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ABSTRACT23

We consider the topological and geometric reconstruction of a geodesic subspace of RN both from24

the Čech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our recon-25

struction technique leverages the intrinsic length metric induced by the geodesics on the subspace.26

We consider the distortion and convexity radius as our sampling parameters for the reconstruc-27

tion problem. For a geodesic subspace with finite distortion and positive convexity radius, we28

guarantee a correct computation of its homotopy and homology groups from the sample. This29

technique provides alternative sampling conditions to the existing and commonly used conditions30

based on weak feature size and µ–reach, and performs better under certain types of perturbations31

of the geodesic subspace. For geodesic subspaces of R2, we also devise an algorithm to output a32

homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown33

underlying space.34
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1. Introduction36

With the advent of modern sampling technologies, such as GPS, sensors, medical imag-37

ing, etc., Euclidean point-clouds are becoming widely available for analysis. In the last38

decade, the problem of reconstructing an (unknown) Euclidean shape, from a (noisy) sam-39

ple around it, has received a far and wide attention both in theoretical and applied literature;40

see [1, 2, 3, 4, 5, 6]. The nature of such a reconstruction attempt can commonly be classi-41

fied as being topological or geometric. A topological reconstruction is usually attributed to42

inferring significant topological features—such as homology and homotopy groups—of the43

hidden shape of interest. To be more specific, one may also say homological reconstruction or44

homotopy type reconstruction. A much stronger paradigm is the geometric reconstruction,45

where one is interested in producing, from the sample, a Euclidean subset that is homotopy46

equivalent and geometrically “close” (e.g., in Hausdorff distance) to the underlying shape.47

The nature of the problem and the techniques of the solution change depending on48

the type of the shape X and the sample S considered, as well as how their “closeness”49

is measured. The most natural distance measure between two abstract metric spaces is50

the Gromov-Hausdorff distance, which measures how “metrically close” two metric spaces51

are. The reconstruction of a geodesic metric space X from another metric space S that52

is Gromov-Hausdorff close to X is considered in [7, 8]. For a Euclidean shape X and a53

Euclidean sample S, however, the sample density is usually quantified by their Hausdorff54

distance. For the Hausdorff-type reconstruction of Euclidean shapes, see [3, 5, 6, 4].55

In many applications, a point cloud approximates a geodesic subspace (see Definition 2.1)56

of Euclidean space. Examples include GPS trajectories sampled around a road-network57

(modeled as sampling paths in a graph in R
2), earthquake data sampled around the fila-58

mentary trajectory of the shock, or 3D medical imaging. The intrinsic geodesics of these59

underlying shapes enjoy a rich geometric structure. Capturing that structure from the sam-60

pled data is the challenge. The length metric dL (see (1)) turns them into geodesic subspaces61

of RN . In this work, we consider both topological and geometric reconstruction of a geodesic62

subspace X of RN from a finite Hausdorff-close Euclidean sample.63

In shape reconstruction, the use of various simplicial complexes built on the point-clouds64

is becoming increasingly popular; see for example [9, 10, 11, 5, 12]. The most common of65

them are Vietoris-Rips and Čech complexes. In this work, we use filtrations of both of them,66

and we recognize the distortion δ = δ(X) and convexity radius ρ = ρ(X) of X to be natural67

sampling parameters when the geodesic subspaces of RN are considered; see Section 2 for68

their formal definitions.69

Our homological reconstruction approach is similar to [5], which is based on the weak70

feature size (wfs) of the underlying space. However, the use of partition of unity, for exam-71

ple, in the proof of Theorem 3.10 makes our techniques substantially different. The novelty72

of this paper is discerned by the introduction of distortion and convexity radius as sampling73

parameters, which is not related to the known sampling parameters such as the reach, µ–74

reach or wfs [6, 4, 10]. These works are based on an analysis of the gradient flow of the75

Euclidean distance function to X in R
N and its critical points. Our techniques are substan-76

tially different from that and our results apply to a large class of spaces including smooth77
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submanifolds of RN , finite embedded graphs and higher dimensional simplicial complexes.78

As an application of our reconstruction technique, we develop in Section 4 a new topological79

approach for the reconstruction of embedded graphs.80

1.1. Review of Related Works81

This subsection surveys relevant and pivotal results in shape reconstruction from point82

clouds using topological methods, and compares them to the results of this paper. Table 183

presents a list of some of the most related results alongside the contribution presented in84

this work. For necessary definitions and background we refer the reader to Section 2.85

Reach. The most well-behaved spaces are smooth Euclidean submanifolds, more generally86

spaces with a positive reach r(X). In [3], the authors apply geometric and topological tools87

to reconstruct a smooth submanifold by the union of Euclidean balls of sufficiently small88

radius around a dense subset. The work uses the reach of the embedded submanifold as the89

sampling parameter. In a more recent work ([15]), the authors improve some of the previously90

known bounds and develop homotopy-type reconstruction of a Euclidean (compact) subset91

with positive reach (and µ-reach) using Čech and Vietoris-Rips complexes on a sample.92

The above results do not apply when considering shapes beyond the class of Euclidean93

submanifolds or spaces that do not have a positive reach, although such shapes are frequently94

encountered in practical applications. A common reason for a space to have a vanishing reach95

is the presence of sharp corners and branchings. Such spaces include graphs, embedded96

simplicial complexes, manifolds with corners—also the type of shapes we consider in this97

work for reconstruction. For manifold reconstruction by Vietoris-Rips complexes in a slightly98

different but related context, see [11, 16].99

Weak Feature Size, µ-Reach. In developing a sampling theory for general compact100

sets in R
N , the notion of weak feature size (wfs) was introduced in [4] as the infimum of101

the positive critical values of the distance function to the compact set. Using the wfs as102

a sampling condition, the authors developed a persistence-based approach to reconstruct103

the homology groups and the fundamental group of a hidden shape from the Euclidean104

thickenings of the sample around it.105

The results have been further extended in [5] to facilitate reconstruction of homology106

groups from Čech, Vietoris-Rips, and witness complexes built on the sample. In comparison107

with the manifold reconstruction result in [3], the techniques of [4, 5] apply to much less108

regular subspaces of RN , such as compact Euclidean neighborhood retracts [17, 18]—as long109

as they have a positive wfs.110

The notion of the wfs of a Euclidean compact set was generalized in [6] by introducing111

the concept of µ-reach, denoted rµ(X). A homotopy-type reconstruction of spaces with pos-112

itive µ-reach has been developed in [6, 10]. Although these works consider for reconstruction113

spaces beyond the class of positive wfs, the difficulty lies in applying the results to shapes114

as simple as an embedded tree. Also, choosing a suitable µ so that the µ-reach is positive is115

not always clear.116
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Table 1: Reconstruction results. Parameters (params.) are: weak feature size (wfs), µ-reach

(R), shorted edge length (b), global reach (ξ), smallest turning angle (α), distortion (δ), and

convexity radius (ρ).

