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Abstract—The momentous enabling of deep learning (DL)-
powered mobile application is posing a soaring demand for
computing resources that can hardly be satisfied by mobile
devices. In this paper, we employ Edge Computing to deliver DL
inference services to mobile users, where Deep Neural Networks
(DNNs) are configured on edge servers, processing inference tasks
received from mobile devices. A novel method called Adaptive
DNN Ensemble (ADE) is proposed to enhance the performance
of DL inference services. The core of ADE is the DNN ensemble
technique which improves the stability and accuracy of DL
inference. Due to the limited computing resources and service
response deadline, ADE needs to judiciously determine DNNs
to be included in the DNN ensemble, which poses a unique
DNN ensemble selection problem. In addition, because DNNs
exhibit performance variations for tasks with different features,
DNN ensemble selection also aims to reconfigure DNN ensembles
according to the feature of admitted tasks. We design an
online learning algorithm, Contextual Combinatorial Multi-Armed
Bandit (CC-MAB), to learn the DNN performance for tasks
with different features. We rigorously prove that the proposed
online learning algorithm is able to achieve asymptotic optimality.
Experiments are carried out on an edge computing testbed to
evaluate our method. Various implementation concerns, includ-
ing memory usage, time complexity, and DNN switching cost,
are considered. The results show that ADE outperforms other
benchmarks in terms of inference accuracy and can provide real-
time responses.

I. INTRODUCTION

Smartphones and hand-held devices are now closely tied

to deep learning (DL) intelligence in many of their function-

alities, including speech-based assistants (e.g., Siri, Cortana)

and face recognition enabled phone-unlock (e.g., FaceID). This

trend is continuously driving the advance of deep learning

techniques for mobile devices. New-generation hardware, e.g.,

Apple neural engine [1], is designed to accelerate neural

network processing. Lightweight deep learning libraries (e.g.,

Tensorflow Lite [2] and Core ML [3]) are built to support
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DL applications on mobile devices. Novel deep learning

techniques, e.g. Deep Neural Network (DNN) compression

[4], [5] and knowledge distillation [6], help compress large-

scale DNN models into compact models that fit the size of

on-chip RAM. While these techniques enable mobile devices

to run DNNs, they are unlikely to be universal solutions due

to the substantial heterogeneity of mobile devices in terms of

their computing capacities. A recent study by Facebook [7]

shows that over 50% mobile devices are using processors at

least six years old, limiting what is possible of DL services.

Besides, Running DL inferences frequently also drains the

battery fast [8], [9]. Therefore, external boosters become

necessary to realize the full potential of DL intelligence for

mobile devices. The recently emerged Edge Computing [10]

is envisioned to be a promising alternative for supporting

mobile DL intelligence [11], [12]. Being physically close to

users and leveraging fast network technologies such as 5G,

edge computing promises several benefits compared to the

traditional cloud-based computing paradigm, including lower

latency, higher energy efficiency, better privacy protection, and

reduced bandwidth consumption [13]. With the assistance of

computation offloading techniques [14], the edge computing

platform becomes an optimal site for providing DL services.

This paper proposes a novel mechanism to enhance the

performance of DL service on edge computing platforms. The

core of our mechanism is using DNN ensemble techniques

to improve the stability and accuracy of DL inference. The

DNN ensemble technique has been providing state-of-the-

art performances for many learning problems. For example,

the winning teams of ILSVRC (ImageNet Large-Scale Visual

Recognition Challenge) in the latest four consecutive years all

incorporate the DNN ensemble technique in their method [15].

Despite this advantage, using the DNN ensemble is originally

unfavorable to mobile applications because running multiple

DNNs requires a large amount of computing resources that

cannot be satisfied by resource-constrained mobile devices.

The deployment of edge computing platforms provides mobile

users the access to sufficient computing resources, making it

possible for trading computing resources for better inference

performances with the DNN ensemble technique.
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However, there exist several challenges to bring the DNN

ensemble technique to edge computing platforms. 1) The first

challenge is the limited computing resource at edge servers.

Although computing resources on the edge platform is much

powerful than mobile devices, it is still limited compared to

Cloud [16]. Therefore, running complicated DNN ensembles

is still prohibitive, and may incur large inference delay that is

unfriendly to latency-critical edge services. This requires the

operator to judiciously decide how many and which DNNs

to include in DNN ensembles, namely the DNN ensemble
selection problem. 2) The second challenge is the DNN

heterogeneity. The DNNs collected by a service provider may

come from different sources. This is a natural assumption

because the data collected by a single institution for training

DNNs is often limited. While data sharing is desirable for

application service developers to obtain high-quality DNNs, it

oftentimes leads to severe privacy issues, especially for clini-

cal, financial, social data. The trained DNN is a generalization

of structured knowledge that contains less privacy-sensitive

information, and therefore sharing DNNs is more welcomed

than directly sharing the source data. For example, Facebook

has disclosed the open-source release of its Deep Learning

Recommendation Model (DLRM) [17] but veils the source

data due to privacy concerns. Therefore, DNNs collected

by a service provider can be trained/validated on different
data sources with different DNN architectures by different
institutions, and hence achieving different performances. These

four “different”s characterize the heterogeneity of DNNs and

further justify the necessity of DNN ensemble selection. 3)
The third challenge is the unknown in-use performance of

DNNs. While the DNN performance can be evaluated on

standard test data, one cannot guarantee that the users’ input

data comes from the same distribution as the standard test

data. The actual performance delivered by DNNs is only

revealed during implementation and needs to be learned over

time. 4) The fourth challenge is the variability of user tasks.

