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ABSTRACT

We consider the topological and geometric reconstruction of a geodesic subspace of RY both from
the Cech and Vietoris-Rips filtrations on a finite, Hausdorff-close, Euclidean sample. Our recon-
struction technique leverages the intrinsic length metric induced by the geodesics on the subspace.
We consider the distortion and convexity radius as our sampling parameters for the reconstruc-
tion problem. For a geodesic subspace with finite distortion and positive convexity radius, we
guarantee a correct computation of its homotopy and homology groups from the sample. This
technique provides alternative sampling conditions to the existing and commonly used conditions
based on weak feature size and p-reach, and performs better under certain types of perturbations
of the geodesic subspace. For geodesic subspaces of R?, we also devise an algorithm to output a
homotopy equivalent geometric complex that has a very small Hausdorff distance to the unknown
underlying space.
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1. Introduction

With the advent of modern sampling technologies, such as GPS, sensors, medical imag-
ing, etc., Euclidean point-clouds are becoming widely available for analysis. In the last
decade, the problem of reconstructing an (unknown) Euclidean shape, from a (noisy) sam-
ple around it, has received a far and wide attention both in theoretical and applied literature;
see [1, 2, 3, 4, 5, 6]. The nature of such a reconstruction attempt can commonly be classi-
fied as being topological or geometric. A topological reconstruction is usually attributed to
inferring significant topological features—such as homology and homotopy groups—of the
hidden shape of interest. To be more specific, one may also say homological reconstruction or
homotopy type reconstruction. A much stronger paradigm is the geometric reconstruction,
where one is interested in producing, from the sample, a Euclidean subset that is homotopy
equivalent and geometrically “close” (e.g., in Hausdorff distance) to the underlying shape.

The nature of the problem and the techniques of the solution change depending on
the type of the shape X and the sample S considered, as well as how their “closeness”
is measured. The most natural distance measure between two abstract metric spaces is
the Gromov-Hausdorff distance, which measures how “metrically close” two metric spaces
are. The reconstruction of a geodesic metric space X from another metric space S that
is Gromov-Hausdorff close to X is considered in [7, 8]. For a Euclidean shape X and a
Euclidean sample S, however, the sample density is usually quantified by their Hausdorff
distance. For the Hausdorff-type reconstruction of Euclidean shapes, see [3, 5, 6, 4].

In many applications, a point cloud approximates a geodesic subspace (see Definition 2.1)
of Fuclidean space. Examples include GPS trajectories sampled around a road-network
(modeled as sampling paths in a graph in R?), earthquake data sampled around the fila-
mentary trajectory of the shock, or 3D medical imaging. The intrinsic geodesics of these
underlying shapes enjoy a rich geometric structure. Capturing that structure from the sam-
pled data is the challenge. The length metric dy, (see (1)) turns them into geodesic subspaces
of RV . In this work, we consider both topological and geometric reconstruction of a geodesic
subspace X of RN from a finite Hausdorff-close Euclidean sample.

In shape reconstruction, the use of various simplicial complexes built on the point-clouds
is becoming increasingly popular; see for example [9, 10, 11, 5, 12]. The most common of
them are Vietoris-Rips and Cech complexes. In this work, we use filtrations of both of them,
and we recognize the distortion § = 6(X) and convexity radius p = p(X) of X to be natural
sampling parameters when the geodesic subspaces of RV are considered; see Section 2 for
their formal definitions.

Our homological reconstruction approach is similar to [5], which is based on the weak
feature size (wfs) of the underlying space. However, the use of partition of unity, for exam-
ple, in the proof of Theorem 3.10 makes our techniques substantially different. The novelty
of this paper is discerned by the introduction of distortion and convexity radius as sampling
parameters, which is not related to the known sampling parameters such as the reach, p—
reach or wfs [6, 4, 10]. These works are based on an analysis of the gradient flow of the
Euclidean distance function to X in RY and its critical points. Our techniques are substan-
tially different from that and our results apply to a large class of spaces including smooth
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On the Reconstruction of Geodesic Subspaces of RN 3

submanifolds of RY, finite embedded graphs and higher dimensional simplicial complexes.
As an application of our reconstruction technique, we develop in Section 4 a new topological
approach for the reconstruction of embedded graphs.

1.1. Review of Related Works

This subsection surveys relevant and pivotal results in shape reconstruction from point
clouds using topological methods, and compares them to the results of this paper. Table 1
presents a list of some of the most related results alongside the contribution presented in
this work. For necessary definitions and background we refer the reader to Section 2.