Authors Space X Param. Condition on S Result

Niyogi
et al. [3]

manifolds ξ ε <

√

3
5ξ and S ⊂ X

is ε
2 -dense

Sε deformation
retracts to X

Chazal,
Lieutier [4]

compact sets wfs dH(X,S) < ε <
wfs(X)

4 Im(i∗) ≃ H∗(X
α), where

i : Sε
→ S3ε and α is

sufficiently small

Chazal,
Oudot [5]

compact sets wfs dH(X,S) < ε < 1
9wfs(X),

S is finite
Im(i∗) ≃ H∗(X

α), where
i : Rε(S) → R4ε(S), α
is sufficiently small

Attali
et al. [10]

compact sets µ-reach
R

dH(X,S) ≤ ε < λcech(µ)R Cα(S) is homotopy
equivalent to
Xη for η ∈ (0, R)

Anjaneya
et al. [13]

abstract metric
graphs

b, r S is an
(ε,R)-approximation,
15ε
2 < b < min

{

R
4 ,

3b−6ε
5

}

homeomorphic graph

Wasserman
et al. [14]

embedded
metric graphs

µ of each
edge,
ξ, α, b, τ

S is δ
2 -dense in

Xα, 0 < r + δ < ξ − 2σ,
and 0 < δ < f(b, α, τ, ξ, σ)

isomorphic pseudo-graph

Theorem 3.5 geodesic spaces δ, ρ dH(X,S) < ε
4 <

ρ
2δ(3δ+2)

Im(i∗) ≃ H∗(X), where i :
Rε(S) → R 1

2
(3δ+1)ε(S)

Theorem 4.7 planar
subspaces

δ, ρ dH(X,S) < ε
3 <

ρ
δ(15δ+2)

Hausdorff-close, homotopy
equivalent subset

Our topological reconstruction results (Theorem 3.5 and Theorem 3.10), are very sim-117

ilar in style to the results presented in [5]. However, the use of partition of unity for Čech118

complexes and homotopy equivalence result of Hausmann ([19]) for Vietoris-Rips complexes119

make our proofs very different. The wfs-based technique employed in [4, 5] restricts their120

results to work for homology with coefficients only in a field. Moreover, it’s not apparently121
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(0, 0) (1, 0)

sin π
x

Fig. 1: The compact set X (Warsaw circle) has a positive wfs, but X and Xλ do not have

the same homotopy type for any λ > 0. In fact, X has the weak homotopy type of a point,

whereas Xλ has the homotopy type of S1.

clear whether the results can easily be extended to higher homotopy groups. Our recon-122

struction results, however, do not suffer such restrictions; see Remark 3.11.123

Apart from the fact that we employ δ(X) and ρ(X) for our sampling condition, all wfs124

(and µ-reach) based results guarantee a reconstruction of a thickening Xλ of X and not X125

directly. There are known pathological examples of spaces where the thickening (however126

small) is not homotopy equivalent to the underlying space, such as the Warsaw circle shown127

in Figure 1. Although the homological reconstruction results in our work concern the homo-128

logical reconstruction of the subspace X itself, not the thickening of X, they are not strong129

enough to apply in the case of the Warsaw circle because of δ(X) = +∞ in this case.130

Another notable difference in the previously discussed approaches appears in the cases131

where X is “slightly perturbed”, e.g., a submanifold with corners. Such a perturbation is132

illustrated in Figure 2 for a circle X topologically embeddeda in R
2. The top part of the133

space X is the graph of a rectifiable curve γ : [0, 1] → R
2 such that, when restricted to134

the segment
[

1
n+1 ,

1
n

]
, it is a half-circle of diameter 1

n(n+1) for n odd and a line-segment135

for n even. For this space, the set of critical points of the distance function is an infinite136

set with an accumulation point at (0, 0). Consequently, wfs(X) = 0. However, X has a137

finite distortion δ = π
2 and a positive intrinsic convexity radius: ρ(X) > 0. Thus X fails138

to satisfy the conditions of the reconstruction results of [4, 5], however our results apply139

to this case. Another important point, suggested by the example of Figure 2, is that any140

embedded submanifold X in R
N can be perturbed to a submanifold X ′, just by adding a141

small “spherical cap” at any of its points. Such a small perturbation does not change the142

distortion and the convexity radius too much, however can produce very small wfs, because143

we introduce a critical point of the distance function at the center of the cap. Small values144

of wfs result in large sample sizes needed for the reconstruction.145

Metric Graph Reconstruction. We finish this introduction with a quick summary of146

some of the existing works on reconstruction of embedded metric graphs ([13, 20, 8]). In [13],147

the authors consider an abstract metric graph and a sample that is close to it in Gromov-148

Hausdorff metric, and reconstruct the structure of the metric graph along with the metric149

aa topological embedding is simply a C0–embedding.
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(0, 0) (1, 0)

Fig. 2: The space X is a compact Euclidean subspace with wfs(X) = 0 and rµ(X) = 0.

The critical points of the distance function are shown in blue; they accumulate at (0, 0).

However, X has a finite distortion and a positive convexity radius.

on it. In a more recent work [20], the authors show a statistical treatment of metric graph150

reconstruction. They consider an embedded metric graph and a Euclidean sample around151

it. The Gromov-Hausdorff proximity used in [13] is replaced by the density assumption.152

The algorithm presented in [13] only reconstructs the connectivity of the vertices of the153

underlying metric graph and outputs an isomorphic pseudo-graph. And lastly, we mention154

that the first Betti number of an abstract metric graph is computed by considering the155

persistent cycles in the Vietoris-Rips complexes of a sample that is very close to it, with156

respect to the Gromov-Hausdorff distance; see [8, Lemma 6.1]. In Gromov-Hausdorff type157

reconstruction schemes, a small Gromov-Hausdorff distance between the graph and the158

sample guarantees a successful reconstruction. These methods are not a good choice when159

embedded graphs in R
N are considered. For an embedded graph with the induced length160

metric and a Euclidean sample around it, the Gromov-Hausdorff distance is not guaranteed161

to be made infinitely small, even if a dense enough sample is taken. Also, most of the162

above mentioned works may be insufficient to give a geometrically close embedding for the163

reconstruction. Whereas our technique, presented in Section 4, can successfully be used to164

reconstruct embedded graphs; see Corollary 4.8.165

1.2. Our Contribution166

One of the major contributions of this work is to reconstruct geodesic subspaces of RN ,167

both topologically and geometrically. In our pursuit, we recognize distortion and convexity168

radius as new sampling parameters. These sampling parameters are very natural properties169

of geodesic spaces.170

In Section 2, along with the other important notions of metric geometry and algebraic171

topology that we use throughout this paper, we define convexity radius and distortion of a172

geodesic space.173

In Section 3, our main topological reconstruction results for a geodesic subspace X of RN
174

are presented. When the distortion is finite and the convexity radius is positive, the Vietoris-175

Rips and Čech filtrations of the sample are shown to successfully compute the homology176

and homotopy groups of X (Theorem 3.5 and Theorem 3.10).177
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In Section 4, we consider geometric reconstruction of geodesic subspaces. We construct a178

complex on the sample as our geometric reconstruction of the space of interest. Theorem 4.3179

establishes the isomorphism of their fundamental groups. As an interesting application in180

Section 4.2, we consider the geometric reconstruction of planar subspaces and embedded pla-181

nar graphs (Definition 4.4) in particular. In Theorem 4.7, we compute a homotopy equivalent182

geometric complex in the same ambient space that is also Hausdorff-close to X. Since the183

sample S can be taken to be finite, our result gives rise to an efficient algorithm (Algo-184

rithm 1) for the geometric reconstruction of planar embedded graphs.185

2. Notation and Background186

In this section, we provide a brief overview of useful notation and classical results from metric187

geometry and algebraic topology. For more detailed and complete treatment, we refer the188

reader to textbooks on metric geometry [21, 22] and algebraic topology [23, 24, 25].189

2.1. Geodesic Subspaces, Distortion, Convexity Radius190

We first present relevant definitions from metric geometry.191

Geodesic Subspaces (of R
N) We start with the unit interval I := [0, 1] ⊂ R. A con-

tinuous function γ : I → R
N is called a path. We call T = {ti}

k
i=0 a discretization of I

if 0 = t0 < t1 < t2 < . . . < tk = 1. We create a piecewise linear path by using straight line

segments to connect γ(ti) with γ(ti+1) for each i ∈ {0, 1, . . . , k − 1}. We often equip R
N

with the Euclidean, or L2 distance, d2 : R
N × R

N → R defined by d2(x, y) := ‖x− y‖2.

