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ABSTRACT

Rust is a general-purpose programming language that is both type-

and memory-safe. Rust does not use a garbage collector, but rather

achieves these properties through a sophisticated, but complex,

type system. Doing so makes Rust very efficient, but makes Rust

relatively hard to learn and use. We designed Bronze, an optional,

library-based garbage collector for Rust. To see whether Bronze

could make Rust more usable, we conducted a randomized con-

trolled trial with volunteers from a 633-person class, collecting data

from 428 students in total. We found that for a task that required

managing complex aliasing, Bronze users were more likely to com-

plete the task in the time available, and those who did so required

only about a third as much time (4 hours vs. 12 hours). We found

no significant difference in total time, even though Bronze users

re-did the task without Bronze afterward. Surveys indicated that

ownership, borrowing, and lifetimes were primary causes of the

challenges that users faced when using Rust.

CCS CONCEPTS

• Software and its engineering → General programming lan-

guages; • Human-centered computing→ Empirical studies

in HCI; • Social and professional topics→ Computing educa-

tion.
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1 INTRODUCTION

Rust is a general-purpose programming language that has an em-

phasis on performance while also being type-, memory-, and thread-

safe [28]. One reason for Rust’s efficiency is that it does not use
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garbage collection (GC). Instead, it imposes a compiler-enforced

discipline of ownership and lifetimes (based on linear logic [32] and

region-based memory management [14, 30], respectively) to ensure

that no object reference will be used after its referent is freed. This

discipline imposes restrictions on aliasing: an alias can only be

borrowed temporarily, and doing so limits mutation (which also

helps avoid data races). For example:

fn foo() {

let s1 = String ::from("hello");

let len = calc_len (&s1); //lends reference

println !("the length of '{}' is {}",s1,len);

// s1 lifetime ends; dropped

}

fn calc_len(s: &String) -> usize {

// s.push_str ("hi"); <-- not allowed: s immutable

s.len() // s lifetime ends; but not its referent 's

}

Here, function foo defines a String owned by variable s1. It then

calls calc_len to compute its length by lending a reference &s1 to

the called function, which may only read it, not write it. When

the function returns, the borrowed reference’s lifetime ends so it is

dropped, which restores full ownership to s1. When function foo

completes, s1’s lifetime ends so it is dropped and the data is freed.

1.1 Rust is Hard to Learn and Use

Despite its performance and safety advantages and a loyal core of

devotees [26], Rust remains relatively unpopular; the TiOBE index

ranks Rust at #27 as of July 2021 [7], and the IEEE Spectrum ranks

Rust at #20 [11]. In the interest of bringing the benefits of the design

ideas behind Rust to more software projects, it is worth considering

why Rust has seen limited adoption.

A partial explanation resides in the difficulty of learning Rust.

Fulton et al. [12] interviewed and surveyed software practitioners

who adopted or attempted to adopt Rust, finding that 59% of survey

respondents felt that Rust was harder to learn than other languages.

Seven of the 16 interviewees reported that the biggest challenges

in learning Rust were the borrow checker—the part of the compiler

that enforces the ownership/borrowing discipline—and the overall

change of programming paradigm to one that requires that the

compiler be able to reason about lifetimes. Ashley Williams, the

interim executive director of the Rust Foundation, agreed: “[Refer-

ences and borrowing] is notoriously something that people find to

be the most difficult part of learning Rust” [34]. The difficulty of

learning Rust has implications on adoption in software teams: 42%

of respondents in Fulton et al.’s survey were concerned about their

ability to hire Rust developers, since it would take a long time for

new team members to become productive.
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In addition to being challenging to learn, Rust can be difficult to

use. Programming with DAGs and cyclic data structures is straight-

forward in most popular languages, but such structures do not

conform to Rust’s aliasing restrictions. Rust provides safe building

blocks to work around these restrictions. The structure Rc<T> is for

references to immutable T objects with manually managed reference

counts (confirmed safe by the borrow checker), and RefCell<T> is a

container for a mutable T object with dynamically tracked borrow-

ing. Together (e.g., Rc<RefCell<T>>) these can implement a discipline

of interior mutability that supports rich aliasing patterns [19], but

in a manner far more complex than most programmers are used

to. As such, they may be tempted to use Rust’s unsafe feature to

sacrifice safety for ease of use.

Easing Use with Garbage Collection? Rust’s restrictions are due

to the compiler’s inability to verify the safe use of richer, aliased

data structures. These restrictions would not be needed if Rust

used GC. As such, an extension to Rust that included GC could

enable programmers to be productive sooner, without having to

learn the trickier parts of the language right away. By making the

GC optional, programmers could still learn and use the harder parts

of Rust later, and convert their GC-using code to traditional Rust

as needed to improve performance.

Moreover, bymaking a Rust GC library-based, it could even prove

useful to experts. While 63% of the respondents in the survey by

Fulton et al. [12] cited lack of GC as a reason to use Rust, 87% cited

high performance as a reason—between the two is a category of

user open to the idea that high performance and garbage collection

are not always at odds. Most code is not performance-critical: a

guideline is that 90% of the time is spent executing only 10% of the

code [2]. Thus GC- and manual-based memory management could

coexist. Experiments in Cyclone [14], a C-like systems program-

ming language, found nearly no performance cost of using GCwhen

it was applied judiciously alongside safe, manual techniques [27].

1.2 Bronze: A Library-Based GC for Rust

This paper presents Bronze,1 a new Rust library that provides a

clean garbage collection interface, and an experiment evaluating the

possible benefits of using Bronze while learning Rust. By creating

a library in which GC is optional, we were able to study the effects

of GC without including the rest of the language design as an

independent variable in the study.

Bronze provides a structure, GcRef<T>, that implements a garbage-

collected reference to a mutable object; such references are not

subject to Rust’s aliasing restrictions. Bronze uses LLVM stack maps

to automatically find roots, obviating the need for programmers

to specify tracing roots manually, as is necessary in some existing

Rust GCs [4, 18].

We deployed Bronze in an IRB-approved, randomized, controlled

experiment in a sophomore-level programming languages course.

Because the course was required for graduation at a university with

a large computer science enrollment, we were able to recruit from

a population of 633 students who were enrolled in the course. All

students carried out a multi-part Rust programming assignment,

but those who agreed to participate in the research were randomly

1So named for bronze’s corrosion resistance.