The features of inference tasks vary due to many external

factors. For example, consider the image as DNN input, the

device camera determines the noise and resolution of captured

images, and the time and location may affect the brightness

of images. Different DNNs usually have different sensitivity

to these factors and hence their inference qualities also vary

across tasks with different features. In other words, there is

no “master key” for all inference tasks and the discrimination

of the “right key” for certain inference tasks is crucial. This

requires the service provider to adaptively configure the DNN

ensemble with the best-fit DNNs for admitted tasks.

This paper presents an Inference-as-a-Service framework on

edge computing platforms to deliver DL inference services to

mobile users. The proposed framework utilizes DNN ensemble

techniques and aims to address the DNN ensemble selection

problem to improve the efficiency and quality of DL inference.

The key contributions are summarized as follows:

1) An Inference-as-a-Service framework is designed for

edge computing platforms. The proposed framework utilizes

DNN ensemble techniques for enhancing the DL inference

quality. A unique problem, DNN ensemble selection, is in-

vestigated due to the limited edge computing resource. The

goal DNN ensemble selection is to adaptively configure the

DNN ensemble with DNNs that works the best for currently

admitted tasks.

2) We propose a method called Adaptive DNN Ensemble

(ADE) for solving the DNN ensemble selection problem. ADE

utilizes a novel multi-armed bandit algorithm called contextual
combinatorial multi-armed bandit (CC-MAB). It learns in-use

performances of DNNs and recruits DNNs into DNN ensem-

bles based on the features of admitted tasks. ADE judiciously

balances exploration ( i.e., learning DNN performance) and

exploitation (i.e., optimizing inference performance of DNN

ensembles based on the learned knowledge), and provides

asymptotic optimality.

3) We build an edge computing testbed to evaluate the per-

formance ADE. The experiment is performed on the WIDER-

attribute dataset [18] with a variety of pre-trained DNNs. In

particular, we optimize implementation schemes for running

DNN ensembles on the edge server and reduce DNN switching

costs incurred by reconfigurations of DNN ensembles. The

experimental results show that ADE improves the inference

accuracy by 11.3% over the most-capable DNN.

The rest of this paper is organized as follows: Section

II gives the system model and defines the DNN ensemble

selection problem. Section III designs our online learning

algorithm. Section IV gives the experimental results, followed

by conclusions in Section V.

II. SYSTEM MODEL

A. Edge Computing Platform

Our Inference-as-a-Service framework is compatible with

most edge computing systems. Let us consider a general multi-

access edge computing (MEC) system [10], [19] with multiple

edge sites, multiple mobile users, and multiple DL services.

The MEC system operator manages computing resources

on edge servers using virtualization techniques, e.g., virtual

machines (VMs) and containers. To provide DL services on

an edge site, the service provider requests computing resources

(e.g., VMs) from the edge server using certain mechanisms,

e.g, resource rental planning [20]. When the computing re-

source is allocated, the service provider configures its appli-

Fig. 1: Illustration of the system model.
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cation on the edge server and users covered by the edge site

can send DL inference tasks to the edge server. The focus

of our work is enhancing the performance of DL inference

services on the edge server, and this problem is independent

for each DL service provider once the computing resource on

the edge server is allocated. Without loss of generality, we

present our method for one DL inference service on one edge

server. Fig. 1 illustrates the considered system model.

The DL service provider collects a set of DNN models,

indexed by M = {1, 2, ...,M}, and stores them on the edge

server. We assume that all available DNNs can be stored on the

edge server since the storage is less likely to be a constraint

nowadays due to its low price. The operational timeline for the

service provider is discretized into time slots t = 1, 2, . . . , T
(e.g., a few seconds per slot). In each time slot t, users offload

inference tasks to the edge server. The task offloading decision

is made by users and hence is assumed to be an independent

process. We let Xt = {xt
j}Nt

j=1 be the inference tasks admitted

by the edge server at the beginning of time slot t, where

N t is the total number of admitted inference tasks. The edge

service provider then loads DNNs into the edge server RAM

(or VRAM if GPU is used) to process the admitted tasks.

B. Inference with DNN Ensembles

Using the DNN ensemble technique, the service provider

runs multiple DNNs on the edges server and fuses outputs of

individual DNNs to generate a final inference result. While the

DNN ensemble improves the inference quality, it also incurs

higher resource usage and time complexity due to running

multiple DNNs. Consider the limited computing capacity on

the edge server and the potential requirements on the response

time, it is not always possible to include all available DNNs in

the DNN ensemble. Therefore, we limit the number of DNNs

that can be included in the DNN ensemble, denoted by B.