Let γ : I → R
N be a (continuous) path. The length of γ is defined as:

L(γ) := sup
T

∑

i∈{1,2,...,|T |}

d2 (γ(ti), γ(ti+1)) ,

where the supremum is taken over all finite discretizations of I. Furthermore, the curve γ192

is called rectifiable if L(γ) is finite. For a path-connected subset X ⊆ R
N , we call the193

restriction of d2 to X the restricted metric on X. We define the induced length metric or194

geodesic metric, dL : X ×X → R, by195

dL(x, y) = inf
γ:[0,1]→X

L(γ), (1)196

where the infimum is taken over all paths γ : I → X such that γ(0) = x and γ(1) = y.197

Definition 2.1 (Geodesic Subspace). We call X ⊆ R
N a geodesic subspace if between198

any pair of points x, y ∈ X, there exists a rectifiable path on X starting at x and ending199

at y whose length is dL(x, y).200

One example of a geodesic subspace is a connected and compact subset of R
N . The201

“niceness” of an geodesic subspace is quantified by its distortion, a concept first introduced202

by M. Gromov in the context of knots on Riemannian manifolds [26, 27, 22]. For a geodesic203

subspace X ⊆ R
N , we consider the map f : (X, d2)→ (X, dL) induced by the identiy map204



September 27, 2022 11:46 WSPC/Guidelines reconstruction

8 Fasy, Komendarczyk, Majhi, and Wenk

on X. The distortion of X is the best Lipschitz constant for f . More formally, we have the205

following definition.206

Definition 2.2 (Distortion). The distortion of the induced length metric dL with respect207

to Euclidean distance over a set X ⊆ R
N is defined as:208

δ := δ(X) = sup
x 6=y∈X

dL(x, y)

‖x− y‖2
.209

For simplicity of exposition, we refer to δ as the distortion of X.210

Since dL is the induced length metric, δ is bounded below by one and above by +∞. If X211

is a straight line segment, then δ = 1. On the other extreme, if X is the subspace {(x, y) ∈212

R
2 | x2 = y3}, then δ = +∞. To see this, consider the limit as ε approaches zero of the two213

points (−ε3/2, ε) ∈ X and (ε3/2, ε) ∈ X, getting arbitrarily close to the cusp point (0, 0).214

Thus, both the lower and upper bounds on δ are tight. For more on distortion, see [28].215

Remark 2.3 (Equivalence of Topologies). Given a metric space (X, d), we can topol-216

ogize X with metric balls; that is, the topology is generated by sets of the form Bd(x, r) :=217

{y ∈ X | d(x, y) < r}, where x ∈ X and r ∈ R. If we assume that dL has finite distortion218

with respect to d2, then (X, dL) and (X, d2) have equivalent topologies. The equivalence of219

the two topologies is a direct consequence of the following inequalities for x, y ∈ X:220

‖x− y‖2 ≤ dL(x, y) ≤ δ ‖x− y‖2 . (2)221

Fig. 3: The set X, the closure of the union of the falling segments in the figure, is known as

the infinite broom. The topology of (X, d2) is strictly finer than the length metric topology

of (X, dL). The latter topology is locally path-connected; whereas, the former topology

is not.

Equivalence of the topologies does not generally hold if the distortion of X is222

not finite. For an example, let X ⊂ R
2 be the closure of the union of line seg-223

ments
{[
(0, 0),

(
cos π

2i , sin
π
2i

)]}
i∈N

, as shown in Figure 3. Such a space is also known as224
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the infinite broom. We see that the distortion of the space is infinite by considering the225

sequence ai =
(
cos π

2i , sin
π
2i

)
of points on the right end of the spokes of the broom:226

lim
i→∞

dL
(
(0, 1), ai

)

‖(0, 1)− ai‖2
=∞.227

The Euclidean metric topology, in this case, is strictly finer than the length metric228

topology, as (X, dL) is locally path-connected, but (X, d2) is not.229

Convexity Radius Convexity radius of the underlying geodesic subspace is one of the230

parameters of X used in all our reconstruction results. We start with its formal definition231

from [19]. Although the concept is defined for general length spaces, we restrict ourselves232

to only geodesic subspaces.233

Definition 2.4 (Convexity Radius). We define the convexity radius, denoted ρ, of a234

geodesic subspace X ⊆ R
N to be the supremum of all r > 0 such that:235

(1) For all x, y ∈ X with dL(x, y) < 2r, there exists a unique (length-minimizing) geodesic236

path joining x and y.237

(2) If x, y, z, u ∈ X such that dL(x, y) < r, dL(y, z) < r, dL(z, x) < r,238

and u is a point on the (length-minimizing) geodesic path joining x and y,239

then dL(u, z) ≤ max {dL(x, z), dL(y, z)}.240

(3) If γ and γ′ are arc-length parametrized (length-minimizing) geodesics on X such that241

γ(0) = γ′(0), then dL (γ(ts), γ′(ts′)) ≤ dL (γ(s), γ′(s′)) for 0 ≤ s, s′ < r and 0 ≤ t ≤ 1.242

Consider a circle in R
2 with perimeter R; its convexity radius is R

4 . Also, the convexity243

radius of an embedded graph is b
4 , where b is the length of its smallest simple cycle. It is244

well-known that the convexity radius of a compact Riemannian manifold is positive. The245

convexity radius of a geodesic space is an intrinsic property.246

2.2. Simplicial Complexes, Nerve Lemma247

We finally conclude this section by outlining a few important notions from algebraic topol-248

ogy. Readers are referred to [23, 24, 25] for more details.249

Abstract Simplicial Complex The combinatorial analogue of a topological space, often250

used in algebraic and combinatorial topology, is an abstract simplicial complex. An abstract251

simplicial complex K is a collection of finite sets such that if σ ∈ K, then so are all its252

non-empty subsets.253

In general, elements of K are called simplices of K. The singleton sets in K are often254

called the vertices of K. If a simplex σ ∈ K has cardinality (q + 1), then it is called a255

q-simplex (or the dimension of σ is q or dim(σ) = q). If σ′ ⊆ σ, then σ′ is called a face of σ.256

Simplicial Maps and Contiguity Let K1 and K2 be abstract simplicial complexes with257

vertex sets V1 and V2, respectively. A vertex map is a map between the vertex sets.258

Let φ : V1 → V2 be a vertex map. If, for all σ ∈ K1, we have φ(σ) := ∪v∈σ{φ(v)} is,259
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in fact, an element of K2, then we say that φ induces a simplicial map φ : K1 → K2.260

Two simplicial maps φ1, φ2 : K1 → K2 are called contiguous if for every simplex σ1 ∈ K1,261

there exists σ2 ∈ K2 such that φ1(σ1) ∪ φ2(σ1) ⊆ σ2. A simplicial map between abstract262

simplicial complexes is the combinatorial analogue of a continuous map between topolog-263

ical spaces; likewise, contiguous simplicial maps play the role of homotopic maps in the264

combinatorial world.265

Geometric Complex Although, abstract simplicial complexes have enough combinatorial266

structure to define simplicial homology and homotopy, they are not topological spaces. For267

an abstract simplicial complex K with vertex set V , its underlying topological space or268

geometric complex, denoted as
∣∣K

∣∣, is defined as the space of all functions α : V → [0, 1],269

also called barycentric coordinates, satisfying the following two properties:270

(1) supp (α) := {v ∈ V | α(v) 6= 0} ∈ K271

(2)
∑
v∈V

α(v) = 1.272

The details on the topologies on
∣∣K

∣∣ and their relations can be found in [24, 25]. In this273

work, we use the standard metric topology on |K|, as defined in [25]. Naturally, a simplicial274

map φ : K1 → K2 induces a continuous map
∣∣φ
∣∣ :