Topic Traditional task Bronze task

Basics BasicsnoGC BasicsnoGC

Ownership, lifetimes OwnershipnoGC OwnershipGC

Aliased, mutable data AliasingnoGC AliasingGC

Aliased, mutable data (none) AliasingnoGC

Table 1: Tasks in each condition. Subscripts indicate versions

of tasks adapted to use GC, or not. Bronze participants com-

pleted AliasingnoGC after completing AliasingGC.

assigned to condition Bronze or Traditional; the former group used

Bronze in the assignment while the latter group did not. Ultimately,

333 students were part of the random assignment, and 428 students

participated in the study in some way.

The experiment design is shown in Table 1; the tasks are de-

scribed in detail in section 3.1. In the assignment, students were

given functions and declarations that needed to be completed;

Bronze participants were given versions of the interfaces that were

structurally similar but which had been adapted to use GC. The

assignment parts were cumulative, and the final step for Bronze

participants was to redo their previous implementation without

using GC, ensuring all participants learned how to use traditional

Rust. We provided students with unit tests (including source code),

and we assigned grades according to which of the unit tests passed.

We found, after conducting the experiment, that Bronze’s inter-

face required small changes to ensure soundness. Because of the

small size of the required changes, which are described in more

detail in section 4, we believe that our results apply to the revised

version of Bronze as well.

Study Results. At the conclusion of the study we carried out both

quantitative and qualitative analysis of measured data (e.g., project

score) and survey responses. Our large sample enabled us to re-

serve 10% of the participants’ data (with their survey responses) for

exploratory analysis. This allowed us to explore which hypothe-

ses might be worth testing while preserving soundness, since the

results in section 5 are based on the remaining 90% of the data.

We did not observe a difference between conditions in comple-

tion rates (fraction of students scoring 100%) or in times complet-

ing Ownership. However, students who used Bronze were more

likely to complete their aliasing task (AliasingGC) than Traditional

students were to complete theirs (AliasingnoGC), and did so sig-

nificantly faster, spending a median of 4 hours instead of 12 hours.

The additional time spent by Bronze students doing the aliasing

task again, this time without GC (AliasingnoGC) resulted in no sig-

nificant difference in total time spent on the project. We conclude

that for newcomers to Rust, if the goal is simply to accomplish a

programming task, garbage collection may present a significant

benefit for productivity. Further, there may be enough advantage to

using garbage collection while learning Rust to compensate for the

additional time required to learn, apply, and switch to traditional

Rust memory management approaches.

Survey results confirmed past reports [12, 34] that ownership

and borrowing are significant programming challenges. Partici-

pants were much more likely to believe that GC makes writing
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programs easier after completing the experiment than they were

before the experiment. Bronze participants were more likely to

believe that GC made writing programs easier after completing the

whole assignment than they did at the beginning, and 64 of the 89

Bronze participants (72%) who responded to the question strongly

agreed at the end that using GC makes writing programs easier.

Only 3 (3%) strongly disagreed. Interestingly, although participants

reported that GC made programming easier, participants who used

GC did not report liking Rust significantly more than participants

who did not. We observed a stronger negative correlation between

liking Rust and stress than between liking Rust and time spent

relative to participants’ expectations.

1.3 Implications

Software engineers should be aware of a possible productivity bene-

fit of garbage collectors relative to using Rust’s aliasing restrictions;

it may be better to re-architect a system, use a garbage collection li-

brary, or use a garbage-collected language if the architecture cannot

be changed. If engineers use a library-based GC with Rust and need

to remove it to improve performance, using GC saves enough time

that programmers can switch away from GC without a significant

loss in productivity.

That positive feelings about Rust were more strongly correlated

with frustration and stress than with time spent on the assignment

suggests that language designers whowant to promote adoption (by

making languages programmers like) should consider focusing on

how to reduce stress, such as by making progress more predictable,

rather than how to (only) maximize programmer productivity.

In survey responses, participants reported extreme difficultywith

references, lifetimes, and ownership. Participants said examples and

live coding demonstrations helped them learn these concepts most

effectively. These responses have implications for pedagogy: we

hypothesize that using examples and live coding demonstrations

is more effective to explain these challenging Rust concepts than

traditional slide-based explanations.

1.4 Contributions

Key contributions of this paper include:

(1) The design and prototype implementation of Bronze, a GC

for Rust that is simpler to use than prior Rust GCs.

(2) A randomized controlled trial of Bronze, in which we found

that Bronze can enable more people to complete tasks within

time limits and, among those who finished, significantly re-

duce time required. We also collected qualitative data, con-

firming that ownership, lifetimes, and references are partic-

ularly challenging for new Rust programmers.

2 BRONZE: DESIGN AND IMPLEMENTATION

Bronze introduces GcRef<T>, which represents a reference to a value

of type T that exists in a garbage-collected portion of the heap.

GcRef<T> implements the Deref trait, so the * operator can be used

to obtain a reference to the underlying value. If one has a mutable

GcRef<T>, the reference can be used to mutate the value. GcRef::new(v)

moves value v into the garbage-collected portion of the heap and

generates a GcRef pointing to it.

Rust permits only one mutable reference to a value at a time. For

greater flexibility, (standard) Rust supports interior mutability of an

object through an immutable reference to it [19]. The programmer

may borrow a special reference to the value that permits muta-

tion, and dynamic checks ensure that only one such reference can

exist at a time, enabling a safe relaxation of compile-time checks.

With Bronze, mutation is permitted through all references to each

garbage-collected object, with no extra effort. For example, Figure 1

shows how GcRef simplifies code when there are multiple muta-

ble aliases. Bronze does not guarantee thread safety; as in other

garbage-collected languages, it is the programmer’s responsibility

to ensure safety.

Bronze is a precise, mark/sweep garbage collector. We selected

this design rather than using a conservative collector [5] because

precise collection has the potential for better performance and com-

plete collection of garbage. As our primary objective in the design

was usability, we designed Bronze to find roots automatically. Prior

garbage collectors for Rust either include root and unroot methods

that must be manually called by the user of the GC library [4, 18]

or require references to be cloned manually [13, 25].

Bronze defines the Trace trait, which indicates functionality used

by the garbage collector to trace through the object graph to find

live objects. Only types that implement Trace can be put on the

garbage-collected heap. Bronze also defines the Finalize trait, which

allows users to write code that runs just before an object is deallo-

cated by the collector; it serves as an alternative to drop, which is

for deallocation that runs at a statically-determined time. Bronze

provides macros that automatically derive implementations of Trace

and Finalize for straightforward types, but users can provide their

own implementations if needed.