The value of B should be chosen to guarantee that running

any B DNNs in M will not exceed the computing capacity

of the edge server and will not incur inference delay larger

than the response deadline. Let St � {st1, st2, . . . } ⊆ M with

|St| ≤ B be the DNN ensemble selected in time slot t. The

admitted inference tasks are forwarded to each DNN in St and

the outputs of DNNs are combined by a fusion rule (discussed

in the next subsection) to generate a final result.

C. Fusion Rule and Utility

The edge service provider derives utilities by providing

better inference quality, e.g., prediction accuracy. Without

loss of generality, this paper considers DL-based classification

problem as a DL inference service. Note that our method can

be easily extended to other DL services with very slight mod-

ification on the fusion processes. For classification problems,

the output of a DNN m ∈ M for a task xt
j ∈ Xt is a

vector of classification confidences cm(xt
j) = {cm,k(x

t
j)}Kk=1,

where K is the total number of classes and cm,k(x
t
j) denotes

the confidence of class k being the true class for task xt
j .

DNN m gives the rank-1 classification result defined as

ŷtm,j = argmaxk cm,k(x
t
j). Let ytj be the ground truth of

task xt
j and then the classification correctness of DNN m for

xt
j is 1{ŷtm,j = ytj} where 1{·} is an indicator function. If

the service provider only uses DNN m for inference, then

the final result ŷtj for task xt
j is ŷtj ← ŷtm,j . However, the

service provider may run multiple DNNs with DNN ensemble

techniques and hence a fusion rule is needed to combine

outputs of multiple DNNs. We utilize weighted confidence

as our fusion rule. We note that other fusion rules are also

compatible with our method. The weighted confidence method

jointly considers the confidence outputs cm(xt
j), ∀m ∈ St of

selected DNNs based on their accuracy qtm,j � Pr{ŷtm,j = ytj}
for task xt

j . Although these accuracy values are unknown to

the service provider a priori, we will design an online learning

algorithm to learn this information (elaborated later in the

paper). The weighted confidence of DNN ensemble for class

k is calculated by:

c̃k(x
t
j) =

∑
m∈St qtm,jcm,k(x

t
j)∑

m∈St qtm,j

.

The final inference result for xt
j is determined by ŷtj =

argmaxk c̃k(x
t
j). We generalize the fusion process into a

mapping function ŷtj = f(xt
j ,St, qt

j) which maps task xt
j ,

DNN ensemble St, and DNNs’ accuracy qt
j � {qtm,j}m∈M

to an inference result ŷtj . The reward for task xt
j is defined as

the correctness of its inference result

u(xt
j ,St, qt

j) = 1{f(xt
j ,St, qt

j) = ytj} (1)

Given the set of admitted tasks Xt in time slot t, the expected

reward for the service provider in time slot t is

U(Xt,St, qt) =
∑

xt
j∈Xt

E
[
u(xt

j ,St, qt
j)
]

(2)

where qt = {qt
j}N

t

j=1 is DNNs’ accuracy for all tasks in Xt.

D. Problem Formulation and Oracle Solution

The service provider aims to maximize its expected reward

in a total of T time slots by selecting the best-fit DNN

ensembles {St}Tt=1 in T time slots. The DNN ensemble

selection problem is formally defined as:

P1 : max
{St}T

t=1

∑T

t=1
U(Xt,St, qt) (3a)

s.t. St ⊆M, |St| ≤ B, ∀t (3b)

The main difficulty for solving the above problem is the

unknown DNN accuracy qt for user tasks. Therefore, P1
is not merely a long-term optimization problem, but involves

learning of DNN accuracy during the DNN ensemble selec-

tion. We assume for now the existence of an oracle that

knows precisely the DNN accuracy for user tasks and give

an oracle solution to P1. With the oracle information, P1 is

fully decoupled for each time slot and can be divided into T
independent subproblems, one for each time slot t as follows:

P2 : max
St

E
[
U(Xt,St, qt)

]
, s.t. St ⊆M, |St| ≤ B.

However, it is still difficult, if not impossible, to solve the

per-slot problem P2 optimally due to the obscured fusion
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process. The performance of DNN ensembles depends on

many factors, e.g., the orthogonality and complementary of

DNNs’ training/validation data [21], which are unknown and

difficult to characterize analytically. Therefore, it is extremely,

if not impossible, to give an analytical solution to P2.

Fortunately, previous studies [21], [22] have provided valuable

empirical experience on how to pick a good DNN ensemble.

Basically, we need to answer two questions: “How many
DNNs should be included in the ensemble?” and “What kind
of DNNs are preferred to be included in the ensemble?”.

1) Determining Ensemble Size: Earlier studies [23], [24]

show that adding members to an ensemble has a diminishing

return effect and the error reduction appears to reach a

plateau after 25 members. More recent work [25] suggests

that the ideal number of members in an ensemble should be

similar to the number of classes in the classification problem.