Reach. The most well-behaved spaces are smooth Euclidean submanifolds, more generally
spaces with a positive reach r(X). In [3], the authors apply geometric and topological tools
to reconstruct a smooth submanifold by the union of Euclidean balls of sufficiently small
radius around a dense subset. The work uses the reach of the embedded submanifold as the
sampling parameter. In a more recent work ([15]), the authors improve some of the previously
known bounds and develop homotopy-type reconstruction of a Euclidean (compact) subset
with positive reach (and p-reach) using Cech and Vietoris-Rips complexes on a sample.

The above results do not apply when considering shapes beyond the class of Euclidean
submanifolds or spaces that do not have a positive reach, although such shapes are frequently
encountered in practical applications. A common reason for a space to have a vanishing reach
is the presence of sharp corners and branchings. Such spaces include graphs, embedded
simplicial complexes, manifolds with corners—also the type of shapes we consider in this
work for reconstruction. For manifold reconstruction by Vietoris-Rips complexes in a slightly
different but related context, see [11, 16].

Weak Feature Size, u-Reach. In developing a sampling theory for general compact
sets in RY, the notion of weak feature size (wfs) was introduced in [1] as the infimum of
the positive critical values of the distance function to the compact set. Using the wfs as
a sampling condition, the authors developed a persistence-based approach to reconstruct
the homology groups and the fundamental group of a hidden shape from the Euclidean
thickenings of the sample around it.

The results have been further extended in [5] to facilitate reconstruction of homology
groups from Cech, Vietoris-Rips, and witness complexes built on the sample. In comparison
with the manifold reconstruction result in [3], the techniques of [4, 5] apply to much less
regular subspaces of RV, such as compact Euclidean neighborhood retracts [17, 18]—as long
as they have a positive wfs.

The notion of the wfs of a Euclidean compact set was generalized in [6] by introducing
the concept of p-reach, denoted r,(X). A homotopy-type reconstruction of spaces with pos-
itive p-reach has been developed in [6, 10]. Although these works consider for reconstruction
spaces beyond the class of positive wfs, the difficulty lies in applying the results to shapes
as simple as an embedded tree. Also, choosing a suitable p so that the p-reach is positive is
not always clear.
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reconstruction

Table 1: Reconstruction results. Parameters (params.) are: weak feature size (wfs), u-reach
(R), shorted edge length (b), global reach (£), smallest turning angle («), distortion (§), and
convexity radius (p).

Authors Space X ‘ Param. ‘ Condition on S Result
Niyogi manifolds 13 e < \/gf and S C X S¢ deformation
et al. [3] is £-dense retracts to X
Chazal, compact sets wfs dr(X,S) <e< WfsT(X) Im(ix) ~ H«(X“), where
Lieutier [4] i: 5% — 5% and a is
sufficiently small
Chazal, compact sets wfs d(X,5) <e< %wfs(X), Im(iv) ~ H«(X®), where
Oudot [5] S is finite i:Re(S) = Ruc(S), a
is sufficiently small
Attali compact sets p-reach dpr(X,8) < e < XB(W)R | Ca(S) is homotopy
et al. [10] R equivalent to
X" forn € (0,R)
Anjaneya abstract metric| b,r S is an homeomorphic graph
et al. [13] graphs (e, R)-approximation,
1—35 < b < min %, 735368}
Wasserman | embedded wof each | Sis %—dense in isomorphic pseudo-graph
et al. [14] metric graphs | edge, X*0<r+6<€-20,
& a, byt | and0<d < f(b,,7,&,0)
Theorem 3.5| geodesic spaces| 6, p dg(X,5) < § < m Im(is) ~ Hy«(X), where 7 :
R=(S) = Ri(3s541)c(5)
Theorem 4.7| planar o, p dg(X,5) < §< MT?Hz) Hausdorff-close, homotopy
subspaces equivalent subset

Our topological reconstruction results (Theorem 3.5 and Theorem 3.10), are very sim-
ilar in style to the results presented in [5]. However, the use of partition of unity for Cech

complexes and homotopy equivalence result of Hausmann ([

]) for Vietoris-Rips complexes

make our proofs very different. The wfs-based technique employed in [4, 5] restricts their
results to work for homology with coefficients only in a field. Moreover, it’s not apparently
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On the Reconstruction of Geodesic Subspaces of RN 5

Fig. 1: The compact set X (Warsaw circle) has a positive wfs, but X and X* do not have
the same homotopy type for any A > 0. In fact, X has the weak homotopy type of a point,
whereas X* has the homotopy type of S*.

clear whether the results can easily be extended to higher homotopy groups. Our recon-
struction results, however, do not suffer such restrictions; see Remark 3.11.

