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We derive some of the axioms of the algebraic theory of anyon
(Kitaev, 2006) from a conjectured form of entanglement area
law for two-dimensional gapped systems. We derive the fusion
rules of topological charges and show that the multiplicities of
the fusion rules satisfy these axioms. Moreover, even though
we make no assumption about the exact value of the constant
sub-leading term of the entanglement entropy of a disk-like
region, this term is shown to be equal to InD, where D is
the total quantum dimension of the underlying anyon theory.
These derivations are rigorous and follow from the entanglement
area law alone. More precisely, our framework starts from two
local entropic constraints which are implied by the area law.
From these constraints, we prove what we refer to as the
“isomorphism theorem." The existence of superselection sectors
and fusion multiplicities follow from this theorem, even without
assuming anything about the parent Hamiltonian. These objects
and the axioms of the anyon theory are shown to emerge from
the structure and the internal self-consistency relations of the
information convex sets.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

One of the outstanding questions in modern physics concerns the classification of quantum
phases. Many attempts have been already made to classify quantum phases over the past decade.
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For instance, gapped free-electron systems are completely classified [1,2]. For more general short-
range entangled states, an approach based on cobordism was proposed [3]. One-dimensional (1D)
gapped systems are completely classified at this point [4-7]. A general gapped two-dimensional
(2D) systems are expected to be described within the framework topological quantum field theory;
see [8], for example.

This whole slew of different approaches raises a natural question. Why are there so many
different approaches, and how can we ever be sure that the classification is complete? The main
difficulty lies in identifying the correct framework. In the presence of interaction, one often needs to
make a nontrivial assumption. The only exception so far is the one-dimensional (1D) gapped system.
Hastings’ theorem [9] implies that any gapped 1D system obeys an area law. This subsequently
implies that a matrix product state can approximate the ground state with a moderate bond
dimension. It is this result from which a classification of quantum phases of 1D gapped system [4-6]
follows.

However, in higher dimensions, an analog of Hastings’ theorem is unknown. This is mainly
because proving area law in 2D gapped systems remains challenging. Furthermore, even if area
law turns out to be correct, the states that satisfy area law may not be well-approximated by an
efficient tensor network [10]. These facts suggest that a classification program in 2D cannot merely
mimic the classification program for 1D gapped systems. In fact, in any classification proposal based
on tensor networks, there will always be a lingering question on whether we are not missing any
unknown phases.

While it is widely believed at this point that topological quantum field theory (TQFT) describes
all possible gapped phases in 2D, there is currently no rigorous argument that supports this belief.
The existence of a three-dimensional (3D) gapped phase outside of the TQFT framework [11] shows
that there may be gapped phases of matter that lie outside of the TQFT framework. Even if TQFT
turns out to be the correct framework in 2D, understanding of where this framework comes from
remains as an important fundamental problem.

Motivated by this state of affairs, we initiate a program in which a familiar set of axioms of TQFT
can be derived from a seemingly innocuous assumption about entanglement. We show that some
of the basic concepts of the algebraic theory of anyon [12], i.e., superselection sectors and fusion
multiplicities, emerge from a familiar form of entanglement area law [13,14]:

S(A) = al — v, (1)

where S(A) is the von Neumann entropy of a simply connected region A, £ is the perimeter of A, and
y is a constant correction term! that only depends on the topology of A. The sub-leading correction,
which vanishes in the ¢ — oo limit, is suppressed here.

We then show that our definition of the fusion multiplicities satisfies all the properties one would
have expected from the algebraic theory of anyon. Again, these properties are derived from Eq. (1).
Moreover, we further derive the following well-known formula:

y =InD,

where D is the total quantum dimension of the anyon theory we defined. Our derivation is rigorous
under the assumption (Eq. (1)) and is completely independent from the previous approaches, i.e., an
approach based on an effective field theory description [13] and explicit calculations in exactly
solvable models [14].

While our assumption is not as rigorous as Hastings’ proof of the 1D area law, it is something that
is widely accepted at this point. Therefore, we believe this would be a reasonable starting point to
obtain a general understanding of gapped phases. A similar, but a markedly different starting point
of our work would be the two axioms we have identified. These two axioms are entropic conditions
on bounded-radius disks (Axioms AO and A1 in Section 2.1). We can show that these two axioms
follow from Eq. (1), but after that, we never use Eq. (1) explicitly. All of our results follow directly
from the axioms.

1 Nontrivial sectors, e.g., non-Abelian anyons and topological defects, can modify the constant term. It is a
widely-adopted notation that y is the constant term for a disk in the absence of nontrivial sectors.
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In other words, the axioms of the anyon fusion theory can be derived from Eq. (1). The same
conclusion follows from our axioms as well; see Axioms A0 and A1. While the conclusion would
be the same either way, we would like to advocate for the use of the axioms over Eq. (1) for the
following reasons. The first reason is that Axioms AO and A1 are assumed to hold on patches whose
size is independent of the system size. Therefore, in principle, one can verify these axioms in time
that scales linearly with the system size. Under a promise that the state is translation-invariant,
the time can be reduced to a constant. In contrast, Eq. (1) is defined over length scales that are
comparable to the system size. Verifying this assumption will incur an exponential computational
cost. Secondly, in the continuum limit, the leading term of Eq. (1) depends on the ultraviolet-cutoff.
On the other hand, the axioms manifestly cancel out this divergent piece.

Our framework is completely Hamiltonian-independent, in the sense that we only require the
existence of a global state on the system satisfying the two local entropic constraints. This work is
motivated from a number of recent observations: that local reduced density matrices of topological
quantum phases often have a quantum Markov chain structure [15-23]. The key overarching
concept is a convex set of density matrices introduced in [18], which is later rediscovered and
studied under the name “information convex (set)" [22,23]. Roughly speaking, this is a set of density
matrices which are locally indistinguishable from some reference state. In our context, this reference
state would be the ground state of some local Hamiltonian. However, we do not use the fact that
the state is a ground state.

Our framework opens up a concrete route to classify gapped quantum phases without resorting
to ad-hoc assumptions. In addition, we believe our framework is capable of answering a long-
standing open question about topological phases. The question is if a single ground state contains
all the data necessary to define a topological phase. Given that we can define a notion of topological
charges and fusion multiplicities from a single ground state, progress may be made by using our
framework. Our approach can be generalized to a broader context, e.g., to higher dimensions and
to setups in which a topological defect [24] or a boundary is present [25]. We will discuss these
applications in our upcoming work.

The rest of this paper is organized as follows. In Section 2, we specify our formal setup and
summarize our main results. In Section 3, we prove fundamental properties of the information
convex sets, which are the key to obtaining some of the axioms of the algebraic theory of anyon.
We shall refer to this part of the full algebraic theory of anyon as the anyon fusion theory from
now on. In Section 4, we define the notion of superselection sectors and fusion multiplicities in
our framework and prove that the definition satisfies all the axioms of the anyon fusion theory.
In Section 5, we show that the constant term y in the area law equals the logarithm of the total
quantum dimension. In Section 6, we conclude with a discussion.

2. Setup and summary

Let us begin with a general setup and state our physical assumptions. Before we delve into the
details, it will be instructive to discuss the physical system we have in mind. We are envisioning a
gapped system in 2D, which consists of microscopic degrees of freedom, e.g., spins. We would like
to coarse-grain these microscopic degrees of freedom so that we can view non-overlapping blocks
of spins as gigantic “supersites”, see Fig. 1. We can consider the limit in which the length scale of
each block is large compared to the correlation length. We would like to define a sensible notion
of distance between the subsystems as well as their topologies.

More concretely, we can consider a quantum many-body spin system with a tensor product
structure H = ®,cvH,, Where #, is a finite-dimensional Hilbert space and V is a set of vertices of
a finite graph G = (V, E) defined on a 2D closed manifold.? By specifying the set of edges E, we can
define a natural notion of distance on this graph (the graph distance). We denote the state space of
H by S(H), which is the set of all density matrices on . We say operator O has support on X C V
if 0 = Ox ® Iy\x where Iy\x is the identity operator.

2 Qur results work for both orientable and non-orientable manifolds provided that a reference state o exists.
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Fig. 1. An illustration of the setup. (a) A graph G = (V, E) with each vertex represents a “supersite” which contains a
cluster of microscopic degrees of freedom, e.g. spins in real space. The edges encode the locality of the underlying physical
system and it allows us to define a notion of topology for a set of vertices. (b) A zoomed-in depiction of a supersite. It
contains a block of physical spins. The length scale of each block is a constant that is large compared to the correlation
length.

Table 1
A list of notations and their descriptions.
Notation Brief description Reference
o The global reference state that satisfies Axioms A0 and Al N/A
op Reduced density matrix of o over region b
u(r) A set of o, over b whose radius is smaller than r Eq. (2)
() The information convex set of a region 2 Definition 3.1

We assume that there is a partition of the manifold into simply connected subsystems so that
each v € V is associated with one of these subsystems. Furthermore, there is an edge between
v1, vy € V if and only if the subsystems associated with the vertices are adjacent to each other.
This assumption lets us define a notion of topology for a set of vertices. Without loss of generality,
let U be a set of vertices and ¢/ be a union of the subsystems associated with the vertices in U. The
topology of U is defined as the topology of /. By construction, a single vertex is topologically a disk.
However, a more general topology, e.g., an annulus, can be built out of a union of the vertices.

Throughout this paper, we consider a state o € S(#) satisfying two axioms shown below. We
will call this state the (global) reference state. We always use o to refer to the same reference state
unless specified otherwise. We use o, to represent the reduced density matrix of o on a region
A. Physically interesting examples of the reference state are the ground states of gapped local
Hamiltonians. However, our derivations are only based on the properties of the quantum state.
Technically, we are allowed to assume the global state to be pure o = |y)(¥| without loss of
generality. This is because one can always show the existence of a pure state which has the same
local reduced density matrices as the given reference state (see Theorem B.1).

For the readers’ convenience, we have summarized the key concepts in Table 1.2

2.1. Axioms

We start by defining a set of density matrices

u(r) = {op|b € B(r)}, (2)

where B(r) is a set of balls of radius less or equal to r and oy}, is the reduced density matrix of the
reference state (o) on b. Because r will be chosen to be a constant independent of the system size,
we will simply denote u(r) by u. We will refer to the set of b € B(r) as the set of u-disks.

3 We thank the referee for this suggestion.
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Fig. 2. A disk is divided into its “core” (C) and outer boundary (B). The boundary (B) is chosen to be thick enough so
that correlation between C and the complement of BC is negligible.

Fig. 3. A disk is divided into its “core"” (C) and its outer boundary, which is further divided into two pieces (B and D).

The axioms of our framework concern two entropic constraints on the set of y-disks.* Let
S(p) = —Tr(plnp) be the von Neumann entropy of a state p. We assume that Axioms A0 and
A1 hold for all p-disks.

Axiom AO For any o, € u, for any configuration of subsystems BC C b topologically equivalent to
the one described in Fig. 2,

S(oc) + S(oc) — S(og) = 0. (3)

Axiom A1 For any o, € u, for any configuration of subsystems BCD C b topologically equivalent
to the one described in Fig. 3,

S(osc) + S(ocp) — S(op) — S(op) = 0. (4)
To see the physical meaning of these axioms, we observe that Eq. (3) implies
I(A:C)s =(Sa+Sc —Sac)s =0, (5)

where A is contained in the complement of BC and I(A : C) is the mutual information. This
result follows from the strong subadditivity (SSA) of von Neumann entropy [26]. The mutual

4 The two local entropic constraints AO and A1 are originally proposed by one of us in Ref. [17] The first attempt at
deriving the axioms of anyon theory from these conditions was presented in Ref. [18].
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information is a measure of the total amount of bipartite correlation. Therefore, Axiom AO can be
viewed as a formalization of the intuition that long-range two-point correlation vanishes in gapped
ground states. However, note that the assumption is strictly stronger than the vanishing of mutual
information itself. For instance, an infinite temperature Gibbs state satisfies Eq. (5) but does not
satisfy AO. Eq. (4) implies that the quantum conditional mutual information vanishes:

I(A: C|B)y = (Sag + Sec — Sg — Sapc)s =0, (6)

where A is contained in the complement of BCD. Again, A1 is a stronger condition than Eq. (6).

While these axioms can be derived from Eq. (1), they are weaker assumptions and may hold in
more general settings. Moreover, we expect these axioms to be a more well-defined way of formu-
lating our assumptions compared to Eq. (1) because they manifestly get rid of the leading divergent
term in the area law. In reality, we expect our assumptions to be satisfied only approximately, up
to an error that decays exponentially with £, where r is the length scale of the subsystems and &
is the correlation length. We believe our framework has a natural extension to these cases since
every theoretical tool we use can be generalized to such situations (see also Discussion).

How we use these axioms will be explained later in this paper, starting from Section 3. However,
for the hasty readers, we can briefly summarize our intuition as follows. The intuition behind AO is
that the correlation between two sufficiently separated subsystems is negligible. This fact allows us
to decouple two such subsystems without affecting either of them too much. The intuition behind
AT is more profound and subtle. Let us consider the following example. Suppose we have a density
matrix over AB and another density matrix over BC. Our goal is to “merge" these two density
matrices; we want to construct a density matrix over ABC whose marginal density matrices on
AB and BC are consistent with the given data. It is well-known that one cannot generally do this
in quantum systems. For example, if AB is a maximally entangled state and BC is also (the same)
maximally entangled state, there cannot be an extension of these density matrices into a single state
acting on ABC. By assuming Axiom A1, we can bypass this difficulty and merge the density matrices
that are given to us. The majority of our key results follow from this merging process. In particular,
we shall extensively use nontrivial identities involving the entropies of the merged subsystems.

2.2. Main results

Our framework employs the notion of information convex set [18,22], the structure of which has
been recently conjectured [23]. Loosely speaking, this is a set of reduced density matrices on a given
subsystem; these density matrices are locally indistinguishable from the global reference state, but
with an extra structure on this set in order to facilitate our analysis; see Section 3.2 for the details.
Crucially, information convex sets are defined from a single state. As such, we do not need to invoke
any assumption about the parent Hamiltonian.

The following results follow from Axioms AO and A1. Again, we do not assume anything about
the parent Hamiltonian.

1. Isomorphism theorem
Let A and B be two subsystems which can be smoothly deformed from one to another. We
show that the information convex sets associated with A and B are isomorphic (Theorem 3.10).
These sets can be mapped onto each other by a linear bijective map. Moreover, these maps
preserve the distance and the entropy difference between the elements of the information
convex set. Concretely, let @ be one such map. Then D(p, p’) = D(®(p), ®(p’)) for any
distance measure D(-, -). Moreover, S(p)—S(p') = S(®(p))—S(®(p’)). Therefore, the structure
of the information convex set only depends on the topology of the region associated with it.
2. A well-defined notion of topological charges
We show that the information convex set of an annulus is a simplex whose extreme points
are orthogonal to each other. That is, any state p in the information convex set of an annulus
must have the following form (Theorem 4.1):

P = @Paﬁa,
a
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where {p,} is a probability distribution over a finite set, and ¢ is a state only depending on
the choice of the region. We define the label a as a topological charge/superselection sector of
the system. In exactly solvable models (e.g., toric code), o corresponds to a reduced density
matrix of an annulus that surrounds a topological charge a. Different superselection sectors
are perfectly distinguishable from each other. Moreover, the isomorphism theorem (see the
first main result) implies that the charge is globally well-defined. We furthermore prove that
for each sector, there exists a unique anti-sector (Section 4.3).
3. Extracting fusion multiplicities

We completely characterize the information convex set of a 2-hole disk. We show that any
element in this set can be expressed as

0= @ pgb pabc’

a,b,ceC

where C is the set of topological charges, {p;,} is a probability distribution, and {p®°} are
mutually orthogonal quantum states labeled by a, b, and c. We show that, for each choice
of a, b and c, the set {p®°} forms a state space of a finite-dimensional Hilbert space; see
Theorem 4.5. The dimensions of these Hilbert spaces are identified as the fusion multiplicities
of the underlying anyon theory. In the context of the anyon theory, a and b label the two
charges associated with the holes and ¢ represents the total charge of the disk.

