we pick (B — (') additional DNNs that have the
highest estimated accuracy for X*:

1 N

}} ﬁ Z]‘=1 (jmo\;)

where b=1,...,(B —I'). If the DNN defined by (9) is not
unique, ties are broken arbitrarily.

Exploitation phase: If the set of under-explored DNNSs is
empty, M"!* = (), ADE enters exploitation and selects B
DNNs that have the highest estimated accuracy for X':

1 NY
Nt ijl Qm()‘j)

where b = 1, ..., B. At the end of the time slot, ADE observes
the ground truth of tasks and updates the estimated accuracy
for each selected DNN and hypercube.

si S arg max )

mGM\{M“e"U{Ub71 st

=11

SZ IS arg max (10)

mGM\{UEHl st

1=1°%1%

C. Performance Analysis

The performance of ADE is measured by the reward loss
compared to oracle, termed as regret. Let {S*}7_; be the DNN
ensemble decision sequence of ADE, the regret is defined as:

T
JUXE S ph) - UXE S 60| an

t=

R(T) ~E |
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where p1* = {}1;n(w}) }vm,; is the expected accuracy and q' =
{Gm(w}) }vm,; is the estimated accuracy learned by ADE at
time slot £. A common designing goal of multi-armed bandit
algorithms is to achieve a sublinear regret R(7T") = O(T") with
v < 1. A sublinear regret bound guarantees the asymptotic
optimality since limr_, o, R(T)/T — 0. Next, we give a regret
upper bound of ADE. The regret upper bound is derived based
on the assumption that a DNN will have similar accuracy for
inference tasks with similar context, which is formalized by
the Holder condition:

Assumption 1 (Holder Condition). There exists L > 0, a > 0
such that Vm € M and VYw;, wy, € €, it holds that

|ttm (w5) — pm (wi)] < Lllw; — w ]|, (12)

where ||-|| denotes the Euclidean norm in RP.

We note that this assumption is needed for the analysis of
algorithm regret, but ADE can still be applied if it does not
hold true. In that case, however, a regret bound might not
be guaranteed. Under Assumption 1, the following theorem
shows the regret order of ADE:

Theorem 1 (Bound for Regret R(T)). Let K(t)
tsatip log(t) and hr = fTﬁ] If ADE is run with these
parameters and Assumption 1 holds true, the leading order of
the regret R(T") is O {ngig log(T)).

Proof. See Appendix A in the supplemental file. O

Theorem 1 indicates that the regret of ADE algorithm is

sublinear in the time horizon 1. Moreover, the bound is
valid for any finite time horizon, providing a bound on the
performance loss for any finite time slot. This can be used to
characterize the convergence speed of ADE.
Remark on ground-truth retrieval: For some DL services,
e.g., recommendation systems [28], the ground-truth of tasks
can be directly retrieved. However, for other DL services, the
retrieval of task ground-truths can be difficult. For example,
to receive the ground-truth of image classification tasks, the
service provider may need to use crowdsourcing services
[29] such as Mechanical Turk and reCAPTCHA ' to acquire
labels from non-expert annotators. In this case, the ground-
truth retrieval and update of accuracy estimation are delayed.
Fortunately, some previous works [30] have investigated the
impact of the delayed feedback on the performance of bandit
algorithms, and show that the feedback with a bounded delay
does not change the order of regret.

IV. EXPERIMENTS

A. Experiment Setup

1) Edge Computing Platforms: A DELL workstation is
used as an edge server, which is equipped with a 64-bit twelve
Intel i7-8700K cores running at 3.70GHz, and two NVIDIA
GeForce GTX 1080Ti GPUs. The experiment is run on Ubuntu
16.04 system with Tensorflow v1.5.0, cuDNN v7.0, CUDA

"Mechanical Turk: www.mturk.com; reCAPTCHA: recaptcha.net.
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Fig. 3: Illustration of experimental setup.

