
1

Improving QoE of Deep Neural Network Inference
on Edge Devices: A Bandit Approach

Bingqian Lu, Jianyi Yang, Jie Xu, Shaolei Ren

Abstract—Edge devices, including in particular mobile devices,
have been emerging as an increasingly more important platform
for deep neural network (DNN) inference. Typically, multiple
lightweight DNN models generated using different architectures
and/or compression schemes can fit into a device and thus,
selecting an optimal one is crucial in order to maximize the
users’ quality of experience (QoE) for edge inference. The existing
approaches to device-aware DNN optimization are usually time-
consuming and not scalable in view of extremely diverse edge
devices. More importantly, they focus on optimizing standard
performance metrics (e.g., accuracy and latency), which may not
translate into improvement of the users’ actual subjective QoE.
In this paper, we propose a novel automated and user-centric
DNN selection engine, called Aquaman, which keeps users into
a closed loop and leverages their QoE feedback to guide DNN
selection decisions. The core of Aquaman is a neural network-
based QoE predictor, which is continuously updated online. Ad-
ditionally, we use neural bandit learning to balance exploitation
and exploration, with a provably-efficient QoE performance.
Finally, we evaluate Aquaman on a 15-user experimental study
as well as synthetic simulations, demonstrating the effectiveness
of Aquaman.

Index Terms—Edge inference, quality of experience, bandit,
neural network

I. INTRODUCTION

Edge devices, such as smart phones and tablets, are gaining
a strong momentum and emerging as a crucially important
platform for deep neural network (DNN) inference [1], [2].
For example, DNN models have been commonly integrated
with mobile apps for various functions (e.g., real-time style
transfer in Facebook app [3]). Compared to cloud-based infer-
ence, running DNN inference directly on these edge devices
(referred to as edge inference) is much less reliant on network
connection and also better protects user privacy because of
local data processing, thus driving the quick adoption of DNN-
powered mobile inference.

To enable a satisfactory user experience of edge inference,
numerous DNN optimization techniques for neural architec-
ture search as well as model compression have been recently
proposed [4]–[6]. Thus, given an inference task, a large num-
ber of diverse DNN models can be generated by navigating
through (even a small part of) the huge design space in terms
of different neural architectures and compression techniques
(e.g., pruning, quantization, and knowledge distillation) [4],

B. Lu, J. Yang, and S. Ren are with the University of California, Riverside.
E-mail: blu029@ucr.edu, jyang239@ucr.edu, and sren@ece.ucr.edu

J. Xu is with the University of Miami. E-mail: jiexu@miami.edu
Copyright (c) 2022 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

[7]–[10]. Generally, different DNN models can exhibit dramat-
ically different tradeoffs among performance metrics, such as
accuracy, inference latency and energy consumption [7], [11].

On the other hand, edge devices are extremely diverse, rang-
ing from high-end devices with state-of-the-art CPUs/GPUs
and dedicated accelerators to low-end devices powered by
CPUs of several years old. For example, the existence of
thousands of unique system-on-chips (SoCs) running on over
ten thousand different types of mobile phones and tablets
further explains the extreme heterogeneity of mobile devices.
Importantly, not a single SoC dominates the market: only top
30 SoCs can each have more than 1% of the market share and,
when combined, cover 51% of the whole market [3].

Consequently, how to select the best DNN model out of
many choices for each edge device arises a significant chal-
lenge. The DNN selection/optimization for edge inference
must be: (1) automated for scalability; and (2) optimizing
user’s quality of experience (QoE) of edge inference.

Many studies have considered optimally selecting the neural
architecture, compression scheme, and/or compiler design for
running DNN on a target device [5], [7], [12], [13]. The
key idea is to formulate the DNN design as an optimization
problem with a pre-determined objective function, such as
minimizing a weighted sum of the accuracy loss, inference
energy and latency. Nonetheless, the pre-determined objective
function is essentially a proxy for subjective QoE, without
necessarily reflecting the users’ true QoE. While it is true
that users are generally more satisfied if the latency/energy
is lower and the accuracy is higher, using a weighted sum
of the accuracy loss, inference energy and latency can be
over-simplified for modeling QoE, because users’ satisfaction
may not be linear in these metrics (as supported by our
experimental results in Section V). Even when the actual QoE
is indeed a linear function of inference accuracy, energy and
latency, the relative weights for these three metrics may not be
known in advance and needs online learning based on users’
QoE feedback.

More generally, the QoE can be a very complicated func-
tion of the DNN performance metrics. Importantly, the QoE
function may not be known or accurately estimated in advance
without sufficiently collecting the users’ QoE feedback. Thus,
properly selecting an objective function in advance to identify
the QoE-optimal DNN model for a device is very challenging.
Additionally, the same DNN model running on different de-
vices can lead to dramatically different performance metrics.
As a result, QoE-optimal DNN models can be very different
for different devices, thus mandating an automated DNN
selection algorithm rather than manual designs for each device.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

2

In this paper, we advocate a different approach — auto-
mated and user-centric DNN selection — which keeps users
into a closed loop and leverages their QoE feedback to guide
DNN selections. Specifically, we focus on mobile devices as
a concrete platform for edge inference and propose a novel
provably-efficient DNN selection engine, called Aquaman, to
achieve QoE-optimal mobile inference.

To address the key challenge of the a priori unknown QoE,
we leverage a machine learning model to approximate the QoE
function based on users’ QoE feedback that serves as “labels”
for training the model. The core of Aquaman is to exploit the
universal approximation capability of a neural network-based
QoE predictor, which estimates the expected QoE for each
DNN selection decision and is updated online using users’
QoE feedback. To avoid being trapped in a local optimum due
to initially large prediction errors and continuously selecting
sub-optimal DNN models, Aquaman employs the bandit-based
reinforcement learning framework to balance exploitation and
exploration. In particular, we can view each DNN model
as an arm (or action), while the QoE is our reward. The
key idea of bandit algorithms is to give higher priorities to
those under-explored arms such that they can be explored
more and potentially produce higher rewards in the long run.
Concretely, we formulate the DNN selection problem into
neural bandit learning with delayed feedback, which is also
a novel setting in the emerging context of neural bandit [15].
We also provide rigorous analysis for Aquaman, proving that
Aquaman can asymptotically maximize the users’ average
QoE even compared to an optimal oracle. Finally, we evaluate
Aquaman by using an image classification app built on top of
the official example of TensorFlow Lite [14]. We consider a
15-user experimental study as well as synthetic simulations,
demonstrating that Aquaman outperforms the static DNN
selection while approaching the optimal oracle in terms of
the users’ QoE.

Our main contributions can be summarized as follows:
• We advocate the motivation and necessity of QoE op-

timal edge inference and user-centric DNN selection
approaches.

• We formulate automated user-centric DNN model se-
lection as a multi-armed bandit problem with delayed
feedback, and propose an efficient neural bandit approach
to balance exploration and exploitation.

• We provide rigorous theoretical analysis, proving that
Aquaman can asymptotically maximize the users’ aver-
age QoE even compared to an optimal oracle.

• We experimentally evaluate our algorithm on a dataset
collected via a user study as well as synthetic simula-
tions, demonstrating its effectiveness over the static DNN
selection while approaching the optimal oracle in terms
of the users’ QoE.

II. MOTIVATION FOR USER-CENTRIC DNN SELECTION

We present two existing approaches to DNN selection and
explain the necessity of a user-centric approach for QoE-
optimal mobile inference.

Device-unaware DNN selection. A straightforward ap-
proach to DNN selection is to test on a number of mobile
devices and then conservatively select a single model that can
meet the performance requirement for most devices. Although
simple, its drawbacks are also obvious: first, the selected DNN
model is optimal only for certain devices and can perform
poorly on others; and second, there is not a single DNN model
that performs the best on all mobile devices.

We take the model of MobileNet V2 1.0 224 quant as an
example and deploy it on four mobile devices for image clas-
sification (the details of our experimental setup are provided in
Section V). We show in Fig. 1(a) the three widely-considered
performance metrics for each inference execution: average
energy consumption, average latency, and average inference
accuracy. The “accuracy” metric in this work is measured in
terms of how often the model correctly classifies an image. In
our experiment, we run image classification 2000 times in our
lab for each DNN model, and obtain the percentage of correct
classification as our accuracy. While the model performs well
on the high-end device Vivo V1838A, its performance is not
satisfactory on low-end devices such as Vankyo Matrixpad z1
(whose average latency is around 1.2s). Our observation is also
corroborated by a Facebook study [3], which finds that the
same DNN model can result in a large performance variation
by a factor of 10x on different devices.