∣∣K1

∣∣→
∣∣K2

∣∣ defined by275

∣∣φ
∣∣(α)(v′) =

∑

φ(v)=v′

α(v), for v′ ∈ K2.276

As one expects, the contiguous simplicial maps induce homotopic continuous maps between277

their respective underlying topological spaces; see [25] for a proof.278

Nerve Lemma A critical ingredient for our Čech reconstruction results is the Nerve279

Lemma or a modification thereof; therefore, we discuss the concept here. An open cover280

U = {Ui}i∈Λ of a topological space X is called a good cover if all finite intersections of its281

elements are contractible. The nerve of U , denotedN (U), is defined to be the simplicial com-282

plex having Λ as its vertex set, and for each non-empty k-way intersection Ui1∩Ui2∩. . .∩Uik ,283

the subset {i1, i2, . . . , ik} is a simplex of N (U). Under the right assumptions, the nerve pre-284

serves the homotopy type of the union X, as stated by the following fundamental result.285

Lemma 2.5 (Nerve Lemma [29]). Let U = {Ui}i∈Λ be a good open cover of a topological286

space X. Then, the underlying topological space
∣∣N (U)

∣∣ is homotopy equivalent to X.287

Remark 2.6. If the open cover U is locally finite, then the homotopy equivalence in the288

Nerve Lemma is usually constructed with the help of a partition of unity for the cover [23].289

Specifically, let h : X −→
∣∣N (U)

∣∣ be a homotopy equivalence. Then, a partition of unity is290

a collection of continuous functions {ϕi : X −→ [0, 1]}i∈Λ such that for all x ∈ X,291

h(x) =
∑

i∈Λ

ϕi(x)vi, (3)292

where vi denotes the vertex of N (U) corresponding to the cover element Ui. In addition,293

each ϕi must satisfy the following two requirements: (i) for all i ∈ Λ, the support of ϕi,294
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denoted supp (ϕi), is a compact proper subset of Ui, and (ii) for all x ∈ X,
∑

i∈Λ ϕi(x) = 1.295

Čech and Vietoris-Rips Complexes Consider a subspace A of a metric space (M,d) and296

a positive scale α. The nerve of the collection of open metric balls of radius α centered at the297

points of A is known as the Čech complex of A at scale (radius) α. We are interested in Čech298

complexes in two metric spaces: Euclidean and the length metric space. Let X ⊆ R
N . Then,299

the Čech complex under the standard Euclidean metric is: Cα(X) := N ({B(x, r)}x∈X),300

where B(x, r) is the Euclidean ball of radius r centered at x. The Čech complex under the301

length metric (X, dL) is CL
α(A) := N ({BL(x, r)}x∈X), where B

L(x, r) denotes the metric302

ball of radius r centered at X in (X, dL). Note that these complexes may be infinite.303

The Vietoris-Rips Complex is an abstract simplicial complex having a k-simplex for every304

set of (k+1) points in A of diameter at most α. Explicit knowledge about the entire metric305

space (M,d) is not needed to compute the complex. Unlike the Čech complex, the Vietoris-306

Rips complex is completely determined by the restriction of the metric to the subset A.307

For X ⊆ R
N under the standard Euclidean metric, we denote it simply by Rα(X). In the308

case when A ⊆ X equipped with length metric (X, dL), we denote the Vietoris-Rips complex309

by RL
α(A).310

Together, the definition of convexity radius and Nerve Lemma immediately imply the311

following fact:312

Lemma 2.7 (Čech Equivalence). Let X ⊆ R
N be a geodesic subspace with a positive313

convexity radius ρ, and let 0 < ε < ρ. Let A be an ε-dense subset of X with respect to the dL314

metric. Then, the complex CL
ε (A) is homotopy equivalent to X.315

Proof. Since A is an ε-dense subset of X, we know that U := ∪a∈AB
L(a, ε) is an open cover316

of (X, dL). Since ε < ρ and by the definition of convexity radius (Definition 2.4), we know317

that for each x ∈ X and y ∈ B
L(x, ε), there exists a unique length-minimizing geodesic318

path between x and y. Using these paths to define a deformation retract from B
L(x, ε)319

to x, we conclude that the metric balls in U are contractible. Since any finite intersection of320

metric balls in U has dimeter less than 2ε, by the similar argument it is also contractible.321

Hence, U is a good cover of X. By the Nerve Lemma (Lemma 2.5), we conclude that the322

complex CL
ε (A) is homotopy equivalent to X.323

3. Topological Reconstruction324

In this section, we consider the problem of topological reconstruction of a geodesic sub-325

space X of RN from a noisy sample S. From now on, unless otherwise stated, we assume326

that the underlying shape X has a positive convexity radius and a finite distortion, also327

that the sample S is a finite subset of R
N . We show that both Čech and Vietoris-Rips328

filtrations of S can be used to compute the homology and homotopy groups of X. Before we329

treat each type of complex separately, we show how the Čech and Vietoris-Rips complexes330

behave under Hausdorff perturbation.331

Lemma 3.1 (Hausdorff Distance and Complexes). Let A,B ⊆ R
N be finite, and ε be332
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a positive number such that dH(A,B) < ε. Then for any α > 0, there exist simplicial maps333

Cα(A) −→ Cα+ε(B)334

and335

Rα(A) −→Rα+2ε(B)336

induced by a vertex map ξ : A→ B such that for every vertex a ∈ A, we have ‖a− ξ(a)‖2 <337

ε. Moreover, such simplicial maps are unique, up to contiguity.338

Proof. We first note the definition339

dH(A,B) = inf {ε > 0 | A ⊆ Bε, B ⊆ Aε},340

where Aε denotes the Euclidean thickening of A.341

The definition of Hausdorff distance implies that if dH(A,B) < ε, there exists a (possibly342

non-unique, non-continuous) map ξ : A→ B such that ‖a− ξ(a)‖2 < ε. We show that this343

vertex map extends to a simplicial map between both Čech and Vietoris-Rips complexes.344

Let σ = {a0, a1, . . . , ak} be a k-simplex of Cα(A). By definition, there exists a point z

in R
N such that ‖ai − z‖2 < α for all i ∈ {0, 1, . . . , k}. By the triangle inequality, we then

have

‖ξ(ai)− z‖2 ≤ ‖ξ(ai)− ai‖2 + ‖ai − z‖2 < ε+ α.

So, {ξ(a0), · · · , ξ(ak)} is a simplex of Cα+ε(B). Hence, ξ extends to a simplicial map between345

the Čech complexes. To argue for the uniqueness of the simplicial map, let us assume346

that η is another simplicial map with the property that for every vertex a ∈ A, we have347

‖a− η(a)‖2 < ε. Again from the triangle inequality, we have ‖η(ai)− z‖2 < ε + α. So,348

ξ(σ) ∪ η(σ) is a simplex of Cα+ε(B). Hence, ξ and η are contiguous.349

For the Vietoris-Rips complex part, we follow a similar argument. Let σ =

{a0, a1, . . . , ak} be a k-simplex of Rα(A). By definition, the diameter of σ is not greater

than α. From the triangle inequality, we have

‖ξ(ai)− ξ(aj)‖2 ≤ ‖ξ(ai)− ai‖2 + ‖ai − aj‖2 + ‖ξ(aj)− aj‖2 < 2ε+ α.