Test on | Test on | Test on
HR LR-1 LR-2
Train on MobileNet 0.631 0.395 0.532
HR Inception 0.689 0.426 0.606
Incept-ResNet | 0.682 0.464 0.595
Train on MobileNet 0.264 0.54 0.427
LR-1 Inception 0.135 0.541 0.488
Incept-ResNet | 0.066 0.592 0.532
Train on MobileNet 0.440 0.516 0.60
LR Inception 0.511 0.551 0.647
Incept-ResNet | 0.551 0.583 0.656

TABLE I: Accuracy of DNNs

v9.0. In each time slot, tasks are sent to the edge server in a
batch-wise manner. The average size of task batches is 10.

2) DL Service: Sport-Category Classification: We apply
ADE to the sport-category classification problem. The DL
service is to recognize common sport categories from individ-
ual scene images. The images are from the WIDER-attribute
dataset [18]. We use 15 sport categories in the dataset and The
application service on the edge server aims to classify sport
categories for the received sport-related images. The WIDER-
attribute dataset has three parts: training, validation, and test
data. The training data contains 2,492 images that are used
for training DNNs, the validation and test data contains 4,401
images that are used to evaluate our algorithm.

3) Training Available DNNs: The DNNs are different from
each other in two aspects: 1) The data sources used for training
DNNs and 2) The network structure used by DNNs. We pre-
process the WIDER-attribute dataset in different ways to create
different data sources. Three widely-used DNN structure:
MobileNet-v2 [31], Inception-v3 [32], and Inception-ResNet-
v2 [33], are used for training DNNs on the pre-processed
WIDER-attribute dataset. We modify the resolution of images
in the WIDER-attribute dataset to generate different training
data. This setting is very realistic due to various types of image
capturing devices, e.g., smartphones, surveillance cameras,
SLR cameras. The image resolution is the context used by
ADE. Each DNN structure has fixed input size for images,
e.g., 224 x 224 x 3 for MobileNet-v2, 299 x 299 x 3 for
Inception-v3, and 299 x 299 x 3 for Inception-ResNet-v2. The
resolution of original WIDER-attribute dataset is higher than
the required dimension and we call it HR (high resolution)
images. We create LR-1 (low resolution scale-1) data source
by downsampling the original image to a size not exceeding

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 15:45:45 UTC from IEEE Xplore. Restrictions apply.



150 x 80, and LR-2 (low resolution scale-2) data source by
downsampling the original image to a size not exceeding
300 x 150. We use HR, LR-1, and LR-2 to train MobileNet-v2,
Inception-v2 and Inception-ResNet-v2 separately. In total, 9
models are trained and stored on the edge server. We evaluate
the accuracy of each DNN on test data of HR, LR-1, and
LR-2, the results are shown in Table I. There is a noticeable
performance gap of DNNs across test datasets. We can see
that DNNs have higher accuracy when the test data is from
the same data source of the training data. This indicates that
the task contexts can affect the performance of DNNs.

B. Performance Evaluation

We compare ADE with 4 benchmarks:

1) Oracle: Oracle knows the context-parameterized accuracy
of DNNs and selects B DNNs that have the highest accuracy
for the admitted tasks in each time slot.

2) Non-ensemble: This algorithm is a variant of ADE. It selects
only one DNN in each time slot and is used as a baseline to
validate the efficacy of DNN ensemble.

3) UCBI: UCBI is a classic MAB algorithm that selected only
one action in each time slot. To run UCB1 for DNN ensemble
selection, we create super-arms, i.e., B-element combination
of M DNNs. There will be a total of (%) super-arms and
UCBI learns the reward of each super-arm.

4) Random: It randomly selects B DNNs in each time slot.

1) Accuracy Comparison: Fig.4 compares the time-
averaging accuracy achieved by ADE and other 4 benchmarks.
As expected, Oracle has the highest accuracy. Among the other
algorithms, we see that ADE achieves higher accuracy for user
tasks and its performance gradually converges to Oracle’s per-
formance. In addition, ADE outperforms UCBI1 since it takes
into account the context of inference tasks in DNN ensemble
selection. In particular, it can be observed that ADE (69%
accuracy) provides a (69 —62)/62 x 100% = 11.3% accuracy
improvement compared to Non-ensemble (62% accuracy). We
can even see that Random has higher accuracy than Non-
ensemble, indicating that using the DNN ensemble technique
effectively helps improve the DL inference quality.