4. Axioms of the anyon fusion theory
Our definition of the fusion multiplicities (see the third main result) satisfies all the axioms
of the anyon fusion theory. The proof is based on the merging technique [21]. We derived
several consistency relations by “merging” two density matrices and comparing the entropy
of the reduced density matrices before and after the merge. An equation that relates these
entropies leads to the axioms of the anyon fusion theory.

5. Topological entanglement entropy
From our definition of the fusion multiplicities, we further show that the sub-leading constant
term y in Eq. (1) is the logarithm of the total quantum dimension. Unlike in [13], our
derivation makes no assumption about the underlying effective field theory.

As a corollary, many of the anyon data can, in principle, be extracted from the local information
of a single ground state. Importantly, we do not need to assume that the low-energy excitations
can be described by a unitary modular tensor category. (Instead, we need A0 and A1.) In contrast,
an oft-used numerical method [27] requires global information of multiple ground states and
the assumption that the system is described by a modular tensor category. Also, Haah [28] has
attempted to extract the topological S-matrix from a single ground state. Haah’s final argument
that his invariant matches the S-matrix, however, still relies on the modular tensor category
assumptions.

Finally, we can also define a unitary string operator that creates an anyon pair. The support of
the string can deform freely as long as the endpoints are fixed (Appendix H).

3. Axiom extension, information convex set and isomorphism theorem

We have proclaimed in Section 2.2 that we can, among many things, establish a globally well-
defined notion of topological charge. Because our axioms (Axioms AO and A1) are assumed to hold
only on bounded-radius disks, the fact that such a notion can even exist in the first place is not
obvious at all.

In order to explain how this works, we choose the main theme of this section to be “local to
global”. Starting from our local axioms (Axioms A0 and A1), we will see how we can infer some of
the global statements we made in Section 2.2. The first step in this direction lies in extending our
local axioms to larger regions. Note that our axioms are assumed to hold only on (bounded-sized)
u-disks. In Section 3.1, we will show that the axioms in fact hold on arbitrarily large disks.

Then we move onto a concept that plays the central role in this paper: information convex set.
In order to define an information convex set, we need to fix a subsystem and consider a set of states
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on this subsystem which are locally indistinguishable from the given reference state. Let us refer to
this subsystem as £2’ and the set of states as X(£2").

_ The set 3(£2') is not the information convex set, but we are getting close. For every state in
3(£2"), trace out part of the subsystem that lies at the “outer edge" of £2’; see Fig. 6. This way,
we get a set of reduced density matrix over a subset of £2’. Let this subset be 2. What we have
obtained is the information convex set of §2, which we refer to as X'(£2). As one can see, this is quite
an involved definition! However, in our opinion, we have a sensible justification. Why we choose
X (£2) over X(£2') as a main actor of our story will be the main topic of discussion in Section 3.2.

In Section 3.3, we derive the key technical result of this section: the isomorphism theorem
(Theorem 3.10). This theorem establishes an equivalence between information convex sets for
topologically equivalent subsystems connected by a path.

This section may seem a bit abstract at first, so it will be useful to have a concrete physical
picture in mind. Consider a topologically ordered medium [29] that can host anyons [30,31]. It is
well-known that, within such a medium, there is a globally well-defined notion of superselection
sectors and fusion space. This is because one can adiabatically transport anyons from different
regions and compare them. For example, suppose we have two anyons that are well-separated
from each other. How would we able to decide if they are the same anyon type or not? One can
adiabatically bring either of the anyons to some fixed location and perform an Aharonov-Bohm type
interference experiment. If the underlying anyon theory is unitary, there must be some experiment
that can distinguish two different types of anyons.

In the above illustrative example, we observed that there is a physical process by which we can
compare anyons or even a collection of anyons with each other. This comparison is possible if one
can transport these objects from one place to another. The isomorphism theorem formalizes this
transportation process in a Hamiltonian-independent manner.

3.1. Extension of the axioms

In this Section, we show that our axioms (Axioms AO and A1) hold on arbitrarily large disks.
Results in this section have been discussed in Ref. [17]. In order to understand this section, one
should become familiar with the notion of quantum Markov state [15,32]. A quantum Markov state
is a tripartite state, say over subsystems A, B, and C, such that

I(A : C|B) = S(pag) + S(ppc) — S(pB) — S(pasc)

is equal to 0. These states enjoy several nontrivial properties, which we make extensive use of.
The following two lemmas will be used frequently.

Lemma 3.1. Let papc and oapc be density matrices such that (1) pap = oag and pgc = opc; (2)
I(A:C|B), =I(A: C|B), = 0. Then pagc = 0apc.

The proof follows from Ref. [33]. Suppose we know o4p and opc for the partition in Fig. 4. Then
A1 implies I(A : C|B)y < (Sgc + Sco — Sg — Sp), = 0. This lemma implies that the state oypc is
uniquely determined by its reduced density matrices. Moreover, there is a CPTP map which can
recover oupc from its reduced density matrices. This map is known as the Petz recovery map.

Lemma 3.2 (Petz Recovery Map [33]). For any tripartite state pagc, I(A : C|B), = 0 if and only if

pasc = g pc(pag) s (7)
where 55—>Bc( the Petz recovery map) is defined as

1.1 _1 1
5§—>BC(XB) = PycPp “X8Pg * Py

Now we are in a position to state the main result of this section. In Proposition 3.3, we show that
Axioms AO and A1 hold for all disks. By assumption, these axioms hold for p-disks. The nontrivial
part of the statement is that the axioms hold at a larger length scale.
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Fig. 4. An illustration of the growth procedure of a disk from AB to ABC. Here A can be large and BCD is contained in a
p-disk in a manner similar to Fig. 3.

(a)

Fig. 5. The extension of the axioms. A disk is divided into either BC or BCD. A p-disk is on a smaller length scale, i.e., the
small dashed circle surrounding the colored region. These figures represent three ways of enlarging C by a small step.
(@Q)bc CBand d C C; (b) bcCBand d C C; (c) bcCB,dCCand d CD.

Proposition 3.3. For a reference state satisfying axioms AO and A1, the entropic conditions Eq. (3) and
Eq. (4) are satisfied on all larger disk-like subsystems.

Proof. We shall extensively use the following two inequalities:

Spc + Sc — Sp > Spyc + Sc — Spy's (8)
Spc + Scp — Sg — Sp > Spe'c + Scoo' — Sy — Sppr - (9)

Both of them follow from SSA.

Let us first extend Axiom AO to a larger scale. Without loss of generality, consider a disk and
its subsystem B and C, shown in Fig. 5(a). Assume that BC is not contained in any u-disk. One can
consider a sequence of (enlarged) subsystems to obtain this disk(BC) from a p-disk.

For this purpose, it suffices to consider the following two moves. The first move is to enlarge
B while keeping C fixed. The second move is to enlarge C while keeping BC fixed. Our goal is to
show that, for both of these steps, the linear combination of entropy Sgc 4+ Sc — Sp is non-increasing.
The first move preserves Eq. (3) because of Eq. (8) where we set B LI B’ to be the enlarged B. To
understand why the second move preserves Eq. (3), consider a deformation depicted in Fig. 5(a).
We need to show Sgc + S¢ — S is non-increasing when we deform C to include the colored region
of Fig. 5(a). A variation of Eq. (9), which involves the u-disk bcd, is

Sg+ Sce — Spve —Sc < Sbe +Sea —Sp — Sa = 0. (10)

Therefore, both moves preserve Eq. (3). Because any disk can be enlarged from a u-disk by applying
a sequence of these moves, Axiom A0 holds for any disk.

Now, let us move on to Axiom A1. Similarly, we can obtain a larger disk, say BCD, from a p-disk
by making use of the following moves. As usual, the choice of the subsystems are similar to the one
used in Axiom A1. The first move is to enlarge B and D while keeping C fixed. The second move is
to enlarge C while keeping BCD fixed.
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Fig. 6. This figure is a schematic depiction of regions involved in the definition of information convex set X(£2). Here §2
is the annulus between the black circles, annulus £2' 2 £ is the thickening of £2, i.e., the region between gray circles.
Any element in 3(£2') is consistent with the reference state o on every p-disk contained in £’ (the blue disks). We
chose 2 to be an annulus for illustration purposes. Other topologies are allowed as well.

Let us show that the entropic condition (4) holds at every step. The first move preserves Eq. (4).
This is because inequality (9) can be applied to enlarged region BB’ and DD'. Notably, B' and D’
can be chosen to touch each other. This allows us to show Eq. (4) for the arbitrary BB" and DD’
satisfying the topology condition, by suitably choosing B and D in the initial x-disk. For the second
move, we can consider the following sequence of small steps shown in Fig. 5(b)(c) as well as the
same steps in which the choice of B and D are switched. Here is the justification of each small step.
It is sufficient to justify the steps shown in Fig. 5(b) and (c). Regarding the enlargement process
described in Fig. 5(b), we have

S +SCDC_SB\C_SCDfsbc“l‘scd_sb_sd:O- (11)
For the enlargement process in Fig. 5(c), we have
Sg + Scoe — Seve — Scp < Spe + Scdar — Sp — Saar = 0. (12)

Therefore, both Egs. (3) and (4) hold at larger length scales. This completes the proof. O
3.2. Information convex set

Care must be taken in reading this section, for we are about to explain the most important
concept in this paper: information convex set. Let us begin with some definitions. We say that
two density matrices p and p’ are consistent with each other if they have identical density matrices
on the overlapping support, i.e., p4 = p, where A is the intersection of the support of p and that of
o', and denote it by

c
p=p.

For each subsystem £2 C V, we can define its information convex set by first considering the
“thickening" of £2. Let 3£2 C V be a set of vertices that are (graph) distance 1 away from £2. If the
subsystem £2 LI 052 is topologically equivalent to §2, we refer to that subsystem as a thickening of
£2. Let there exists a thickening of §2; we denote the thickening as £2’. Intuitively, £2’ is a subsystem
that can be smoothly deformed into £2 such that £2'\£2 is a boundary of §£2 with a non-vanishing
thickness. This thickness must be chosen to be sufficiently large compared to the correlation length

of the underlying state.
Now, we are in a position to define the information convex set.
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Definition 3.1. Let 2 C V be a subsystem and let £2’ be the thickening of §2. The information
convex set of £2 is defined as

2(2) = {pelpe = Trone por, por € (2}, (13)
where X(£2’) is defined as

5(2) = {porlpe = 0p, Vop € u.

This definition was first advocated in [18]. A related Hamiltonian-based definition was intro-
duced in Ref. [22]. _

One may have thought that X(£2) would be a more natural definition of information convex
set. However, it turns out that the local indistinguishability constraints are insufficient to fix some
of the degrees of freedom at the boundaries of 2. For this reason, it is possible for some of the
elements in X'(£2) to possess entanglement between two distant u-disks in the vicinity of the
boundary of £2. Moreover, even a multipartite correlation may arise along the boundary. These
exceptional elements cannot be regarded as the reduced state of a state on a larger support that is
also locally indistinguishable from the reference state. In particular, they contain unnecessary extra
information that has nothing to do with the anyon theory. The additional partial trace operation in
the definition of X'(£2) removes such irrelevant correlations around the boundaries.

As it stands, the definition of information convex set is independent of our axioms (Axioms
AO and A1). However, once we impose these axioms, one can come up with a more restrictive
definition of information convex set that does not involve £2’. This definition is formulated in
Definition C.1. Proposition C.4 establishes the equivalence of the two.

Below, we derive properties of the information convex set. First of all, information convex set is
a convex subset of the state space. This follows straightforwardly from the definition.

Proposition 3.4. For any nonempty 2 C V, X (82) is a nonempty finite-dimensional compact convex
set. Furthermore, if 2 C £2’ and pgo € X(82'), then Trong por € X(82).

Proof. The state space of a finite-dimensional Hilbert space is a finite-dimensional compact convex
set. The partial trace operation Trpn o is linear and bounded. Therefore, the image of the partial trace
is compact and convex. The last statement is a direct consequence of Definition 3.1. O

Secondly, we show that the information convex set of a disk contains a single element. We use
this result throughout this paper, primarily for identifying the uniqueness of the global state on a
sphere and for defining the vacuum sector.’

Proposition 3.5. For any disk-like subsystem w, we have
2(o) = {ouh (14)

where o, = Trg|Y) (Y| and o is the complement of w.

Proof. The idea is illustrated in Fig. 7, which involves a repetition of the “growth process" described
in Fig. 4. Starting from a u-disk, one can grow the disk until the enlarged disk covers w.

Let us get into the details. First, recall that ¥ (w) is nonempty since it contains o,,. Let us pick
another element ¢, € X(w). According to Definition 3.1, o,, and o, must be identical on a u-disk.
Therefore, we can repeatedly use the conditional independence condition, i.e., I(A : C|B), = I(A :
C|B),» = 0, to show that the reduced density matrices of the two states are identical on increasingly
larger disks; see Lemma 3.1. The disk can grow to the point it covers w. Thus, we can conclude that
0, =0, 0O

5 As a side note, let us point out that this result is based only on Al. Therefore, the uniqueness of the element for
the information convex set of a disk can hold more generally, even when AO breaks down.
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= =

Fig. 7. A p-disk can grow until it covers a larger disk w.

More generally, we can consider the information convex set of a subsystem which is not
topologically a disk. We shall discuss the structure of such set in Section 4. The following fact will
be important for that discussion. Let §2 be an arbitrary subsystem. We show that, for any element
in the information convex set of 2, its reduced density matrix on a disk-like region is equal to the
reduced density matrix of the reference state on the same region.

Proposition 3.6. Any state p, € X(£2) satisfies

Trﬂ\w P2 =0y (15)

on any disk-like subsystem w C §2.

Proof. By Proposition 3.4, for any state pp, € X(£2), Tro\wpoe is an element of X(w). By
Proposition 3.5, the set X (w) contains only one element. O

As a side note, we can always choose the reference state to be pure even if the initially given
reference state is not. This is because the information convex set of the entire system is the state
space of a finite-dimensional Hilbert space (see Theorem B.1); one can simply choose one of the
pure states in this space to be the reference state. This pure reference state, restricted to the u-disks,
would be consistent with the initially given reference state.

An interesting special case is when the underlying manifold is a sphere (S?). In this case, the
global state is unique and thus pure.

Proposition 3.7. X(S5%) = {|v) (¥}

Proof. Let us begin by setting up an appropriate set of subsystems. Partition the sphere into three
subsystems, A, B, and C. We choose C to be a disk and B to be an annulus that surrounds C; see
Fig. 2. The complement of BC, i.e., A, is a disk.

Without loss of generality, suppose we have two states papc, oapc € X(S%). We show that they
must be equal. By Proposition 3.5, their reduced density matrices are identical on AB and BC. SSA
implies that for both states,

I(A: C|B) < S(BC) + S(C) — S(B),

where we suppressed the dependence on p and o. Either way, the right hand side is 0 because our
axioms hold at any scale; see Proposition 3.3. Because papc and o4pc both have vanishing conditional
mutual information (conditioned on B) and have identical density matrices (on AB and BC), we can
use Lemma 3.1. Therefore, papc = 0apc.