So, {ξ(a0), · · · , ξ(ak)} is a simplex of Rα+2ε(A). Hence, ξ extends to a simplicial map also350

between Vietoris-Rips complexes.351

3.1. Homology Groups via Vietoris-Rips Complex352

We use the following fundamental result from [19] to compute the homology groups of X353

from a filtration of Vietoris-Rips complexes on a finite sample.354

Theorem 3.2 (Hausmann’s Theorem [19]). Let X be a geodesic subspace with a positive355

convexity radius ρ. For 0 < ε < ρ, there exists a homotopy equivalence T :
∣∣RL

ε (X)
∣∣ −→ X.356

Note that RL
ε (X) is usually an infinite Vietoris-Rips complex on the entire space X. A357

quick corollary of this result is:358
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Corollary 3.3. Let X be a geodesic subspace with a positive convexity radius ρ. For 0 <359

ε′ ≤ ε < ρ, the inclusion i : RL
ε′(X) −֒−−→RL

ε (X) induces isomorphisms on homology and360

homotopy groups.361

In order to achieve our result, we use certain simplicial maps to compareRL
∗ (X),R∗(X),362

and R∗(S).363

Lemma 3.4 (Euclidean and Intrinsic Rips Complexes). Let X a geodesic subspace364

of R
N with a finite distortion δ. Then for A ⊆ X and any positive number α, we have the365

following simplicial inclusions366

RL
α(A) −֒−−→Rα(A) −֒−−→RL

δα(A).367

Proof. The fact that ‖x− y‖2 ≤ dL(x, y) implies the first inclusion RL
α(A) −֒−−→Rα(A).368

Similarly, dL(x, y) ≤ δ ‖x− y‖2 implies the second inclusion.369

Theorem 3.5 (Reconstruction via Rips Complex). Let X be a geodesic subspace370

of R
N with a positive convexity radius ρ and finite distortion δ. Let S be a finite subset371

of RN , and let ε be a positive number such that372

dH(X,S) <
ε

4
<

ρ

2δ(3δ + 2)
.373

Then, for any non-negative integer k we have the following isomorphism

Hk(X) ∼= im
(
j∗ : Hk(Rε(S)) −֒−−→ Hk(R 1

2
(3δ+1)ε(S))

)

where j∗ is induced by the simplicial inclusion j : Rε(S) −֒−−→R 1
2
(3δ+1)ε(S).374

Proof. We derive the following chain of simplicial maps:375

RL
ε

2
(X)

φ1
−−−−−→Rε(S)

φ2
−−−−−→RL

3ε
2
δ(X)

φ3
−−−−−→R(3δ+1) ε

2
(S)

φ4
−−−−−→RL

1
2
(3δ+2)δε(X).

(4)376

The first map φ1 is the composition of the simplicial inclusion RL
ε

2
(X) −֒−−→R ε

2
(X) from377

Lemma 3.4 and the simplicial map R ε

2
(X) −−−→ Rε(S) from Lemma 3.1, thanks to the378

assumption dH(S,X) < ε
4 .379

Now, starting with Rε(S) and composing maps from Lemma 3.1 and Lemma 3.4, re-380

spectively, we get the second simplicial map φ2. Similarly, we get the maps φ3 and φ4.381

From Lemma 3.1, we first note that the composition φ3◦φ2 is contiguous to the inclusion:382

j : Rε(S) −֒−−→R(3δ+1) ε

2
(S).383

Therefore, they induce homotopic maps on the respective underlying topological spaces.384

Consequently, we have (φ3 ◦ φ2)∗ = j∗. We first argue that φ2∗ is surjective and φ3∗ is385

injective.386

By the choice of the simplicial maps in Lemma 3.4 and Lemma 3.1, we observe that φ2◦φ1387

is contiguous to the inclusion388

RL
ε

2
(X) −֒−−→RL

3ε
2
δ(X).389
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By Corollary 3.3, the inclusion induces isomorphism on homology, hence so does φ2 ◦φ1. In390

particular, (φ2 ◦ φ1)∗ is surjective. Hence, we have φ2∗ is surjective, and φ1∗ is injective.391

Also, φ4 ◦ φ3 is contiguous to the inclusion392

RL
3ε
2
δ(X) −֒−−→RL

1
2
(3δ+2)δε(X),393

which induces an isomorphism on homologies. Therefore, φ3∗ induces an injective homo-394

morphism.395

Since we have j∗ = φ3∗ ◦ φ2∗ and φ2∗ is surjective, the image of j∗ is the image of φ3∗.396

On the other hand, we know that Im(φ3∗) is isomorphic to H∗

(
RL

3ε
2
δ(X)

)
/Ker(φ3∗). As397

we have already shown that φ3∗ is injective, its kernel is trivial. Therefore, the image of j∗398

is isomorphic to RL
3ε
2
δ(X). Since 3ε

2 δ < ρ, Theorem 3.2 implies that RL
3ε
2
δ(X) is, in fact,399

homotopy equivalent to X. This completes the proof.400

The Vietoris-Rips reconstruction result works also for an infinite sample S. In applica-401

tions, however, we are computationally constrained to use only finite samples.402

3.2. Homology Groups via Čech Complex403

The reconstruction of homology groups via the Vietoris-Rips filtration (see Theorem 3.5404

in Section 3.1) was due to the homotopy equivalence theorem (Theorem 3.2). In this sub-405

section, we use Čech filtration to obtain similar reconstruction results. The Nerve Lemma406

(Lemma 2.5) is resorted to as the Čech alternative to Theorem 3.2. Like the Vietoris-Rips407

case, we still use different simplicial maps to compare CL
∗ (X), C∗(X), and C∗(S). The ap-408

proach involves a (controlled) variant of the partition of unity; see Lemma 3.8.409

Lemma 3.6 (Euclidean and Intrinsic Čech Complexes). Let X a geodesic subspace

of R
N with a finite distortion δ. Then for A ⊆ X and any positive number α, we have the

following simplicial inclusions

CL
ε (A) −֒−−→ Cα(A) −֒−−→ CL

2δα(A).

Proof. From ‖x− y‖2 ≤ dL(x, y), we have the first inclusion.410

On the other hand, for any x, y ∈ X we have dL(x, y) ≤ δ ‖x− y‖2. Let σ = {x0, ..., xk}411

be a simplex of Cα(A). Then ‖xi − xj‖2 < 2α, consequently dL(xi, xj) < 2δα for all 1 ≤412

i, j ≤ k. This implies413

{x0, x1, . . . , xk} ⊂
k⋂

i=0

B
L(xi, 2δα),414

where B
L(xi, r) denotes the ball of radius r centered at xi in the metric space (X, dL).415

Therefore σ ∈ CL
2δα(A), and this verifies the second inclusion.416

We begin with a lemma that is analogous to Corollary 3.3 in the Čech regime:417
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Lemma 3.7 (Inclusion of Covers). Let U = {Ui}i∈Λ and U ′ = {U ′
i}i∈Λ be locally-finite,418

good open covers of a para-compact topological space X such that Ui ⊆ U
′
i for each i. Then,419

the inclusion420

i : N (U) −֒−−→N (U ′)421

induces isomorphisms on the homology and homotopy groups of the respective geometric422

complexes.423

Proof. Consider the following commutative diagram:

∣∣N (U)
∣∣ ∣∣N (U ′)

∣∣

X

i

h i ◦ h

where the map h =
∑
ϕiui is obtained from an arbitrary partition of unity {ϕi} for U . By424

the Nerve Lemma (Lemma 2.5), h is a homotopy equivalence ([23]). Since Ui ⊆ U ′
i , {ϕi}425

is a partition of unity for U ′. So, i ◦ h is also a homotopy equivalence. Since the maps h426

is a homotopy equivalence, we conclude that i induces an isomorphism on homology and427

homotopy groups.428

We now state the following extension of the partition of unity. Follow [30] for a proof.429