Rust’s compiler translates Rust code to LLVM IR, which has a

primitive that allows emitting stack maps to annotate the stack

with compiler-specified metadata. In the case of Bronze, the meta-

data allow the runtime to determine which stack addresses corre-

spond with objects that must be traced because they may reference

garbage collected objects. The Bronze tracer relies on a modified

version of the Rust compiler that emits stack map information in

the emitted LLVM IR. The particular stack map mechanism used by

Bronze assumes that the program is single-threaded; other available

mechanisms could relax this requirement in the future at additional

engineering cost for Bronze.

Bronze uses a mark/sweep algorithm based on Goregaokar’s

implementation [13]. To identify which objects can be collected,

the runtime keeps a linked list of all objects that it allocated. Then

it can collect objects on the list that were not marked by the tracer.

Bronze’s mark/sweep implementation is only a proof of concept,

however, and is not production-ready. In particular, the implementa-

tion can trace local variables of type GcRef<T>, but additional work is

required to enable tracing of arbitrary types. In the experiment, we

used a version of Bronze that never collects. This approach was suit-

able for the programs in the experiment, since they do not allocate

enough memory to require collection. We think it is unlikely that

a full, performant implementation would require changes to the

design, since the work that remains should be beneath the interface.

While this paper was under review, we found that GcRef’s as_ref

and as_mut methods could be abused to create multiple mutable &

references to GC objects, breaking Rust’s invariant of allowing only
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1 pub struct IntContainer { n: i32 }

2

3 pub fn set(c: &Rc<RefCell <IntContainer >>, n: i32) {

4 let mut m = c.borrow_mut ();

5 m.n = n;

6 }

7

8 pub fn make_two_references () {

9 let c1 = Rc::new(RefCell ::new(IntContainer{n: 42}));

10 let c2 = c1.clone();

11 // c1 and c2 both reference the same object.

12

13 set(&c2, 42);

14 set(&c1, 43);

15 // Now both reference an object with value 43.

16 }

(a) Two mutable references to a value using interior mutability.

1 #[ derive(Trace , Finalize)]

2 pub struct IntContainer { n: i32 }

3

4 pub fn set(mut c: GcRef <IntContainer >, n: i32) {

5 c.n = n;

6 }

7

8 pub fn make_two_references () {

9 let c1 = GcRef::new(IntContainer{n: 42});

10 let c2 = c1;

11 // c1 and c2 both reference the same object.

12

13 set(c2, 42);

14 set(c1, 43);

15 // Now both reference an object with value 43.

16 }

(b) Two mutable references to a value using Bronze.

Figure 1: A comparison of mutable aliasing with and without Bronze. The interior mutability version (left) requires manually

borrowing a mutable reference to the contents of the RefCell (line 4). Then, the reference count must be manually incremented

via clone (line 10). With Bronze (right), no borrowing is needed (line 5) and a second reference can be obtained with plain

assignment (line 10). The Trace and Finalize traits needed for GCed objects can be derived automatically (line 1).

one mutable reference to an object. The Deref trait implementation

on GcRef could be abused in the same way. Section 4 describes how

we obtained soundness in a revised version of Bronze and why we

believe the changes, although slightly reducing usability, do not

have a significant impact on our results.

Why is Bronze easier to use than interior mutability? We believe

that the primary cause is that Bronze allows free persistent (in-field)

aliasing. These aliases can be obtained without using a separate data

structure (e.g., Rc) and without invoking a special method to obtain

them (e.g., borrow). When references need to be passed in fields of

structures, the structures can be initialized and managed without

explicitly manipulating the lifetimes of the references. In addition,

GcRef<T> provides a unified interface compared to Rc<RefCell<T>>,

which requires understanding two separate structures and how

they can be used together. The distinction between these structures

can appear blurry to users due to Rust’s “Deref coercion” feature,

which means that programmers can omit * when dereferencing in

certain (but not all) cases. Finally, garbage collection works even

in the presence of cycles, which must be managed manually when

reference counting is used.

Bronze is available on Cargo, the Rust package manager.2

3 METHOD

We conducted an experiment in which we randomly assigned par-

ticipants to use either traditional Rust or Bronze when completing

a multi-part programming assignment. We measured their perfor-

mance and surveyed them about their experiences. Complete task

and survey materials are available in the artifact that accompanies

this paper.3 The study was approved by our IRB.

2https://crates.io/crates/bronze_gc
3https://doi.org/10.5281/zenodo.6045904

3.1 Tasks

We devised a multi-part programming assignment for our study.

The specification of each part differed slightly depending on

whether participants should use GC or traditional Rust; we label a

task with subscript GC or noGC to clarify this, as needed.

The Basics task, carried out using traditional Rust, focused on

the basics of Rust syntax. The Ownership task introduced owner-

ship and borrowing. This and later parts involve programming a

simulation of turtles living on the university campus. The instruc-

tions4 included:

In turtle.rs , implement:

* `new` function according to the given signature.

* Accessors `walking_speed `, `favorite_flavor `,
`favorite_color `, and `name `.

Campus should maintain a vector (`Vec `) of turtles.

In campus.rs , implement methods:

* `new `: creates a new , empty Campus

* `size `: returns the number of turtles on campus

* `add_turtle `: adds a new Turtle to campus.

* `get_turtle `: returns a reference to an turtle at a

given index.

* `turtles `: returns an iterator that a caller can use to

iterate through the turtles.

* `fastest_walker `: Returns None if the campus is empty.

Otherwise , returns Some of a reference to the turtle

with the fastest walking speed.

* `breed_turtles `, which uses the functions in `genetics `
to breed two turtles , resulting in a new Turtle.. . .

Every turtle has a name. Of course , as with people ,

several turtles may have the same name. In campus.rs,

implement `turtles_with_name ` so that it returns a

vector of turtles that have the given name.

Completing this part required understanding ownership trans-

fer (add_turtle), references (get_turtle), iterators (turtles), options

and borrowing (fastest_walker), and mutable vectors (add_turtle and

4Instructions have been slightly edited for space.
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breed_turtles). In OwnershipnoGC, the get_turtle method of Campus

returned a value of type TurtleRef<'a>, which was defined as &'a

Turtle. In OwnershipGC, TurtleRef was defined as GcRef<Turtle>.

The Aliasing task introduced the requirement of multiple mu-

table references. The instructions included:

Change `Turtle ` so that each turtle has a field that

keeps track of its children in a `Vec `. `Vec` of what?