By Theorem B.1, X(S?) is isomorphic to a state space of a finite-dimensional Hilbert space.
Because this set has a unique element, the global reference state must be pure. O

3.3. Elementary steps and isomorphism theorem

In this section, we establish an isomorphism between two information convex sets. This isomor-
phism exists if the subsystems associated with the two sets are topologically equivalent and can
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be smoothly deformed into each other. More precisely, in order to establish an isomorphism, we
require that the two subsystems to be connected by a path (Definition 3.2).

Crucial to this analysis is the concept of state merging. Suppose we have two quantum states
p and o which share an overlapping support and consistent. The question is whether one can
consistently “sew" them together. Namely, can we find a state which is consistent with both p
and o ? This is known as the quantum marginal problem. In general, even deciding whether there
is such a state or not is known to be extremely difficult [34]. There are several nontrivial necessary
conditions [16,17], but sufficient conditions are rare.

However, one of us has found a nontrivial sufficient condition [21]. We restate the result for the
reader’s convenience.

Lemma 3.8 (Merging Lemma [21]). Given a set of density matrices S = {papc} and a density matrix
opcp Ssuch that ppc = opc and

I(A:C|B), =I(B:DIC), =0, Vpes, (16)
there exists a unique set of “merged" states {T:BCD = &2_, p(pasc)} which satisfy the following properties.
(1) t” is consistent with p and o, i.e.
Thpe = papc and Ty = opcp. (17)
(2) Vanishing conditional mutual information,
I(A: CD|B);» =I(AB:D|C),p =0, Vp. (18)
(3) The conservation of von Neumann entropy difference, for arbitrary p, p’ € S,

S(thsen) — S(Thsen) = S(oasc) — S(Phsc)- (19)

The significance of this lemma lies on the fact that one can guarantee the existence of a global
state from a (relatively) local information. What is given to us are the density matrices over ABC
and BCD, together with the conditions that can be verified on ABC and BCD. In particular, these
conditions can be directly verified from the given states. Once the conditions are verified, one can
guarantee the existence of a state over ABCD that is consistent with the given density matrices.

The merging lemma (Lemma 3.8), together with our axioms (Axioms A0 and A1) underpin the
majority of our technical work. The interplay between the two is what allows us to start from
strictly local information and conclude something nontrivial at a larger scale. Roughly speaking,
such analysis is carried out as follows. Our axioms allow us to upper bound certain conditional
mutual information by 0. We can then apply this fact to Lemma 3.8 repeatedly to merge (many)
density matrices. In particular, we can merge elements of multiple information convex sets into
an element of yet another information convex set. This not only allows us to smoothly deform the
boundary of a subsystem (Fig. 8) but also allows us to consider merging processes with nontrivial
topology changes; see Section 4.3.

Now, we are in a position to prove the isomorphism theorem. This theorem establishes an
equivalence between two information convex sets whose underlying subsystems can be smoothly
deformed into each other. We first explain a method to establish the equivalence when one
subsystem is merely an “infinitesimal" deformation of the other. Of course, the word infinitesimal
should not be taken literally, because we are considering a quantum many-body system on a
lattice. What we mean is that one subsystem can be obtained from the other by either attaching or
removing a region whose size is comparable to that of the p-disks.

Imagine zooming into the region in which this deformation occurs. Without loss of generality,
we can consider two subsystems §2 = ABC and £2’ = ABCD depicted in Fig. 8, where CD is contained
in a p-disk. We can show that there exists a bijection between X (§2) and X (£2"). This is the content
of Proposition 3.9. The proof is in Appendix C.
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Fig. 8. Two slightly different subsystems £2 = ABC and §2' = ABCD (only a part of A is shown). BCD is a disk and CD is
contained in a u-disk. The topology of A can be arbitrary. We require B to be thick enough, so that A and D are separated
by at least 2r + 1. (Recall that r is the scale used in defining the j-disks; see Eq. (2).)

Proposition 3.9. Consider the partition in Fig. 8. (Note: A and D are assumed to be separated by at
least 2r + 1 in Fig. 8.) Let the domain of Trp and £Z_ -, to be X(£2') and X(£2) respectively.

ImTrp C X(82)

ImeZ, o, € (2. (20)
Moreover, for all po € X(£2) and por € X(£27),

Trp 0 EC_, cp(P2) = pa, (21)

& o Trp(per) = por. (22)

In particular, Trp and £Z_, -, are bijections.

As a side note, Proposition 3.9 further implies that the isomorphism £2_ , : X(£2) — X(£2')is
independent of the choice of B and C. To see why, consider two choices, say BC C §2 and B'C' C £2.
Consider two maps £¢_, o, and £F,_, . Suppose there exists an element of X'(£2) which, under these
two maps, is mapped into two different elements of X'(£2’). Upon applying Trp to these two states,
by Proposition 3.9, both states must be mapped back to the same state. This implies that Trp is not
injective, which contradicts Proposition 3.9.

There are two simple corollaries of Proposition 3.9, which will become handy in the rest of the

paper. First, the bijective map Trp and £7_, -, preserves the distance between two states.

Corollary 3.9.1 (Distance Preservation). Let pg, p, € X(£2) and pgr, p,, € X(82'). For any distance
measure D(-, -) between quantum states,

D(pg, p_,(z) = D(gg_mp(pﬂ)y 5g_>a)(p;z)) (23)
and

D(par, po) = D(Trp(pe), Trp(pg)). (24)

Proof. For both identities, the proof is practically identical. So we only discuss the proof of the first
identity. Because both £7_, -, and Trp are CPTP maps, distance is nonincreasing under these maps.
Therefore,

D(pa, pg) = D(EC_cp(P2)s €6 cp(Pa))
> D(Trp o ggecp(pﬂ), Trp o 5g_>CD(;0}2 ) (25)
= D(pa, py),
where in the last line we used Proposition 3.9. Therefore, D(pg, pg) = D(EZ_, p(p2), E8_ p(Pe)). O

We note that, while we only considered distances between two quantum states, the same
proof applies to the preservation of the fidelity F(p, ) = (Tr\//p rﬁ)z. While fidelity is not
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a distance measure, its behavior is monotonic under application of CPTP maps. Therefore, the proof
of Corollary 3.9.1 still applies.

In fact, we can show more. Even the entropy difference is preserved under Trp and £Z_, . The
proof of this statement is a simple byproduct of the proof of Proposition 3.9. The proof follows
immediately from property (3) of Lemma 3.8.

Corollary 3.9.2 (Entropy Difference Preservation). Let pg, p, € X(£2) and pg/, p,, € X(82'). The
von Neumann entropies satisfy

S(pe) — S(pe) = S(E_.p(P2)) — S(EC_, cp(pa)) (26)
and

S(par) — S(pgr) = S(Trp(per)) — S(Tro(pg: ). (27)

Therefore, given a subsystem £2 and its information convex set X (§2) we can establish a bijection
between X'(£2) and X' (£2’) where £2' is a slight deformation of 2. In order to apply Proposition 3.9,
£2' must be topologically equivalent to §2. We refer to the process of subtracting/adding a disk-like
region to a given subsystem as the elementary step of the deformation.

The isomorphism between two information convex sets can be established by repeating these
elementary steps. However, we have to be careful on two points. First, for two given topologically
equivalent subsystems, there can be more than one way to deform one to the other. Second, even
if the underlying subsystems are topologically equivalent, there may not be a smooth deformation
between the two. As a trivial example, suppose we have two spheres. We can place two subsystems
on each of these spheres. Even if these subsystems are topologically equivalent to each other, there
is no sequence of subsystems that smoothly deforms one to the other. Even on a connected space,
one cannot make such a statement; see Fig. 10.

Therefore, these (potentially different) isomorphisms must be labeled by their paths. Let us
formalize this notion below.

Definition 3.2 (Path). A finite sequence of subsystems {£2‘} witht = i/N andi = 0,1,2,...,N,
(N is a positive integer), is a path connecting £2° and £ if each pair of nearby subsystems in the
sequence are related by an elementary step of deformation, illustrated in Fig. 8.

Because a path is built up from elementary steps, we obtain the following theorem.

Theorem 3.10 (Isomorphism Theorem). If £2° and 21 are connected by a path {$2'}, then there is an
isomorphism

Doy : I(2°) — (e (28)

uniquely determined by the path {£2'}. Moreover, it preserves the distance and the entropy difference
between elements

D(p,0) =D (®i01(p), Piot)(0)) (29)
S(p) = S(0) =S (Prary(p)) — S (Prany (), (30)
where D(-, ) is any distance measure which is non-increasing under CPTP-maps.

We omit the proof since it straightforwardly follows by applying Proposition 3.9 repeatedly. For
any path {£2!}, we can define an inverted path {21t} which reverses the sequence of subsystems.
This leads to the inverse isomorphism @ o1-r, : X(2') - 3(£2°).

Generally speaking, different paths may give rise to different isomorphisms. That is, under two
different isomorphisms, an element of the information convex set may be mapped to two distinct
elements. However, sometimes, we merely need the existence of an isomorphism. In that case, we
will use a notation

(%= 3R

to indicate the existence of such an isomorphism. Under this condition, any distance measure and
entropy difference is preserved; see Eqs. (29) and (30).
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Table 2

Physical data that can be extracted from disks with different number of holes.
Physical data Number of holes
Superselection sectors 1

Fusion multiplicities 2

Axioms of the fusion theory 1, 2, 3, 4 (merging)

4. Fusion data from information convex sets

The isomorphism theorem (Theorem 3.10) guarantees that the structure of the information
convex set only depends on the topology, as long as the underlying subsystems can be smoothly
deformed from one to another along some path.

We now focus on how to extract the information of the topological charges and the correspond-
ing fusion rules from the information convex set. We do this by studying how the geometry of the
information convex set depends on the topology of the underlying subsystem. We then use the
merging technique (Lemma 3.8) to relate subsystems with different topologies and obtain several
consistency equations. We then define the fusion rules and show that they satisfy all the constraints
expected from the known algebraic theory of anyon [12]. The result of this study is summarized in
Table 2.

4.1. Superselection sectors/topological charges

Let us define a notion of superselection sectors, which is one of the key ingredients of the
algebraic theory of anyon [12]. Historically, the notion of superselection sectors was introduced in
the context of local field theory; see [35,36]. In the context of topologically ordered systems which
is most relevant to our discussion, a nontrivial superselection sector corresponds to an anyon type
that cannot be created by any local operator.

There are several recent attempts to rigorously formulate the superselection sectors based on
operator algebra assumptions. One approach is based on the operator algebra on an annulus [28,37],
and another approach is based on the operator algebra on a cone-like subsystem of an infinite
lattice [38,39]. Our approach to characterize the superselection sectors is similar to the one based
on the operator algebra on annuli. However, these two approaches differ in their assumptions and
their range of validity.

We will identify a well-defined information-theoretic object and find that this object coincides
with the conventional notion of superselection sectors in anyon theory. Importantly, we find that
the information convex set of an annulus forms a simplex (Theorem 4.1). The simplex has a finite
number of extreme points. Moreover, these extreme points are orthogonal to each other. See
Fig. 9(c) for an illustration. (See Appendix A.1 for the general definition of extreme points.) We
will define these extreme points as the superselection sectors.

Theorem 4.1 (Simplex Theorem). For an annulus X, the information convex set is the convex hull of a
finite number of orthogonal extreme points, {oy}, i.e.

px = @paa;;}, (31)

where {a} is a finite set of labels and {p,} is a probability distribution.

2(X) = {px

Here we show a sketch of the proof of Theorem 4.1. (See Appendix D.1 for the full proof.) The
orthogonality follows from the factorization property of the fidelity F(po, ) = (Tr,//p rﬁ)z. Let
Fx be the fidelity of two extreme points in the information convex set of X = LMR in Fig. 9(a) (We
use the same convention for subsystems). By using the fact that any extreme point has I(L : R) =0
(Corollary D.5.1), we find
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Fig. 9. (a) Division of an annulus X into three thinner annuli L, M, R. (b) A path (extensions-extensions-restrictions-

restrictions) which generates an isomorphism X(L) = X (X) = X(R). (c) A schematic depiction of the simplex structure
of X (X). The extreme points are the “corners” of the simplex. If the annulus X is contained in a disk, then one of the
extreme points has the vacuum label “1".

e ——

Fig. 10. A pair of annuli X° and X' on a torus. They cannot be connected by any smooth path because X° is contractible
and X! is non-contractible.

Because the fidelity is non-decreasing under a partial trace, we have Fyr < Fi. Since X and L, R
are annuli connected by paths, see Fig. 9(b), the isomorphism theorem implies F = F, = Fr = Fir
and thus

F < F2. (33)

F € [0, 1]. Therefore, the two extreme points are either the same (F = 1) or orthogonal (F = 0).
This derivation also shows that we can copy the information of the extreme point to L and R
simultaneously. The finiteness of the label set follows from the orthogonality and the setup that
the Hilbert space is finite-dimensional.

Theorem 4.1 implies that X' (X) forms a simplex in the state space. It has a finite number
of extreme points {oy}, which can be perfectly distinguished from each other by a projective
measurement supported on the annulus. The simplex structure also implies that its elements can
only store classical information in the probability distribution {p,}. The isomorphism Theorem 3.10
guarantees the universality of the label set, i.e., the fact that the same set of labels applies to all
annuli, which could be connected to each other by a path. Note that there could be annuli not
connected by any path, e.g., the X° and X! in Fig. 10. Theorem 4.1 is still applicable for both annuli,
but the label sets for them can be different. This is related to the existence of topological defects [24].

One of the extreme points is special. Consider a contractible annulus (see X° in Fig. 10 for
example). The information convex set of such annulus has a special extreme point which we label
as “1"; physically, this corresponds to the vacuum sector.
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Proposition 4.2. Let w be a disk. For any annulus X C w
0)} = Trw\X Ow, (34)
is an extreme point of X(X).

See Appendix D.2 for the proof. Importantly, the notion of vacuum sector is unambiguous
because ¥(w) has a unique element if w is a disk; see Proposition 3.5.

Now we are ready to define the superselection sectors in our framework. When there is a pair of
anyons, the topological charge can be measured by an Aharonov-Bohm type interferometry mea-
surement by braiding the anyons [40]. Indeed, the projective measurement used for distinguishing
different o corresponds to this interferometry measurement for several exactly solvable models.
Based on this observation, we identify each label of the extreme points as a superselection sector
of the system.

Definition 4.1. Let X be a contractible annulus. The set of superselection sectors is a set of extreme
points in X(X).

Except for the vacuum sector, we label each extreme points with the lower-case Roman letters:
c={1,a,b,c,...}. (35)

Several authors have already made attempts to define superselection sectors in 2D gapped
phases. A statement analogous to the simplex theorem was obtained recently in [37] for mod-
els with a local commuting parent Hamiltonian. This proof is based on the operator-algebraic
framework of Haah [28].

We expect our derivation to hold more generally, because we make no assumption about the
parent Hamiltonian. If the area law (Eq. (1)) holds, our results follow. In particular, if we can
prove approximate versions of our statements, we may be able to rigorously define a notion of
superselection sectors for models with non-zero Hall conductance or non-zero chiral central charge.
These models cannot have a commuting projector parent Hamiltonian [41,42].

The isomorphism theorem guarantees the label set of the superselection sector to be inde-
pendent of the details of the annulus. However, this theorem in itself does not imply there is
a well-defined way to compare the topological charges for two annuli. Indeed, in the presence
of a topological defect, transporting the same superselection in two different ways may result in
different sector [24].

In order to show that the isomorphisms associated with different paths are identical, one
necessarily has to invoke an extra condition on the paths. Lemma 4.3 establishes one such condition.
Roughly speaking, it is possible to compare two annuli unambiguously independent of the path, as
long as both paths lie in a single disk.