Lemma 3.8 (Controlled Partition of Unity). Let {Ui} and {Vi} be open covers of a430

paracompact, Hausdorff space X such that Vi ⊆ Ui for each i. Then, there exists a partition431

of unity {ϕi} subordinate to {Ui} such that Vi ⊆ supp ϕi ⊆ Ui for all i.432

We now use the controlled partition of unity to prove the following important lemma.433

Lemma 3.9 (Commuting Diagram). Let X,Y be paracompact, Hausdorff spaces with a434

continuous map f : X → Y . Let U = {Ui} and V = {Vi} be good, locally finite, open covers435

of X and Y respectively, such that436

(1)
⋂

i Vi 6= ∅ implies
⋂

i Ui 6= ∅, i.e., we have the simplicial inclusion j : N (V) → N (U)437

that sends the vertex corresponding to Vi to the vertex corresponding to Ui,438

(2) f−1(Vi) ⊆ Ui for all i.439

Then, the following diagram commutes, up to homotopy:

∣∣N (V)
∣∣ ∣∣N (U)

∣∣

Y X

j

hY hX

f
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where hX , hY are homotopy equivalences from (3).440

Proof. We make use of the controlled partition of unity lemma to prove our result. Let441

us choose a partition of unity {φi} subordinate to {Vi}. One can choose hY so that for442

each y ∈ Y ,443

hY (y) =
∑

i

φi(y)vi,444

where vi is the vertex of N (V) corresponding to Vi.445

Since {f−1(Vi)} is an open cover of X with f−1(Vi) ⊆ Ui for each i, by Lemma 3.8 we446

can choose a partition of unity {ψi} subordinate to {Ui} such that for each i447

f−1(Vi) ⊆ supp ψi.448

Also, choose hx such that for each x ∈ X449

hX(x) =
∑

i

ψi(x)ui,450

where ui is the vertex of N (U) corresponding to Ui.451

To see that the diagram commutes, up to homotopy, it suffices to show that (j ◦ hY ◦ f)452

is homotopic to hX . We start with a point x0 ∈ X453

(j ◦ hY ◦ f)(x0) = j
(∑

i

φi(f(x0))vi
)
=

∑

i

φi(f(x0))j(vi) =
∑

i

φi(f(x0))ui.454

On the other hand, hX(x0) =
∑

i ψi(x0)ui. Now if φi(f(x0)) is non-zero for some i,455

then f(x0) ∈ Vi, and consequently x0 ∈ f−1(Vi) ⊆ Ui. From our choice of the support456

of ψi and ψi(x0) has to be non-zero. This shows that both (j ◦ hY ◦ f)(x0) and hX(x0) lie457

in an (open) simplex of N (V). Due to convexity of simplices, the following (straight-line)458

homotopy is well-defined:459

F (x, t) =
∑

i

[tψi(x) + (1− t)φi(x)]ui.460

This shows that (j ◦ hY ◦ f) is homotopic to hX .461

Now we are in a position to prove our reconstruction result for Čech complexes.462

Theorem 3.10 (Reconstruction via Čech complex). Let X be a geodesic subspace463

of R
N with a positive convexity radius ρ and finite distortion δ. Let S be a finite subset464

of RN , and let ε be a positive number such that465

dH(X,S) < ε <
ρ

2δ(4δ + 1)
.466

Then, any non-negative integer k we have the following isomorphism467

Hk(X) ∼= im
(
j∗ : Hk(Cε(S)) −֒−−→ Hk(C(4δ+1)ε(S))

)
(5)468

where j∗ is induced by the simplicial inclusion j : Cε(S) −→ C(4δ+1)ε(S).469
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Proof. We first note from dH(X,S) < ε and Lemma 3.1 that there is a map ξ : S → X470

such that for each s ∈ S,471

‖s− ξ(s)‖2 < ε. (6)472

Let X ′ = ξ(S). Then, (6) implies dH(S,X ′) < ε, hence dH(X,X ′) < 2ε by the triangle473

inequality.474

We now derive the following chain of simplicial maps:

Cε(S)
φ1

−−−−−→ CL
4εδ(X

′)
φ2

−−−−−→ C(4δ+1)ε(S)
φ3

−−−−−→ CL
2δ(4δ+1)ε(X

′).

The first map φ1 is the composition of the simplicial map Cε(S) −֒−−→ C2ε(X
′) from475

Lemma 3.1 (due to dH(S,X ′) < ε) and the simplicial inclusion C2ε(X
′) −֒−−→ CL

4δε(X
′)476

from Lemma 3.6.477

Similarly, starting with CL
4δε(X

′) and composing maps from Lemma 3.6 and Lemma 3.1,478

respectively, we get the second simplicial map φ2. The other map φ3 is also obtained re-479

peating the exact same argument for a different scale as for φ1.480

We first observe that the choice of simplicial maps in Lemma 3.6 and Lemma 3.1481

makes φ2 ◦ φ1 contiguous to the given natural inclusion j of Cε(S) into C2δ(4δ+1)ε(S). We482

now consider the following diagram:483

∣∣Cε(S)
∣∣ ∣∣CL

4δε(X
′)
∣∣ ∣∣C(4δ+1)ε(S)

∣∣ ∣∣CL
2δ(4δ+1)ε(X

′)
∣∣

Sε X X

φ1 φ2 φ3

h1 h2

i Id

h3

(7)484

To show that the diagram commutes up to homotopy, we first explain the horizontal maps485

in the bottom row of (7). Since dH(X,S) < ε, we get the first inclusion X ⊆ Sε. The three486

vertical maps are homotopy equivalences that come from the Nerve Lemma (Lemma 2.5)487

for various good open covers as constructed in Lemma 3.9. The first vertical map h1 is488

obtained for the open cover U1 = {B(x, ε)}x∈S of Sε by Euclidean balls. The other two489

vertical maps, h2 and h3, are corresponding to the (intrinsic) covers U2 and U3 of (X, dL)490

by the intrinsic balls of radii 2δε and 4δ(2δ+1)ε, respectively. The assumption 4δ(2δ+1)ε < ρ491

implies that they are indeed good (intrinsic) covers of X. Therefore, by Lemma 2.7 we get492

the homotopy equivalences h2 and h3.493

Apply Lemma 3.9 to each of the rectangles in (7) to show that the diagram is homotopy494

commutative, and therefore it commutes on the homology level. The commutativity then495

implies that φ1 induces a surjective homomorphism and φ2 induces an injective homomor-496

phism on the homology groups. As a consequence, Im(φ2∗ ◦ φ1∗) = Im(φ2∗) = Hk(X) on497

the k-th homology group. Also, we note that φ2 ◦ φ1 is homotopic to the given simplicial498

inclusion j.499

To see that the first rectangle commutes, we consider the covers U1 and U2 of Sε
500

and (X, dL). Note that for any x ∈ S, the choice of ξ(x) implies that i−1(B(x, ε)) = B(x, ε)∩501
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X ⊆ B
L(ξ(x), 2δε). Consequently, B(x, ε) ∩X ⊆ B

L(ξ(x), 4δε). A similar argument also502

applies to other rectangle. Therefore by Lemma 3.9, the diagram (7) commutes.503

Remark 3.11. We remark that Theorem 3.5 and Theorem 3.10 of this section can be504

formulated in terms of any natural functor from the category of topological spaces (with505

continuous maps as morphisms) to the category of groups (with group homomorphisms). In506

particular, the results extend immediately to homology groups H∗( · ;G) with coefficients in507

any abelian group G, or homotopy groups π∗( · ).508

4. Geometric Reconstruction509

In the previous section, we used filtrations of both the Čech and the Vietoris-Rips complexes510

to compute the homology and homotopy groups of our hidden geodesic subspace X from511

a noisy sample S around it. The results, however, do not provide us with a topological512

space that faithfully carries the topology of X. To remedy this, we consider the problem of513

geometric reconstruction of geodesic subspaces.514

In Section 4.1, we introduce a new metric dε on S. As our first step towards capturing515

the homotopy type, we show in Theorem 4.3 that the Vietoris-Rips complex of (S, dε) and516