2) Impact of Ensemble Size: Fig.5 shows the regret
achieved by ADE with different ensemble size B. We see
that the regret decreases with the increase in ensemble size,
which indicates that learning is not very necessary when the
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Fig. 4: Accuracy evolution (B = 3).
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ensemble size is large. This is because the operator can include
almost all DNNs in DNN ensembles with large ensemble
size, and in this case, identifying best-fit DNNs becomes less
useful. Moreover, we see that our algorithm is able to achieve
sublinear regret with all ensemble sizes in the experiment. Fig.
6 shows the accuracy achieved by ADE after 4,400 time slots.
The results show that higher accuracy can be achieved with
large ensemble size but this accuracy improvement diminishes
with the increase in ensemble size.

C. Space and Time Complexity

We now show the space and time complexity of ADE during
implementation. The implementation complexity is relevant to
implementation schemes. Therefore, we will first show several
determinants of implementation complexity, and then discuss
efficient implementation schemes for ADE.

DNN Switching Cost and Implementation Schemes: A
straightforward scheme to execute a DNN ensemble on edge
server is to load and run DNNs one by one (referred to as
LD-OBO scheme). This scheme frequently tears and reloads
the DNNs in memory, which tends to incur a large delay for
running DNN ensembles. We call this kind of delay as intra-
slot DNN switching cost. Based on our experiment, loading
a DNN into RAM incurs non-negligible delay, e.g., loading
MobileNet requires 1.21 sec, loading Inception requires 2.05
sec, and loading Inception-ResNet requires 5.231 sec. This is
for loading DNNs only, the time for running inference tasks
has not been included. The intra-slot switching cost can be
addressed by parallel execution of DNNs (referred to as LD-
PAR) by loading all DNNs in the ensemble simultaneously
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TABLE II: Memory Usage & Time Complexity of ADE with LD-NW and LD-W

Ensemble Size B=1 B=2 B=3 B=4 B=5 B=6 B=7
Implementation Mem‘(’(r}%}jsage 0.117 0.229 0.349 0.466 0.583 0.678 0.816
(Eﬁfv”{,ﬁ) Time Complexity 0.873 1014 2.009 3.102 4.905 5.786 6324
(sec) +£0.650 +0.823 +1.001 + 1.071 + 1219 + 1384 =+ 0.707
Implementation Mem‘(’é%)Usage 1.083 1.080 1.081 1.077 1.107 1.092 1.099
h
(chDe%e) Time Complexity 0024 0051 0.098 0144 0178 0172 0175
(sec) +£0.044  £0.119 0278  +0396  +0481  +0459  -+0.383
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Fig. 7: Illustration of implementation schemes. From top to
bottom, the schemes are LD-OBO, LD-PAR, LD-NW, and LD-
W. The gray background denotes the RAM. The network with
hollow circles denotes the DNN structure, the solid circle
indicates parameters. During pre-configuration, LD-OBO and
LD-PAR does not use RAM, LD-NW only loads DNN structure,
and LD-W loads both structures and parameters. LD-NW only
load parameters for selected DNNs in each time slot.

>
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in the RAM at the beginning of each time slot. LD-PAR
addresses the intra-slot switching cost. However, ADE changes
its decisions across time slots. In this case, LD-PAR needs to
reload a new DNN ensemble when ADE changes the DNN
ensemble decision. We call this kind of delay as inter-slot
switching cost. Due to the inter-slot switching cost, LD-PAR
actually does not help much in reducing the inference delay
if the DNN ensemble varies frequently across time slots.