Apart from the fact that we employ 6(X) and p(X) for our sampling condition, all wfs
(and p-reach) based results guarantee a reconstruction of a thickening X* of X and not X
directly. There are known pathological examples of spaces where the thickening (however
small) is not homotopy equivalent to the underlying space, such as the Warsaw circle shown
in Figure 1. Although the homological reconstruction results in our work concern the homo-
logical reconstruction of the subspace X itself, not the thickening of X, they are not strong
enough to apply in the case of the Warsaw circle because of §(X) = 400 in this case.

Another notable difference in the previously discussed approaches appears in the cases
where X is “slightly perturbed”, e.g., a submanifold with corners. Such a perturbation is
illustrated in Figure 2 for a circle X topologically embedded® in R2. The top part of the

space X is the graph of a rectifiable curve v : [0,1] — R? such that, when restricted to

1 1 1
n+1’n |’ n(n+1)

for n even. For this space, the set of critical points of the distance function is an infinite
set with an accumulation point at (0,0). Consequently, wfs(X) = 0. However, X has a
finite distortion 6 = 7 and a positive intrinsic convexity radius: p(X) > 0. Thus X fails
to satisfy the conditions of the reconstruction results of [4, 5], however our results apply
to this case. Another important point, suggested by the example of Figure 2, is that any
embedded submanifold X in RY can be perturbed to a submanifold X', just by adding a
small “spherical cap” at any of its points. Such a small perturbation does not change the
distortion and the convexity radius too much, however can produce very small wfs, because
we introduce a critical point of the distance function at the center of the cap. Small values
of wfs result in large sample sizes needed for the reconstruction.

the segment [ it is a half-circle of diameter for n odd and a line-segment

Metric Graph Reconstruction. We finish this introduction with a quick summary of

; 20, 8]). In [13],

the authors consider an abstract metric graph and a sample that is close to it in Gromov-

some of the existing works on reconstruction of embedded metric graphs (|

Hausdorff metric, and reconstruct the structure of the metric graph along with the metric

ag topological embedding is simply a C%—embedding.
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Fig. 2: The space X is a compact Euclidean subspace with wfs(X) = 0 and r,(X) = 0.
The critical points of the distance function are shown in blue; they accumulate at (0,0).
However, X has a finite distortion and a positive convexity radius.

on it. In a more recent work [20], the authors show a statistical treatment of metric graph
reconstruction. They consider an embedded metric graph and a Euclidean sample around
it. The Gromov-Hausdorff proximity used in [13] is replaced by the density assumption.
The algorithm presented in [13] only reconstructs the connectivity of the vertices of the
underlying metric graph and outputs an isomorphic pseudo-graph. And lastly, we mention
that the first Betti number of an abstract metric graph is computed by considering the
persistent cycles in the Vietoris-Rips complexes of a sample that is very close to it, with
respect to the Gromov-Hausdorff distance; see [3, Lemma 6.1]. In Gromov-Hausdorff type
reconstruction schemes, a small Gromov-Hausdorff distance between the graph and the
sample guarantees a successful reconstruction. These methods are not a good choice when
embedded graphs in RY are considered. For an embedded graph with the induced length
metric and a Euclidean sample around it, the Gromov-Hausdorff distance is not guaranteed
to be made infinitely small, even if a dense enough sample is taken. Also, most of the
above mentioned works may be insufficient to give a geometrically close embedding for the
reconstruction. Whereas our technique, presented in Section 4, can successfully be used to
reconstruct embedded graphs; see Corollary 4.8.

1.2. Our Contribution

One of the major contributions of this work is to reconstruct geodesic subspaces of RY,
both topologically and geometrically. In our pursuit, we recognize distortion and convexity
radius as new sampling parameters. These sampling parameters are very natural properties
of geodesic spaces.

In Section 2, along with the other important notions of metric geometry and algebraic
topology that we use throughout this paper, we define convexity radius and distortion of a
geodesic space.

In Section 3, our main topological reconstruction results for a geodesic subspace X of RV
are presented. When the distortion is finite and the convexity radius is positive, the Vietoris-
Rips and Cech filtrations of the sample are shown to successfully compute the homology
and homotopy groups of X (Theorem 3.5 and Theorem 3.10).
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In Section 4, we consider geometric reconstruction of geodesic subspaces. We construct a
complex on the sample as our geometric reconstruction of the space of interest. Theorem 4.3
establishes the isomorphism of their fundamental groups. As an interesting application in
Section 4.2, we consider the geometric reconstruction of planar subspaces and embedded pla-
nar graphs (Definition 4.4) in particular. In Theorem 4.7, we compute a homotopy equivalent
geometric complex in the same ambient space that is also Hausdorff-close to X. Since the
sample S can be taken to be finite, our result gives rise to an efficient algorithm (Algo-
rithm 1) for the geometric reconstruction of planar embedded graphs.