X have isomorphic fundamental groups. Finally in Section 4.2, we further use this complex517

for the geometric reconstruction of embedded graphs.518

4.1. Recovery of the Fundamental Group519

For any fixed ε > 0, we first consider the Euclidean Vietoris-Rips complex Rε(S) on the520

sample S. Regardless of how dense the sample S is, Rε(S) is not guaranteed to be homo-521

topy equivalent to X in general; as shown in Figure 5. This is not surprising, because the522

Euclidean metric on S, used to compute the complex, can be very different from the length523

metric dL on X. Our goal is to approximate dL by the shortest path metric, denoted dε, on524

the one-skeleton of Rε(S). Let us denote the one-skeleton of Rε(S) by Gε. Since Rε(S) is525

an abstract simplicial complex, Gε inherits the structure of an abstract graph. However, we526

turn its geometric complex
∣∣Gε

∣∣ into a metric graph by defining the metric dε on it in the527

following way: the metric, when restricted to an edge (s, t), is isometric to a real interval of528

length ‖s− t‖2.529

We show in Lemma 4.1 that dε nicely approximates the metric dL, which the Euclidean530

sample is oblivious to. For any positive scale α, we denote the Vietoris-Rips complex of S in531

the dε metric byRε
α(S). The metric dε can be computed in O(k3)-time from a sample (S, d2)532

of size k. In the following lemma, we compare the metric dε with the standard Euclidean533

metric d2 and the length metric dL.534

Lemma 4.1 (Minimal Covering of Paths). Let X be a geodesic subspace of RN . Let S

be a subset of R
N and ε > 0 such that dH(X,S) < ε

3 . For any path γ joining any two

points x, y ∈ X, we can find a sequence {ai}
k
i=0 ⊆ S with ‖ai+1 − ai‖2 < ε such that

k−1∑

i=0

‖ai+1 − ai‖2 < 3l(γ).
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Moreover, a0 and ak can be chosen to be any points with ‖x− a0‖2 <
ε
3 and ‖y − aK‖2 <

ε
3 .535

Proof. Since dH(X,S) < ε
3 , there exists a0 ∈ S such that ‖x− a0‖2 <

ε
3 . We now iteratively536

define the sequence {ai} ⊆ S, along with a sequence {ti}
k
0 ⊂ [0, 1] that defines a partition537

of [0, 1]. We set t0 = 0. Assuming both ai and ti are defined, we define ti+1 ∈ [0, 1] in the538

following way: if γ([ti, 1]) ∩ ∂B
(
ai,

2ε
3

)
6= ∅, we set539

ti+1 = min{t ∈ [ti, 1] | γ(t) ∈ ∂B

(
ai,

2ε

3

)
}.540

Otherwise if γ([ti, 1]) ∩ ∂B
(
ai,

2ε
3

)
= ∅, set ti+1 = 1. Since dH(S,X) < ε

3 , we set ai+1 ∈ S541

to be a point in S such that ‖γ(ti+1)− ai+1‖2 <
ε
3 . This procedure forces ti+1 to be strictly542

greater than ti, hence {ti} defines a partition of [0, 1]. Therefore,543

l(γ) =

k∑

i=0

l(γ|[ti,ti+1]) ≥
k∑

i=0

‖γ(ti)− γ(ti+1)‖2 ≥
k∑

i=0

ε

3
≥

1

3

k∑

i=0

‖ai+1 − ai‖2 .544

We also note that545

0 < ‖ai+1 − ai‖2 ≤ ‖ai+1 − γ(ti+1)‖2 + ‖γ(ti+1)− ai‖2 <
ε

3
+

2ε

3
= ε.546

Analogous to Lemma 3.1, we get the following useful simplicial maps.547

Lemma 4.2 (Vietoris-Rips Inclusion by dε). Let X a geodesic subspace X ⊆ R
N . Let548

S ⊆ R
N and ε > 0 be such that dH(X,S) < ε

3 . For any α > 0,549

(1) there exists a natural simplicial inclusion550

Rε
α(S) −֒−−→Rα(S).551

(2) there exists a simplicial map552

ξ : RL
α(X) −−−−→Rε

3α(S)553

induced by the vertex map ξ that sends a vertex x ∈ X to s ∈ S such that ‖x− s‖2 <
ε
3 .554

Proof.555

(1) Follows immediately from the definition of the metric dε.556

(2) As observed before in Lemma 3.1, the assumption dH(X,S) < ε
3 ensures that there is a557

vertex map ξ : X → S such that for each x ∈ X we have ‖x− ξ(x)‖2 <
ε
3 .558

We show that the map extends to a simplicial map. Let σ = {x0, x1, · · · , xk} be a559

k-simplex of RL
α(X). Then, dL(xi, xj) ≤ α ∀i, j. Now by Lemma 4.1, there exists a path560

joining ξ(xi) and ξ(xj) in Gε, moreover dε(ξ(xi), ξ(xj)) < 3α. So, ξ(σ) is a simplex of561

Rε
3α(S). Hence, the vertex map extends to a simplicial map.562

We now show that the fundamental group of the Vietoris-Rips complex on S under the563

metric dε is isomorphic to that of X. We tolerate the sloppiness from ignoring the basepoint.564
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Theorem 4.3 (Fundamental Group). Let X be a connected geodesic subspace of RN
565

with a positive convexity radius ρ and a finite distortion δ. Let S ⊆ R
N and ε > 0 be such566

that567

dH(X,S) <
ε

3
<

ρ

δ(15δ + 2)
.568

Then, the fundamental groups of Rε
5εδ(S) and X are isomorphic.569

Proof. We derive the following chain of simplicial maps:

Rε(S)
φ1

−−−−−→RL
5εδ
3

(X)
φ2

−−−−−→Rε
5δε(S)

φ3

−֒−−−−→R5δε(S)
φ4

−−−−−→RL
δ(15δ+2)ε/3(X).

The map φ1 is the composition of the simplicial map Rε(S) −−−→R 5ε
3
(X) from Lemma 3.1570

and the simplicial inclusion R 5ε
3
(X) −֒−−→ RL

5εδ
3

(S) from Lemma 3.4, thanks to the as-571

sumption dH(S,X) < ε
3 . By a similar composition but at different scales, we get φ4. We572

also obtain φ2 from Lemma 4.2 and φ3 from Lemma 4.2.573

We argue that φ2 induces the desired isomorphism on the fundamental groups. By The-574

orem 3.5 and since ε < ρ
δ(15δ+2) , the simplicial map φ4 ◦ φ3 ◦ φ2 induces an isomorphism on575

all homotopy groups. Therefore, φ2 induces an injective homomorphism on the homotopy576

groups, particularly the fundamental group of X.577

We now show that the induced homomorphism is also surjective on the fundamental578

groups by showing that φ2 ◦ φ1 induces a surjection. As observed Theorem 3.5, it suffices579

to show the surjection for the the natural inclusion i : Rε(S) −֒−−→ Rε
5δε(S), because i is580

contiguous to φ2 ◦ φ1.581

We start with a loop η in Rε
5δε(S). We can assume that η is made up of edges (one-582

simplices) of Rε
5δε. Let us consider an edge σ = {a, b} in η, then we have dε(a, b) ≤ 5δε. By583

the definition of dε, there must be a sequence of points a = x0, x1, · · · , xk = b such that for584

each i, the segment [xi, xi+1] is an edge of Rε(S). Moreover, we observe for later that the585

diameter of the whole set {x0, · · · , xk} in the dε metric is not greater than 5εδ.586

a = x0

x1 · · · xk−1

b = xk

Fig. 4: The red one-simplex [a, b] of Rε
5δε(S) is shown to be pushed off to a path a =

x0, x1, · · · , xk = b in Rε(S). All the nodes form a simplex (shown in green) in Rε
5δε(S).