Lemma 4.3. Let X° and X! be two annuli contained in a disk C; see Fig. 11 for example. Let {X{U} and
{X5)} be two paths connecting X° and X" such that Xg) = X% X}y = X" for i = 1, 2. Moreover, assume

that UtX(t]) cC, UtX(‘Z) C C. Then, the isomorphisms
LR X% - "
and Dy ;- X% - zxh
are identical.

Lemma 4.3 implies that we can always treat <I>{Xf1 1(040) as the label a for X !, The key idea behind

the proof is that one can copy the information aij)out which superselection sector lies inside an
annulus to a common annulus; see Fig. 11 for illustration. The proof is left in Appendix D.2.

Now that we have defined a notion of superselection sectors, we can define their quantum
dimensions. We will do so by investigating a contribution to the entanglement entropy that depends
on the choice of this sector. We will use the following definition. Later, we will be able to determine
their value.
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Fig. 11. Both C and BC are disks. B is an annulus. X°, X', )~(°~ and X! are annuli. Note that X° and X' are subsets of C.
In the proof of Lemma 4.3, we construct an extension X — X' with B C X*.

Definition 4.2 (Entropy Contribution of Superselection Sector). For a contractible annulus X, we define
the universal contribution to von Neumann entropy from superselection sector a as

a 1
flay = X230,

The denominator 2 is introduced to take into account that X has two boundaries. For a connected
2D manifold, f(a) is a real number that does not depend on the choice of the contractible annulus.
This is because the entropy difference is preserved by an isomorphism. Furthermore, f(1) = 0 by
definition.

Later, we shall study similar contributions for a n-hole disk with n > 2. We will find that f(a)
appears generically, even for these more generic subsystems. The repeated appearance of these
objects hint at a possibility that there may be nontrivial relations concerning f(a). Indeed, we will
later see that f(a) = Ind,, where d, is the quantum dimension of an anyon/superselection sector
a. We will also be able to derive the fusion axioms and an expression for topological entanglement
entropy.

(36)

4.2. Fusion rules and fusion spaces

The fusion rules determine the possible choice of the total composite topological charge of two
given topological charges. In the algebraic theory of anyons, the fusion rule for charges a and b is
formally written as

axb:ZNgbc,
c

where N, € Zs is the fusion multiplicity. This is analogous to the fact that two spin—% particles
can fuse into spin-0 or spin-1 particle. Nevertheless, there is a fundamental difference between
the fusion of spins and that of anyons. For the definition of particle spins and their fusion rules,
rotational symmetry is often needed either in the Hamiltonian or the Lagrangian. In contrast, the
notion of topological charges and their fusions are expected to emerge from the collective properties
of a many-body quantum system [12,43,44]. Indeed, we emphasize that our axioms (Axioms A0 and
A1) are unrelated to any symmetry.

In our framework, the superselection sectors were identified from annuli. Thus, one may expect
the fusion rules to be extracted from 2-hole disks. In this section, we show that this is indeed the
case. Let us consider a 2-hole disk Y, which we depict in Fig. 12. Let By, B, and Bs be the three annuli
around the boundaries of Y. The information convex set of each annulus has the same simplex
structure, and we can label the extreme points by the same label set. Let X5, (Y) be a convex subset
of X(Y), defined as

Try\, py = o,
()= oy € D(Y)| Ty, oy =op, ¢, (37)

— C
Try\s, py = 0p,
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Fig. 12. A 2-hole disk Y = BY’, with B = BB,Bs. By, B, and B; are three annuli surrounding the three boundaries of Y.
YD is a disk, where D = D{D,. D; and D, are the two disks surrounded by annuli B; and B,.

where aé’l_ is an extreme point of X(B;), i = 1, 2, 3. The convention of charge labeling among the
different annuli is fixed by Lemma 4.3. X¢,(Y) may be empty if there is no state satisfying all the
conditions. We call such a combination of (a, b, c) forbidden.

We show that every extreme point of X(Y) is contained in some X (Y). Because X(Y) is
a convex set, the entire set can be characterized by {X,(Y)}. Each X, (Y) is isomorphic to the
state space of a finite-dimensional Hilbert space V¢,. These two results are summarized below in
Theorems 4.4 and 4.5.

Theorem 4.4. For a 2-hole disk Y, the information convex set X (Y) is the following convex combination

2(Y) = {pv = P 5 0¥

a,b,ceC

Py € ng(v)} , (38)
where {pg,} is a probability distribution.

Proof. After taking a partial trace, the reduced density matrix of an extreme point of X (Y) reduces
to an extreme point of X' (By), X(B;) and X'(Bs). This fact follows from Lemma D.7 in the appendix.
Therefore, every extreme point of X(Y) is in X,(Y) for some a, b, and c. This implies Eq. (38). O

This theorem implies that one can classify the extreme points by a triple of labels (a, b, c).
Furthermore, the convex combination in Eq. (38) is orthogonal, since one can perfectly distinguish
these labels by projective measurements on the three distinct annuli.

Now we study the geometric structure of each X (Y). We should emphasize an important
difference between X, (Y) and the information convex set of an annulus. On an annulus, the
information convex set has a classical structure specified by a probability distribution {p,}scc. In
contrast, X¢,(Y) is coherent in the sense that it is isomorphic to the state space S(V¢,) of a certain
finite dimensional Hilbert space V¢,. If the dimension of V{, is greater or equal to 2, the structure
of X¢,(Y) allows the storage of quantum information. This structure is established by the following
theorem.

Theorem 4.5. Consider a 2-hole disk Y. Va, b, c € C,
Zap(Y) = S(Vp), (39)
where V¢, is a finite-dimensional Hilbert space.

A particular choice of (a, b, c) is forbidden, when dimV;, = 0. See Appendix E for the proof
of Theorem 4.5. The key idea is to show that there is a quantum channel which simultaneously
purifies every extreme point of X¢,(Y) into a state in Hilbert space Hgy (E is an auxiliary system).
We then show that any superposition of the purified states reduces to an extreme point of X¢,(Y)
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on Y. It follows that the quantum channel which achieves the purification provides an isomorphism
between X, (Y) and S(V,).

We call the Hilbert space V{, defined in Theorem 4.5 as the fusion space. Physically, this Hilbert
space is nonempty if the superselection sectors a, b has a total charge of c. We thus define the fusion
rule using the dimension of the corresponding fusion space.

Definition 4.3. We define the fusion rule of labels a, b in C by the formal product

axb=>) Nyec, (40)

ceC
C — H C
where Ny, = dim V.

The results in Theorems 4.4 and 4.5 generalize to n-hole disks with n > 3. The same applies to
the concepts of fusion spaces and fusion rules.

4.3. Derivation of the axioms of the fusion rules

In this section, we show how the axioms of the anyon fusion theory emerge from our axioms.
This derivation includes the existence of antiparticles and a set of rules that {N{;} has to satisfy.
We have defined the set of superselection sectors

¢c=1{1,a,b,c,...}

in terms of the extreme points of X'(X), where X is a contractible annulus. C is always a finite set
and there is a unique sector 1 € C which we refer to as the vacuum. We have also identified a set
of non-negative integers {Ng,} encoded in the structure of X(Y) with a 2-hole disk Y.

The following is a list of the results we are going to prove under our definitions.

1. N, = Ni,. (Proposition 4.6.)

2. N, = Nj, = 84,c. (Proposition 4.7.)

3. The ex1stence of an anti-sector a € C for Va € C such that Nab = &p.5. (Proposition 4.9 and
Definition 4.4.)

4. Ng, = N£_. (Proposition 4.10.)

5. ZiN;bNd >, N&NJ... (Proposition 4.11.)

Together, these properties form a subset of the axioms of the algebraic theory of anyon outlined in
Appendix E of [ 12], also known as the unitary modular tensor category (UMTC). Concretely, what we
derive in this section is the set of axioms of fusion rule algebra [45] which is also known under the
name commutative fusion ring [46]. It contains slightly less axioms than a fusion category because
we have not defined the F-symbols.®

In the derivation of the axioms of the fusion rules, we will extensively use the merging technique
to relate subsystems of different topologies. From our axioms, we can infer that elements in the
information convex sets are quantum Markov states with respect to many relevant partitions of
certain subsystems. Because quantum Markov states can be merged together (Lemma 3.8), we
can merge many of the elements of the information convex sets together. Moreover, this merging
process can be repeated many times. With this process, we can generate elements of an information
convex set over some region from information convex sets of its subregions. We refer the readers
to Proposition C.5 in the Appendix for the technical details.

Proposition 4.6.

Nay = Npq- (41)

6 F-symbols will give further constraints to the fusion multiplicities, the simplest examples are studied in [47].
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Fig. 13. A hole with the vacuum charge can be merged with a disk. The case shown in this diagram involves an annulus
and a disk, but the idea works for any n-hole disk with n > 1. The left side shows the topology of the subsystems before
they are merged. Also, the number “1" is the vacuum sector. The merged subsystem is shown on the right. The three
concentric lines partition the disk into the four subsystems used in the merging process.

Proof. Let us consider a path which maps a 2-hole disk Y back to itself by exchanging the
two internal holes. Associated with this path, there is an automorphism X(Y) = X(Y). The
automorphism permutes the labeling and induces an isomorphism X7, (Y) = X} (Y) for each a, b, c.

Thus, N;, = N;,. O

Proposition 4.7.

Nig = Noy = ac. (42)

Proof. Suppose py € X{,(Y) for 2-hole disk Y. Then the hole with the vacuum charge can be
merged with a disk, see Fig. 13. After the merging process, we obtain an annulus X. The density
matrix obtained from the merging process belongs to X'(X). The isomorphism theorem implies that
the two boundaries of X detect the same topological charge. Therefore, N, = 8. Then, Nj; = 84
follows from Proposition 4.6. O

One implication of this result is that E}l(Y) contains a unique element, which we call a\}. This
statement generalizes to n-hole disks with n > 3. The following lemma, which is about the universal
contribution to the von Neumann entropy, will be useful for the rest of the proofs. Moreover, this
lemma will be one of the key results that establish a connection between this contribution and the
quantum dimension.

Lemma 4.8. Let py be an extreme point of X5,(Y) and o, be the unique element of $1,(Y), then

S(py) — S(ay) = f(a) + f(b) + f(c), (43)
where f(-) is the function defined in Definition 4.2.

The proof is in Appendix E. The key idea is that for an extreme point of X, (Y), we can prove a
condition similar to that in AO, which converts the entropy of a pair of 2-hole disks into that of the
three annuli around the three disjoint boundaries of Y. The result generalizes easily to n-hole disks
for any n > 3.

Compared to the previous proofs, the proofs of the rest of the properties requires a new
technique. The key idea lies in deriving consistency equations of the entropy difference, obtained
by the following four steps:

(i) Obtain an element of an information convex set by merging two (or three) extreme points of
the information convex sets associated with the subsystems.

(ii) Compute the entropy of the merged element from the entropy formulas with respect to the
pre-merged regions.
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Fig. 14. Merging two annuli and obtain a 2-hole disk. On the right side, there are two thin disk-like regions in the middle,
which are chosen to be the B and C subsystem in the merging lemma (Lemma 3.8).
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Fig. 15. Merging a pair of annuli to obtain a 2-hole disk. We first deform the annulus associated to 1 so that it becomes
“longer" vertically. Then, the annulus associated to a is merged into the interior of this deformed annulus. The two thin
U-shaped disk-like regions are chosen to be the subsystem B and C in the merging lemma (Lemma 3.8).

(iii) Compute the entropy of the merged element from the entropy formula with respect to the
post-merged regions.

(iv) The entropy obtained from these two perspectives must yield the same result. This leads to
a set of consistency equations, which leads to a set of nontrivial relations.

For a concrete example of the method, let us study the case shown in Fig. 14. The cases in Figs. 15,
16, 18, 19 and 21 employ a similar logic. Let us explain the idea, which is broken down into four
steps.

(i) We can merge the pair of annuli for any chosen charge pair a, b € C. This is possible because
the conditions required for merging are satisfied. Let us call the merged state as a;”b. It follows that

axb

o, € conv(UC Zgb(Y)). Since the merged state exists, the set conv(Uc E;b(Y)) is nonempty. This
implies that ) N, > 1, Va, b € c. Moreover, oy *" is equal to oy}, which is the unique element of
ZL(Y).

(ii) From the perspective of the two annuli, the von Neumann entropy difference can be
expressed as:

S(oy*") = S(oy) = 2f(a) + 2f(b). (44)

This result follows from the fact that merging preserves the entropy difference; see property (3)
of Lemma 3.8. More explicitly, this result follows from conditional independence condition (I(A :
D|BC) = 0) of the merged state; see Fig. 14. Here A (D) is the upper (lower) annuli, with charge a
(b); the two annuli are separated by disk-like region BC in the middle.
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Fig. 16. Merging a pair of 2-hole disks to obtain a 4-hole disk.

(iii) From the perspective of the 2-hole disk Y, the von Neumann entropy difference is
S(oy") = S(oy)
= (@) + f(b) + In(}_ N, (45)
c

To derive this result, note that the merged state is the maximal entropy element in conv(Uc Egb(Y)).
This is because the entropy of any state in conv(UC Egb(Y)) can be upper bounded by its marginals
by the SSA and the merged state saturates this bound. Given the structure of X(Y), it is easy to find
the maximal entropy in terms of {N{;} and f(-). We calculated the maximal entropy and obtained
Eq. (45) [23].

(iv) By comparing the two perspectives in Egs. (44) and (45), we find

D) = 3 NE, o), (46)

Readers well-versed in the fusion theory of anyon may have noticed the similarity between e/® and
the quantum dimension [12]. This is not a coincidence. In Section 5, we shall see that they are, in
fact, the same thing. To establish their equivalence, we will derive a few more identities involving

NG, ).
Moreover, we can calculate the probability of having charge c on the third boundary
N
P(axbac) = o (@)l (b) . (47)

Its physical meaning is the probability to have an outcome ¢ from the fusion of two independently
created charges a and b. In terms of the density matrices, Paxp—c) is the coefficient of the element
in the center of X, (Y) when writing a;’Xb in terms of a convex combination.

It is worth noting that the same function f(-) appears in the entropy of the annulus and the
2-hole disk. This is crucial for the comparing the two perspectives (Eqs. (44) and (45)). With this
equivalence, we are in a position to derive more properties of {N{,}. In deriving these properties,
we will curtail our explanation a bit, because the argument is essentially the same.

Proposition 4.9. For each charge sector a € C, there is a unique sector a € C such that

N} = 8. (48)
It further satisfies the following properties.
=a, f(a) =f(a). (49)

Qi

1=1,
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Fig. 17. The fusion of (a, b) and (b, @), and matching the fusion probabilities Plaxb—c) and Pgyaq)-

Proof. From the merging of two annuli with charges 1 and a shown in Fig. 15, we can derive that
>, N}, > 1, Va because the merged state always exists. Furthermore, e/@ = 3", N} e/®).

Let us pick a sector b such that N}, > 1. We can see that &'® > ¢/®). However, since N}, = N},
by repeating the same logic we obtain e/®) > /@, For both of them to be true, we must have a
unique sector a such that N;b = Jp 5 and f(a) = f(a). Then it follows from N}1 = 1that 1 = 1. Since
N} =NL =1 wehavea=a O

Definition 4.4 (Antiparticle). We define the antiparticle of a € C as the unique sector a € C
established in Proposition 4.9.

The definition of a is universal and insensitive to the choice of the subsystem. Furthermore,
on a sphere, one could alternatively define a according to a nontrivial automorphism of X'(X), see
Appendix G.