2. Notation and Background

In this section, we provide a brief overview of useful notation and classical results from metric
geometry and algebraic topology. For more detailed and complete treatment, we refer the
reader to textbooks on metric geometry [21, 22] and algebraic topology [23, 24, 25].

2.1. Geodesic Subspaces, Distortion, Convexity Radius

We first present relevant definitions from metric geometry.

Geodesic Subspaces (of R™Y) We start with the unit interval I := [0,1] C R. A con-
tinuous function v: I — RY is called a path. We call T = {t;}}_, a discretization of I
if 0=ty <t1 <ty <...<tp =1 We create a piecewise linear path by using straight line
segments to connect (t;) with y(t;41) for each i € {0,1,...,k — 1}. We often equip R
with the Euclidean, or Ly distance, do: RY x RV — R defined by da(z,y) := |z — yl|,.
Let v: I — RY be a (continuous) path. The length of ~y is defined as:

L(v) := sup Z da (v(ti), v(tit1))

T ieqr2, Ty
where the supremum is taken over all finite discretizations of I. Furthermore, the curve
is called rectifiable if L(v) is finite. For a path-connected subset X C R¥ we call the
restriction of dy to X the restricted metric on X. We define the induced length metric or
geodesic metric, dr,: X X X — R, by

= 1 f L 1
dr(z,y) Loy (7)s (1)

where the infimum is taken over all paths v : I — X such that v(0) = z and (1) = y.

Definition 2.1 (Geodesic Subspace). We call X C RY a geodesic subspace if between
any pair of points z,y € X, there exists a rectifiable path on X starting at x and ending
at y whose length is d (z,y).

One example of a geodesic subspace is a connected and compact subset of RY. The
“niceness” of an geodesic subspace is quantified by its distortion, a concept first introduced
by M. Gromov in the context of knots on Riemannian manifolds [26, 27, 22]. For a geodesic
subspace X C R™, we consider the map f : (X, d>) — (X,dr) induced by the identiy map
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on X. The distortion of X is the best Lipschitz constant for f. More formally, we have the
following definition.

Definition 2.2 (Distortion). The distortion of the induced length metric dj, with respect
to Euclidean distance over a set X C R¥ is defined as:

dL (JJ, y)

—yll

For simplicity of exposition, we refer to § as the distortion of X.

§:=46(X)= sup
r#yeX ”17

Since dy, is the induced length metric, § is bounded below by one and above by +oo. If X
is a straight line segment, then 6 = 1. On the other extreme, if X is the subspace {(z,y) €
R? | 22 = 9?}, then 0 = +o0. To see this, consider the limit as e approaches zero of the two
points (—€%/2,¢) € X and (%/2,¢) € X, getting arbitrarily close to the cusp point (0,0).
Thus, both the lower and upper bounds on ¢ are tight. For more on distortion, see [28].

Remark 2.3 (Equivalence of Topologies). Given a metric space (X, d), we can topol-
ogize X with metric balls; that is, the topology is generated by sets of the form By(z,r) :=
{y € X | d(z,y) < r}, where z € X and r € R. If we assume that dj, has finite distortion
with respect to do, then (X, d;) and (X, ds) have equivalent topologies. The equivalence of
the two topologies is a direct consequence of the following inequalities for =,y € X:

(2)

[ = ylly < dr(z,y) <oz —yl,-

Fig. 3: The set X, the closure of the union of the falling segments in the figure, is known as
the infinite broom. The topology of (X, ds) is strictly finer than the length metric topology
of (X,dr). The latter topology is locally path-connected; whereas, the former topology
is not.

Equivalence of the topologies does not generally hold if the distortion of X is
not finite. For an example, let X C R? be the closure of the union of line seg-

ments { [(0, 0), (Cos 2, 8in 7

2i)] }ieN, as shown in Figure 3. Such a space is also known as
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the infinite broom. We see that the distortion of the space is infinite by considering the
sequence a; = (cos 375 Sin %) of points on the right end of the spokes of the broom:
. dL((O,l),CLi)
lim —————F* =
i=oo [[(0,1) — aill,
The Euclidean metric topology, in this case, is strictly finer than the length metric
topology, as (X, dy) is locally path-connected, but (X, ds) is not.