Further adding members into the ensemble may deteriorate the

accuracy. Usually, the number of classes in image classification

problems is much larger than the number of DNNs that can

be loaded on the edge server. Therefore adding a DNN to an

ensemble is always beneficial, which means that |St| = B, ∀t.
2) Identify Best-fit DNNs: A variety of ensemble selection

methods are investigated in the literature. For example, [26]

selects classifiers according to their local accuracy, and [21]

measures the diversity of classifiers and selects the most

independent classifiers to construct ensembles. However, from

the experiments of these works, it is observed that the results

are strongly affected by the applied data. A recent work [22]

compared the performance of a variety of ensemble selection

methods. The results indicate that in most cases picking the

classifiers with the highest accuracy to build the ensemble

classifier will produce the best inference performance.

Heuristic Rule: Based on the above observations, the

solution to P2 becomes picking B DNNs that are expected

to have the highest accuracy for the admitted tasks Xt, i.e.,

max
St

1

N t

∑Nt

j=1
qtm,j , s.t. St ⊆M, |St| ≤ B. (4)

Therefore, our DNN ensemble selection problem becomes

learning the accuracy of collected DNNs. However, DNNs

usually have different performance for tasks with different

features. For example, in image classification problems, the

resolution, brightness, hue, and contrast of images may affect

the performance of DNNs. This should be considered when

learning the DNN accuracy. Hereinafter, we call these features

the context of inference tasks. In the following, we propose an

online algorithm to learn the DNN accuracy based on the task

context, and cast the DNN ensemble selection into a Contex-

tual Combinatorial Multi-armed Bandit (MAB) problem [27].

III. ADAPTIVE DNN ENSEMBLE VIA CONTEXTUAL

COMBINATORIAL MAB

A. Context-parameterized Accuracy

This paper considers simple context information, e.g. image

resolution and contrast, that can be directly observed with-

out processing inference tasks, and hence using the context

does not incur extra computation burdens. The underlying

assumption for using context is that a DNN will have similar

performance for inference tasks with similar contexts. This

assumption is natural and can be partially verified by the

experiment in Section IV. This allows us to learn the DNN

accuracy for a group of inference tasks with similar context,

which significantly improves the learning efficiency. We let

ωt
j ∈ Ω denote the context associated with task xt

j , where Ω
is the context space. We slightly abuse the notation of DNN

accuracy qtm,j by defining the context-parameterized accuracy

qm(ωt
j), i.e., the accuracy of DNN m for task xt

j depends on

the context ωt
j . We let μm(ω) = E[qm(ω)] be the expected

accuracy of DNN m for inference tasks with the context

ω. The oracle knows the expected accuracy μm(ω) for an

arbitrary context ω, and selects DNNs B DNNs that have the

highest expected accuracy for admitted tasks:

s∗tb ∈ argmax
m∈M\∪b−1

i=1 s
∗t
i

1

N t

∑Nt

j=1
μm(ωt

j), b = 1, . . . , B. (5)

We let S∗,t = {s∗,t1 , . . . , s∗,tB } denote the oracle DNN ensem-

ble decision in time slot t. In practice, the service provider

does not have a priori knowledge on the context-parameterized

accuracy, and a learning algorithm is needed to learn this

accuracy information. Next, we show our learning method,

Adaptive DNN Ensemble (ADE).

B. CC-MAB for Adaptive DNN Ensemble

ADE is designed based on the framework of contextual

combinatorial MAB (CC-MAB). The operations of ADE in

each time slot t are as follows: (i) the service provider observes

the context ωt
j of each inference tasks xt

j ∈ Xt admitted by

the edge server. (ii) A DNN ensemble St is selected based on

the context of admitted tasks and the estimated DNN accuracy

learned from previous time slots. (iii) The inference tasks are

forwarded into each DNN in the selected DNN ensemble,

and outputs of individual DNNs are fused to final inference

results that are returned to users. (iv) At the end of the time

slot, the ground-truths of inference tasks are observed and

the estimated context-parameterized accuracy for each selected

DNN is updated.

Obtaining precise estimations of context-parameterized ac-

curacy for a DNN requires an adequate collection of inference

results for tasks with different contexts. Note that the perfor-

mance of a DNN is revealed only when it is selected and used

in the DNN ensemble, and therefore the purpose of selecting

a DNN can be either exploration, i.e., to learn the accuracy

of DNN for tasks with a particular context, or exploitation,

i.e., to select DNNs that are expected to deliver the highest

accuracy. An important designing goal in MAB problems is

balancing the tradeoff between exploration and exploitation.

The pseudocode of ADE is presented in Algorithm 1. ADE

starts by partitioning the context space into small uniform hy-

percubes, i.e., creating groups of similar contexts. Specifically,

a partition ΛT is created on the context space Ω given the

time horizon T . We consider a bounded context space that

can be written as Ω � [0, 1]D, where D is the dimension of
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Fig. 2: Illustration of context partition and counter update.

We only show the update of counter Ct
m(λ), the update for

Et
m(λ) is similar.

context space Ω. ADE splits the context space Ω into (hT )
D

hypercubes λ, λ ∈ ΛT with identical size of 1
hT
× · · · × 1

hT
.