We further test five different DNN models hosted on the offi-
cial TensorFlow website and show their resulting performances
on two mobile devices in Figs. 1(b) and 1(c), respectively.
We notice that different models exhibit different performance
tradeoffs on different devices. Among the five tested models
on Vankyo Matrixpad z1, the MobileNet V2 1.0 224 model
is the most appealing one, because of its low energy and
latency while achieving a reasonably high accuracy. We notice
that the latency of I4F is much larger than other models in
Figs. 1(b) and 1(c). The reasons are: first, I4F is a floating-
point model compared to other quantized models; second,
I4F has a more complicated model structure than the other
floating-point model M2F. This aligns with the official latency
measurements in [16].

Device-aware DNN selection. To overcome the drawbacks
of the one-for-all approach, many prior studies have consid-
ered device-aware DNN optimization/selection [5], [7], [8],
[10], [12], [13], [17]–[21]. While the existing approaches can
produce an optimal DNN model for a given device, it lacks
scalability to a large number of heterogeneous mobile devices.
Specifically, even using prediction-assisted optimization, the
often lengthy process of building an offline performance
predictor is required for each target device [7], [13], [22].

More importantly, optimizing a pre-determined objective
function (such as a weighted sum of accuracy loss, inference
energy and latency [7], [12]) does not necessarily lead to
improvement in users’ QoE. For example, for mobile devices
with limited battery capacities, users may generally prefer
more energy-efficient DNN models while willing to accept a
lower accuracy and/or increased latency. In fact, the QoE can
be a very complicated function that may not be accurately
known in advance without sufficiently collecting the users’
feedback.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

3

Vankyo TabA S5e Vivo
Device

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 V
al

ue Energy Latency Accuracy

(a) MobileNet V2 1.0 224 quant

I3Q M2Q M1Q I4F M2F
DNN Model

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 V
al

ue Energy Latency Accuracy

(b) Vankyo Matrixpad z1

I3Q M2Q M1Q I4F M2F
DNN Model

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 V
al

ue Energy Latency Accuracy

(c) Samsung Galaxy Tab A

Fig. 1: (a) Performances of MobileNet V2 1.0 224 quant on four devices: Vankyo Matrixpad z1 (Vankyo), Samsung Galaxy
Tab A (TabA), Samsung Galaxy Tab S5e (S5e), and Vivo V1838A (Vivo). Energy and average latency are normalized
to their maximum values on these four devices. (b) and (c) Performances of five DNN models on two devices: Incep-
tion V3 quant (I3Q), MobileNet V2 1.0 224 quant (M2Q), MobileNet V1 0.75 192 quant (M1Q), Inception V4 (I4F), and
MobileNet V2 1.0 224 (M2F). Energy and average latency are normalized to their respective maximum values of the five
models on each device. In our experiment, we run image classification 2000 times in our lab for each DNN model, and obtain
the percentage of correct classification as the accuracy here.

I3Q M2Q M1Q I4F NL M2F
DNN Model

0.0
0.2
0.4
0.6
0.8
1.0

Q
oE

(a) Vankyo Matrixpad z1

I3Q M2Q M1Q I4F NL M2F
DNN Model

0.0
0.2
0.4
0.6
0.8
1.0

Q
oE

(b) Samsung Galaxy Tab A

I3Q M2Q M1Q I4F NL M2F
DNN Model

0.0
0.2
0.4
0.6
0.8
1.0

Q
oE

(c) Samsun Galaxy Tab S5e

I3Q M2Q M1Q I4F NL M2F
DNN Model

0.0
0.2
0.4
0.6
0.8
1.0

Q
oE

(d) Vivo V1838A

Fig. 2: Distribution of user ratings regarding six DNN models on four devices. Each rating is normalized to 0-1. “NL” refers
to NASNet large in [14], and the abbreviations for the other five models are shown in Fig. 1.

A survey of users’ QoE. To see how satisfied users
feel when using DNN-based mobile inference, we recruit 15
participants into our survey to test six different DNN models
on four different mobile devices (i.e., a total of 24 DNN-device
pairs for each participant) and provide QoE feedback in the
form of numeric ratings in 1-10. Each participant is asked to
use each of the DNN models for a while and then provide a
numerical rating for its QoE with each device-model pair on
a scale of 1-10 (more details are in Section V). In addition
to the five DNN models shown in Fig. 1, we include another
model — NASNet large (NL) — to verify our intuition that it
should score the worst QoE, especially on low- and mid-end
devices since it is an overly large and slow model for these
devices. Despite the small survey size, our key point is that
users’ QoE is subjective and not a simple linear combination
of the three widely-considered metrics (accuracy, energy and
latency) in the existing DNN optimization approaches. Fig. 2
shows the survey results (normalized to 0-1), including the
average rating, 25/75 percentile, minimum/maximum rating as
well as outliers. Based on the average rating, each device has
its own QoE-optimal DNN model: MobileNet V2 1.0 224
on Vankyo Matrixpad z1, MobileNet V2 1.0 224 quant on
Samsung Galaxy Tab A, and Inception V3 quant on Samsung
Galaxy S5e and Vivo V1838A. Moreover, a common observa-
tion is that the overly large model NASNet large yields almost
the worst QoE on all the devices.

III. OVERVIEW OF Aquaman

As illustrated in Fig. 3, Aquaman is implemented on the
server/cloud side and works as a middleman between a pool of

available DNN models and users’ devices. Aquaman focuses
on the selection of already pre-trained DNN models (each
having different architectures and/or compression schemes) for
mobile inference, and hence model training is orthogonal. The
workflow of Aquaman is summarized as follows.

Initialization. The QoE function may not be accurately
known in advance without enough feedback from the users.
Thus, before running online, Aquaman first initializes a QoE
prediction model that takes both DNN model and device
features as input and outputs the estimated average QoE.
Here, we leverage a fully-connected neural network-based
QoE predictor due to its universal approximation capability
to approximate any functional relationship (i.e., QoE in our
study). In our work, Aquaman focuses on optimizing the
users’ average QoE. Nonetheless, Aquaman can be extended
to optimize user-specific QoE by including user features (e.g.,
preferences and usage behaviors, if available) into the QoE
predictor.

Online DNN selection. During the online stage, Aquaman
selects DNN models for mobile devices and gradually updates
its QoE predictor based on users’ feedback.

QoE prediction. Whenever a mobile user requests a DNN
model, Aquaman takes the DNN feature and user’s device
feature (e.g., CPU and RAM) as input into its QoE predictor
and then estimates the resulting average QoE for each DNN
in the model pool.

DNN selection. After predicting the QoE for each DNN
on the given device, Aquaman selects the DNN that has
the highest QoE upper confidence bound (UCB), balancing
exploration and exploitation.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

4

DNN
Pool

QoE
Prediction

DNN
Selection

Predicted
QoE

Aquaman

Device Features

QoE Feedback

Selected
Model

Cloud Edge

Fig. 3: Overview of Aquaman. Aquaman is implemented
on the server/cloud side and works as a middleman between a
pool of available DNN models and users’ devices. Aquaman
focuses on the selection of already pre-trained DNN mod-
els (each having different architectures and/or compression
schemes) for mobile inference. Aquaman mainly consists of
QoE prediction and DNN model selection: for a given device,
the QoE predictor first outputs the QoE of each device-model
pair; then, Aquaman selects the candidate model that generates
the highest QoE upper confidence bound for the device.

QoE predictor update. QoE is a subjective score modeled
as an unknown function of the device and model features. To
learn the QoE model/predictor, users are kindly requested to
provide feedback regarding their experiences with the selected
DNN model in the mobile app after using the models for a
while. This can be achieved by prompting a simple interface
to solicit users’ rating in a numeric scale or simply “like/not
like”, as commonly used by many of today’s mobile apps.
If users choose to provide QoE feedback, their QoE values
will be leveraged by Aquaman to update the QoE predictor
and improve future DNN selections, thus keeping users into a
closed loop. Note that Aquaman aims at maximizing the aver-
age QoE, while individual QoE values are highly subjective.
Thus, we can take the average of a few QoE values (from
different users that have the same selected DNN and device)
as one average QoE sample to update the QoE predictor.