Convexity Radius Convexity radius of the underlying geodesic subspace is one of the
parameters of X used in all our reconstruction results. We start with its formal definition
from [19]. Although the concept is defined for general length spaces, we restrict ourselves
to only geodesic subspaces.

Definition 2.4 (Convexity Radius). We define the convezity radius, denoted p, of a
geodesic subspace X C R¥ to be the supremum of all 7 > 0 such that:

(1) For all z,y € X with dp(z,y) < 2r, there exists a unique (length-minimizing) geodesic
path joining x and y.

(2) If z,y,z,u € X such that dp(z,y) < r, dp(y,2) < r, dp(z,z) <
and u is a point on the (length-minimizing) geodesic path joining x and y,
then dy (u,z) < max{dp(z,z),dr(y,z)}.

(3) If v and +' are arc-length parametrized (length-minimizing) geodesics on X such that
~v(0) = +/(0), then dy, (y(ts),~'(ts")) < dr (v(s),7'(s")) for 0 < 5,8 <rand 0 <¢ < 1.

Consider a circle in R? with perimeter R; its convexity radius is %. Also, the convexity

radius of an embedded graph is %, where b is the length of its smallest simple cycle. It is
well-known that the convexity radius of a compact Riemannian manifold is positive. The

convexity radius of a geodesic space is an intrinsic property.

2.2. Simplicial Complexes, Nerve Lemma

We finally conclude this section by outlining a few important notions from algebraic topol-
ogy. Readers are referred to [23, 24, 25] for more details.

Abstract Simplicial Complex The combinatorial analogue of a topological space, often
used in algebraic and combinatorial topology, is an abstract simplicial complex. An abstract
simplicial complexr K is a collection of finite sets such that if ¢ € IC, then so are all its
non-empty subsets.

In general, elements of IC are called simplices of K. The singleton sets in IC are often
called the vertices of K. If a simplex o € K has cardinality (¢ + 1), then it is called a
g-simplez (or the dimension of o is ¢ or dim(o) = q). If ¢/ C o, then ¢’ is called a face of o.

Simplicial Maps and Contiguity Let IC; and ICo be abstract simplicial complexes with
vertex sets V1 and Vs, respectively. A wverter map is a map between the vertex sets.
Let ¢: V1 — Va2 be a vertex map. If, for all o € Ky, we have ¢(0) = Uyes{d(v)} is,
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in fact, an element of Ko, then we say that ¢ induces a simplicial map ¢ : IK1 — K.
Two simplicial maps ¢, ¢ : K1 — Ko are called contiguous if for every simplex o1 € K1,
there exists o9 € KCq such that ¢1(01) U ¢a(01) C o2. A simplicial map between abstract
simplicial complexes is the combinatorial analogue of a continuous map between topolog-
ical spaces; likewise, contiguous simplicial maps play the role of homotopic maps in the
combinatorial world.

Geometric Complex Although, abstract simplicial complexes have enough combinatorial
structure to define simplicial homology and homotopy, they are not topological spaces. For
an abstract simplicial complex IC with vertex set V, its underlying topological space or
geometric complex, denoted as ‘KZ‘, is defined as the space of all functions o : V — [0, 1],
also called barycentric coordinates, satisfying the following two properties:

(1) supp (o) :={veV|al)#0} ek
(2) > alv)=1.

veEVY
The details on the topologies on |IC| and their relations can be found in [24, 25]. In this
work, we use the standard metric topology on |K|, as defined in [25]. Naturally, a simplicial

map ¢ : K1 — K5 induces a continuous map |¢| : |KZ1’ — |7C2’ defined by

|¢’(0‘)(”0/) = Z a(v), for v’ € KCa.

P(v)=v’
As one expects, the contiguous simplicial maps induce homotopic continuous maps between
their respective underlying topological spaces; see [25] for a proof.

Nerve Lemma A critical ingredient for our Cech reconstruction results is the Nerve
Lemma or a modification thereof; therefore, we discuss the concept here. An open cover
U = {U; }iea of a topological space X is called a good cover if all finite intersections of its
elements are contractible. The nerve of U, denoted N (U), is defined to be the simplicial com-
plex having A as its vertex set, and for each non-empty k-way intersection U;, N\U;,N...NU;, ,
the subset {i1,ia,...,%x} is a simplex of N'(U). Under the right assumptions, the nerve pre-
serves the homotopy type of the union X, as stated by the following fundamental result.

Lemma 2.5 (Nerve Lemma [29]). LetU = {U,}ica be a good open cover of a topological
space X. Then, the underlying topological space |N(u)\ is homotopy equivalent to X .