The parameter hT is an important algorithm parameter to

be designed for determining the number of hypercubes in

the partition. For each task xt
j , ADE determines hypercube

λ ∈ ΛT that context ωt
j belongs to, i.e., ωt

j ∈ λt
j holds. Let

λt = {λt
j}N

t

j=1 collect hypercubes for all admitted tasks. ADE

keeps two counters, counter Ct
m(λ) and counter Et

m(λ), for

each pair of DNN m ∈ M and hypercube λ ∈ ΛT . Ct
m(λ)

records the number of tasks with context in hypercube λ that

have been processed by DNN m up to time slot t; and Et
m(λ)

records the number of tasks with context in hypercube λ that

are correctly classified by DNN m (i.e., ŷτm,j = yτj , τ < t) up

to time slot t. Fig. 2 illustrates the context partition and the

counter update. In time slot t, the accuracy q̂m(λ) of DNN m
for tasks with context in hypercube λ is estimated by:

q̂m(λ) = Et
m(λ)/Ct

m(λ) (6)

Consider a tasks xt
j with context ωt

j ∈ λt
j , the estimated

accuracy of DNN m for xt
j is q̂m(λt

j).
In each time slot, ADE is either in an exploration or

exploitation phase. In the exploration phase, ADE selects a

set of random DNNs that has not been selected often and

aims to learn more precise accuracy for selected DNNs. In

the exploitation phase, ADE chooses a set of DNNs which is

expected to deliver the highest accuracy for admitted tasks.

To determine the correct phase in a time slot, ADE first

checks whether the context hypercubes have been sufficiently

explored to give a precise accuracy estimation. For DNN m,

its under-explored hypercubes are identified based on Cm(λ):

Λue,t
m =

{
λ ∈ ΛT

∣∣ Ct
m(λ) < K(t)

}
(7)

where K(t) is a control function to determine whether the

context hypercube has been sufficiently explored. The function

K(t) needs to be appropriately designed to balance exploration

and exploitation. Based on the under-explored hypercubes of

DNNs Λue,t
m , ∀m and the admitted tasks Xt in time slot t, we

define under-explored DNNs in time slot t as:

Mue,t =
{
m ∈M∣∣∃xt

j ∈ Xt, ωt
j ∈ λt

j , and λt
j ∈ Λue,t

m

}
(8)

Algorithm 1 Adaptive DNN Ensemble with CC-MAB

1: Input: time horizon T , algorithm parameters hT , K(t);
2: Initialization create partition ΛT ; set Cm(λ) =

0, Em(λ) = 0, ∀λ ∈ ΛT ,m ∈M;

3: for t = 1, . . . , T do
4: Observe context ωt

j ∈ Ω of each task xt
j ∈ Xt and

find context hypercube λt
j such that ωt

j ∈ λt
j holds;

5: Get Mue,t as defined in (8) and set lt = |Mue,t|;
6: if Mue,t �= ∅ then � Exploration
7: if lt ≥ B then
8: St ← randomly select B DNNs in Mue,t;

9: else:

10: St ← select all lt DNNs in Mue,t and B − lt

additional DNNs as in (9);
11: end if
12: else: St ← select B DNNs as in (10); � Exploitation
13: end if
14: Observe the ground truth of the inference tasks;

15: for each m ∈ St and λ ∈ {λt
j}N

t

j=1 do � Updates
16: Update counters: Ct

m(λ), Et
m(λ);

17: Update estimation: q̂m(λ) = Et
m(λ)/Ct

m(λ);
18: end for
19: end for

Given under-explored DNNs Mue,t, ADE determines the

phase of the current time slot.

Exploration: If the set of under-explored DNNs is non-empty,

i.e., Mue,t �= ∅, ADE enters exploration. Let lt = |Mue,t|
be the number of under-explored DNNs. If lt ≥ B DNNs,

then ADE randomly selects B DNNs from Mue,t. If lt <
B, ADE selects all lt DNNs in Mue,t. As budget B is not

fully utilized, we pick (B− lt) additional DNNs that have the

highest estimated accuracy for Xt:

stb ∈ argmax
m∈M\{Mue,t∪{∪b−1

i=1 s
t
i}}

1

N t

∑Nt

j=1
q̂m(λt

j) (9)

where b = 1, . . . , (B − lt). If the DNN defined by (9) is not

unique, ties are broken arbitrarily.

Exploitation phase: If the set of under-explored DNNs is

empty, Mue,t = ∅, ADE enters exploitation and selects B
DNNs that have the highest estimated accuracy for Xt:

stb ∈ argmax
m∈M\{∪b−1

i=1 s
t
i}

1

N t

∑Nt

j=1
q̂m(λt

j) (10)

where b = 1, . . . , B. At the end of the time slot, ADE observes

the ground truth of tasks and updates the estimated accuracy

for each selected DNN and hypercube.