A straightforward solution to avoid both intra-slot and inter-
slot switching costs is to load all available DNNs before
running ADE and run selected DNNs only in each time
slot (referred to as LD-W). However, LD-W requires a large
amount of memory since all available DNNs need to be loaded
at the same time. To make our ADE suitable for edge servers
with limited resources, we give a modified version of LD-W,
referred to as LD-NW. LD-NW loads the network structures
of all DNNs before running ADE, and in each time slot,
the parameters of selected DNN are loaded for running task
inferences. This weight loading process takes around 10 ms to
500ms depending on the DNN structure. This amount of delay
is acceptable for most application services. Fig.7 illustrates all
four implementation schemes, LD-OBO, LD-PAR, LD-NW,
and LD-W, for comparison.

Performance comparison: Due to the space limitation, we
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only show the memory usage and inference delay for LD-
NW and LD-W because the inference delay incurred by LD-
OBO and LD-PAR is too large (over 10 secs with ensemble
size B = 2). Table II shows the memory usage and time
complexities of ADE when running with LD-NW and LD-
W. We see that the memory usage of LD-NW is much less
than that of LD-W. For example, when running ADE with
ensemble size B = 2, the average memory usage of LD-W is
1.08 GB (with a total of 9 available DNNs), and the average
memory usage of LD-NW is only 0.23 GB. However, LD-
W incurs much lower inference time than that of LD-NW.
In particular, running ADE with LD-W can achieve real-time
responses, but it also requires large RAM resources. If the
edge server is able to meet this resource requirement, then
LD-W can directly used. If the computing resource of edge
servers cannot support LD-W, the DL service provider should
use LD-NW and pick an appropriate ensemble size for the
trade-off between inference delay and resource usage.

V. CONCLUSIONS

In this paper, we applied DNN ensemble techniques to
enhance DL inference performances on edge computing plat-
forms. A unique problem called DNN ensemble selection is
studied. The goal of DNN ensemble selection is to identify a
subset of DNNs that works well for users’ inference tasks and
fits the limited computing capacity of edge servers. An online
learning algorithm is proposed to solve the DNN ensemble
selection problem. It learns the DNN accuracy based on the
context of inference tasks and meanwhile selecting the best-fit
DNN ensemble for admitted tasks. The proposed method is
practical, effective, and easy to implement.

APPENDIX A
PROOF FOR THEOREM 1

Proof. Due to space limitation, we only provide a sketch of
the proof. The regret can be divided into two parts: R(T) =
Rexplore(T) + Rexploit(T)a where Rexplore(T) and Rexploit(T)]
are the regrets incurred by exploration and exploitation, re-
spectively. The regret of these two parts will be bounded
separately. The key idea for bounding the exploration regret
is to ensure that the number of time slots that ADE enters
exploration phase is sublinear. Therefore, given that maximum
utility loss in each exploration phase, the total regret incurred
by exploration is sublinear. For the exploitation regret, we need
to prove the gap between the utilities incurred by ADE and
Oracle is sublinear in each time slot.
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In fact, the leading order of R(T") is determined by
Rexpiore(T') and therefore we only give detailed proof for
bounding Rexpiore (). Let ¢ be an exploration phase and then
there exist at least a hypercube \;, j = 1,...,U" and a
DNN m € M such that C},(\}) < K(t) = t*log(t). By
the definition of A", there can be at most [T log(T)]
exploration phases in which DNN m € M is selected to run
inference tasks with context )\3 up to time horizon 7. Since
there are (h7)” hypercubes in the partition, there can be at
most (h7)P[T?log(T)] exploration phases for DNN m in T
time slot due to under-exploration. Additionally, there are M
DNNs whose accuracy need to be learned in the exploration
phase. Therefore, there can be at most M (hp)P[T? log(T)]
exploration phases in 7' time slots. In each exploration phase,
the maximum number of inference tasks is N™** and hence
the maximum loss is 1- Np,ax. The maximum loss exploration
phases is M (h7)P[T% log(T)] Nmax, and the expected regret
of exploration phase is bounded by:

E[R.(T)] <M (hr)P[T* 1og(T)] Nurax
—M[T"1P [T% 10g(T)] Mo

Using [T71P < (277)P = 2PT7P it holds E [R.(T)] <
M Nypar 2P (log(T)T*+7P + T7P). Using the values given in
Theorem 1 for hy and K(t), we have v = ﬁ and z =
3@21 +- This completes the proof. O
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