Remark 2.6. If the open cover U is locally finite, then the homotopy equivalence in the
Nerve Lemma is usually constructed with the help of a partition of unity for the cover [23].
Specifically, let h : X — ‘N (U)’ be a homotopy equivalence. Then, a partition of unity is
a collection of continuous functions {¢;: X — [0, 1]};ea such that for all z € X,

h(x) = gi(x)vi, (3)

€A
where v; denotes the vertex of N () corresponding to the cover element U;. In addition,
each ; must satisfy the following two requirements: (i) for all ¢ € A, the support of ¢,
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denoted supp (i), is a compact proper subset of Us, and (ii) for all z € X, 7, wi(x) = 1.

Cech and Vietoris-Rips Complexes Consider a subspace A of a metric space (M, d) and
a positive scale a.. The nerve of the collection of open metric balls of radius « centered at the
points of A is known as the Cech complez of A at scale (radius) o. We are interested in Cech
complexes in two metric spaces: Euclidean and the length metric space. Let X C RV, Then,
the Cech complex under the standard Euclidean metric is: Co(X) := N({B(z,7)}zex),
where B(x,r) is the Euclidean ball of radius r centered at . The Cech complex under the
length metric (X,dz) is CX(A) :== N({B*(z,7)}sex), where BX(z,7) denotes the metric
ball of radius r centered at X in (X, dy,). Note that these complexes may be infinite.

The Vietoris-Rips Complex is an abstract simplicial complex having a k-simplex for every
set of (k4 1) points in A of diameter at most «. Explicit knowledge about the entire metric
space (M, d) is not needed to compute the complex. Unlike the Cech complex, the Vietoris-
Rips complex is completely determined by the restriction of the metric to the subset A.
For X C RY under the standard Euclidean metric, we denote it simply by R4 (X). In the
case when A C X equipped with length metric (X, dy,), we denote the Vietoris-Rips complex
by RE(A).

Together, the definition of convexity radius and Nerve Lemma immediately imply the
following fact:

Lemma 2.7 (Cech Equivalence). Let X C RY be a geodesic subspace with a positive
convezity radius p, and let 0 < € < p. Let A be an e-dense subset of X with respect to the dy,
metric. Then, the complex CEL (A) is homotopy equivalent to X .

Proof. Since A is an e-dense subset of X, we know that U := U,c aB%(a, €) is an open cover
of (X,dr). Since € < p and by the definition of convexity radius (Definition 2.4), we know
that for each z € X and y € B¥(x,¢), there exists a unique length-minimizing geodesic
path between z and y. Using these paths to define a deformation retract from B(z,¢)
to x, we conclude that the metric balls in I/ are contractible. Since any finite intersection of
metric balls in ¢/ has dimeter less than 2¢, by the similar argument it is also contractible.
Hence, U is a good cover of X. By the Nerve Lemma (Lemma 2.5), we conclude that the
complex CEL (A) is homotopy equivalent to X. O

3. Topological Reconstruction

In this section, we consider the problem of topological reconstruction of a geodesic sub-
space X of RN from a noisy sample S. From now on, unless otherwise stated, we assume
that the underlying shape X has a positive convexity radius and a finite distortion, also
that the sample S is a finite subset of RY. We show that both Cech and Vietoris-Rips
filtrations of S can be used to compute the homology and homotopy groups of X. Before we
treat each type of complex separately, we show how the Cech and Vietoris-Rips complexes
behave under Hausdorff perturbation.

Lemma 3.1 (Hausdorff Distance and Complexes). Let A, B C RY be finite, and € be
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a positive number such that dg (A, B) < e. Then for any « > 0, there exist simplicial maps
Ca(A) — Cose(B)
and
Ro(A) — Roi2:(B)

induced by a vertex map & : A — B such that for every vertex a € A, we have ||a — &(a)l], <
€. Moreover, such simplicial maps are unique, up to contiguity.

Proof. We first note the definition
dp(A,B)=inf{e >0| AC B*,B C A%},

where A® denotes the Euclidean thickening of A.

The definition of Hausdorff distance implies that if dg (A, B) < ¢, there exists a (possibly
non-unique, non-continuous) map & : A — B such that ||a — £(a)||, < €. We show that this
vertex map extends to a simplicial map between both Cech and Vietoris-Rips complexes.

Let 0 = {ap,a1,...,ar} be a k-simplex of C,(A). By definition, there exists a point z
in RY such that ||a; — z||, < a for all i € {0,1,...,k}. By the triangle inequality, we then
have

1€(ai) = 2lly < 1€(ai) = ailly + [lai = 2]l < e +a.