C. Performance Analysis

The performance of ADE is measured by the reward loss

compared to oracle, termed as regret. Let {St}Tt=1 be the DNN

ensemble decision sequence of ADE, the regret is defined as:

R(T ) = E

[∑T

t=1
U(Xt,S∗,t,μt)− U(Xt,St, q̂t)

]
. (11)
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where μt = {μm(ωt
j)}∀m,j is the expected accuracy and q̂t =

{q̂m(ωt
j)}∀m,j is the estimated accuracy learned by ADE at

time slot t. A common designing goal of multi-armed bandit

algorithms is to achieve a sublinear regret R(T ) = O(T γ) with

γ < 1. A sublinear regret bound guarantees the asymptotic

optimality since limT→∞ R(T )/T → 0. Next, we give a regret

upper bound of ADE. The regret upper bound is derived based

on the assumption that a DNN will have similar accuracy for

inference tasks with similar context, which is formalized by

the Hölder condition:

Assumption 1 (Hölder Condition). There exists L > 0, α > 0
such that ∀m ∈M and ∀ωj , ωk ∈ Ω, it holds that

|μm(ωj)− μm(ωk)| ≤ L‖ωj − ωk‖α, (12)

where ‖·‖ denotes the Euclidean norm in R
D.

We note that this assumption is needed for the analysis of

algorithm regret, but ADE can still be applied if it does not

hold true. In that case, however, a regret bound might not

be guaranteed. Under Assumption 1, the following theorem

shows the regret order of ADE:

Theorem 1 (Bound for Regret R(T )). Let K(t) =

t
2α

3α+D log(t) and hT = 
T 1
3α+D �. If ADE is run with these

parameters and Assumption 1 holds true, the leading order of

the regret R(T ) is O
(
T

2α+D
3α+D log(T )

)
.

Proof. See Appendix A in the supplemental file.

Theorem 1 indicates that the regret of ADE algorithm is

sublinear in the time horizon T . Moreover, the bound is

valid for any finite time horizon, providing a bound on the

performance loss for any finite time slot. This can be used to

characterize the convergence speed of ADE.

Remark on ground-truth retrieval: For some DL services,

e.g., recommendation systems [28], the ground-truth of tasks

can be directly retrieved. However, for other DL services, the

retrieval of task ground-truths can be difficult. For example,

to receive the ground-truth of image classification tasks, the

service provider may need to use crowdsourcing services

[29] such as Mechanical Turk and reCAPTCHA 1 to acquire

labels from non-expert annotators. In this case, the ground-

truth retrieval and update of accuracy estimation are delayed.

Fortunately, some previous works [30] have investigated the

impact of the delayed feedback on the performance of bandit

algorithms, and show that the feedback with a bounded delay

does not change the order of regret.

IV. EXPERIMENTS

A. Experiment Setup

1) Edge Computing Platforms: A DELL workstation is

used as an edge server, which is equipped with a 64-bit twelve

Intel i7-8700K cores running at 3.70GHz, and two NVIDIA

GeForce GTX 1080Ti GPUs. The experiment is run on Ubuntu

16.04 system with Tensorflow v1.5.0, cuDNN v7.0, CUDA

1Mechanical Turk: www.mturk.com; reCAPTCHA: recaptcha.net.

Data
Source 1

Data
Source 2

Data
Source 3

Data
Source 1

Data
Source 2

Data
Source 3

DNN Training DNN Testing

Fig. 3: Illustration of experimental setup.

Test on

HR

Test on

LR-1

Test on

LR-2

Train on

HR

MobileNet 0.631 0.395 0.532

Inception 0.689 0.426 0.606

Incept-ResNet 0.682 0.464 0.595

Train on

LR-1

MobileNet 0.264 0.54 0.427

Inception 0.135 0.541 0.488

Incept-ResNet 0.066 0.592 0.532

Train on

LR-2

MobileNet 0.440 0.516 0.60
Inception 0.511 0.551 0.647

Incept-ResNet 0.551 0.583 0.656

TABLE I: Accuracy of DNNs

v9.0. In each time slot, tasks are sent to the edge server in a

batch-wise manner. The average size of task batches is 10.

2) DL Service: Sport-Category Classification: We apply

ADE to the sport-category classification problem. The DL

service is to recognize common sport categories from individ-

ual scene images. The images are from the WIDER-attribute

dataset [18]. We use 15 sport categories in the dataset and The

application service on the edge server aims to classify sport

categories for the received sport-related images. The WIDER-

attribute dataset has three parts: training, validation, and test

data. The training data contains 2,492 images that are used

for training DNNs, the validation and test data contains 4,401

images that are used to evaluate our algorithm.

3) Training Available DNNs: The DNNs are different from

each other in two aspects: 1) The data sources used for training

DNNs and 2) The network structure used by DNNs. We pre-

process the WIDER-attribute dataset in different ways to create

different data sources. Three widely-used DNN structure:

MobileNet-v2 [31], Inception-v3 [32], and Inception-ResNet-

v2 [33], are used for training DNNs on the pre-processed

WIDER-attribute dataset. We modify the resolution of images

in the WIDER-attribute dataset to generate different training

data. This setting is very realistic due to various types of image

capturing devices, e.g., smartphones, surveillance cameras,

SLR cameras. The image resolution is the context used by

ADE. Each DNN structure has fixed input size for images,

e.g., 224 × 224 × 3 for MobileNet-v2, 299 × 299 × 3 for

Inception-v3, and 299×299×3 for Inception-ResNet-v2. The

resolution of original WIDER-attribute dataset is higher than

the required dimension and we call it HR (high resolution)

images. We create LR-1 (low resolution scale-1) data source

by downsampling the original image to a size not exceeding
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150 × 80, and LR-2 (low resolution scale-2) data source by

downsampling the original image to a size not exceeding

300×150. We use HR, LR-1, and LR-2 to train MobileNet-v2,

Inception-v2 and Inception-ResNet-v2 separately. In total, 9

models are trained and stored on the edge server. We evaluate

the accuracy of each DNN on test data of HR, LR-1, and

LR-2, the results are shown in Table I. There is a noticeable

performance gap of DNNs across test datasets. We can see

that DNNs have higher accuracy when the test data is from

the same data source of the training data. This indicates that

the task contexts can affect the performance of DNNs.