Proposition 4.10.
NG, = NE . (50)

Proof. We consider the merging process in Fig. 16. Before merging, the density matrices are two
extreme points from El}a(yu) and EblB(Yd), if we call the pair of 2-hole disks as Y, and Y. Since
N{, = 81,4, the outermost boundary of the merged subsystem must have charge 1.

Now let us view the merged state in a different way, as depicted in Fig. 17. We have derived
that N}, = 84¢, which implies that in the merged state, the fusion outcome of a x b and that of
b x a are perfectly correlated. Whenever we get the outcome c from the fusion of a and b, we must
get ¢ from the fusion of b and a.

Furthermore, a and b in this state are “independently created” in the sense that fusion probability
P(axb—c) obeys Eq. (47). To see why, consider partial trace operations over (i) a region which
connects the hole with charge a to the outer boundary and (ii) a region which connects the hole
with charge b to the outer boundary. These regions are chosen so that the remaining subsystems
are topologically equivalent to the ones appearing on the right side of Fig. 14. Recalling the general
inequality I(AA" : CC'|B) > I(A : C|B), we observe that the annulus associated with a and the
annulus associated with b are independent conditioned on a disk-like region in between them
that separates the two annuli. As we have already discussed above, this conditional independence
condition implies that Pxp-.¢) obeys Eq. (47). Of course, an analogous argument can be applied to
P

bxa—¢)* _
Because ¢ and ¢ are completely correlated,
Paxb—c) = Ppxa—c)- (51)

a

Then, noticing f(a) = f(a) from Eq. (49), we can derive N{, = Nz‘fa' O
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Fig. 18. Merging a pair of 2-hole disks to obtain a 3-hole disk. Here Z = Y, U Yz = Y, UY,. Here a, b, c, d, i, are labels
of the topological charges.

As mentioned earlier, the results in Theorems 4.4 and 4.5 generalize to n-hole disks with n > 3,
and the same applies to the concepts of fusion space and fusion rules. Let us introduce a few
notations for n = 3 which are useful for the next proof. For a 3-hole disk Z, we use X(Z) to denote
its information convex set, El‘fbc(z ) to denote the convex subset of X'(Z) with fixed charges a, b, ¢, d
on the boundaries (Fig. 18). The corresponding fusion space V¢, has a finite dimension N, € Z-,.

Proposition 4.11. The fusion rules are associative, i.e.,

abc Z = ZNtZN{;c (52)
J

Proof. The key idea is to obtain a 3- hole disk Z in two different ways; see Figs. 18 and 19. The first
method gives us a lower bound of N4 in terms of N, and the second method shows the bound
saturates.

Let us consider the merging of a pair of 2-hole disks to obtain a 3-hole disk shown in Fig. 18.
We summarize the logic in a streamlined fashion in (i), (ii), (iii) below.

(i) Let us consider the left side of Fig. 18, which describes the merging of Y; and Y;. We pick an
orthonormal basis of Vi,, which can be chosen to be the extreme points of X/,(Y). The number of
such extreme points is equal to N, which is the dimension of the Hilbert space V,. Applying the
same logic to Yg, we see that the number of these extreme points is Nl.‘i.

(ii) Let us pick two arbitrary extreme points from the sets discussed above (one from Zéb(Y,) and
another from EidC(YR)) and merge them. We get an element in X abC(Z ). It is an extreme point. This
fact is verified by calculating the von Neumann entropy and making use of the 3-hole version of
Lemma 4.8. This way, we get N:, N¢ number of extreme points, and any two of them are orthogonal.
This follows from the fact that fidelity is nondecreasing under a CPTP map.

(iii) By applymg the merging process for all i, we find ) N mutually orthogonal extreme
points of X% (Z). Therefore, we must have

Nipe = > NiNi. (53)
i

The reason is Ngbc is the maximal number of mutually orthogonal extreme points in Eabc(z)
Similarly, from the right side of Fig. 18, we have

N be = ZNg‘N{:c' (54)
J

We did not find a way to turn “>" into “=" from Fig. 18 alone. However, we can show “=" by
considering a different way of merging subsystems; see Fig 19. The merged element, which we
call o"Xb” is the maximal entropy element of conv(Ud e (Z )). Comparing with o, the unique
element of 2]1“( ), it has an extra 2(f(a) + f(b) + f(c)) contribution to the von Neumann entropy.
On the other hand, we use the structure of X(Z) to calculate the maximal entropy in the sector with
charge a, b, ¢ in terms of {N%_}, we find a contribution equals to f(a)+f(b)+f(c)+In(}_,N% e@).

abc
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Fig. 19. Merging three annuli to obtain a 3-hole disk.

These two perspectives must provide a consistent answer. Thus,

o @l 0)f(0) Z NE @ (55)

However, from Eq. (46) we know that

e/ @el )l ) — Z ZN' Ny (56)

and e’ is positive since f(-) is real. So the “>" in Eq. (53) must be replaced by “=" and the same
replacement works for Eq. (54). Thus, we conclude that Eq. (52) holds. O

The result and proof of Proposition 4.11 generalizes to n-hole disks with n > 3.
5. Topological entanglement entropy

In this section, we show that the sub-leading term y of the area law (1) for a disk is given by
the well-known formula

y =InD, (57)

where D is the total quantum dimension defined from our definition of the fusion multiplicities
{Ng,}. We show this result by calculating two different linear combinations of subsystem entropies’
respectively proposed by Kitaev-Preskill [13] and Levin-Wen [14], see Fig. 20.

The sub-leading term y is called the topological entanglement entropy (TEE) [13]. There are
two known methods for deriving TEE: assuming an underlying field theory description or explicitly
calculating entropy in an exactly solvable model. Our method, on the other hand, shows that the
area law formula itself implies the equivalence of TEE and In D, which may be applicable to a larger
class of systems. The ingredients behind this proof are scattered in literature [ 16,19,21,22]. Recently,
one of us showed that the quantum dimension must show up in the von Neumann entropy if the
fusion space is coherently encoded in the 2-hole disk [23]. In this work, we further reduce the
assumption to our Axioms A0 and A1l. The end result is the same.

We begin by defining the quantum dimensions in our framework.

7 More precisely speaking, we show that a certain linear combination of entanglement entropy must be InD. This
result implies that y = InD is the only consistent value of the sub-leading term in the area law formula Eq. (1).



28 B. Shi, K. Kato and LH. Kim / Annals of Physics 418 (2020) 168164

AL
@ U

(a)

Fig. 20. (a) The Kitaev-Preskill partition; (b) the Levin-Wen partition.
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Fig. 21. Merging a pair of disks to obtain an annulus. Two disks are deformed so that, once merged together, they form
an annulus.

Definition 5.1. We define the set of quantum dimensions {d,} as the unique positive solution of
the equation set

dody = » " NG, de . (58)

where N, is defined in Definition 4.3. We also define the total quantum dimension D by D =
A% Zaec dg'

Note that given the results in Section 4.3, the uniqueness of Eq. (58) is guaranteed by the
Perron-Frobenius theorem, see e.g. appendix of [23] for a self-contained derivation. Furthermore,

da=dq, dyg>1, di=1 (59)

Recall that, from the merging in Fig. 14, we have obtained Eq. (46), and since &(@ is positive, we
must have

f(a) = Ind,. (60)

In Ref. [14], it is proposed that the conditional mutual information I(A : C|B) for the partition in
Fig. 20(b) matches to 2 In D. In the paper, it is proven for a class of exactly solvable model called the
Levin-Wen model (also known as the string-net model) [48]. Here we show that the same formula
also holds in our framework.

Proposition 5.1. For the Levin-Wen partition (Fig. 20(b)), it holds that
I(A:C|B),1 =2InD. (61)

Proof. Let us consider the merging process in Fig. 21, which obtains an annulus X from a pair of
disks. Let 6x € X(X) be the element obtained from merging. It is in the center of X(X), i.e. the
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maximal entropy element. Dividing X according to the Levin-Wen partition in Fig. 20(b), gives
I(A : C|B); = 0 because of the property of the merged state; see Lemma 3.8.

Because of the simplex structure of X'(X) (see Theorem 4.1) and the fact that f(a) is equal to
Ind, (see Eq. (60)), we can express 6x as a convex combination of extreme points

2
53 —E ﬁaa
X = D2 X
a

This formula is obtained by maximalizing the von Neumann entropy. From it, one derives S(6x) —
S(oy) = 2InD. It follows that Eq. (61) is true. O

Proposition 5.2. For the Kitaev-Preskill partition,
¥ = (Sap + Spc + Sca — Sa — Sp — Sc — SaBc)o,, (62)
where w = ABC, see Fig. 20(a), then y = InD.

The idea of the proof is to relate the Levin-Wen combination with two copies of Kitaev-Preskill
combinations. See Appendix F for the proof.

Because there are gapped systems in which these axioms are violated by spurious contributions
to the area law [49,50], one should not expect our result is applicable to every gapped system.
These violations may be pathological unless certain symmetries are imposed. However, they can
persist in certain subsystem symmetry-protected phases [51]. Reconciling our framework with these
systems remains as an outstanding open problem. Nonetheless, our result does shed some light on
a related issue: if we check the quantum state on a finite length scale and verify AO and A1, then
it is guaranteed that TEE will not suffer from any spurious contribution on all larger length scales.

6. Summary and discussions

In this paper, we have initiated a derivation of the axioms of the algebraic theory of anyon
from a conjectured form of entanglement area law for the ground states of 2D gapped phases. Our
framework is based on two entropic constraints (Axioms AO and A1), which are implied by the
area law formula. We have defined the superselection sectors and the fusion spaces through the
geometry of the information convex sets. The axioms of the anyon fusion theory are derived from
the internal self-consistency relation of the information convex sets. Moreover, we have provided
a rigorous derivation of the well-known formula for TEE, y = InD. While our main physical
motivation was to consider ground states of 2D gapped phases, we only required a single quantum
state satisfying our axioms as the input. Our result implies that many of the anyon data can be
extracted from local information of a single ground state alone.

Some of the readers may contest that our exact area law assumption is unrealistic. It would be
desirable to relax this assumption to something that is less restrictive. We expect our framework to
have a natural extension to the case in which Axiom AO and A1 holds approximately. This is because
every technical tool we have used in this paper has an analog for such situations. For instance, the
merging lemma can be generalized by using the approximate recovery map [52].

It should be noted that there are gapped systems in which Axiom A1 is violated. Such corrections
are known as the spurious contributions to the area law [49,50]. The existence of the spurious
contribution implies that one should not expect our result to hold in every gapped system. While
we do not have a solution to this problem, one may hope to take one of the following approaches.
First, one may show that the notion of superselection sectors and the fusion rules are stable under
a finite-depth quantum circuit when starting from a state that satisfies our axioms. Alternatively,
one may attempt to show that there is always a finite-depth quantum circuit that can remove the
spurious contribution.

While we have proved a set of axioms pertinent to the anyon fusion theory, further work is
necessary to reproduce the anyon theory in its known form. It would be interesting to investigate
whether our axioms give rise to a well-defined notion of R and F-symbols. Also, could the S and T-
matrices be extracted from a single ground state? Can we prove that every anyon theory consistent
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with our axioms are modular? To tackle these questions, one may need to recover a certain U(1)
phase that is missing in the density matrix formulation, perhaps with the help of the string operator
shown to exist in Appendix H.

A more ambitious question is whether we can arrive at a complete classification of two-
dimensional gapped phases from our axioms. The current conjecture [12] is that two systems are
in the same phase if and only if their underlying anyon theory and the chiral central charges are
identical. In Ref. [12], Kitaev speculated: “To prove or disprove this statement, a mathematical
notion of equivalence between topological phases is necessary. It may be based on local (or
quasilocal) isomorphisms between operator algebras”. Our framework seems to be the step in
the right direction, given that we have a sensible definition of isomorphism between different
subsystems and that we could derive axioms of the anyon fusion theory from a reasonable physical
assumption. Such a feat will be a complete and rigorous justification of the point of view that 2D
gapped quantum phases can be described by the anyon theory [12,44].

Compared to the existing approaches that compute entanglement measures on ground states,
information convex set leads to a more incisive understanding of the underlying topological phase.
Upon calculating entanglement entropy from a given ground state, one often obtains an order
parameter that reveals partial information about the underlying quantum phase. An oft-cited
example is the total quantum dimension [13,14]. Remarkably, we found that a much more refined
set of data can be extracted by studying the information convex set of the ground state. This includes
quantum dimensions and fusion multiplicities. Because two different anyon theories can give rise
to the same total quantum dimension but different (individual) quantum dimensions and fusion
multiplicities, information convex set clearly contains richer data than entanglement entropy.

Moreover, starting from our entanglement-based assumptions (Axioms A0 and A1), we were able
to derive the basic concepts of anyon theory from the internal consistency relations between the
elements of the information convex set. What is surprising is that the emergent physical laws that
appear in these topologically ordered systems were logical consequences of these axioms; we did
not need to make any further assumptions. It would be interesting to understand how widely this
approach can be applied in other circumstances.

Obvious areas to explore further would be higher dimensions and setups in which a topological
defect [24] or a boundary is present [25]. Such studies may be an ideal framework to classify
topological phases in 3D, which remains as an outstanding open problem. We will discuss these
applications in our upcoming work.
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Appendix A. Notations and useful facts

In this appendix, we summarize basic notations of convex analysis and quantum information
theory. Well-known facts in quantum information theory will be summarized in a self-contained
manner. This section can be skipped for readers who are familiar with convex analysis and strong
subadditivity of entropy.
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A.1. Convex sets

Here we review facts about convex sets. We consider a subset of a finite-dimensional real space
RN closed under convex combinations, where N € Z,. The convex set is compact if it is a compact
subset of RN, For our purpose, for an N dimensional Hilbert space, the real space R2M could be
identified as the 2N? real components of an operator acting on the Hilbert space.

We use conv(.x) to denote the convex hull of a set ¥ € RN, which is the smallest convex set
that contains set X. In other words, it is the set of all convex combinations of elements in X

An extreme point of a convex set S is a point in S, which does not lie in any open line segment
joining two points of S. We use ext(S) to denote the set of extreme point of a convex set S.

Finally, we notice the Minkowski—-Caratheodory theorem, which states that: Let S be a compact
convex subset of RN of dimension n. Then any point in S is a convex combination of at most n+1 extreme
points. This is the reason we often talk about extreme points. Note that, without compactness, an
element of a convex set sometimes cannot be written as a convex combination of extreme points.

A.2. Quantum information facts

We shall use Greek letters, e.g., p, o for density matrices. Subsystems are specified in the
subscript, e.g. pa, og. We frequently use AB as a shorthand notation of the disjoint union of A and B
(i.e., AL B) when AN B = ). We will sometimes call a (reduced) density matrix as a state for short.
Also, we will sometimes refer to the reduced density matrix of a state as its marginal. We use S(#)
to denote the state space of a Hilbert space H. It is the set of all density matrices on #. A direct sum
is denoted as €B. It is a sum with objects living on orthogonal supports.

In order to quantify the distance between two quantum states, we use the trace distance, defined
as

lo—ollhi=Try(p—0o)

for any pair of density matrices p and o. This is a reasonable notion of distance because two states
close in trace distance cannot be distinguished well by any measurement.

We shall use a variety of quantum mechanical entropies in our discussion. These are all defined
in terms of the von Neumann entropy of a state, which is defined as

S(p) = —Tr(pInp).