IV. FORMULATION, ALGORITHM, AND ANALYSIS

A. Preliminaries on Multi-armed Bandits

The multi-armed bandit (MAB) problem models a process
of sequential decision making with the tradeoff between
exploration and exploitation. In each round t, an action is
chosen from a pool of candidate actions (called arms), each
of which corresponds to an a priori unknown reward. The
actual reward is not known until the arm is chosen and played.
The goal is to maximize the accumulated expected rewards
over T rounds. With more rounds being played, some arms’
rewards become better known to us. The tradeoff is a balance
between sticking to the arm with the currently known maximal
reward (exploitation), or exploring new arms which might give
higher rewards in the long run (exploration). MAB models
have been widely applied to practical problems, including as
ad placement, source routing, computer game-playing, among
others [23].

B. Problem Formulation

Consider that Aquaman needs to perform online DNN
model selection over T rounds, each corresponding to a mobile
device. Let At be the set of pre-trained DNN candidate models
to be selected at round t and the number of candidate DNNs
at round t is |At|. Note that available DNN model set At
can be volatile from round to round, because new DNN
models may be added and/or only a subset of DNN models
can be deployed on the given mobile device due to QoS
constraints. The context/feature with respect to a DNN model
a ∈ At at round t is denoted as xt,a ∈ Rd, which can be
obtained by concatenating the mobile device features at round
t (e.g. device’s CPU and RAM capacity) and the features of
DNN model a (e.g., DNN model size, million MACs, million
parameters [7], [13]).

Considering the QoE yt,a is a random variable depending
on context xt,a, we model it as

yt,a = h(xt,a) + ηt (1)

where the average QoE function h(xt,a) is a deterministic yet
unknown function of xt,a with a normalized range [0, 1], and
ηt is a ν-sub-Gaussian noise with zero mean conditioned on
filtration Ft−1 = {xτ , ητ−1, aτ , τ = 1, · · · , t − 1}, i.e. ∀ς ∈
R,E [eςηt | Ft−1] ≤ exp

(
ς2ν2/2

)
.

There is usually a random delay in QoE feedback since users
cannot give useful feedback until their models are used for a
while. Formally, assuming that if a DNN model is selected
for a target mobile device at round s, its corresponding QoE
feedback is received after ds rounds. Then, the set of rounds
with QoE fed back at the beginning of round t is expressed
as T r

t = {s | s = t− ds}. Also, we assume that the QoE
feedback for any s = 1, · · · , T satisfies ds ≤ dm, i.e., the
largest delay is dm after which users are no longer requested
for QoE feedback. A larger QoE feedback delay will cause
less QoE data collected, whose impact will be analyzed in
Theorem IV.1. In practice, some users may not provide any
QoE feedback (i.e., missing feedback). This will slow down
the QoE predictor updating in Aquaman but does not affect
the asymptotic optimality of Aquaman.

The goal of Aquaman is to select DNN models to optimize
the average QoE. This is also equivalent to minimizing the
regret, which is the difference between the optimal average
QoE and the average QoE achieved by Aquaman. More
formally, we consider the cumulative regret as the performance
metric for DNN model selection, which is expressed as

RT = E

[
T∑
t=1

(
yt,a∗t − yt,at

)]

= E

[
T∑
t=1

yt,a∗t

]
− E

[
T∑
t=1

yt,at

]
,

(2)

where a∗t = arg maxa∈At E [yt,a] = arg maxa∈At h(xt,a) is
the optimal DNN model with respect to the expected QoE
chosen by the oracle and at is the DNN model selected by
Aquaman at round t. If the cumulative regret RT increases
sub-linearly with T , the resulting average QoE achieved by
Aquaman will be asymptotically optimal as T →∞ [24].

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

5

In our problem, we train a QoE predictor to predict the
extent of user satisfaction towards DNN models at an individ-
ual device level. That is, we optimize the average QoE among
each group of users who use the same type of device, while
individual users’ personal preferences are modeled as noise in
Eqn. (1). Nonetheless, we can extend our QoE predictor by
including user-level features (e.g., user’s gender, hobby, etc.)
if available. This will make the DNN model selection more
personalized to individual users (not only devices), although
this requires user-level features and might raise user privacy
concerns that are beyond the scope of our study.

C. Algorithm for Online DNN Selection

At the beginning of each round, the QoE predictor is
updated when at least one new QoE feedback is received, i.e.,
the set of rounds with QoE feedback at the beginning of round
t is T r

t = {s | s = t− ds} 6= ∅. Considering the powerful
representation capacity of neural networks, a fully-connected
neural network is used as the QoE predictor to approximate
the unknown QoE function h(xt,a). Let f(x, θ) be the QoE
neural network with respect to input x and network parameter
θ. The network can be trained by Algorithm 2.

The input of Algorithm 2 is prepared as follows. Denote
the set of rounds whose delayed QoE feedback is received
before round t as Tt =

⋃t
i=0 T r

i . The training data of the QoE
predictor neural network is an input matrix Xt of size |Tt|×d,
with each row being the context vector xs,as for s ∈ Tt and
a |Tt|-dimensional output vector yt, with each element being
the corresponding received QoE feedback ys,as , for s ∈ Tt.
With input Xt and yt, the QoE predictor is trained by, e.g.,
gradient descent with a loss function

L(θt) =
1

2

∑
s∈Tt

(f(xs,as ;θt)− ys,as)2 +
1

2
λ||θt − θ0||22,

(3)
where θ0 is the initialized neural network parameters.

With θt being the updated QoE neural network parameter,
the QoE at round t is predicted as f(xt,a,θt) where xt,a is the
context which concatenates device features with DNN model
features. To balance the exploitation and exploration without
being trapped in a local optimum, Aquaman selects the DNN
model to maximize the corresponding QoE UCB, which is
approximated as [15]:

pt,a = f(xt,a,θt) + γt−1‖g(xt,a,θt)‖Z−1
t

(4)

where g(xt,a,θt) is gradient of the neural network of the
QoE predictor, Zt = λI+

∑
s∈Tt g(xs,a;θt)

Tg(xs,a;θt), and
γt−1 is a hyperparameter to balance exploration (the first term)
and exploitation (the second term): the larger γt−1, the more
emphasis on exploration. Then, the DNN model is selected as:

at = arg max
a∈At

pt,a, (5)

where at is the selected model with the largest QoE UCB, and
At is the candidate DNN model pool at time t.

Algorithm 1 Aquaman: Online DNN Model Selection with
Delayed QoE Feedback

1: Initialize Neural network parameter is initialized as θ0.
Let Z0 = λI. X0 and y0 are empty matrix and empty
vectors.

2: for t = 1, ..., T do
3: if the set of feedback rounds at round t is T r

t 6= Ø
then

4: ∀s ∈ T r
t , append xs,as to Xt and append ys,as to yt.

5: Update θt by Algorithm 2;
6: Update Zt = Zt−1 +

∑
s∈T r

t
g(xs,a;θt)

Tg(xs,a;θt)
7: else
8: θt = θt−1; Zt = Zt−1

9: end if
10: if the set of feedback rounds before round t is Xt = ∅

then
11: Randomly choose a DNN model at;
12: else
13: Compute UCB pt,a for a ∈ At by Eqn. (9)
14: Select DNN model at = arg max

a∈At

pt,a;

15: end if
16: end for

Algorithm 2 QoE Predictor Neural network Updating

1: Input Step size ρ, number of gradient descent steps
G, current context matrix Xt, current reward matrix yt,
initialized network parameter θ0

2: Compute the gradient ∇L(θt) of loss function L(θt) in
Eqn. (3);

3: for j = 0, 1, 2, ..., G− 1 do
4: θj+1

t = θjt − ρ∇L(θjt)
5: end for
6: return θt = θGt .