So, {&(ap),- - ,&(ax)} is a simplex of Cy 4. (B). Hence, £ extends to a simplicial map between
the Cech complexes. To argue for the uniqueness of the simplicial map, let us assume
that 7 is another simplicial map with the property that for every vertex a € A, we have
la —n(a)|l; < e. Again from the triangle inequality, we have ||n(a;) — z||, < € + «. So,
&(o)Un(o) is a simplex of Co1.(B). Hence, £ and n are contiguous.

For the Vietoris-Rips complex part, we follow a similar argument. Let o =
{ap,a1,...,ar} be a k-simplex of R,(A). By definition, the diameter of ¢ is not greater
than «a. From the triangle inequality, we have

1€(ai) = &(a)lly < 1l€(ai) — ailly + llai — a5lly + [1€(a;) — a4l <26 +a.

So, {€(ao), -+ ,&(ak)} is a simplex of R,42:(A). Hence, £ extends to a simplicial map also
between Vietoris-Rips complexes. O

3.1. Homology Groups via Vietoris-Rips Complex

We use the following fundamental result from [19] to compute the homology groups of X
from a filtration of Vietoris-Rips complexes on a finite sample.

Theorem 3.2 (Hausmann’s Theorem [19]). Let X be a geodesic subspace with a positive
convezity radius p. For 0 < e < p, there exists a homotopy equivalence T : |’R,EL(X)’ — X.

Note that ’REL (X) is usually an infinite Vietoris-Rips complex on the entire space X. A
quick corollary of this result is:
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Corollary 3.3. Let X be a geodesic subspace with a positive converity radius p. For 0 <
e’ < e < p, the inclusion i : R (X) —— RE(X) induces isomorphisms on homology and
homotopy groups.

In order to achieve our result, we use certain simplicial maps to compare R% (X), R.(X),
and R.(S).

Lemma 3.4 (Euclidean and Intrinsic Rips Complexes). Let X a geodesic subspace
of RN with a finite distortion 5. Then for A C X and any positive number o, we have the
following simplicial inclusions

REL(A) —— Ra(A) —— R, (A).

Proof. The fact that ||z — y||, < dr(z,y) implies the first inclusion R (A) —— R4 (A).
Similarly, dr,(z,y) < 6 ||« — y||, implies the second inclusion. O

Theorem 3.5 (Reconstruction via Rips Complex). Let X be a geodesic subspace
of RN with a positive convexity radius p and finite distortion 5. Let S be a finite subset
of RN, and let € be a positive number such that

€ p
dp(X Eo__ P
n(X,8) <4< 25(30 + 2)

Then, for any non-negative integer k we have the following isomorphism
Hi(X) = im(j. : Hi(R<(S)) —— Hi(Ri(3541)=(5)))

where j, is induced by the simplicial inclusion j : Re(S) — R1(3511)(5)-

Proof. We derive the following chain of simplicial maps:

¢ ¢ & ¢
RE(X) —— Ro(S) —7— RE5(X) —— Rzorn)s (5) ——— RYE (55,005 (X)-

(4)
The first map ¢; is the composition of the simplicial inclusion ’Rg (X) = R (X) from
Lemma 3.4 and the simplicial map R¢(X) —— R.(5) from Lemma 3.1, thanks to the
assumption dg (S, X) < 7.

Now, starting with R.(S) and composing maps from Lemma 3.1 and Lemma 3.4, re-
spectively, we get the second simplicial map ¢». Similarly, we get the maps ¢3 and ¢g4.

From Lemma 3.1, we first note that the composition ¢30¢s is contiguous to the inclusion:

J: Rg(S) — R(35+1)%(S).

Therefore, they induce homotopic maps on the respective underlying topological spaces.
Consequently, we have (¢3 o ¢2). = j.. We first argue that ¢, is surjective and ¢s, is
injective.

By the choice of the simplicial maps in Lemma 3.4 and Lemma 3.1, we observe that ¢s0¢;
is contiguous to the inclusion

RE(X) —— ’R,%(S(X).
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By Corollary 3.3, the inclusion induces isomorphism on homology, hence so does ¢s o ¢1. In
particular, (¢2 o ¢1). is surjective. Hence, we have ¢o, is surjective, and ¢q, is injective.
Also, ¢4 o ¢3 is contiguous to the inclusion

R%S(X) — R§(35+2)55(X)’

which induces an isomorphism on homologies. Therefore, ¢3, induces an injective homo-
morphism.