Depending on the context, we shall use the following shorthand notations to denote the von

Neumann entropy of the reduced density matrix over some subsystem: S, (Sa + Sg),. In the first

case, the global state should be obvious from the context. In the second case, the global state is p.
There are two information-theoretic quantities that will play an important role in this paper:

I(A: B) = Sp + Sg — Sz,
I(A . C|B) = SAB + SBC — SB — SABC-
The first quantity, known as the mutual information between A and B, quantifies a correlation
between A and B. The second quantity, known as the conditional mutual information between A
and C conditioned on B, quantifies the correlation between A and C given a knowledge on B. By the
strong subadditivity of entropy [26], I(A : C|B) > 0 for any quantum state.

Below, we summarize the basic facts about quantum states and entropies. Most of these
statements can be found in [53].

A.2.1. Fidelity
Let us begin with the fidelity between two quantum states, which is defined as

2
F(p,o)= (Tr\/p;a/ﬁ) . (A.1)
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This is a natural generalization of the absolute value of inner product into mixed state (and from the
whole system to subsystems). Indeed, one can easily verify F(p, o) = |(¥|¢)|*> when p = |y)(y]
and o = |¢)(¢|. Furthermore, F(p, o) € [0, 1] and F(p, o) = F(o, p).

Why do we care about fidelity? It is because fidelity enjoys several useful properties. As a starter,
F(p, o) can give a reasonably tight upper and lower bound on ||p — o ;. In particular, F(p,o) =1
if and only if ||p — o]l = 0 and F(p, o) = 0 if and only if ||p — o||1 = 2. Moreover, fidelity has a
rather special property:

F(pa ® pp, 04 ® 08) = F(pa, 0a) - F(ps, 08), (A2)

which will play an important role in the proof of Theorem 4.1. There is an intuitive explanation for
both of these facts. The first fact says that two density matrices have zero (unit) overlap if and only
if the two states are orthogonal (identical).

Lastly, if two quantum states have unit fidelity, their purifications are identical up to a unitary
operator acting on the purifying space [54]. In other words, two states |y45) and |@ag) have the
same reduced density matrix on subsystem B if only if there is a unitary operator U, such that

|oas) = Ua ® Igag). (A3)

A.2.2. Quantum channels

Quantum channel, also known as complete-positive trace-preserving (CPTP) map, is the most
general form of physical operation that can be applied to a quantum state. It is a linear map from
bounded operators on #,4 to bounded operators on #H, . It preserves positivity, even in the presence
of any ancillary system, and also preserves trace and hermiticity.® In particular, it maps density
matrices to density matrices. It can be written in an explicit form using a set of Kraus operators
{Mq}:

Ensn(Xa) = ZMaXAM;, (A4)
a

where Za M;Ma = I4 and I, is the identity operator on #H,. With the definition of CPTP map, we
could discuss some additional properties.

Quantum channels do not make two quantum states more distinguishable than they already are.
This means that the trace distance is nonincreasing under quantum channels. More relevant to us
is the fact that the fidelity is nondecreasing under quantum channels.

F(&(p), £(0)) = F(p, o), (A5)
for any quantum channel &. Since partial trace is also a quantum channel, we have
F(pa, 0a) = F(p0aB, 04B)- (A.6)

A.2.3. Properties of entropies

Let us begin with a few elementary facts about entropy. First, S4 = Sp for an arbitrary pure
state |pa5). Secondly, suppose a set of density matrices {p'} has mutually orthogonal supports,
ie. p' L pl,Vi#j then

SO pir') =) _piS(p) — Inpy), (A7)

where {p;} is a probability distribution.
For a bipartite quantum state, we have the following set of well-known inequalities:
I(A:B), >0
(A:B), = (A8)
Spc +Sc — S = 0.

8 That we require the map to preserve positivity in the presence of any ancillary system is important. Otherwise, there
are operations, e.g., transpose of a matrix, that preserves the positivity in the absence of an ancillary system but may not
if the ancillary system is entangled with the system of interest.
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The first inequality is known as the subadditivity of entropy, and the second inequality is known
as the Araki-Lieb inequality [55]. It is interesting to study the conditions under which these
inequalities are satisfied with equality. The mutual information is 0 if and only if the underlying
state is a product state over A and B. The condition for saturating the Araki-Lieb inequality is more
subtle and interesting. We will revisit this condition later after we discuss inequalities for tripartite
quantum states.

The most important inequality involving a tripartite quantum state is the strong subadditivity
(SSA) of entropy [26]:

I(A: C|B) > 0. (A.9)

This inequality is surprisingly powerful in that inequalities that may look “stronger” than this
inequality are in fact implied by SSA. Here is a list of such inequalities:

I(AA" : BB') > I(A : B)

I(AA" : CC'|B) > I(A : C|B)

I(AA" : CC'|B) > I(A : C|A'BC")
Spc +Sc —Sg > I(A: ()

Spc +Sc —Sg > I(A: C|B)

Spc + Sc — S = Spyc + Sc — Spy
Spc +Scp — Sp — Sp = I(A: C|B)

Spc + Scp — Sp — Sp > Sppc + Scop' — Sy — Spo-

Also, let {P/ias} be a set of density matrices and {p'} is a probability distribution, then

Zpi(SAB —S8)pi = (SaB — SB)y, pipi- (A.10)
i

To see why, let us introduce an auxiliary system C with an orthonormal basis {|ic)}. Let papc =
> iDi php ® lic)(ic| and notice I(A : C|B), > 0.

A.2.4. The structure of quantum Markov states

If a tripartite quantum state satisfies SSA with equality, then such a state has a rather special
property. Such a state is referred to as a quantum Markov state [15,32]. Let p be a quantum Markov
state such that it has a vanishing conditional mutual information I(A : C|B), = 0. Then the following
facts hold.

1. papc is uniquely determined by its marginals psp and ppc. The recovery can be done with a
quantum channel, see Lemmas 3.1 and 3.2 of the main text.

2. There is a decomposition of the Hilbert space #p into a direct sum of tensor products
Hp = (D, Hyp ® My such that

PABC = @pj /OAbJL ® pbff’ (A]])
J

where {p;} is a probability distribution, p,,. is a density matrix on Ha ® #,. and p,.x is a
density matrix on Hr ® Hc. ! ' '
3. Eq. (A.11) implies that
Trp papc = ZP]‘PA ® pr-. (A12)
J

Note that it is separable and therefore subsystem A and C have only classical correlations (no
quantum correlation).
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Now, we can make an important connection between the states saturating the Araki-Lieb
inequality and quantum Markov states. The density matrices which saturate Araki-Lieb inequality
have the properties summarized in Lemma A.1.

Lemma A.1. The following conditions about density matrix pgc are equivalent.

(1) (Spc + Sc — Sg), = O, (saturated Araki-Lieb).

(2) Any state papc which reduces to pgc on BC has I(A: C), = 0 and I(A: C|B), = 0.

(3) For any expression of the form ppc = > G Pziao where {q;} is a probability distribution with
gi > 0, Viand {py.} is a set of density matrices, we have

oc =Trg phe, Vi (A.13)
(4) Let ppc = ) _; qilisc) (ipc|, with q; > 0, Yi and (igcljsc) = 8ij, Vi, j, we have
Trp lipc) (ol = Sijoc, Vi, J. (A.14)

Proof. (1) = (2). Let us purify papc and obtain |[Wy4pc). Condition (1) implies I(A'A : C)yyw| = 0
and I(A'A : C|B)jyyw| = 0. Then, we use the facts I(A’/A: C) > I(A: C) and I(A’A: C|B) > I(A : C|B).

(2) = (1). Simply consider a pure papc. .

(1), (2) = (3). Let papc = > _; Gilia)(ial ® ppc with an orthonormal set of vectors {]is)}. Since
I(A: C), =0, a projective measurement in {|is)} will not change the density matrix on C. It follows
that pc = Trp P{ac» Vi.

(3) = (4). Let us introduce an auxiliary system A to purify pgc = >, qiligc) (igc| into |Wapc) =
> i/ lia) ® ligc). Here {[ia)} is an orthonormal basis of the Hilbert space #,. Therefore, one may
obtain ppc from [Wyupc) (Wapc| by taking a partial trace Try. For an arbitrary orthonormal basis {|¢/§>}
we could define p; ph- = (¢} |Wasc) (Wanc|¢}). Recall that the condition Eq. (A.13) applies to any basis.
For the “diagonal” basis {|i4)}, one derives Trp |igc)(igc| = pc, Vi. Then, consider an “off-diagonal”
basis which contains a basis vector Igog) = %(IiA) +e?j)) withi # j and 6 € [0, 2]. One derives
that, for Vi #jand V6 € [0, 2x],

eTrp |ipc) (jsc| + € Trp ljsc) (isc| = O.

Therefore, Trp |ipc) (jac| = O for i # j. Thus, Eq. (A.14) holds.

(4) = (1). Let us introduce an auxiliary system A to purify ppc into |[Wapc) = D, /qilia) ® ligc).
Here {|is)} is an orthonormal basis of the Hilbert space #,. Then, it follows from Eq. (A.14) that
I(A : C)wyw| = 0 which implies condition (1). O

Appendix B. Information convex set on a closed manifold

In this section, we show that the information convex set of a closed manifold is isomorphic to a
(state space of a) finite-dimensional Hilbert space; see Theorem B.1.

Theorem B.1. Let M be a closed 2D manifold. Let o be a reference state on this manifold satisfying
Axioms AO and A1. With respect to this reference state,
X (M) = S(V) (B.1)

for some finite dimensional Hilbert space V. C H. Moreover, V is nonempty.

Proof. Because X' (M) is a subset of the state space of a finite-dimensional Hilbert space, one can
represent an element p € X(M) as

p =Y pili)il

for some p; > 0 and an orthonormal set of vectors {|i)}. The state p is consistent with ¢ on any
disk. This fact follows from Proposition 3.6.
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We show below that the reduced density matrices of |i)(i| on the pu-disks are equal to those
obtained from the reference state o. Without loss of generality, consider a u-disk, say c. Consider
an annulus that surrounds ¢, which we denote as b. This annulus is chosen so that bc is again a disk.
By Proposition 3.3, (Spc +Sc — Sp), = 0. By Lemma A.1 (1) = (3), for ppe = opc = Y _; piTrampe( [} (i),
we find that

oc = Trp(Trvpe (1) (i) (B.2)
Therefore, we conclude
Tranc(1D)(il) = oc (B.3)
for all |i).
Now we show that any state in the span of {|i)} lies in X(M). Let |{|i)}] = N. Note that

ﬁ > ;liY(i| € X(M). Moreover, this state is equal to a uniform mixture over {U|i)} for any unitary U
acting on the span of {|i)}. Therefore, for any such U, we find

Trwn (Ui} (ilUT) = o (B.4)

for all |i). This follows from the same logic that leads to Eq. (B.3). The fact that X(M) is nonempty
follows from the existence of o € X (M). This completes the proof. O

Appendix C. Elementary step of the isomorphism theorem

Our goal here is to prove the elementary step of the isomorphism theorem; see Proposition 3.9.
The proof involves an alternative formulation of the information convex set, which we denote as
X(£2). Under Axioms AO and A1, X($2) becomes equivalent to X (§2). However, generally, we do
not expect these two sets to be equivalent.

C.1. An alternative formulation of the information convex set

The set f](.Q), which we define in Definition C.1, enjoys a number of properties which are not
evident from the definition of X'(£2). We use these facts to prove Proposition 3.9. The entire proof
is admittedly lengthy and circuitous. A more succinct proof is left for the readers to work on.

The key difference between the definition of X(£2) and X(£2) is that the latter involves an
extended subsystem? whereas the former does not.

Definition C.1. Let 3(£2) be a set such that Vp € $(£2)

1. pé(rb‘v’obeu.
2. I(A: C), = 0 for the partition in Fig. 22.
3. I(A: C|B), = 0 for the partitions in Fig. 23.

This definition does not make it clear why 2(9) is convex. The following proposition establishes
this fact.

Proposition C.1. QV(.Q) is convex.

Proof. let po, Lo € 2"}(52). We wish to show that their convex combination also satisfies the
three conditions in Definition C.1. Without loss of generality, consider the convex combination
ppe + (1 —p)rg where p € [0, 1].

The first condition in Definition C.1 is trivially true. For the second condition, note that psc =
pa® pc and Aac = Ay ® Ac. Moreover, because C is in a u-disk, poc = A¢ = oc. Therefore, any convex

9 In the main text, we referred to the extended subsystems as £2'.
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N

B

Fig. 22. A partition of the subsystem £ for defining $(£2); see the second condition of Definition C.1. Let £ = ABC
where BC is a subsystem contained in a pu-disk. The horizontal line is the boundary of §2. Only part of A is shown for
illustration purposes.

N
]

Fig. 23. A partition of the subsystem £2 for defining $(£2); see the third condition of Definition C.1. Let 2 D ABC where
BC is a subsystem contained in a p-disk. The horizontal line is the boundary of £2. Only part of A is shown for illustration
purposes.

combination of p and X is also factorized over AC. Lastly, for the third condition, let us consider the
conditional mutual information of the convex combination.

I(A 2 CIB)pps(1—py. = (Sec — SBIpotr(1—pyr + (SaB — SaBc Ipo+(1-p)
< p(Ssc — Sg)p + (1 — p)(Sec — Sp)x

+ p(Sag — Sasc)p + (1 — p)(Sag — Sasc)x (C1)
=plA: C|B)p + (1 —p)I(A: C|B),
=0.

To derive this bound, we used the following two facts. First, BC is in a u-disk. Therefore, Sgc — Sp
is the same for p, A, as well as their convex combinations. Second, conditional entropy is concave;
see Eq. (A.10).

Therefore, I(A : C|B) = 0 for the state pp + (1 — p)A, for any p € [0, 1]. This completes the
proof. O

In a variety of circumstances, elements in ZVJ(ABC ) and f,‘(BCD) can be merged, and the merging
result is an element of X' (ABCD). This is the content of the following proposition.

Proposition C.2. Consider two density matrices papc € ZV,‘(ABC ) and Agcp € ):“(BCD). If the following
conditions hold, papc and Agcp can be merged. Moreover, the resulting density matrix is an element of
5 (ABCD).

1. There exists a partition B'C' = BC, such that no u-disk overlaps with both AB' and CD; see Fig. 24.
2.p A

3. I(A: C|B), = I(B: D|C), = 0.

4. 1(A:C'|B"), =1(B : D|C'), = 0.
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B’ c’ D

Fig. 24. A schematic depiction of subsystem ABCD. The partition B'C’ = BC is chosen such that no p-disk overlaps with
both AB' and CD. Note that, the subsystems A, B, C, D are allowed to take a variety of topologies.

Proof. It follows from the conditions of the proposition that pspc and Apcp can be merged. In fact,
there are two different ways to merge these density matrices. Using the third condition, we get
Tapco = £, p(pasc) and using the fourth condition, we get 7,4, = & o (Asep)-

Note that Tapep = Typqp. This is because both of them satisfy I(A : D|BC) and they have the same
marginal on ABC and BCD. Therefore, Lemma 3.1 implies that Tapcp = Typp-

Below, we show that tapcp is an element of ﬁ(ABCD). In order to prove this claim, we need to
show that t4pcp satisfies the condition 1, 2, and 3 in Definition C.1. Condition 1 is easy to check.
Because no w-disk overlaps with both AB’ and CD, the overlap between a p-disk and ABCD is either
contained in ABC or BCD.

For the second and the third condition, the key observation is that we have the freedom to choose
the quantum channel:

Tascp = &6 cp(pasc) = Ep_, aw(Apc). (C2)
For every u-disk near the boundary of subsystem ABCD, we could pick a suitable quantum channel,
(either €% o or &), which has no overlap with the y-disk.

For the second condition, we use the following fact. Suppose, without loss of generality, we are
given a mutual information between two subsystems say X and Y. The mutual information does not
increase under a quantum channel acting only on either X or Y. Indeed, the channels we described
above are instances of such quantum channels. Therefore, the mutual information in the second
condition is upper bounded by 0. This subsequently implies that the second condition holds.