D. Theoretical Analysis

Theorem IV.1. Assuming that in neural bandit with delayed
QoE feedback, the feedback delay satisfies dt ≤ dm, and neu-
ral network satisfying the assumptions in the appendix is used
as the QoE predictor. Then, with probability 1− δ, δ ∈ (0, 1),
the cumulative regret of Aquaman satisfies

RT ≤ 2γT

√
Tdm

(
2d̃ log(1 + bT/dmcK/λ) + 3

)
+ 2dm,

(6)

where b·c is the floor function, d̃ is the effective dimension
of the neural tangent kernel matrix which is defined in Def-
inition 4.3 of [15] and there exists a constant C such that

γT ≤ Cν
√
d̃ log (1 + TK/λ) + 2− 2 log δ where ν is the

parameter of sub-Gaussian noise. �

Theorem IV.1, whose proof is in the appendix, extends
the performance analysis of the standard neural bandit setting
with no feedback delay in [15]. The key point is that, despite
the QoE feedback delay, the cumulative regret is sub-linear
in T , meaning that Aquaman is asymptotically optimal in
terms of the average QoE as T → ∞. Like in the existing

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

6

bandit learning literature [15], [25], the regret upper bound
quantifies the worst-case QoE gap between Aquaman and the
optimal oracle, and is mostly accurate in asymptotic cases
when T → ∞. Even when T is finite, however, we can
empirically observe the shrinking gap between online learning-
based Aquaman and the optimal oracle (i.e., the average QoE
achieved by Aquaman is approaching that of the oracle).

Now, let us discuss how Aquaman handles delayed QoE
feedback. For each round, if there is delayed feedback arriving,
Aquaman accumulates it to the previous feedback history and
uses the entire history as training data to update the QoE
predictor. For the training data, input or feature is the context
vectors for each previous rounds, while the labels are the
corresponding (potentially delayed) QoE feedback. For the
initial rounds when no feedback has arrived yet, Aquaman
faces cold-start issues like any other recommendation systems
and hence focuses more on exploration. When QoE feedback
arrives, we can use it to supervise the learning of the QoE
predictor. Naturally, the larger the feedback delay, the poten-
tially worse the QoE (mostly at the beginning). Nonetheless, as
time goes on, the impact of feedback delays also becomes less
significant, because enough QoE feedback, albeit with delays,
has been collected.

E. Practical Considerations

QoS constraint. In practice, a quality-of-service (QoS)
constraint may be imposed in terms of, e.g., latency constraint
for mobile inference. To handle the QoS constraint, we first es-
timate the resulting QoS-related performance for DNN models
on an incoming device. Unlike QoE, the QoS-related perfor-
mance does not depend on users’ subjective evaluation, and
hence can be measured offline based on the DNN developer’s
own device pool or estimated using performance models [7],
[13], [26]. Then, Aquaman will only select those DNNs that
meet the QoS constraint.

Updating QoE predictor online. For the ease of analysis,
Algorithm 1 states that the QoE predictor is updated whenever
new QoE feedback from an individual user is received. In
practice, as described in Section III, we can calculate the
average QoE feedback from multiple users using the same
device and DNN model and consider the average value as
one QoE sample to reduce the variation due to individual
users’ subjective QoE values. Moreover, we can update the
QoE predictor neural network using stochastic gradient decent
whenever receiving a batch of average QoE values.

Selection of multiple DNNs. In practice, a mobile app may
include multiple DNN models, each for one function in the
app. This can be addressed by either viewing multiple DNN
models as a “super-DNN” ensemble using our current design
of Aquaman, or implementing multiple Aquaman in parallel
each for one DNN selection. To reduce annoyance to users,
the users’ QoE feedback is shared for all the selected DNNs.

Malicious user feedback. For any online services, ma-
licious user feedback is an unavoidable problem [27]. In
practice, Aquaman can take the average of multiple individual
QoE values as one data sample. Thus, the QoE predictor is
expected to work well, provided that malicious users are not

dominant. Additionally, this issue can be mitigated by using
robust online learning [25] and/or removing likely malicious
feedback via anomaly detection, which is beyond our focus.

Computational complexity and overhead. Aquaman
serves as a middleman selection engine at the server or cloud
side. There are many large-scale recommendation systems
(e.g., YouTube recommender, Amazon recommender) running
in the cloud and serving billions of user requests each day.
These systems are also frequently updated based on users’
feedback (e.g., click rates). Compared to them, DNN model
selection in Aquaman occurs much less frequently, and train-
ing our QoS predictor has a much lower complexity. Thus,
the computational complexity of Aquaman is affordable and
less of a concern. The runtime overhead of Aquaman involves
communications (for collecting device features) and QoE
prediction. While the communications overheads are addressed
by some bandit studies considering rate-limited channels [28],
they are not a major concern for our problem. This is because
we only need to collect device features (e.g., CPU speed,
number of cores, RAM frequency and battery size) for each
incoming request. Compared to downloading the DNN model
itself which is typically in the order of megabytes or more,
transmitting the device features to Aquaman takes negligible
bandwidth. Additionally, upon receiving the device features,
running the QoE predictor only takes one forward inference,
which is in the order of milliseconds. Therefore, the total
runtime overhead is negligible for Aquaman.

V. EVALUATION METHODOLOGY

A. Experimental Setup

Experiment Platform. We set up our experiment platform
by building an image classification app for Android based on
the official example provided by Tensorflow Lite [14]. We
can modify the app by deploying different pre-trained DNN
models. We use Android Studio Profiler [29] to measure the
energy and latency performance of a DNN running on a mobile
device. For each DNN-device pair, we run more than 2,000
inferences to obtain average performance of energy consump-
tion, inference latency, and inference accuracy. Some examples
of performance profiling results for five DNN models and four
mobile devices are shown in Fig. 1.

Devices and DNN Models. To profile DNN model
runtime metrics and collect QoE data, we deploy six
DNN models on four different devices. The models
are: MobileNet V2 1.0 224 quant, Inception V3 quant, Mo-
bileNet V2 1.0 224 quant, MobileNet V1 0.75 192 quant,
Inception V4, and MobileNet V2 1.0 224. The devices are
Vankyo Matrixpad z1, Samsung Galaxy Tab A, Samsung
Galaxy Tab S5e, and Vivo V1838A.

QoE Predictor. Our QoE predictor consists of four fully-
connected layers. It takes features of DNN-device pair as input,
and outputs the predicted QoE. The input features include
device features (i.e., CPU speed, number of cores, RAM size,
RAM frequency and battery size) and DNN model features
(i.e., million MACs, million parameters, model size, number
of nodes and number of layers). After predicting the QoE,
the QoE UCB can be computed to select the DNN model

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

7

according to Eqn. 5. We train the QoE predictor for 100 epochs
for every 100 QoE feedback collected, and our learning rate
is set as 0.001.

Datasets. We conduct two types of experiments: experiment
on the actually collected user QoE data, and experiment on
our synthetic data. For our collected QoE dataset, we run
Aquaman for T=20000 rounds. In each round, one of four mo-
bile devices arrives randomly. More details of conducting our
user survey, and utilizing the survey results to build the training
dataset and gain QoE labels are introduced in Sections V-B
and VI-A, respectively. Furthermore, our methodology to
synthesize the dataset is presented in Section V-C.

B. User Study

As stated in Section II, we recruit 15 participants into our
survey to test six different DNN models on four different
mobile devices (i.e., a total of 24 DNN-device pairs for each
participant) and provide QoE feedback in the form of numeric
ratings in 1-10. Each participant is asked to use each of the
DNN models for a while and then provide a numerical rating
for its QoE with each device-model pair on a scale of 1-10.
The survey result is shown in Fig. 2.

C. Generation of Synthetic Data

Because of limited resources, it is practically impossible
for us to evaluate Aquaman on a large scale, which requires
interaction with many more mobile users. To circumvent this
hurdle, we resort to synthetic data generated as follows.

The idea for generating synthetic QoE values is to uti-
lize our user study to build a synthetic QoE generator that
outputs user’s average QoE given a DNN-device pair. This
synthetic QoE generator is unknown to Aquaman during the
evaluation. Specifically, we first build a synthetic performance
generator based on our profiling results, and then feed the
synthetic performance values to our synthetic QoE generator
for producing QoE. The reason we use this indirect approach
to generating synthetic QoE instead of directly utilizing DNN-
device features as input is that the QoE data we have is not
adequate. We consider three widely-considered performance
metrics — average energy consumption, inference latency, and
inference accuracy — in our synthetic data generation. That is,
we mainly consider that the users’ QoE depends on these three
runtime metrics of a DNN model on a device, which further
depend on features of the device-model pair. Thus, the QoE is
a function of the DNN and device features. While other factors
such as latency variability can affect a user’s QoE, they are
essentially captured by the noise term in our QoE function
in Eqn. (1). To build our synthetic performance generator,
we augment the energy/latency performance predictor used
the existing research [7], [13] by including device features as
additional input. Here, the device features include CPU speed,
number of cores, RAM size, RAM frequency and battery size,
while additional features such as GPU and operating system
version can also be added. To represent DNN models, one
can use high-level features such as million MACs, million pa-
rameters, model size, number of nodes and number of layers.
Alternatively, a finer-grained DNN embedding representation

on a block basis can also be used as input for performance
generator.