You 'll have to figure that out. Do NOT store indices

into the Campus 's vector because those may change in

the future (some day we may support removing turtles

from Campus). Do NOT invent your own indexing scheme

and store a map somewhere.

If you breed two turtles , each parent should include

the child in its vector of children. In turtle.rs ,

implement methods:

* `num_children `
* `teach_children `

Note that this task may require you to revisit some of

the decisions you made in Basics. You are welcome to

copy/paste implementations from your Basics work , but

note that some of the signatures are different (in order

to facilitate the design changes you will need to make).

Your previous implementation of `turtles_with_name ` had

to do a linear search through the whole vector of

turtles. . . Improve the performance of `turtles_with_
name ` by adding a cache to Campus. . .

Campus needed a vector of turtles, each of which needed a vector

that had references to the same turtles referenced by Campus. Because

of breed_turtle, the turtles needed to be mutable. Finally, the cache

required returning collections that referenced the same turtles.

For AliasingnoGC, these requirements could be addressed using

reference counting and interior mutability. The get_turtlemethod of

Campus, as in OwnershipnoGC returned a value of type TurtleRef, but

TurtleRef was now a struct with fields that the participants needed

to define. TurtleRef, in turn, exposed a method borrow_turtle, which

returned a value of type BorrowedTurtle. BorrowedTurtle implemented

the Deref and DerefMut traits, allowing clients to obtain a temporary

mutable reference. Participants were required to fill in the fields of

TurtleRef and BorrowedTurtle; a typical solution was Rc<RefCell<Turtle

>> and RefMut<'a, Turtle>. This approach allowed external clients to

obtain references to Turtles that could be made temporarily mutable

if needed for the application.

In AliasingGC, TurtleRef is defined as GcRef<Turtle>, just as in

OwnershipGC—because GcRef supports mutation of the referenced

value, there is no need for additional structure.

Bronze participants were asked to complete task AliasingnoGC

after completing AliasingGC.

3.2 Recruitment

We recruited participants from the 633 students who were enrolled

in a required, sophomore-level programming course. Our program-

ming assignment was part of the course’s grade, but participation

in the research was voluntary, and confirmed by informed consent.

Research participants were randomly assigned to use either Bronze

or traditional Rust, and agreed to take a survey after completing

each part of the assignment. In doing so, they received extra credit

on the assignment—1% extra credit per survey, or 5% for all three.

Participants were free to withdraw from the experiment at any time;

students who started the experiment but withdrew received 2.5%

extra credit. Students who withdrew, or opted not to participate

at all, could complete any version of the assignment. Students had

the option of accepting random assignment and/or carrying out

surveys but not having their data included in our research analysis;

we awarded extra credit independently of this choice. Only three

students did not consent to their data being used.5

3.3 Procedure

The instructor gave lectures on programming in Rust during four

80-minute class periods over a period of two weeks (April 13–27).

Lecture slides can be found in the paper supplement. The Basics

task in the assignment overlapped with, and was due at the end of,

the second week of lectures (April 21–29). The remaining parts of

the assignment were released on April 29 and were due May 11.

The README file for the Ownership and Aliasing tasks de-

scribed the study in detail and linked to a Qualtrics survey, which

included a consent form and requested demographic information

from students who consented. The form also asked for their uni-

versity ID number so that we could associate student grades with

participants. The Qualtrics tool randomly assigned participants to

a condition (Bronze or Traditional) upon consent, emailing them

which condition they were assigned to. The email also contained

a personalized link to a survey to fill out after completing each

part of the programming assignment, allowing us to track which

students had completed the surveys.

The course used a question-and-answer web site, Piazza [29], to

allow the students to ask questions about course content. Because

we had revised the Rust content relative to the prior semester, the

first author joined the teaching assistants (TAs) in answering ques-

tions about the assignment. We made sure to answer all questions

in a timely fashion with high quality. In addition, as a result of posts

on Piazza indicating that students found the assignment difficult,

the first author conducted live-coding demonstrations onMay 6 and

7.6 Demonstrations delved into topics covered in class, including

Rc, RefCell, smart pointers, mutability, scope and borrowing, a com-

parison between GC and reference counting, string literals, interior

mutability, mutable structs, lifetime specifiers, and Box. The Piazza

forum and live demonstrations were not separated by experimental

condition, so these did not provide additional data about perceived

difficulty.

4 LIMITATIONS

Students’ abilities to complete the assignment depended to some

extent on the quality of our instruction and the extent to which we

emphasized each topic. To help decouple our instructional design

from the experiment, we based our instructional materials on the

online Rust book [20] and leveraged materials that had been used

successfully in previous editions of the course.

Because the first author taught the live coding demonstrations

and answered many student questions on Piazza, it is possible that

this could have introduced bias. One of two course instructors is

also a co-author, so there could have been bias in teaching as well,

5Students were required to opt out if they were under 18 years old.
6Student privacy regulations preclude us from sharing the videos of these demos.
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since GC and interior mutability, which were taught in the course,

were of interest in the study.

Our study focused on programmers who are new to Rust; our

sample was of students. While professionals (many of whom are

also new at Rust) would have more programming experience, prior

work [1, 23, 24] suggests that results with students corresponds

with results with professionals in related, but not identical, tasks.

All times spent by participants were self-reported. Although we

asked participants to use a tool to track time spent for Ownership

and Aliasing, we did not confirm that they did so. However, any

noise or bias in reported times are likely to be consistent across

experimental conditions. Although we asked participants to com-

plete the surveys immediately after completing each part of the

assignment, some participants submitted the surveys in batches.

The extra credit incentive could have resulted in a non-uniformly

selected sample. However, as we discuss in more detail in section 7,

the small difference in median class grade between participants and

non-participants (90% vs. 87%) suggests that this does not result in

a significant threat to validity.

More Bronze participants withdrew from the study than Tradi-

tional participants (see section 7); the withdrawing Bronze partici-

pants may have been weaker, less industrious, or more risk-averse

than the students that remained, leaving a stronger overall Bronze

population compared to the traditional one. We believe the magni-

tude of the difference in times between conditions (section 5.4) is

large enough that it cannot be explained by this possibility.

All of the students worked on the assignment in the same time-

frame, so trends over time could have been due to external in-

fluences, such as stress caused by the approach of final exams.

However, these trends would have been equally applicable across

experimental conditions.