For the third condition, we use a similar fact. Now, suppose we are given a conditional mutual
information I(X : Y|Z). This also does not increase under a quantum channel acting only on either
X or Y. Therefore, with the same logic, the third condition holds as well. O

Proposition C.3. Consider 2 = ABC and §2' = ABCD whose partitions are depicted in Fig. 8, (note
that A and D are assumed to be separated by at least 2r 4+ 1). Let £2_ -, be the Petz map constructed
from the reference state density matrix opcp. Then,

Trp 0 & plP2) = pa, Ypa € 2‘(9), (C3)
gg%CD(IO-Q) € 2‘(‘{2/)’ V,OQ € 2(9) (C4)

Proof. Eq. (C.3) follows directly from Lemma 3.8. To see why, let us observe that po and opcp
can be merged using Lemma 3.8. With condition 1, 2, 3 in Definition C.1, one could verify the two
conditions required in Lemma 3.8. First, pg; is consistent with the global state on any disk w C 2.
In particular, pgo = opcep. Second, I(A:C|B), =1(B:D|C), =0.

Eq. (C.4) is essentially a corollary of Proposition C.2. It is straightforward to construct the B'C’
required in Proposition C.2 and check all the conditions. The 2r 4 1 separation between A and D is
large enough for the construction. This completes the proof. O
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C.2. Equivalence of the definitions

Now we can show that 2(.{2) is equivalent to X'(£2). This justifies our choice of calling 2(.{2) as
the information convex set.

Proposition C4. X(2) = ﬁ(.Q), v £2.

Proof. If £2 is a closed manifold, then it is obvious that X (§2) = 2(.{2). If 2 has boundaries, it is easy
to show that X¥'(£2) € X'(£2) from the assumptions. On the other hand, Proposition C.3 implies that
any pp € X(£2) can be written as pp = Trg,\p pge, for some element pp, € X(£2.). This is because
of Eq. (C.4) and that £2 and £2. are connected by a path which consists of a sequence of elementary
extensions. It follows that p, € X(£2) and therefore X(£2) O X(£2). Thus, X(2) = X (£2), V £2.
This completes the proof. O

C.3. Merging with X(£2)

In a variety of circumstances, we can merge elements in multiple information convex sets into an
element of yet another information convex set. This follows from Proposition C.2 and the established
equivalence between X'(£2) and X'(§2) (Proposition C.4).

Proposition C.5. Consider two density matrices papc € X(ABC) and lpep € X(BCD). If the
following conditions hold, papc and Agcp can be merged. Moreover, the resulting density matrix belongs
to X(ABCD).

1. There exists a partition B'C’ = BC, such that no u-disk overlaps with both AB’ and CD; see Fig. 24.
2. p=

3 I(A: C|B)p =I(B:D|C);, =0.

4. 1(A:C'|B), =1(B : D|C"), = 0.

Proof. The proof directly follows from Propositions C.2 and C.4. O

Remark. Importantly, Proposition C.5 implies that the merged results in Figs. 13-16, 18, 19 and 21
are elements of some information convex sets.

A special case relevant to the proof of isomorphism theorem is the following corollary.

Corollary C.5.1. The merging process in Fig. 8 generates a map from X(£2) to X($2’), i.e.
& cplpa) € Z(R2), Vpe € X(£2), (C5)

where £2_ -, is the Petz map constructed from the reference state density matrix opcp.
Proof. The proof follows from Propositions C.3 and C.4. O
C.4. Proof of Proposition 3.9

Now, we are in a position to prove Proposition 3.9.

Proposition 3.9. Consider the partition in Fig. 8. (Note: A and D are assumed to be separated by at
least 2r + 1 in Fig. 8.) Let the domain of Trp and £Z_, -, to be X(£2') and X(£2) respectively.

ImTrp € 2(£2)

20
Iméel_ o € 2(82°). (20)

Moreover, for all po € X(£2) and pgo € X(£2'),
Trp 0 EC_, op(P2) = pa. (21)
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Eg_@g o Trp(per) = par. (22)

In particular, Trp and £_, -, are bijections.

Proof. We have shown that Trp is a linear map which maps elements of X(£2’) into elements of
X(£2) (Proposition 3.4). Conversely, upon applying £Z_, -, to p we obtain a merged state T:BCD of
po and opep. (Here opcp is the reduced density matrix of the reference state.) We can merge them
using the merging lemma (Lemma 3.8) because (1) pgc = opc follows from Proposition 3.6 and
(2) the requisite conditional independence conditions follow from A1. While the merging lemma
guarantees the existence of rg,, it remains to show that rg, is an element of X(£2’). This fact
follows from Corollary C.5.1. This step requires that BC is large enough, or equivalently, A and D
are separated by enough distance.

Now, it remains to prove Egs. (21) and (22). Eq. (21) holds because the merged state is consistent
with the given marginals; see Eq. (17). Eq. (22) follows from the fact that the state on both sides
of the equation obey I(AB : D|C) = 0 and that they have the same reduced density matrices over
ABC and CD; they are equal to papc and ocp. According to Lemma 3.1, the two global states must
be identical. O

Appendix D. Extreme points

In this section, we prove various properties of the extreme points of the information convex
set. Throughout this section, we shall often consider a slight “thickening” of a subsystem. Like the
convention we used in the main text, a thickening of a subsystem £2 is an enlarged subsystem £2’
which is obtained by expanding the boundaries of £2.

If the boundary of §2 is expanded by a thickness of §, we shall refer to that subsystem as £2s.
For the ensuing analysis, it will be convenient to consider a length scale €, which is comparable to
a single lattice spacing for the convention used in the main text.

Let us begin with the following lemma.

Lemma D.1. Suppose pg, € X(§2;.) can be written as
P2y = Z%‘ ,0§32€, (D.1)
i

where {q;} is a probability distribution with q; > 0, Vi and {pf?zg} is a set of density matrices. Then,

Tro, @ Po,, € Z(2). (D.2)

Proof. It suffices to show that every pQ reduces to o, € w on any u-disk b € £2.. In order to
show this fact, consider b, C £25.. Let C = “b and choose B such that b. = BC. Then, the topology of
BC is identical to the one shown in Fig. 2.

Because our axioms hold at a scale larger than the w-disks (Proposition 3.3), and that pgc =
ogc(Proposition 3.6), we conclude that (Sgc + S¢c — Sg), = 0. Now, apply Lemma A.1 (1) = (3). We
conclude

/0; = Pp = 0p
for any i and any p-disk b € $2.. This completes the proof. O

The following lemma shows that any element in the information convex set has zero conditional
mutual information for onion-like partitions; see Fig. 25.

Lemma D.2. Let 2 = ABC. Suppose B and C are concentric annuli described in Fig. 25. Then,
I(A:CIB), =0, Y pasc € Z(ABC). (D.3)
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Fig. 25. Here £2 = ABC is an arbitrary subsystem with a boundary. B and C are concentric annuli covering the boundary.

Proof. Let us consider a sequence of regions C,, withm =10,1,2,3,...,M with o = ¢, Cy = C,
and C; € Ciy4. Here BCi;4 is an “infinitesimal deformation” of BC; as in Fig. 4.
We want to show that

(Sasc; — Sec;)p = (SaBciyy — SBCiyq oo (D.4)
fori=0,...,M — 1. Equivalently, we can show that
I(A : 8Ci11|BG) =0, (D.5)

where §C;; 1 = Gi;1\G. One can upper bound the left hand side of Eq. (D.5) by 0. To see why, first
use I(AA’ : C|B) > I(A : C|A’'B) so that

I(A : 6Ci41]BG) < I(ABG\D; : 8Cit11D;), (D.6)

where D; C BG; is a disk-like subsystem that separates §Ci;; from ABC;\D;. In particular, we choose
D; such that D;§Ci,q is contained in a u-disk. Then, one can upper bound the right-hand side of
Eq. (D.6) by 0, by using Axiom A1. Therefore,

(SaBcy — Spcy)p = (Sacy — Sey Jps

which justifies Eq. (D.3). O

Lemma D.3. Consider an extreme point agz)‘ € X(82,¢) written as

o5 =Y diPh, (D.7)
i
where {q;} is a probability distribution with q; > 0, Vi and {pézk} is a set of density matrices. Then,

: © i
Troy\e Pg,. = Treyne 0g,, . Vi

is the same extreme point of X(82).

Proof. It follows from Lemma D.1 that Trp, \o ,onzf is an element of X(£2) for all i. The nontrivial
statement is that the reduced state on 2 is an extreme point and that the reduced state does not
depend on i.

Suppose there is a dependences on i. Then Trg, \o 05(25 must be a convex combination of these
distinct elements, so this density matrix cannot be an extreme point. This contradicts with the
isomorphism theorem (Theorem 3.10), which implies that Trg, \o O'_(<;2>€ is an extreme point of X'(£2).
(Recall that any linear bijective map between two convex sets must map extreme points to extreme
points.) Therefore, the density matrix Trp, \e przE is independent of i and it follows that it is an
extreme point of X(£2). O
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Lemma D.4. Consider an extreme point a§.§2>6 € X($§25¢) and let B = $2,.\ 82, then
(Sa +So — Sg)y@ = 0. (D.8)

Proof. This result follows from Lemma D.3 and (3) = (1) of Lemma A.1. O

The significance of Lemma D.4 is that it applies to any subsystem. In particular, for 2-hole disks,
we obtain the following corollary.

Corollary D.4.1. Let Y be a 2-hole disk divided according to Fig. 12, i.e. Y = BY'. Let a)f” be an extreme
point of X(Y), then

(Spy’ + Syr — Sp)yt0 = 0. (D.9)
Lemma D.5. Let £2 = ABC with a choice of subsystems described in Fig. 25. If o}? is an extreme point
of X(8£2):

I(A:C)y0 = 0. (D.10)

Proof. Since aé? € X(£2), from Lemma D.2,
I(A: C|B)y@ = 0. (D.11)
Then, it follows from the explicit structure of quantum Markov state Eqs. (A.11) and (A.12) that
Trsos = Y pipy ® pe. (D.12)
i

where p} and p!. are density matrices (which may or may not belong to X(A) and X(C)). {p;} is a

probability distribution. We know from the isomorphism Theorem 3.10 that o/i") =3 .Di pf"‘ is an

extreme point of X(A).
Since A is thick enough, let A = A} . Here A’ has the same topology as A but it is thinner. From

Lemma D.3 we know that Tra\ pg = a}if"), Vi. Therefore, I(A" : C),« = 0. Since we could enlarge

A’ (as that in Fig. 4) until it recovers A without changing the mutual information, we conclude that
IA:C)ye =0. O

As an immediate application of Lemma D.5, we can prove the following factorization property
between subsystem L and R described in Fig. 9. This plays an important role in the proof of the
orthogonality of the extreme points.

Corollary D.5.1. For the annulus X = LMR in Fig. 9(a), for any extreme point o € X(X),
Try oy = o ® of, (D.13)

where o' and oy are the reduced density matrices of oy on L and R respectively.

Corollary D.5.2. Consider the partition of a 2-hole disk Y in Fig. 12, i.e. Y = Y'B and B = BB;Bs. Let
0% be an extreme poi h
Y point of X(Y), then

(531 + SBz + 533 - SB)o'<e) =0. (D14)
Note that Eq. (D.14) is equivalent to saying that 0,3(‘33233 is a tripartite product state.

D.1. Orthogonality of extreme points

Below, we present the proof of Theorem 4.1, which establishes the orthogonality of extreme
points.
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Theorem 4.1 (Simplex Theorem). For an annulus X, the information convex set is the convex hull of a
finite number of orthogonal extreme points, {0y}, i.e.

px = @paaﬁ}, (31)

where {a} is a finite set of labels and {p,} is a probability distribution.

2(X)= [Px

Proof. Let us divide an annulus X according to Fig. 9(a) and consider the path in Fig. 9(b) which
defines an isomorphism X(L) = X(X) = X/(R). Let us consider an extreme point oy and let its
image in X (L) and X(R) be o and oy. It follows from the isomorphism theorem (Theorem 3.10)
that (1) they are extreme points; (2) they are the reduced elements of oy. For a pair of extreme
points oy and o,

F(of.0%) = F(of.0}) = F(o}. o}, (D.15)

since the isomorphism preserves fidelity. According to Corollary D.5.1, reducing each extreme point
(o) to LR gives a tensor product structure (o ® oy ). Thus,

F(oy, O’)IZ) < F(o] ® oy, aLb ®a,?)

D.16
=F(af,aLb)~F(a§,0,?). ( )

The first line follows from the monotonicity of fidelity, namely, the fact that fidelity is nondecreasmg
when restricted to a smaller region (LR € X). Egs. (D. 15) and (D.16) 1mply that F(crx, ) is elther 0
or 1. IfF(aX,aX) = 1thenoy{ = a}(’, soa=b.If F(ay, aX) = 0 then oy - Ux =0, ie oy and a live
on orthogonal subspaces. This justifies the direct sum structure. Since a finite dimensional Hllbert
space could only accommodate a finite number of orthogonal subspaces, the extreme points form

a finite set. O
D.2. Implication of the orthogonality

Based on the orthogonality of the extreme points, we can prove several new facts about
the elements of the information convex set. In the remainder of this section, we use both the

isomorphism theorem (Theorem 3.10) and the simplex theorem (Theorem 4.1). Let us begin with a
succinct formula for the mutual information.

Proposition D.6. Let px = Y, paoy be an element of X(X), written in terms of the orthogonal extreme
points. Let X = LMR be a subsystem described in Fig. 9(a). Then,

—> palnpa. (D.17)
a

A similar result has been obtained in [20] using Chern-Simons theory. We obtained the same
result as a consequence of A0 and Al.

Proof. From Theorem 3.10 we know that the reduced elements of oy on L and R, which we call as o}’

and o}, are extreme points of X'(L) and X (R) respectively. Moreover, it follows from Corollary D.5.1
that Tryoy = o' ® of. From the orthogonality relation (Eq. (31)) of Theorem 4.1. We obtain

(SLp—H +Zpa UL

(Sw), = H(p +Zpa5<rR

(Swr), = H(p) + Zpa (S(at') + S(o)),
a

where H(p) = — Y, paInp, is the Shannon entropy of the probability distribution {p,}. The claim
follows straightforwardly from these equations. O
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As a consequence, we can identify the extreme points of X(X) as the elements with zero
correlation between L and R.

Corollary D.6.1. An element px € X(X) is an extreme point if only if I(L : R), = 0 for the partition
in Fig. 9(a).

Lemma D.7. Let 2 = ABC with a choice of subsystems described in Fig. 25. If 09 is an extreme point
of X(£2), Tro\¢ 09> is an extreme point of X(C).

Proof. Let us consider an annulus subset A C A next to BC. I(A" : C),« = 0 follows from
Lemma D.5. Then, because A’'BC is a partition of annulus similar to LMR in Fig. 9(a), I(A’ : C) = 0
guarantees that Trg\¢ cr((;) is an extreme point of X'(C). This step follows from Corollary D.6.1. O

The proof of Proposition 4.2 and Lemma 4.3 are also discussed below.

Proposition 4.2. Let w be a disk. For any annulus X C w
O')g = Tl‘w\x Oy, (34)

is an extreme point of X (X).