We use kernel ridge regression to fit the relationship
between DNN-device features and the resulting perfor-
mance metrics due to limited mobile devices we have.
Next, based on the energy/latency/accuracy values, we
build the synthetic QoE generator denoted by QoE =
mQoE(energy, latency, accuracy). Again, because of lim-
ited QoE data we have, we consider regression methods
to approximate QoE = mQoE(energy, latency, accuracy):
linear regression, and kernel ridge regression with RBF and
Laplacian kernels. Fig. 4 shows the average QoE fitting results,
along with importance of different performance metrics. We
see that Laplacian kernel ridge regression can almost fully fit
into our limited average QoE data, whereas linear regression
performs poorly (which also implies that the existing DNN
design maximizing linear combination of accuracy, energy
and latency [7], [13] may not lead to optimal QoE). We use
permutation importance (a.k.a. mean decrease accuracy) as the
indicator of feature importance [30], [31]. Fig. 4(d) shows
that different regression methods impose different feature
importance, but all the three methods gives the top priority
to the latency metric feature.

Finally, we note that Aquaman is oblivious of the QoE
generator we use; instead, it tries to learn it online (and learn
the true user QoE if deployed in the real world).

D. Baseline Approaches

We consider the following representative baselines.
• Static: It selects a single DNN model regardless of the

actual mobile devices. The single DNN model is chosen such
that the average QoE of all the users is maximized. The
assumption is that Static knows a priori which model will
result in the maximum average QoE of all the users.
• Oracle: The oracle is assumed to know the best DNN that

results in the highest expected QoE for each mobile device.
In reality, there does not exist such an oracle, and no practical
algorithms can outperform the oracle in terms of the QoE for
mobile inference.

In principle, the existing device-aware DNN optimiza-
tion/selection approaches [5], [7], [8], [10], [12], [13], [17]–
[21], [32] could also result in the QoE-optimal DNN model,
had the exact QoE function been known for each mobile device
in advance. Nonetheless, this is equivalent to assuming the
Oracle baseline. On the other hand, if we fix a proxy objective
function in the DNN selection process to select a single DNN,
it can be even worse than Static, since the proxy objective
function may not reflect the actual QoE whereas Static directly
optimize for the average QoE. For these reasons, we do
not compare Aquaman against the existing approaches that
focuses on optimizing (proxy) objective functions.

VI. EVALUATION RESULTS

We conduct two types of experiments: on the actually col-
lected user QoE, and on our synthetic dataset (i.e., simulation).

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

8

0.0 0.2 0.4 0.6 0.8 1.0
Ground-truth QoE

0.0
0.2
0.4
0.6
0.8
1.0

Fi
tt

ed
 Q

oE

(a) Linear regression

0.0 0.2 0.4 0.6 0.8 1.0
Ground-truth QoE

0.0
0.2
0.4
0.6
0.8
1.0

Fi
tt

ed
 Q

oE

(b) Kernel ridge regression (RBF)

0.0 0.2 0.4 0.6 0.8 1.0
Ground-truth QoE

0.0
0.2
0.4
0.6
0.8
1.0

Fi
tt

ed
 Q

oE

(c) Kernel ridge regression (Laplacian)

Energy Latency Accuracy
Metric

0.0

0.6

1.2

Im
po

rt
an

ce

Linear
RBF
Laplacian

(d) Metric importance

Fig. 4: (a)(b)(c) Average normalized QoE fitting results for three regression methods, compared to the average QoE of 15
users. RBF: α = 0.001 and γ = 4. Laplacian: α = 0.01 and γ = 1. (d) Importance of different performance metrics.

0 4000 8000 12000 16000 20000
Round

0.6

0.7

0.8

0.9

Ti
m

e-
av

er
ag

e
Q

oE

Aquaman
Static
Oracle

(a) Time-average QoE

Static Aquaman Oracle

0
4000
8000

12000
16000
20000

Se
le

ct
io

n
C

ou
nt

I3Q
M2Q
M1Q
I4F
M2F

(b) Selection count of each DNN.

0 50 100 150 200
Training Round

0.000

0.004

0.008

0.012

La
st

-e
po

ch
 L

os
s

(c) Training Loss

Fig. 5: Experiment on collected data. Feedback delay is uniformly distributed on 1-100 rounds.

0 4000 8000 12000 16000 20000
Round

0.65

0.75

0.85

Ti
m

e-
av

er
ag

e
Q

oE

Aquaman-100
Aquaman-250
Aquaman-500

Static
Oracle

(a) Time-average QoE

0.5 0.6 0.7 0.8 0.9 1.0
QoE

0.0
0.2
0.4
0.6
0.8
1.0

C
D
F

Aquaman-100
Aquaman-250
Aquaman-500
Static
Oracle

(b) QoE CDF

0 50 100 150 200
Training Round

0.000

0.002

0.004

0.006

La
st

-e
po

ch
 L

os
s

Aquaman-100
Aquaman-250
Aquaman-500

(c) Training loss

Fig. 6: Experiment on collected data. “Aquaman-x” means the QoE feedback delay is uniformly distributed between 1 and x.

0 4000 8000 12000 16000 20000
Round

0.4

0.5

0.6

0.7

0.8

Ti
m

e-
av

er
ag

e
Q

oE

Aquaman-100
Aquaman-250
Aquaman-500

Aquaman-1000
Static
Oracle

(a) Time-average QoE

0 4000 8000 12000 16000 20000
Round

0.0
0.2
0.4
0.6
0.8
1.0

To
p-

3
H

it
 R

at
io

Aquaman-100
Aquaman-250
Aquaman-500

Aquaman-1000
Static

(b) Ratio of selecting top-3 DNNs.

0.4 0.6 0.8 1.0
QoE

0.0
0.2
0.4
0.6
0.8
1.0

C
D
F

Aquaman-100
Aquaman-250
Aquaman-500
Aquaman-1000
Static
Oracle

(c) QoE CDF

0 50 100 150 200
Training Round

0.000

0.001

0.002

La
st

-e
po

ch
 L

os
s

Aquaman-100
Aquaman-250
Aquaman-500
Aquaman-1000

(d) Training Loss

Fig. 7: Simulation on synthetic data. “Aquaman-x” means the QoE feedback delay is uniformly distributed between 1 and x.

A. Experiment on the User Study

We first evaluate Aquaman using the collected QoE data
from our user study. While users provide QoE ratings to six
DNN models in our survey, we exclude the NASNet large
model from consideration as it is overly slow and has the
worst QoE on three of the four devices in our experiment.
Thus, for each device, Aquaman selects one out of five pre-
trained DNN models. Moreover, our collected user QoE on
each DNN-device pair is only limited to 15 samples. Thus,
instead of using average QoE of 15 users as one sample, we
utilize bootstrapping to randomly pick 8 samples out of 15
QoE data each time and use their average value as one ground-
truth QoE sample for training. We run Aquaman for T=20000
rounds. For each round (with a given device), the QoE for each
of the five DNN-device pairs is calculated as the average of

eight random samples out of 15 QoE data collected by our
user study. The training details and other settings are reported
in Section V.

We present the results in Figs. 5 and 6(a), where Fig. 5
is for the case when users’ QoE feedback delay is distributed
uniformly between 1 and 100, while Fig. 6(a) shows more re-
sults on different feedback delays. While the absolute value of
QoE improvement is subjective, we see clearly that Aquaman
gradually improves the time-average QoE, approaching Oracle
and outperforming the Static baseline, because our QoE pre-
dictor becomes more accurately with more feedback collected
and online update. The count breakdown of every single
DNN model in Fig. 5(b) shows that the selection count of
each candidate DNN model should be similar to the Oracle,
and largely different from the Static since it selects merely

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

9

one model for all the devices arriving. As for the training
loss of our QoE predictor, we show in Fig. 5(c) the last-
epoch loss. The total training rounds is about 200 because
we train the neural network whenever the number of collected
QoE feedback reaches 100 and the total learning rounds is
T=20000. Additionally, in Figs. 5(a), 6(a) and 6(b), the time-
average QoE is calculated in terms of all devices. As Aquaman
takes the device features into account when selecting DNN
models, it also achieves higher QoE than Static for each
individual type of device.