While this paper was under review, we found that GCRef was

unsound for the reasons discussed in section 2. To make Bronze

sound, we removed the Deref implementation, replacing it with new

borrow and borrow_mut methods. These methods return objects whose

lifetimes are tracked dynamically, similar to RefCell’s borrowing

mechanism. We also removed the as_ref and as_mut methods, which

were only used in one of the student submissions.

There is a risk that had the students used the corrected version

of GCRef, they might not have seen the same benefits. To under-

stand whether this might be so, we applied the corrected version of

Bronze to a sample of student implementations; we believe that our

results would largely hold up, even if students had used this version.

We manually modified student programs until we were confident

we had seen the relevant challenges; in doing so, we modified 43

student submissions. Two changes were common: inserting calls

to borrow or borrow_mut; and introducing local variables to extend

lifetimes of borrows. In the vast majority of cases, calling borrow or

borrow_mut sufficed; this could be done automatically by a compiler,

similar to Deref coercion, which is already supported by the com-

piler. Some cases required manipulating lifetimes with additional

local variables or inserting curly braces, which is a common tech-

nique in Rust. Rust programmers need to be able to do this already

(indeed, we taught this technique in our lectures). Two programs

manipulated in this way panicked due to multiple borrows after the

naive transformation above; both of these used match on something

that was borrowed, and then took a mutable reference inside one

Component Traditional Bronze

Random assignment to condition 194 139

Basics survey 154 117

Ownership survey 153 113

Aliasing survey 142 101

AliasingGC survey 84

Table 2: Participation by component

of the cases. A small refactoring addressed these. One case that

used an iterator required inserting a * operator to dereference the

iterator’s returned reference.

5 RESULTS

In this section, we describe the analysis we conducted. Anonymous

raw data as well as an RStudio script to analyze the data are included

in the artifact that accompanies the paper.7

5.1 Participants

Of 633 students who were enrolled in the course, 385 students

signed up for the experiment, with 190 assigned to use Bronze and

195 to Traditional. Of these, 41 withdrew; an additional 11 students

submitted code for both versions of the assignment. We did not

analyze the data from those 52 students, leaving experimental data

from 333 students for analysis: 139 Bronze, and 194 Traditional.

383 students completed 1120 surveys. 34 students submitted

surveys but did not accept random assignment. 36 accepted ran-

dom assignment but did not submit surveys. Overall, 428 students

participated in the study. Only the data from the 333 experiment

participants were used in the analyses below, except for the overall

demographics of the population and the analysis of whether GC

participants thought GC makes programming easier (section 5.5).

For each task, we analyzed the corresponding survey data, as shown

in Table 2.

We asked students about their Rust experience. Of the 333 ex-

periment participants, 84 had read about Rust or talked to a friend

about it. 12 had played with Rust on their own, two had used it on a

team, and three had used it in an open-source project. When asked

to self-assess their prior level of Rust knowledge, 307 reported no

experience; 17 reported passing familiarity (maybe wrote a few

lines of code); 6 reported a moderate amount or a lot of experience.

Figure 2 shows the distribution of course grades by decision to

enroll in the experiment in superimposed violin and box plots. To

test whether the decision to enroll was related to course grade, we

conducted a logistic regression. We found 𝑝 ≈ .017, with higher

grades being associated with choosing to enroll in the study. The

odds ratio was 0.035with a 95% confidence interval of [0.011, 0.057]
(𝑁 = 584), meaning that a 1-point increase in grade correlates with

multiplying the odds of enrolling by 𝑒 .035 ≈ 1.036.

7https://doi.org/10.5281/zenodo.6045904
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Figure 2: Course grade by experiment enrollment

5.2 Analysis Methods

We designed the overall experiment to allow us to examine the

relationship between time spent and outcomes (grades and com-

pletion); the association between testing practices, sources of help,

and editor selection and outcomes; and the effect of condition on

the amount of time and fun students predicted if they had done the

assignment in other languages, as well as the effect of condition on

amount and sources of help.

In order to help us refine our list of hypotheses while ensuring a

sound data analysis, we randomly reserved data from 10% of the

participants for exploratory analysis. We visualized this exploratory

data and conducted statistical tests to identify interesting hypothe-

ses about the effects of garbage collection and other factors that

might influence outcomes. From this exploration, we selected spe-

cific questions of interest and associated hypothesis tests. Finally,

we discarded the reserved 10% and performed the planned tests on

the remaining 90%. All results reported below are drawn from this

90%, except overall demographic information (e.g., participation

rates), which is reported for the entire dataset.

Because we conducted multiple hypothesis tests, we interpret the

results with a Holm-Bonferroni correction [17]. All of the reported

p-values are corrected and can be compared directly with 𝛼 ; we set
𝛼 = 0.05 in our interpretation.

5.3 Completion rates

We wanted to know whether Bronze participants were more likely

to finish either individual parts of the assignment or the assignment

as a whole. We conducted Fisher’s exact tests to compare comple-

tion rates (rates of scoring 100%) on each part of the assignment

across conditions. This analysis concerns 301 of the 333 total ex-

periment participants, which omits the 10% of the participants that

were withheld for exploratory analysis. Completion rates of each

part are shown in Figure 3. ForOwnership, we found no significant

difference in completion rate (𝑝 ≈ 1.00). Comparing AliasingnoGC

(Traditional) and AliasingGC, we found that Bronze users were

significantly more likely to score 100% (𝑝 ≈ .006). The odds ra-

tio was approximately 0.41, indicating that the odds of finishing

for participants not using Bronze were approximately 0.41 times

Figure 3: Fractions of participants who completed each part

Ownership Aliasing AliasingnoGC Total
GC       noGC GC      noGC noGC GC       noGC

Bronze
Traditional

Task

Participant’s 
condition

H
ou

rs

Figure 4: Total reported time spent on parts afterOwnership.

the odds of finishing for participants who DID use Bronze. When

considering probability of completing all parts, Fisher’s exact test

indicated no significant difference between conditions (𝑝 ≈ .51).