B. Performance Evaluation

We compare ADE with 4 benchmarks:

1) Oracle: Oracle knows the context-parameterized accuracy

of DNNs and selects B DNNs that have the highest accuracy

for the admitted tasks in each time slot.

2) Non-ensemble: This algorithm is a variant of ADE. It selects

only one DNN in each time slot and is used as a baseline to

validate the efficacy of DNN ensemble.

3) UCB1: UCB1 is a classic MAB algorithm that selected only

one action in each time slot. To run UCB1 for DNN ensemble

selection, we create super-arms, i.e., B-element combination

of M DNNs. There will be a total of
(
M
B

)
super-arms and

UCB1 learns the reward of each super-arm.

4) Random: It randomly selects B DNNs in each time slot.

1) Accuracy Comparison: Fig.4 compares the time-

averaging accuracy achieved by ADE and other 4 benchmarks.

As expected, Oracle has the highest accuracy. Among the other

algorithms, we see that ADE achieves higher accuracy for user

tasks and its performance gradually converges to Oracle’s per-

formance. In addition, ADE outperforms UCB1 since it takes

into account the context of inference tasks in DNN ensemble

selection. In particular, it can be observed that ADE (69%
accuracy) provides a (69−62)/62×100% = 11.3% accuracy

improvement compared to Non-ensemble (62% accuracy). We

can even see that Random has higher accuracy than Non-

ensemble, indicating that using the DNN ensemble technique

effectively helps improve the DL inference quality.

2) Impact of Ensemble Size: Fig.5 shows the regret

achieved by ADE with different ensemble size B. We see

that the regret decreases with the increase in ensemble size,

which indicates that learning is not very necessary when the
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Fig. 4: Accuracy evolution (B = 3).
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Fig. 5: Impact of B on regret.
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Fig. 6: Impact of B on accuracy.

ensemble size is large. This is because the operator can include

almost all DNNs in DNN ensembles with large ensemble

size, and in this case, identifying best-fit DNNs becomes less

useful. Moreover, we see that our algorithm is able to achieve

sublinear regret with all ensemble sizes in the experiment. Fig.

6 shows the accuracy achieved by ADE after 4,400 time slots.

The results show that higher accuracy can be achieved with

large ensemble size but this accuracy improvement diminishes

with the increase in ensemble size.

C. Space and Time Complexity

We now show the space and time complexity of ADE during

implementation. The implementation complexity is relevant to

implementation schemes. Therefore, we will first show several

determinants of implementation complexity, and then discuss

efficient implementation schemes for ADE.

DNN Switching Cost and Implementation Schemes: A

straightforward scheme to execute a DNN ensemble on edge

server is to load and run DNNs one by one (referred to as

LD-OBO scheme). This scheme frequently tears and reloads

the DNNs in memory, which tends to incur a large delay for

running DNN ensembles. We call this kind of delay as intra-
slot DNN switching cost. Based on our experiment, loading

a DNN into RAM incurs non-negligible delay, e.g., loading

MobileNet requires 1.21 sec, loading Inception requires 2.05

sec, and loading Inception-ResNet requires 5.231 sec. This is

for loading DNNs only, the time for running inference tasks

has not been included. The intra-slot switching cost can be

addressed by parallel execution of DNNs (referred to as LD-

PAR) by loading all DNNs in the ensemble simultaneously
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TABLE II: Memory Usage & Time Complexity of ADE with LD-NW and LD-W

Ensemble Size B = 1 B = 2 B = 3 B = 4 B = 5 B = 6 B = 7

Implementation
Scheme

(LD-NW)

Memory Usage
(GB)

0.117 0.229 0.349 0.466 0.583 0.678 0.816

Time Complexity
(sec)

0.873
±0.650

1.014
±0.823

2.009
±1.001

3.102
± 1.071

4.905
± 1.219

5.786
± 1.384

6.324
± 0.707

Implementation
Scheme
(LD-W)

Memory Usage
(GB)

1.083 1.080 1.081 1.077 1.107 1.092 1.099

Time Complexity
(sec)

0.024
±0.044

0.051
±0.119

0.098
±0.278

0.144
±0.396

0.178
±0.481

0.172
±0.459

0.175
±0.383

Tear
&

Reload

Tear
&

Reload

Pre configuration

Tear
&

Reload

Tear
&

Reload

Fig. 7: Illustration of implementation schemes. From top to
bottom, the schemes are LD-OBO, LD-PAR, LD-NW, and LD-
W. The gray background denotes the RAM. The network with
hollow circles denotes the DNN structure, the solid circle
indicates parameters. During pre-configuration, LD-OBO and
LD-PAR does not use RAM, LD-NW only loads DNN structure,
and LD-W loads both structures and parameters. LD-NW only
load parameters for selected DNNs in each time slot.

in the RAM at the beginning of each time slot. LD-PAR

addresses the intra-slot switching cost. However, ADE changes

its decisions across time slots. In this case, LD-PAR needs to

reload a new DNN ensemble when ADE changes the DNN

ensemble decision. We call this kind of delay as inter-slot
switching cost. Due to the inter-slot switching cost, LD-PAR

actually does not help much in reducing the inference delay

if the DNN ensemble varies frequently across time slots.