To see the impact of QoE feedback delays on Aquaman,
we show in Fig. 6 the time-average QoE, CDF of QoE,
and training loss of Aquaman under uniformly distributed
delays of 1-100, 1-250 and 1-500, respectively . It shows that
Aquaman is still better than Static.

B. Simulation on Synthetic Data

1) Synthesising DNNs and Mobile Devices: For synthetic
evaluation, each DNN is represented by a feature vector, and
so is each mobile device. Besides the five DNN models used
in Section VI-A, we synthesize another 10 DNN models. We
still run Aquaman for T=20000 rounds, in each of which we
synthesize a device feature vector to denote a group of mobile
devices. Combining the device feature and with DNN feature
as input, our synthetic QoE generator produces the average
QoE value. To mimic real cases, we will also add noise to the
synthetic QoE value.

2) Results: We show the results in Fig. 7, by considering
that the synthetic QoE is generated using the RBF kernel
ridge regression (Section V-C). The time-average QoE and
QoE CDF achieved by Aquaman gradually approaches those
of Oracle with an increasingly smaller gap. The reason is that
by exploiting the history information, Aquaman can learn the
QoE predictor neural network parameter θt with an improved
accuracy over time, which is helpful for future DNN model
selection. On the contrary, Static constantly yields the lowest
QoE, because it does not adapt its DNN model selection to an
incoming mobile device’s feature. We also show in Fig. 7(b)
the percentage of time when the selected DNN is among the
top-3 models in terms of the average QoE. It can be observed
that Aquaman is much more likely to select a top-3 DNN
model than Static. Note that Aquaman keeps on exploring
in order to avoid being trapped in local optimum. Hence, the
top-3 DNN hit ratio is increasing by using Aquaman but not
100%. Like in Section VI-A, we see that Aquaman is not
sensitive to the QoE feedback delays.

We also consider the case when the synthetic QoE values
are generated using the Laplacian kernel and a random mixture
of two different kernels (Section V-C). The results are similar:
because of the strong prediction power of neural networks,
Aquaman learn the average QoE for a DNN-device pair over
time and hence gradually improve the average QoE for mobile
inference. Thus, we omit the results for space limitation.

C. Complexity Analysis
The QoE predictor consists of four fully-connected layers

in our experiment, and is updated for 100 epochs whenever a

batch of 100 QoE feedback values are collected. The training
is very fast and each takes less than 10 seconds on Google
Colab platform configured with a regular CPU. For online in-
ference, given each incoming device, we only need to run one
forward inference, which is in the order of milliseconds. Even
considering large-scale deployment, due to the smaller input
features and much less frequent model updating, Aquaman is
still much less computationally demanding than industry-level
recommendation systems that are frequently updated and serve
tens of thousands of users every minute.

VII. RELATED WORK

To turn DNN-based mobile inference into reality, it is
crucial to reduce the size of otherwise overly large and
computationally prohibitive DNN models by using efficient
model compression techniques, such as pruning and quan-
tization [33], matrix factorization [34], compact convolution
filters [35], and knowledge distillation [36], among many
others. Furthermore, automated neural architecture search is
also necessary to identify an appropriate network architecture
for mobile inference [7]. The survey [37] comprehensively
covers accelerating the training process for large machine
learning models in IoT. These studies are complementary to
Aquaman: the lightweight DNN models produced by these
studies can be included into the DNN pool and selected by
Aquaman for QoE-optimal mobile inference.

For device-aware DNN optimization, latency/energy predic-
tors have been utilized for optimization speed-up [7], [38].
Nonetheless, these average latency/energy performance predic-
tors do not incorporate device features. As a result, for every
new device, new latency/energy predictors need to be built,
which can be time-consuming. More crucially, these studies
as well as other relevant approaches [12] focus on optimizing
an objective function, which may not improve the users’ actual
QoE. By contrast, we advocate a scalable user-centric DNN
selection approach which keeps users into a closed loop and
leverages their QoE feedback to optimize DNN selections.

There have also been studies on runtime DNN model selec-
tion/adaptation in view of time-varying environmental/input
conditions [39], [40]. While they focus on dynamic selec-
tion/adaptation of already-deployed DNN models on mobile
devices, Aquaman is different and focuses on DNN model
selection during the deployment stage. Moreover, [41] studies
model selection and switching between a subset of the machine
learning models from a superset of models for Industrial IoT.
The goal is to maximize the level of model trustworthiness,
which is orthogonal to our study.

Bandit is a classic online learning setting [24], [42]–[44],
and our work extends the neural bandit [15] by considering
delayed feedback. A recent position paper [45] briefly ad-
dresses DNN selection for mobile inference using a linear
function as a toy example. By contrast, we propose a provably-
efficient online algorithm, leverage a neural network-based
QoE predictor with strong representation power, and conduct
both experiments and synthetic simulations for evaluation. In
a different context, [46] proposes to build a neural network to
predict user QoE for video applications, whereas we not only

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

10

predict QoE but also propose a bandit algorithm to balance
exploration and exploitation.

VIII. CONCLUSION

In this paper, we propose an automated and user-centric
DNN selection engine, called Aquaman, which leverages QoE
feedback to optimize DNN selection decisions. Aquaman con-
sists of two integrated parts: QoE prediction and DNN model
selection. To balance exploitation and exploration, Aquaman
selects DNN models for diverse devices based on the QoE
UCB, resulting in provably-efficient QoE performance com-
pared to the oracle. Finally, we evaluate Aquaman on a user
study as well as synthetic simulations. We demonstrate the
effectiveness of Aquaman by showing that it outperforms the
static DNN selection approach while being close to the oracle
in terms of users’ QoE.

ACKNOWLEDGEMENT

Bingqian Lu and Shaolei Ren were supported in part by
the U.S. NSF under grants CNS-1910208 and CNS-2007115.
Jie Xu was supported in part by the U.S. NSF under grants
CNS-2006630 and CNS-2044991.

APPENDIX
PROOF OF THEOREM IV.1

Assumptions. Without loss of generality, we assume that
each hidden layer has the same width m, and the parameter
matrix of layer l at time t is Wl,t, then the dimension of Wl,t

is W1,t ∈ Rd×m,Wl,t ∈ Rm×m for l = 2, ..., L − 1, and
WL,t ∈ Rm×1. Assume that the width m can be sufficiently
large. In the neural network, each hidden layer is followed
by activation operations σ(·), such as Rectified Linear Unit
(ReLU) function defined as σ(x) = max(0, x). Thus the
predicted QoE of arm a in round t is

f(xt,a;θt) =
√
mσ(σ(σ(σ(xt,aWt,1)Wt,2) · ··)Wt,L−1)Wt,L.

(7)
We vectorize each of Wl,t and get vector W

′

l,t ∈ Rk×1, where
k = m × d if l = 1, k = m × m if l = 2, ..., L − 1, and
k = m if l = L. Thus neural network parameter at round t in
Algorithm 2 can be written as θt = [W

′

1,t;W
′

2,t; ...;W
′

L,t] ∈
R(m×d+m×m+...+m×m+m)×1.

The same initialization method of the neural network as
in [15] is adopted. Wl,0 is initialized as

(
W 0
0 W

)
for

0 ≤ l ≤ L− 1 with each entry of W sampled from Gaussian
distribution N (0, 4/m). WL,0 is initialized as

[
wT ,−wT

]
with each entry of w sampled from Gaussian distribution
N (0, 2/m). And thus the initialized neural network param-
eters θ0 is acquired.

The neural network is trained by gradient descent with loss
function

L(θt) =
1

2

∑
s∈Tt

(f(xs,as ;θt)− ys,as)2 +
1

2
mλ||θt − θ0||22,

(8)

where θ0 is the initialized neural network parameters and m
is the width of the neural network. UCB for each arm pt,a in
algorithm 1 can be computed as:

pt,a = f(xt,a,θt) + γt−1‖g(xt,a,θt)/
√
m‖Z−1

t
(9)

where g(xt,a,θt) is gradient of the neural network of the
QoE predictor, Zt =

∑
s∈Tt g(xs,a;θt)

Tg(xs,a;θt)/m, and
the parameter γt is set in the same way as the exploration rate
in Algorithm 1 of [15] to get a provable sub-linear regret.