5.4 Completion times

For tasks after Basics (i.e., after participants were assigned to con-

ditions), we hypothesized that Bronze would enable participants

to complete tasks faster. We analyzed the 149 participants who

finished all the tasks. For these tasks, a Shapiro-Welk normality

test found a likely violation of normality of the completion times

(𝑝 < .001). Therefore, we conducted nonparametric Wilcoxon tests

rather than ANOVA tests. Figure 4 shows the total times reported

across the conditions. Figure 4 excludes the Basics task, since that

task preceded assignment to conditions and because we only asked

participants to start tracking their time after the Basics task was

complete. Nevertheless, we asked participants to estimate how long

they spent on the Basics task, and they reported a mean of 3.5 hours

(SD ≈ 3 hours). Task AliasingnoGC is not compared to any other

task; instead, we leverage it for computing the total time spent on

all tasks (column “Total” in Figure 4).

We did not find a significant difference in Ownership time

(𝑊 = 2449.5, 𝑝 ≈ 1). However, Bronze participants finished Alias-

ing significantly faster (median = 4 hours) than Traditional Rust par-

ticipants (median = 12 hours) (𝑊 = 561, 𝑝 < .001). We did not find a

significant difference in total completion time (𝑊 = 2354.5, 𝑝 ≈ 1).

We also compared completion times spent by participants who

did not finish. A Wilcoxon rank sum test found no significant dif-

ference (𝑊 = 829, 𝑝 ≈ 1). We also compared times reported by
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Figure 5: Agreement with “GC in Rust makes writing pro-

grams easier” (Bronze participants only).

participants who scored 100% to times by participants who did not,

finding no significant difference (𝑊 = 5675, 𝑝 ≈ 1).

Figure 4 also shows the distribution of times for AliasingnoGC
when completed by Bronze participants. The median time was 8

hours (mean = 9.9, 𝑆𝐷 = 8.4). The difference between medians of

Aliasing times across conditions was also 8 hours, explaining why

we did not find a difference in total time spent across conditions.

5.5 Does GC make writing programs easier?

If users feel that GC makes programming easier, then including

GC in a language might improve language adoption rates. We were

interested in how Bronze participants’ opinions of GC changed

while using it. Responses to our question about whether GC makes

programs easier were on a Likert scale with a 0 to 4 point range,

with 4 indicating a strong belief that GC made programming easier.

Median scores were 2 after Basics and 4 after AliasingnoGC. Thus,

after trying the assignment with and without GC, they recognized

a strong benefit of GC. An ordinal regression yielded 𝑝 < .001 (odds
ratio 21.4), indicating a significant effect of doing the assignment on

beliefs about GC helpfulness. Figure 5 illustrates how participants’

beliefs about GC changed over time.

5.6 Liking Rust: comparison between
conditions and over time

We hypothesized that if Bronze helped participants complete tasks

faster, Bronze participants might like Rust better than Traditional

participants. Each survey asked: “How much do you like Rust?”

on a four-point Likert scale (we omitted a neutral option in order

to force expressing a preference). Figure 6 shows the responses.

We conducted an ordinal regression to assess whether there was a

difference in Likert-scale responses across conditions after experi-

ment participants were finished with the project (including those

who did not score 100%). We found 𝑝 ≈ 1, indicating no significant

effect of GC on liking Rust by the end of the assignment. We also

compared responses to this question after Ownership; the ordinal

regression gave 𝑝 ≈ 1, also indicating no significant difference.

5.7 Estimated time and fun in other languages

We were interested in how usage of Bronze might impact beliefs

about time required in other languages, since a high estimate of

time in another language might correlate with a higher chance of

choosing Rust, and since a good experience with GC might lead

to higher estimates in languages that do not provide GC. In each

survey, we asked participants: “Suppose you had done this part of

the assignment in a different language instead. How much time

would it have taken in THAT language compared to using Rust?”

Figure 6: Amount participants reported liking Rust on a 4-

point Likert scale. AliasingnoGC (Bronze) indicates that task

done by Bronze participants.

We asked a corresponding question asking about prediction of fun

compared to Rust. Responses were on a five-point Likert scale, with

an additional “I’m not familiar enough with this language to judge”

option. We asked about C, C++, Java, and Python. Our exploratory

data analysis led us to hypothesize that the relationships were weak,

if they could be found at all. The strongest relationship appeared to

be with prediction of time in C, and we hypothesized that Bronze

participants would estimate longer times in C than the non-Bronze

participants, since they would be more aware of the cost of manual

memory management.

To compare predicted time in C across the two conditions (for

which we received 864 responses from people familiar enough with

C to answer), we used an ordinal regression mixed model. This

approach accounted for the fact that we asked the same question

of each participant after completing each part of the assignment.

We found no significant difference (𝑝 ≈ 1).

5.8 Correlations among opinions

To improve adoption of a language, it might be useful to understand

what factors of a programmer’s experience correlate with liking a

language. After participants completed each part of the assignment,

we asked them how much stress, time, intellectual challenge, and

frustration they experienced compared to their expectation, as well

as how much they liked Rust. We analyzed the correlations among

feelings about Rust and other aspects of participants’ experiences.

Figure 7 shows the pairwise correlations. For the time metric, we

asked participants to compare the amount of time they spent to

the amount of time they expected to spend; we asked this question

rather than using the reported times in order to focus on partici-

pants’ feelings about time. Stress, time, intellectual challenge, and

frustration appear to be strongly correlated, and assessments of

whether participants like Rust are moderately correlated with stress

and frustration.

5.9 Amount learned about Rust

After completing each part of the assignment, we asked participants

how much they felt they learned about various topics in Rust. Fig-

ure 8 shows the results for ownership and borrowing. The amount

participants reported learning in each part of the assignment does

not appear to depend on whether participants used Bronze.

5.10 Factors influencing grades

Factors other than usage of Bronze may affect success; we hoped

to understand what factors were relevant. In our exploratory data
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Figure 7: Correlations among participants’ assessments of

their experiences.

(a) Amounts learned about ownership

(b) Amounts learned about borrowing

Figure 8: Amounts learned after each part of the study.Alias-

ingnoGC (Bronze) indicates that task done by Bronze partici-

pants.

analysis (on 10% of the data), we used a linear mixed-effects model

to evaluate the relationship between methods that participants re-

ported using and their assignment grades. We looked at time spent,

sources of help, and choice of developing on their own machine or

on a server. Based on this, we hypothesized that course grade and

development location might be significant factors. Students who do

the work on a department server may have less access to computing

resources or less skill at configuring systems. A linear regression

found a significant positive correlation with course grade (𝑝 < .001,
adjusted 𝑟2 ≈ .044, 𝑁 = 864) and that a 1-point increase in course

grade corresponded with a .692-point increase in assignment grade.

Development location was not a significant factor.