Now, we define a loop η′ in Rε(S) by replacing each constituent edge [a, b] of η by the587

path joining the points in the sequence a = x0, x1, · · · , xk = b consecutively, as shown in588

Figure 4. We note that η′ is indeed a loop in Rε(S). We now show that (φ2 ◦ φ1)(η
′) is589

homotopic to the loop η in Rε
5δε(S). As observed before, {a = x0, · · · , xk = b} is a simplex590
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of Rε
5δε(S). We can then use a (piece-wise) straight line homotopy that maps each edge [a, b]591

of η to the segment [a = x0, x1]∪ · · · ∪ [xk−1, xk = b] of η′. Hence, [η′] is, in fact, a preimage592

of [η]. This shows, in turn, that φ2 induces a surjective homomorphism on π1. This completes593

the proof.594

4.2. Reconstruction of Embedded Graphs595

We finally turn our attention to the geometric reconstruction of embedded graphs. We start596

with the formal definition of an embedded graph.597

Definition 4.4 (Embedded Metric Graph). An embedded metric graph G is a subset598

of RN that is homeomorphic to a one-dimensional simplicial complex, where the induced599

length metric dL is the shortest path distance on G. For simplicity of exposition, we call600

such G embedded graphs.601

We note that if G has finitely many vertices and b is the length of its shortest simple602

cycle, then the convexity radius ρ is b
4 . In this paper, we always assume that G has finitely603

many vertices. We now consider the shadow of the Vietoris-Rips complex Rε
•(S), which is604

defined in Section 4.1.605

Definition 4.5 (Shadow of a Complex). Let A be a subset of RN , and let K be an ab-606

stract simplicial complex whose vertex set is A. For each simplex σ = {x1, x2, . . . , xk}607

in K, we define its shadow, denoted Sh(σ), as the convex-hull of the Euclidean point608

set {x1, x2, . . . , xk}. The shadow of K in R
N , denoted by Sh(K), is the union of the shadows609

of all its simplices, i.e., Sh(K) :=
⋃

σ∈K

Sh(σ).610

We, therefore, have the following natural projection map p :
∣∣K

∣∣ → Sh(K). In gen-611

eral, Sh(K) may not have the same homotopy type as |K|. However, as proved in [31], the612

fundamental group of the Vietoris-Rips complex of a planar point set is isomorphic to the613

fundamental group of its shadow. In [16], the authors further the understanding of shadows614

of Euclidean Rips complexes. In the case of planar subsets and K = Rε
•(S), we prove a615

similar result now.616

Lemma 4.6 (Shadow). Let X be a connected planar subspace with a positive convexity617

radius ρ and a finite distortion δ. Given S ⊆ R
2 finite and ε > 0 such that618

dH(X,S) <
ε

3
<

ρ

δ(15δ + 2)
.619

Then, the shadow projection p :
∣∣Rε

5εδ(S)
∣∣ −−−−→ Sh(Rε

5εδ(S)) induces isomorphism on the620

fundamental groups.621

Proof. From Theorem 4.3, we have the following chain of simplicial maps:

Rε(S)
φ1

−−−−−→RL
5εδ/3(X)

φ2
−−−−−→Rε

5δε(S)
φ3

−֒−−−−→R5δε(S)
φ4

−−−−−→RL
δ(15δ+2)ε/3(X).

We have shown that φ2 induces an isomorphism on π1. As we have also noted that (φ4 ◦φ3 ◦622

φ2) induces an isomorphism on all homotopy groups. So, we conclude first that φ3 induces623

an injective homomorphism on π1 .624
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be such that638

dH(X,S) <
ε

3
<

ρ

δ(15δ + 2)
. (9)639

Then, the shadow complex X̃ = Sh(Rε
5εδ(S)) of Rε

5εδ(S) has the homotopy type of X.640

Moreover,641

dH(X, X̃) <

(
5δ +

1

3

)
ε. (10)642

Proof. By Lemma 4.6, the shadow X̃ = Sh(Rε
5εδ(S)) and X have isomorphic fundamental643

groups, via the map p of diagram (8). Note that, by assumption, both Sh(Rε
5εδ(S)) and X644

have a homotopy type of a finite wedge of circles and therefore trivial higher homotopy645

groups. By the Whitehead’s theorem [32], applied to the map p, we conclude that p is a646

homotopy equivalence.647

For statement (10), we note that for any finite vertex set σ ⊆ S with diam(σ) < 5δε we648

have σ ⊆ Sh(σ) and dH(σ,Sh(σ)) ≤ diam(σ). As a consequence, dH(X̃, S) ≤ 5δε. By the649

triangle inequality, we conclude the result.650

Corollary 4.8 (Geometric Reconstruction of Embedded Graphs). Let G be a finite,651

connected embedded graph in R
2. Let b be the length of the shortest simple cycle of G, and652

let δ be its distortion. Let S ⊆ R
2 be finite and ε > 0 be such that653

dH(G,S) <
ε

3
<

b

4δ(15δ + 2)
.654

Then, the shadow of G̃ = Sh(Rε
5εδ(S)) has the same homotopy type as G and (10) holds655

for X = G and X̃ = G̃.656

Proof. It suffices to note that the convexity radius of G is b
4 and apply Theorem 4.7.657

658

Based on Corollary 4.8, we devise Algorithm 1 for the geometric reconstruction of (pla-659

nar) embedded graphs. For a demonstration, see Figure 5.660

5. Discussion661

In this paper, we successfully reconstruct homology/homotopy groups of general geodesic662

spaces. We also reconstruct the geometry of embedded graphs. Currently, the output of663

such geometric reconstruction is a thick region around the hidden graph; see Figure 5. One664

can consider a post-processing step to prune the output shadow G̃ in order to output an665

embedded graph that is isomorphic to the hidden graphG. A natural extension of our work is666

to consider the geometric reconstruction of higher-dimensional simplicial complexes. Unlike667

the graphs, such a space may have non-trivial higher homotopy groups. The reconstruction668

result remains, therefore, an object of future work.669
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Algorithm 1 Graph Reconstruction Algorithm

Require: Finite sample S ⊆ R
2, ε > 0, δ, and b

Ensure: dH(G̃, S) < ε
3 <

b
4δ(15δ+2)

1: Initialize G̃← ∅

2: Compute the one-skeleton of Rε(S)

3: Compute (S, dε)

4: for all {a, b, c} ∈ S do

5: if dε(a, b) ≤ 5δε and dε(b, c) ≤ 5δε and dε(c, a) ≤ 5δε then

6: G̃← G̃ ∪ CONVEX-HULL({a, b, c})

7: end if

8: end for

9: return G̃

On the other hand, we also note that both approaches are not performing well when670

we deform X, e.g., by “pinching” a pair of points in X, i.e., deforming X to bring these671

points ǫ–close in the extrinsic Euclidean distance but with bounded intrinsic distance. Cre-672

ating such an ǫ–pinch generally results in a small wfs as well as large distortion of the673

resulting submanifold.674

Based on these considerations, we conjecture that there should be a stability result within675

an appropriate class of geodesics subspaces of RN , saying that a fixed sample S satisfying676

assumptions of Theorem 3.5 and Theorem 3.10, statements (3.5) and (5) should be valid not677

only for a given X but also for any ǫ–close perturbation within the class. We will address678

this claim in the forthcoming work.679
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