Proof. Since the maximum feedback delay is dm, we
consider the cumulative regret of the first dm rounds and the
cumulative regret from dm + 1 to T rounds separately. That
means the regret can be written as:

RT =

T∑
t=1

[h(xt,a∗t)− h(xt,at)]

=

dm∑
t=1

[h(xt,a∗t)− h(xt,at)] +

T∑
t=dm+1

[h(xt,a∗t)− h(xt,at)]

(10)
Since we assume that QoE of any model satisfies
0 ≤ h(xt,a) ≤ 1, the starting regret

∑dm
t=1[h(xt,a∗t) −

h(xt,at)] ≤ dm. Denote the continuing regret as RcT =∑T
t=dm+1[h(xt,a∗t) − h(xt,at)]. According to Lemma 5.3 in

[15], with probability 1− δ, delta ∈ (0, 1), we have

RcT ≤ 2

T∑
t=dm+1

γt min
{∥∥g(xt,at ;θt)/

√
m
∥∥
Z−1

t
, 1
}

+ C1

(
Sm−

1
6

√
logmT

7
6λ−

1
6L

7
2 +m−

1
6

√
logmT

5
3λ−

2
3L3

)
,

(11)
where C1 is a constant and S is a constant about the neural
tangent kernel matrix defined in Theorem 4.5 of [15]. So the
challenge is to bound

∑T
t=dm+1 ‖g(xt,a; θt)/

√
m‖Z−1

t
where

Zt = λI +
∑
s∈Tt g (xs,as , θs+ds)gT (xs,as , θs+ds) /m in

the case of delayed feedback. For compactness, we denote
gradients as gt = g(xt,at ; θt) and delayed gradients as
ḡt = g(xt,at ; θt+dt).

Devide the T − dm rounds into dm groups, each with I =
T−dm
dm

elements. Thus, the nth round set, n ∈ Z+, n ∈ [1, dm],
is Ωn = {dm + n, 2dm + n, · · · , Idm + n}. Correspondingly,
the delayed gradients are also devided into dm groups, each
with I elements. In this way, the nth context group is{
gdm+n,g2dm+n, · · · ,gIdm+n

}
. For each group n, define I

matrices as

V ni = λI +

i∑
s=1

ḡsdm+nḡ
T
sdm+n/m,

i, n ∈ Z+, n ∈ [1, dm], i ∈ [1, I].

(12)

By directly using Lemma 11 in [47], there exists a constant
C2 such that

I∑
i=1

min

{
‖ḡidm+n/

√
m‖2

(V n
i−1)

−1 , 1

}
≤ 2 log

det (V nI)

det (λI)

≤ 2d̃ log(1 + IK/λ) + 2 + C2m
−1/6

√
logmL4T 5/3λ−1/6

(13)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

11

where K is the number of candidate arms, the second in-
equality is from Lemma 5.4 in [15] and d̃ is the effective
dimension of the neural tangent kernel matrix which is defined
in Definition 4.3 of [15].

Since the feedback delay is not larger than dm, we have ∀t >
dm, Tt−dm ⊆ Tt. Let Ωni = {dm + n, 2dm + n, · · · , idm + n}
for i, n ∈ Z+, i ≤ I . If t = idm+n, then Ωni−1 ⊂ Tt−dm ⊆ Tt.
Since Zt and V ni are both positive-definite matrix, for t =
idm + n, i ≤ I , we have

‖ḡt/
√
m‖Z−1

t
= ḡTt

(
λI +

∑
s∈Tt

ḡsḡ
T
s /m

)−1

ḡt/m

≤ ḡTt

λI +
∑

s∈Ωn
i−1

ḡsḡ
T
s /m

−1

ḡt/m

= ‖ḡt/
√
m‖(V n

i−1)
−1

(14)

Therefore, we have the following

T∑
t=dm+1

||ḡt/
√
m||2

Z−1
t

=

dm∑
n=1

I∑
i=1

‖ḡidm+n/
√
m‖Z−1

idm+n

≤
dm∑
n=1

I∑
i=1

‖ḡidm+n/
√
m‖(V n

i−1)
−1 .

(15)

By Eqn. (13), we have

T∑
t=dm+1

min
{
||ḡt/
√
m||2

Z−1
t
, 1
}

≤
dm∑
n=1

I∑
i=1

min
{
‖ḡidm+n/

√
m‖(V n

i−1)
−1

}
≤dm

(
2d̃ log(1 + IK/λ) + 2 + C2m

−1/6
√

logmL4I5/3λ−1/6

)
Next, since ‖gt‖Z−1

t
≤ ‖ḡt‖Z−1

t
+ ‖gt − ḡt‖Z−1

t
according

to triangle ineuqality, it is necessary to bound ‖gt − ḡt‖Z−1
t

.
By triangle inequality, with probability at least 1− δ, there

exists a constant C3 such that

‖gt − ḡt‖2 ≤ ‖gt − g (xt,at , θ0)‖2 + ‖ḡt − g (xt,at , θ0)‖2
≤ C3

√
logm

(
τ

1/3
1 + τ

1/3
2

)
L3 ‖g (xt,at , θ0)‖2

where τ1 = 2
√
t/(mλ) and τ2 = 2

√
(t+ dt)/(mλ), and the

second inequality holds due to Lemma B.5 in [15]. Further,
since the maximum eigenvalue of Z−1

t is λ−1, we have
probability at least 1− δ,∥∥(gt − ḡt) /

√
m
∥∥
Z−1

t

≤λ−1/2
∥∥(gt − ḡt) /

√
m
∥∥

2

≤λ−1/2C2

√
logm

(
τ

1/3
2

)
L7/2

≤2C3m
−1/6

√
logm (t+ dm)

1/6
λ−2/3L7/2,

(16)

where the second inequality comes from Eqn. (16), Lemma
B.6 in [15] and the fact that τ2 ≥ τ1. Now, with probability
at least 1− δ, we have

T∑
t=dm+1

min
{∥∥gt/√m∥∥2

Z−1
t
, 1
}

≤
T∑

t=dm+1

[
min

{∥∥ḡt/√m∥∥2

Z−1
t
, 1
}

+
∥∥(gt − ḡt) /

√
m
∥∥2

Z−1
t

]
≤dm

(
2d̃ log(1 + IK/λ) + 2 + C2m

−1/6
√

logmL4I5/3λ−1/6
)

+ 2C3m
−1/6

√
logm (T + dm)

7/6
λ−2/3L7/2.

By Eqn. (11), we have with probability at least 1− δ,

RcT ≤ 2
√
TγT

√√√√ T∑
t=dm+1

min
{∥∥g(xt,at ;θt)/

√
m
∥∥2

Z−1
t
, 1
}

+ C1

(
Sm−

1
6

√
logmT

7
6λ−

1
6L

7
2 +m−

1
6

√
logmT

5
3λ−

2
3L3

)
≤ 2γT

√
Tdm

(
2d̃ log(1 + IK/λ) + 2 + U

)
+ 2γT

√
2TC3m−1/6

√
logm (T + dm)

7/6
λ−2/3L7/2

+ C1

(
Sm−

1
6

√
logmT

7
6λ−

1
6L

7
2 +m−

1
6

√
logmT

5
3λ−

2
3L3

)
≤ 2γT

√
Tdm

(
2d̃ log(1 + IK/λ) + 3

)
+ 1,

where U = C2m
−1/6
√

logmL4I5/3λ−1/6 and the third equa-
tion holds with a sufficiently large m. Recalling I = bT/dmc,
we have with probability at least 1− δ,

RT =

dm∑
t=1

[h(xt,a∗t)− h(xt,at)] +RcT

≤ 2γT

√
Tdm

(
2d̃ log(1 + bT/dmcK/λ) + 3

)
+ 2dm.