Because course grade only explained a small amount of the

variance in assignment grade, we did additional exploration with

the 10% withheld samples to identify a stronger predictor of grades,

focusing on the whole assignment grade (rather than individual

tasks). Returning to the remaining dataset, when predicting score on

parts after Basics from hours spent and course grade, we found that

a significant correlation only with grade (𝑝 < .001, adjusted 𝑟2 =
0.2465, 𝑁 = 864). However, when predicting grades for Aliasing

only (both GC and non-GC, with grades re-scaled from 0 to 100%),

we found that time spent and course grade were both significant

predictors (𝑝 < .001 for both factors). The model for Aliasing

explained 20.9% of the variance in grades (𝑟2 ≈ .209).

6 QUALITATIVE ANALYSIS OF RESPONSES

The surveys included two free-response questions: “What aspects of

this part of the assignment did you find most difficult?” and “What

should we change about the class to help future students understand

the concepts in Rust better?” Although not all participants tried both

conditions, their subjective experiences with only one condition can

provide insights about their experiences as well as help understand

factors that may relate to their future decisions about programming

tools. To analyze the data, we conducted a thematic analysis [6].

A single domain expert inductively developed the codebook and

coded all responses, in consultation with the research team. Because

answers to the two questions overlapped, we analyzed all responses

together. We were interested in gleaning insights about language

design as well as pedagogy from the responses.

References, lifetimes, ownership among the most challenging as-

pects. We received 1,143 comments on challenges that participants

faced. 340 pertained to references, of which 204 were about lifetimes.

116 comments indicated syntax had been challenging. 100 men-

tioned interior mutability, 83 dynamic borrowing, and 70 mutability.

Consistent with earlier reports [12, 34], 199 participants reported

that ownershipwas challenging; 76 such reports were about borrow-

ing. One student, after finishing AliasingGC, reported: “Learning

rust ownership is like navigating a maze where the walls are made

of asbestos and frustration, and the maze has no exit, and every

time you hit a dead end you get an aneurysm and die.” A Tradi-

tional student reported: “Coding with ownership rules and trying

to implement mutability, in general, was just such a headache. It is

like someone had combined the worst part of C and Java.”

AliasingnoGC required designing structures that supported dy-

namic borrowing — a borrowed reference whose safety was checked

dynamically rather than statically. This required understanding the

Rust Ref and RefMut structures, which dynamically track outstand-

ing borrows of cells. One participant explained the difficulty: “It

took me a long time to figure out the field types with the correct

lifetimes. . .Once I knew what the types were, it took me about an

hour or two to figure out the rest of the functions. It was quite

confusing and frustrating figuring out how to use Rc and RefCell

in the right spots, and my initial approach did not use them nearly

as much as my final solution did.”

Error messages can help, but may not aid design or comprehension.

Although Rust’s error messages have a reputation for being high-

quality [12] (one participant wrote “the Rust compiler pretty much

just wrote the program for me”), the compiler cannot give high-

level design feedback. One GC participant explained: “When I was

testing my non-GC version, I’d never run into so many errors in

my life. When I tried fixing my errors, new ones just came up.

I’ve heard students compare the debugging process for the non-

GC version to a never-ending game of whack-a-mole.” Another
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reported: “Translating from GC to no GCwas a nightmare. It wasn’t

as simple as switching GcRef<Turtle> to Rc<RefCell<Turtle>> because

of the new structs. Figuring out the typing of the structs along

with debugging all the mutable references errors that resulted took

hours and even some of the TAs couldn’t help me.” Error messages

could also lead to working code without teaching the programmer

what was wrong: “Getting weird errors that I still don’t understand

but just fixed by listening to the compiler.”

Error messages also tend to give local advice that does not neces-

sarily lead the user in the right direction. One participant reported

“error messages were cyclical with things like remove & then after

removing try adding &.” Three participants said it was possible to fix

errors by following instructions without understanding what was

going on. A higher-level error management approach, and better

integration into an IDE (e.g., with visualizations [16]), could help.

Garbage collection avoids mutability problems. We received 103

comments regarding garbage collection. 28 asked us to explain GC

more thoroughly. 43 said they had a hard time understanding GC.

However, some Bronze participants observed, after finishing the

assignment, that GC had been very helpful. One reported: “After

doing this part, I actually realized the power of garbage collection.

Using RefCell and Rcs to create interior mutability, etc. is so hectic. I

would always prefer GcRef! Technically Rc<RefCell<T>> acts like GcRef

but much more work!” Another participant said: “Understanding

references, lifetimes, and mutability without garbage collection is

very difficult. It is not intuitive or understandable without GC.”

Free copying of GC references appeared to be critical to the help-

fulness of GC. One participant said: “The transition from garbage

collection to non-gc was rough. I think the garbage collection was

as easy as it was because it implemented the Copy trait. My most

common error in this project was the one where a certain variable

was moved because it was of a type that didn’t implement copy. If

not for some TA help, I would have been completely lost.”

Students wanted more time and more examples to support learn-

ing. We received 715 comments regarding the course design, as-

signments, lectures, and recitations. Participants reported that the

Aliasing task was extremely challenging, and that previous parts

of the assignment left them unprepared for it. 182 comments asked

us to revise the project design or clarify the specifications.

190 comments asked for a longer, more complete treatment of

Rust in future versions of the course. 54 asked for an intermediate-

level assignment. One participant put the steep learning curve

(despite splitting the work over multiple parts) as follows: “I think

having this . . . project is a bit steep. I felt like I was being thrown

into a big steaming wok.” In particular, students requested more

or more detailed examples (74), more or continued live coding

demonstrations (35), and more discussion sections (31).

7 DISCUSSION

We discuss key takeaways and lessons learned from our experiment.

Even with GC, Rust learners need to understand ownership, bor-

rowing, and lifetimes. When designing the experiment, we were

concerned that using GC would allow participants to avoid learning

about ownership, borrowing, and lifetimes. Because we were hop-

ing Bronze would be an aid to learning traditional Rust, this might

have been a problem. However, because of the fundamental way

ownership is used in Rust, much of the code required understanding

ownership and borrowing even with GC. In this assignment, GC

primarily served to aid situations that involved multiple references

to values. As Figure 8 shows, participants reported learning similar

amounts about these critical topics across conditions.

Most of the benefit of GC comes from architectural simplification.