A straightforward solution to avoid both intra-slot and inter-

slot switching costs is to load all available DNNs before

running ADE and run selected DNNs only in each time

slot (referred to as LD-W). However, LD-W requires a large

amount of memory since all available DNNs need to be loaded

at the same time. To make our ADE suitable for edge servers

with limited resources, we give a modified version of LD-W,

referred to as LD-NW. LD-NW loads the network structures

of all DNNs before running ADE, and in each time slot,

the parameters of selected DNN are loaded for running task

inferences. This weight loading process takes around 10 ms to

500ms depending on the DNN structure. This amount of delay

is acceptable for most application services. Fig.7 illustrates all

four implementation schemes, LD-OBO, LD-PAR, LD-NW,

and LD-W, for comparison.

Performance comparison: Due to the space limitation, we

only show the memory usage and inference delay for LD-

NW and LD-W because the inference delay incurred by LD-

OBO and LD-PAR is too large (over 10 secs with ensemble

size B = 2). Table II shows the memory usage and time

complexities of ADE when running with LD-NW and LD-

W. We see that the memory usage of LD-NW is much less

than that of LD-W. For example, when running ADE with

ensemble size B = 2, the average memory usage of LD-W is

1.08 GB (with a total of 9 available DNNs), and the average

memory usage of LD-NW is only 0.23 GB. However, LD-

W incurs much lower inference time than that of LD-NW.

In particular, running ADE with LD-W can achieve real-time

responses, but it also requires large RAM resources. If the

edge server is able to meet this resource requirement, then

LD-W can directly used. If the computing resource of edge

servers cannot support LD-W, the DL service provider should

use LD-NW and pick an appropriate ensemble size for the

trade-off between inference delay and resource usage.

V. CONCLUSIONS

In this paper, we applied DNN ensemble techniques to

enhance DL inference performances on edge computing plat-

forms. A unique problem called DNN ensemble selection is

studied. The goal of DNN ensemble selection is to identify a

subset of DNNs that works well for users’ inference tasks and

fits the limited computing capacity of edge servers. An online

learning algorithm is proposed to solve the DNN ensemble

selection problem. It learns the DNN accuracy based on the

context of inference tasks and meanwhile selecting the best-fit

DNN ensemble for admitted tasks. The proposed method is

practical, effective, and easy to implement.

APPENDIX A

PROOF FOR THEOREM 1

Proof. Due to space limitation, we only provide a sketch of

the proof. The regret can be divided into two parts: R(T ) =
Rexplore(T ) + Rexploit(T ), where Rexplore(T ) and Rexploit(T )]
are the regrets incurred by exploration and exploitation, re-

spectively. The regret of these two parts will be bounded

separately. The key idea for bounding the exploration regret

is to ensure that the number of time slots that ADE enters

exploration phase is sublinear. Therefore, given that maximum

utility loss in each exploration phase, the total regret incurred

by exploration is sublinear. For the exploitation regret, we need

to prove the gap between the utilities incurred by ADE and

Oracle is sublinear in each time slot.
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In fact, the leading order of R(T ) is determined by

Rexplore(T ) and therefore we only give detailed proof for

bounding Rexplore(T ). Let t be an exploration phase and then

there exist at least a hypercube λt
j , j = 1, . . . , U t and a

DNN m ∈ M such that Ct
m(λt

j) ≤ K(t) = tz log(t). By

the definition of Mue,t, there can be at most 
T z log(T )�
exploration phases in which DNN m ∈ M is selected to run

inference tasks with context λt
j up to time horizon T . Since

there are (hT )
D hypercubes in the partition, there can be at

most (hT )
D
T z log(T )� exploration phases for DNN m in T

time slot due to under-exploration. Additionally, there are M
DNNs whose accuracy need to be learned in the exploration

phase. Therefore, there can be at most M(hT )
D
T z log(T )�

exploration phases in T time slots. In each exploration phase,

the maximum number of inference tasks is Nmax and hence

the maximum loss is 1 ·Nmax. The maximum loss exploration

phases is M(hT )
D
T z log(T )�Nmax, and the expected regret

of exploration phase is bounded by:

E [Re(T )] ≤M(hT )
D
T z log(T )�Nmax

=M
T γ�D
T z log(T )�Nmax.

Using 
T γ�D ≤ (2T γ)D = 2DT γD, it holds E [Re(T )] ≤
MNmax2

D(log(T )T z+γD + T γD). Using the values given in

Theorem 1 for hT and K(t), we have γ = 1
3α+D and z =

2α
3α+D . This completes the proof.
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