Proof. Without loss of generality, assume there is a disk D surrounded by R (in Fig. 9(a)). Let us
consider the disk @ = LMRD. There is a constraint Syrp + Sgp — Sy = 0 for the unique element of
XY (w), because of the enlarged version of AO (Proposition 3.3). This implies that I(L : R),1 = 0. Then
it follows from Corollary D.6.1 that oy is an extreme point of X(X). O

Lemma 4.3. Let X° and X' be two annuli contained in a disk C; see Fig. 11 for example. Let {X[l)} and
{X%)} be two paths connecting X° and X" such that X = X°, X}, = X" for i = 1, 2. Moreover, assume
that UtX(1 cC U X(z) C C. Then, the isomorphisms

Dy (X% > DX

) :
(1)
and (D{X(tz)} : X(X% — T

are identical.

Proof. The key of the proof is the existence of an extension X( > X( where B € X!, for each path
label i = 1, 2 and for any time step t; see Fig. 11. For both i = 1, 2, the sequence ofg configurations
{ (1)} forms a path.

Let us show that two isomorphisms on the “extended paths”, <1>{;<([1)] and q){;((fz)], are identical.

(Each of them maps Z‘(XO) to E(X ).) Because every subsystem in the paths contains annulus C,
the reduced d~ensity matrix on C is unchanged during the process, (for any t). Since an element in
(X% (or X(X")) is uniquely determined from its reduced density matrix on C independent of the
chosen path, the two isomorphisms & - and @ (Xty) must be identical.

To complete the proof, note that @ i) and ¢{Xz are determined from @ ®5) and ¢{Xr by

taking a partial trace. This completes the proof O
Appendix E. Fusion space
Here, we prove that the convex set X, (Y) is isomorphic to the state space of a finite-dimensional

fusion space V¢,. Recall that a, b, and c are superselection sectors and Y is a 2-hole disk. We begin
with the following lemma, which characterizes the extreme points of X7, (Y).

Lemma E.1. Let Y be a 2-hole disk. Then, every extreme point of X{,(Y) has the same von Neumann
entropy.
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Table E.3
A partition of B used in the proof of Theorem 4.5.

Partitions B B, B3
Bg(Inner) Bir Bar B3
BM(MlddlE) Biu Boy B3y
By (Outer) Bi By B3y

E By, B Br

Fig. 26. A partition of B used in the proof of Theorem 4.5. This figure does not represent the actual underlying geometry.
Rather, it represents the relative distance between the “inner" part of Y (i.e., Y’) and the annuli surrounding Y’ (i.e., Bg, By,
and B;). Auxiliary system E is introduced to purify the extreme points. Here B is the “innermost” part of B that is directly
in contact with Y’, By is a disjoint union of annuli surrounding Bg, and B, surrounds By.

Proof. Consider a partition of Y into Y = BY’ as described in Fig. 12. Let Ay and py be two extreme
points of X< (Y) and § = S(Ay) — S(py) be the entropy difference between the two states. Eq. (D.9)
and (D.14) imply that (Sy + Sy+), and (Sy + Sy/), are identical. Also, by the isomorphism theorem
(Sy + Sy/))L — (Sy + Sy/)p = 26. ThUS, §=0. O

We have seen that all the extreme points of X, (Y) have the same entropy. It follows that a
non-extreme point, which is a convex combination of multiple extreme points, must have higher
entropy. This fact follows from the general property of von Neumann entropy, S(>_; piph) >
ZipiS(pi), where {p;} is a probability distribution with p; > 0. The equality is achieved if and
only if all p are identical. Thus, we have the following corollary.

Corollary E.1.1. If the entropy of an element py € X,(Y) is identical to that of an extreme point of
2o (Y), then py itself is an extreme point of X[, (Y).

Theorem 4.5. Consider a 2-hole disk Y. Va, b, c € C,
aw(Y) = 8(Vg,), (39)

where V¢, is a finite-dimensional Hilbert space.

Proof. Recall that we have already partitioned Y into BY’; see Fig. 12. We shall consider two
different partitions of B. In Fig. 12, we have already considered a partition of B into B = B1B;Bs3,
which is a (disjoint) union of three annuli(B;, B, and B3). We shall also consider a different partition
of B = B By Bg. Here B; is a (disjoint) union of three “outermost” annuli and B is a (disjoint) union
of three “innermost” annuli; see Fig. 26.

In total, we are considering 9 disjoint subsets of B, Y’, and E; see Table E.3 for a detailed
discussion on the partition of B. Here E is an auxiliary Hilbert space used to purify a density matrix
supported on Y = BY'.

The statement is trivially true if X5 (Y) is empty. In this case dimVS, = 0. For a nonempty
2 (Y), we use {of)x} to denote the set of extreme points of X¢,(Y) and use Ay for a generic element
of X% (Y). For the extreme points, the alphabet e signifies that the density matrix is an extreme
point. They are labeled by x, y, and z in this proof.

Pick an extreme point, say a;,e”‘. Let us purify aée” into |¢f,) and let pgp be its reduced density
matrix on EB. From Corollary D.4.1, one can verify I(E : ByBg|B;), = 0. Moreover, for Viy € X5(Y)

we have I(B; : Y'|BuBgr), = 0 and pgs = Ay. From the merging lemma (Lemma 3.8), there is a

quantum channel Sg’ﬁ g, Which defines a set of states

Sev = (€5 pp, (Av) [ Ay € Zg(V)) (E.1)
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obtained from merging pgs with Ay. It follows that X5 (Y) = Sgy. Below, we will determine the
structure of Sgy.

Let us first show that the extreme points of Sgy are pure states. For the particular extreme point
we have already considered, i.e., aée”‘, the merged state is obviously the pure state |}, ). Because
all the extreme points in X (Y) have the same entropy (Lemma E.1) and because the entropy
difference is preserved under the map EgﬁEBL (property (3) of Lemma 3.8), all the other extreme
points are also mapped to pure states. This means the quantum channel SgﬁEBL purifies all the
extreme points of X, (Y) simultaneously.

Now, we show Sgy is the state space of a finite dimensional Hilbert space. The nontrivial
statement is that any superposition of pure states in Sgy is again in Sgy. Once this statement is
verified, the finiteness of dimension follows straightforwardly from the fact that X5, (Y) is finite
dimensional. To prove this claim, we consider a normalized state

lofy) = D zloty), (E.2)
i

where {|(p§§,)} is the set of purifications (in Sgy) of a finite (sub)set of extreme points {cr;dy i e

2¢,(Y)}. The complex numbers z; can be arbitrary as long as |¢Z, ) is normalized. It is sufficient to
show |, ) {¢f, | € Sgy. A proof is done by the following steps.

1. The reduced density matrix of |¢Z,) on EB By is pgs,s,,- This is because (1) I(EBBy : Y') =0
on |¢f,) and (2) |¢Z,) = Oy/|¢f,) for some operator Oy, supported on Y’. The first equation
follows from Corollary D.4.1. The second equation follows from the fact that |<pﬁ,) and |ggy)
have the same reduced density matrix pgg Vy;. In fact, Eq. (A.3) implies an explicit choice
Oy = Ziz,Uy,, where U’ are unitary operators.

2. The reduced density matrix of |¢Z,) on ByBgY’, which we denote as (rB< >§ v

point of X (ByBrY’). To see this, we first observe that |¢f,)(¢f,| = op for any p-disk

b C (ByBRrY’).. The logic to establish this fact is similar to that leads to the point made

above: (1) |¢f,) has vanishing correlation between b and EY\b, and (2) |¢f,) = Ogy\p. |95y)

for some Ogy\p, . Thus, aB@g v € E(BMBRY/) Its reduced density matrix pp,, determines the

charge sectors a, b, c The entropy of o, B y is identical to that of known extreme points of

is an extreme

2 (BuBRY'), e.g. o B v~ Therefore, accordmg to Corollary E.1.1, o, B ys IS an extreme point

of Eacb(BmBRY/).
3. The state |¢f,) has vanishing conditional mutual information I(B; : BRY’|By) = 0. Therefore,
its reduced density matrix on Y is uniquely determined from its reduced density matrices

08,8y, and aé )B y» (by Lemma 3. 1) Therefore, Trel@gy ) (¢f,| is the extreme point of X7 (Y)
(e)z

obtained from an extension of aB gy~ We denote this extreme point as oy

4. From the discussion above one can see, for any |¢f, ) of the form (E.2), there exists an extreme
point "% of X< (Y) such that
@y ) {5y | = BL—>EBL((7\§> )- (E3)
Thus, |¢f, ) (@5 | € Sy.

We have proved that the set Sgy in Eq. (E.1) is the state space of some finite dimensional Hilbert
space. The Hilbert space depends on the purification, but its dimension cannot depend on this detail.
The reason is that the state spaces of two finite-dimensional Hilbert spaces are isomorphic if and
only if the dimension of the Hilbert spaces are the same and that Sgy = X, (Y). Therefore, we can
assign an abstract finite dimensional Hilbert space V¢, with dimV{, = N{; € Z¢, such that

oY) = Spy = S(Vey,). (E.4)
Here S(V¢,) is the state space of V¢,. This completes the proof. O
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AL
>

Fig. 27. The partition of a disk in the proof, where B = BB, and that ABC is the Levin-Wen partition.

Lemma 4.8. Let py be an extreme point of X, (Y) and a,} be the unique element of 2111(Y), then

S(py) — S(ay) = f(a) + f(b) + f(c), (43)
where f(-) is the function defined in Definition 4.2.

Proof. From Lemma E.1, we know that all the extreme points of X5, (Y) have the same entropy. It
follows that f(a, b, c) = S(py)—S(aQ) depends only on the sector (a, b, c). Let us determine f(a, b, c)
in terms of the universal contributions f(-) in Definition 4.2. Let Y = BY’ according to Fig. 12.

2f(a, b, c) = (Sy + Sy')p — (Sy + Sy’ )y
= (S8)p — (SB)ot
= (S(o5,) + S(oy,) + S(o%,)) (E5)
— (S(og,) + S(og,) + S(a3,))
= 2(f(a) + f(b) + f(c)).

In the first line, we used the isomorphism theorem. Recall that the isomorphism preserves the
entropy difference. In the second line, we applied Eq. (D.9). In the third line, we applied Eq. (D.14).
The fifth line follows from Definition 4.2. This completes the proof. O

Appendix F. Topological entanglement entropy for the Kitaev-Preskill partition

In this section, we provide a proof of Proposition 5.2.

Proposition 5.2. For the Kitaev-Preskill partition,

¥ = (Sap + Spc + Sca — Sa — Sp — Sc — Sac)o,, (62)
where w = ABC, see Fig. 20(a), then y = InD.
Proof. In the following, all the von Neumann entropies are calculated for the reference state o.
By deforming the subsystems using the idea in Fig. 4, one shows that the value y in Eq. (62) is
invariant under small deformations of subsystem A, B, C. Since large deformations can be built up

from small ones, y is a topological invariant. In the following, we calculate its value.
First, let us consider subsystem choice A, By, D in Fig. 27, and find

¥ = Sap + Sps, + Sas; — Sa — Sp — SB; — Saps, - (F.1)
Second, we consider subsystem choice AD, By, B,C in Fig. 27, and find

¥y = Spc + Saps;, + Saps,c

(F.2)
— Spyc — S, — Sap — Sascp -
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Both partitions are equivalent to the Kitaev-Preskill partition Fig. 20(a). Adding up Egs. (F.1) and
(F.2), and using

Sascp + Sp = Sasc,
Spe, + Saps,c = Sp; + Sas,c,
SaBy,c = Sag, + Sp,c — Ss,,
Sp, + Sg, = Ss,
Sa; + Sas, — Sa = Sas,

(these results follow from the quantum Markov chain structure of the global reference state, i.e. the
fact that Egs. (3) and (4) are satisfied on all length scales larger than a constant value), we find

2y = Sag + Spc — Sp — Sasc
= 2InD.

Therefore, y =InD. O
Appendix G. Antiparticles and automorphism of annulus on a sphere

In this appendix, we discuss a connection of antiparticle with the automorphisms of the
information convex set of an annulus on a sphere. Intuitively, the connection comes from two facts.
First, the automorphism only depends on the topological class of the path that maps the annulus
back to itself. This fact is established by Lemma 4.3. Second, on a sphere, the topological class of the
paths is described by the braid group on a sphere.!? In general, we use 5B,(V) to denote the n-string
braid group of manifold V. Physically, this is related to the spacetime diagram of n particles braiding
on a manifold V. In our framework, it is related to the deformation of a subsystem (V with n holes)
by a path and then goes back to itself. For our purpose, an annulus is a 2-hole sphere, and the
relevant result is the 2-string braid group on a sphere:

By(S?) = Zy. (G.1)

For an automorphism of X(X) generated by a path {X’} with X° = X! = X, where X is an annulus
on a sphere, we could draw a spacetime diagram corresponding to the path. The spacetime diagram
shows the braiding of two holes. The braiding belongs to one of the two classes in B,(5?) = Z,, so
does the path.

The path in the trivial class could be smoothly deformed into the path X! = X, Vt. The
corresponding automorphism of X(X) preserves the superselection sectors, i.e., it maps each
extreme point back to itself.

On the other hand, a path in the nontrivial class generates an automorphism of X(X) which
permutes the extreme points according to

®(oy) = 0)‘?, Vaec.

Intuitively, a nontrivial path switches the pair of holes. Furthermore, if one introduces an oriented
loop to the annulus X, which deforms smoothly with X, then the loop will end up in the opposite
orientation after X is mapped back to itself according to the nontrivial path.

Appendix H. String operators

Proposition H.1. Given a pure reference state |y), two holes within a disk and ¥V a € C, there exists a
deformable unitary string operator U'®® supported within the disk, such that the state

o@Dy = U@D|y), (H.1)

has topological charges a and a in the two holes.

10 https://homepages.warwick.ac.uk/~maseay/doc/braids.pdf.
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Fig. 28. Disk w is the union of 2-hole disk Y and its two holes. W is the complement of w. The topological charges a and
@ within the two holes are created by unitary string operator U“®, The support of U®® is the union of the deformable
gray area and the two holes shown in red.

Here, deformable means the support of U@ can be deformed smoothly while keeping its
endpoints fixed. It is easy to see, for a = 1, the string can be chosen to be the identity operator
while for a # 1, the string cannot break apart. While this result is not directly useful in the current
work, we expect it to play a role in deriving more advanced fusion and braiding properties, e.g., the
S-matrix.

Proof. Let w be the disk required in the proposition and W is its complement, see Fig. 28. One can
verify that oy = Tr,|¥)(¥| € X (W) and that oy is an extreme point. The 2-hole disk Y C w is
obtained by erasing the two holes from disk w. From Proposition 4.9, Z‘L}a(ng) contains a unique
element which we denote as 0“2‘” where Y5, is a thickening of Y. Here the subscript 2¢ means that
Y is expanded along its boundary by two lattice spacings; see the beginning of Appendix D for a
related discussion.

The elements oy and 0”2" whose supports are overlapping around the boundary of w,, can be
merged and the resulting state is an extreme point of X (WY, ), where WY, 1s again the thickening
of WY by two unit lattice spacing. Let |p(®®) = Iw(a 2 ) ®lov\wy,, ), where Iga o ,.) IS an eigenvector
(with nonzero eigenvalue) of the merged state and |(pv\wy2 ) is an arbitrary pure state. According
to Lemma D.3, the reduced density matrix of |¢(>@) on WY is identical to that of the merged state.
Therefore, |¢(*®) has topological charges a and a within the two holes, and |¢(®9) is identical to
the reference state |1/) on any subsystem W’ C WY which is connected to W by a path, where the
path is within WY. In particular, choose W’ to be the complement of disk ', where o' is the union
of the gray string and the two holes in Fig. 28. Since |) and |¢(*®) are identical on W’, by applying
Eq. (A.3), we have |p(®®) = U@®|y) for a unitary operator U*® supported on «’. Because we may
deform W’ and o', the support of U®® can be deformed smoothly. This completes the proof. O
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