Participants reported that the architectural requirements in Alias-

ingnoGC were extremely challenging; it is likely that the design

was a significant contributor to the difference in performance be-

tween non-Bronze and Bronze participants. In particular, although

Bronze participants only needed to return GC references, Tradi-

tional Rust participants participants needed to fill in TurtleRef and

BorrowedTurtle structures, which required additional design insight.

The challenge posed by this design was apparent in the survey

responses, in which 100 comments pertained to interior mutability

and 83 to dynamic borrowing (almost as many total as the 199 who

complained about ownership or borrowing). We conclude that a

significant part of the benefit of GC in Rust programs is the archi-

tectural simplifications it enables and promotes.

Participants and non-participants were comparable. We were sur-

prised that students with higher grades were more likely to enroll;

we had expected students with lower grades would be more incen-

tivized by the extra credit. Perhaps students with higher grades

were more willing to accept the additional work of participating,

or perhaps those students care more about even small grade boosts.

However, the difference in median course grade between partici-

pants and non-participants (90% vs. 87.0%) was small enough that

we believe that our results likely generalize to the entire class.

Students would have benefitted from more time to complete the

assignment. The students were motivated by grades to complete

the assignment, but nearly half of students in both conditions did

not finish it (Figure 3). Some students reported that they wished the

work had been assigned over a longer period of time or earlier in

the semester (further from exams). The median participant spent 15

hours on the experiment, which is a bit high for a 12-day homework

assignment, and some participants spent significantly more time. If

we had allocated more time for the assignment and given it earlier

in the semester, perhaps more students would have finished.

Withdrawals were mostly assigned to Bronze. Of the 41 with-

drawals, 40 had been assigned to use Bronze. Eight withdrewwithin

20 minutes of signing up, suggesting they did not make a serious

attempt before switching. When withdrawing, 24 students reported

that they felt the non-GC version would be easier, perhaps because

the GC version required completing an additional part of the as-

signment. Six said they didn’t understand GC well enough or that

it was poorly documented. Eleven students gave no explanation.

We suspect the withdrawal rate would have been lower if we

could have convinced participants that they were likely to spend

the same amount of time total regardless of which condition they

picked. Of course, this approach may not be practical in situations

where the expected times are not yet known. Future experiments

could provide incentives that depend on time spent; our design

incentivized unbiased time reporting.
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Encouraging adoption of safer languages by reducing stress. The

apparent decrease over time in how much students like Rust (Fig-

ure 6) suggests that if one wants to encourage Rust adoption,

changes to the assignment design are needed. It would appear

that the Aliasing task had the largest influence on (dis)liking Rust.

It might be surprising that Bronze participants did not like Rust

any better than Traditional Rust participants after AliasingGC,

which Bronze participants completed in about a third of the time

of Traditional Rust participants. We observed that stress and frus-

tration correlate more closely with liking Rust than whether the

task took longer than participants expected. Expectancy-value the-

ory [33] suggests that an expectation of success contributes to

people’s motivation in doing tasks. The theory might suggest that

if we want to encourage adoption of Rust and other safe languages,

it is more important to provide users with a consistent feeling of

progress rather than focusing on minimizing total task completion

time. Predictability is beneficial for practicing software engineers

as well as for students, and language adopters must first learn the

language before using it in a project, so this emphasis is valuable

in practice as well as in education.

8 RELATEDWORK

Empirical studies have been used to study several programming

language design questions, such as static typing [15], lambdas in

C++ [31], immutability features [10], and typestate [8]. Qualitative

studies have also been used to understand what factors contribute

to users’ perceptions of languages [9]. This is the first empirical

study of the usability of garbage collection of which we are aware.

Some work investigated how Rust is used in the wild. Astrauskas

et al. investigated the use of the unsafe keyword [3], finding that

much code relies on unsafe. Fulton et al. [12] conducted a survey and

interviews of Rust programmers to understand their motivations

for adopting or not adopting Rust, finding that programmers are

motivated by the safety benefits but concerned about the learning

curve and challenges in hiring experienced Rust programmers.

Other GCs for Rust include rust-gc [13], Shifgrethor [4], and

Josephine [18], which require manual specification of roots.

Josephine is for implementation of JavaScript in Rust. Shredder [25]

supports concurrency, unlike Bronze, but accessing a GC object

requires obtaining a guard to prevent concurrent access. It manages

roots automatically by keeping a global list of all allocations. As

a result, references do not implement the Copy trait and therefore

cannot be copied freely as they can in Bronze.

Meyerovich investigated programming language adoption [22];

developers reported preferring more-expressive languages. Because

adding optional garbage collection allows developers to express

different kinds of aliasing structures than does Rust alone, adding

GC to Rust might make it more likely to be adopted. Zeng and

Crichton [35] investigated forum posts about Rust adoption, hy-

pothesizing that adoption barriers for Rust included poor tool pub-

licity, difficulty solving complex aliasing problems, and integration

challenges with existing contexts. GCs, such as Bronze, may help

make it easier for programmers to solve complex aliasing problems.

RustViz [21] is a visualization tool that may help programmers

learn Rust ownership semantics.

Cyclone [14] integrated region-based memory management [30],

including an optional garbage collector, into a safe dialect of C. Later

extensions included support for ownership and borrowing [27].

Case studies found that similar performance could be obtained if

the GC was used judiciously, but that GC can have a significant

performance cost if used globally.

9 CONCLUSIONS AND FUTUREWORK

We developed Bronze, a new library-based GC whose goal is to

ease the learning and use of Rust. We carried out a randomized,

controlled trial of Bronze that showed that it can significantly alle-

viate some of the challenges posed by the Rust aliasing restrictions

for Rust beginners: Bronze participants completed a task that re-

quired a complex aliasing structure in about a third as much time

as traditional Rust participants. GC may enable Rust programmers,

particularly beginners, to complete tasks in much less time.

We hope to extend the collector to trace arbitrary objects that

may transitively contain references to GC objects. We would like

to investigate the impact of using GC not just for complex alias-

ing scenarios, but to mitigate the impact of ownership in general;

perhaps doing so could flatten the learning curve and help users

feel more positively about Rust. We would also like to relax the

single-thread assumption in the collector, which would likely entail

changing from the shadow stack GC8 that is currently in use.

The experiment is the first (to our knowledge) evaluating the

usability benefits of GC. We focused on using GC to relax alias-

ing restrictions, but GC can also be used to avoid the challenges

of reference counting and manual memory allocation. In the fu-

ture, library-based garbage collection could be used to evaluate the

usability tradeoffs of garbage collection in other contexts as well.
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