(17)

By Lemma 5.4 in [15], there exists a constant C4 such that

γT ≤ C4ν
√
d̃ log (1 + TK/λ) + 2− 2 log δ where ν is the

parameter of sub-Gaussian noise. �

REFERENCES

[1] L. Xiao, Y. Ding, D. Jiang, J. Huang, D. Wang, J. Li, and H. V. Poor, “A
reinforcement learning and blockchain-based trust mechanism for edge
networks,” IEEE Transactions on Communications, 2020.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, Oct 2016.

[3] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia, T. Leyvand, H. Lu, Y. Lu, L. Qiao,
B. Reagen, J. Spisak, F. Sun, A. Tulloch, P. Vajda, X. Wang, Y. Wang,
B. Wasti, Y. Wu, R. Xian, S. Yoo, and P. Zhang, “Machine learning at
Facebook: Understanding inference at the edge,” in HPCA, Washington,
DC, USA, February 2019.

[4] H. Cai, C. Gan, and S. Han, “Once for all: Train one network and
specialize it for efficient deployment,” in ICLR, New Orleans, LA, USA,
May 2019.

[5] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “MnasNet: Platform-aware neural architecture search for
mobile,” in CVPR, Long Beach, CA, USA, June 2019.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

12

[6] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: Efficient inference engine on compressed deep neural
network,” ACM SIGARCH Computer Architecture News, 2016.

[7] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, H. Wang, Y. Lin, and S. Han,
“APQ: Joint search for network architecture, pruning and quantization
policy,” in CVPR, Virtually, June 2020.

[8] N. Liu, X. Ma, Z. Xu, Y. Wang, J. Tang, and J. Ye, “AutoCompress: An
automatic dnn structured pruning framework for ultra-high compression
rates,” in AAAI, New York, New York, USA., February 2020.

[9] W. Liu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and B. Ren,
“Patdnn: Achieving real-time DNN execution on mobile devices with
pattern-based weight pruning,” in ASPLOS, Virtually, March 2020.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” in ICLR, San Juan, Puerto Rico, May 2016.

[11] Y. Liu, Y. Zhu, and J. James, “Resource-constrained federated learning
with heterogeneous data: Formulation and analysis,” IEEE Transactions
on Network Science and Engineering, 2021.

[12] S. Liu, Y. Lin, Z. Zhou, K. Nan, H. Liu, and J. Du, “On-demand deep
model compression for mobile devices: A usage-driven model selection
framework,” in MobiSys, Munich, Germany, June 2018.

[13] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan, Y. Hu,
Y. Wu, Y. Jia et al., “ChamNet: Towards efficient network design through
platform-aware model adaptation,” in CVPR, Long Beach, CA, USA,
June 2019.

[14] Google, “Tensorflow lite image classification app,” https://www.
tensorflow.org/lite/models/image classification/overview.

[15] D. Zhou, L. Li, and Q. Gu, “Neural contextual bandits with upper
confidence bound-based exploration,” in ICML, Virtually, July 2020.

[16] Google, “Tensorflow lite image classification hosted models,” https://
www.tensorflow.org/lite/guide/hosted models.

[17] H. Cai, L. Zhu, and S. Han, “ProxylessNas: Direct neural architecture
search on target task and hardware,” in ICLR, Long Beach, CA, USA,
June 2019.

[18] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang,
“Pconv: The missing but desirable sparsity in DNN weight pruning for
real-time execution on mobile device,” in AAAI, New York, New York,
USA, February 2020.

[19] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
learning for iot big data and streaming analytics: A survey,” IEEE
Communications Surveys Tutorials, vol. 20, no. 4, pp. 2923–2960,
Fourthquarter 2018.

[20] B. H. Ahn, P. Pilligundla, A. Yazdanbakhsh, and H. Esmaeilzadeh,
“Chameleon: Adaptive code optimization for expedited deep neural
network compilation,” in ICLR, Virtually, April 2020.

[21] Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu, “On neural architecture search
for resource-constrained hardware platforms,” in ICCAD, Westminster,
Colorado, USA, November 2019.

[22] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu,
“nn-meter: towards accurate latency prediction of deep-learning model
inference on diverse edge devices,” in MobiSys, Virtually, July 2021.

[23] S. Bubeck, N. Cesa-Bianchi et al., “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems,” Foundations and Trends®
in Machine Learning, vol. 5, no. 1, pp. 1–122, 2012.

[24] D. Bouneffouf and I. Rish, “A survey on practical applications of multi-
armed and contextual bandits,” in arXiv, 2019.

[25] J. Kirschner, I. Bogunovic, S. Jegelka, and A. Krause, “Distributionally
robust bayesian optimization,” in AISTATS, Virtually, September 2020.

[26] B. Lu, J. Yang, W. Jiang, Y. Shi, and S. Ren, “One proxy device
is enough for hardware-aware neural architecture search,” Proc. ACM
Meas. Anal. Comput. Syst., vol. 5, no. 3, dec 2021.

[27] A. Mukherjee, B. Liu, and N. Glance, “Spotting fake reviewer groups in
consumer reviews,” in WWW, New York, New York, USA, April 2012.

[28] F. Pase, D. Gunduz, and M. Zorzi, “Contextual multi-armed bandit with
communication constraints,” 2021.

[29] Google, “Android profiler,” https://developer.android.com/studio/profile/
android-profiler.

[30] ELI5, “Permutation importance,” https://eli5.readthedocs.io/en/latest/
blackbox/permutation importance.html.

[31] L. Breiman, “Random forests,” Machine learning, 2001.
[32] Y. Wang, “Towards ultra-efficient dnn inference acceleration on edge

devices for wellbeing applications,” in HealthDL, Toronto, Ontario,
Canada, June 2020.

[33] B. McDanel, S. Teerapittayanon, and H. Kung, “Embedded binarized
neural networks,” 2017. Available at: https://arxiv.org/abs/1709.02260.

[34] E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus,
“Exploiting linear structure within convolutional networks for efficient
evaluation,” in NeurIPS, Montreal, Quebec, Canada, December 2014.

[35] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017. Available at: https://
arxiv.org/abs/1704.04861.

[36] R. Sharma, S. Biookaghazadeh, B. Li, and M. Zhao, “Are existing
knowledge transfer techniques effective for deep learning with edge
devices?” in EDGE, San Francisco, CA, USA, July 2018.

[37] H. Wang, Z. Qu, Q. Zhou, H. Zhang, B. Luo, W. Xu, S. Guo, and R. Li,
“A comprehensive survey on training acceleration for large machine
learning models in iots,” IEEE Internet of Things Journal, 2021.

[38] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “NeuralPower:
Predict and deploy energy-efficient convolutional neural networks,” in
ACML, 2017.

[39] B. Taylor, V. S. Marco, W. Wolff, Y. Elkhatib, and Z. Wang, “Adaptive
deep learning model selection on embedded systems,” Philadelphia, PA,
USA, June 2018.

[40] S. S. Ogden and T. Guo, “Characterizing the deep neural networks
inference performance of mobile applications,” in arXiv, 2019, https:
//arxiv.org/abs/1909.04783.

[41] B. Qolomany, I. Mohammed, A. Al-Fuqaha, M. Guizani, and J. Qadir,
“Trust-based cloud machine learning model selection for industrial iot
and smart city services,” IEEE Internet of Things Journal, 2020.

[42] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework, results and applications,” in ICML, Atlanta, GA,
USA, June 2013.

[43] V. Saxena, J. Jaldén, J. E. Gonzalez, M. Bengtsson, H. Tullberg, and
I. Stoica, “Contextual multi-armed bandits for link adaptation in cellular
networks,” in Workshop on Network Meets AI & ML (NetAI), Beijing,
China, August 2019.

[44] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-bandit
approach to personalized news article recommendation,” in WWW,
Raleigh, NC, USA, April 2010.

[45] B. Lu, J. Yang, L. Y. Chen, and S. Ren, “Automating deep neural network
model selection for edge inference,” in CogMI, Los Angeles, California,
USA, December 2019.

[46] H. Zhang, L. Dong, G. Gao, H. Hu, Y. Wen, and K. Guan, “Deepqoe:
A multimodal learning framework for video quality of experience (qoe)
prediction,” IEEE Transactions on Multimedia, 2020.

[47] Y. Abbasi-yadkori, D. Pál, and C. Szepesvári, “Improved algorithms for
linear stochastic bandits,” in NIPS, Granada, Spain, December 2011.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3182728

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on September 27,2022 at 13:52:09 UTC from IEEE Xplore. Restrictions apply.