Since we have j, = ¢3, o ¢2, and ¢o, is surjective, the image of j, is the image of ¢3,.
On the other hand, we know that Im(¢s,) is isomorphic to H, (’R%&(X)) /Ker(¢s,). As
we have already shown that ¢s, is injective, its kernel is trivial. Therefore, the image of j.
is isomorphic to ’R,%EK;(X). Since 226 < p, Theorem 3.2 implies that ’R%(;(X) is, in fact,
homotopy equivalent to X. This completes the proof. O

The Vietoris-Rips reconstruction result works also for an infinite sample S. In applica-
tions, however, we are computationally constrained to use only finite samples.

3.2. Homology Groups via Cech Complex

The reconstruction of homology groups via the Vietoris-Rips filtration (see Theorem 3.5
in Section 3.1) was due to the homotopy equivalence theorem (Theorem 3.2). In this sub-
section, we use Cech filtration to obtain similar reconstruction results. The Nerve Lemma
(Lemma 2.5) is resorted to as the Cech alternative to Theorem 3.2. Like the Vietoris-Rips
case, we still use different simplicial maps to compare C%(X), C.(X), and C,(S). The ap-
proach involves a (controlled) variant of the partition of unity; see Lemma 3.8.

Lemma 3.6 (Euclidean and Intrinsic Cech Complexes). Let X a geodesic subspace
of RN with a finite distortion §. Then for A C X and any positive number o, we have the
following simplicial inclusions

CZ(A) — Ca(A) —— Cis,(A).

Proof. From |z — y||, < dr(z,y), we have the first inclusion.

On the other hand, for any z,y € X we have dr(z,y) < |z —y|l,. Let 0 = {x¢, ..., zx}
be a simplex of Co(A). Then |lz; — x|, < 2a, consequently dr(z;,z;) < 26a for all 1 <
1,7 < k. This implies

k
{zo,21,..., 2} C m B~ (24, 260),
i=0
where B”(z;,7) denotes the ball of radius  centered at z; in the metric space (X,d).

Therefore o € CL;s, (A), and this verifies the second inclusion. O

We begin with a lemma that is analogous to Corollary 3.3 in the Cech regime:
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Lemma 3.7 (Inclusion of Covers). LetU = {U;}icp andU’ = {U]}ien be locally-finite,
good open covers of a para-compact topological space X such that U; C U] for each i. Then,
the inclusion

P NU) —— NU)

induces isomorphisms on the homology and homotopy groups of the respective geometric
complezxes.

Proof. Consider the following commutative diagram:

where the map h =Y p;u; is obtained from an arbitrary partition of unity {¢;} for U. By
the Nerve Lemma (Lemma 2.5), h is a homotopy equivalence ([23]). Since U; C U/, {¢;}
is a partition of unity for U’. So, i o h is also a homotopy equivalence. Since the maps h
is a homotopy equivalence, we conclude that ¢ induces an isomorphism on homology and
homotopy groups. O

We now state the following extension of the partition of unity. Follow [30] for a proof.

Lemma 3.8 (Controlled Partition of Unity). Let {U;} and {V;} be open covers of a
paracompact, Hausdorff space X such that V; C U; for each i. Then, there exists a partition
of unity {¢;} subordinate to {U;} such that V; C supp p; C U; for all i.

We now use the controlled partition of unity to prove the following important lemma.

Lemma 3.9 (Commuting Diagram). Let X,Y be paracompact, Hausdorff spaces with a
continuous map f: X =Y. LetU = {U;} and ¥V = {V;} be good, locally finite, open covers
of X andY respectively, such that

(1) N, Vi # 0 implies ", U; # 0, i.e., we have the simplicial inclusion j : N'(V) = N (U)
that sends the vertex corresponding to V; to the vertex corresponding to U,

(2) f~Y(V;) CU; for alli.
Then, the following diagram commutes, up to homotopy:

IN(V)| < !

VW)
hy hX

Y X
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where hx,hy are homotopy equivalences from (3).

Proof. We make use of the controlled partition of unity lemma to prove our result. Let
us choose a partition of unity {¢;} subordinate to {V;}. One can choose hy so that for
eachy eV,

hy (y) = Z ¢i(y)vi,

where v; is the vertex of N'(V) corresponding to V;.
Since {f~(V;)} is an open cover of X with f=1(V;) C U; for each i, by Lemma 3.8 we
can choose a partition of unity {4;} subordinate to {U;} such that for each i

(Vi) C supp ¥

Also, choose h,; such that for each x € X

hx(z) = Z Pi(x)us,

where u; is the vertex of N (U) corresponding to Uj.
To see that the diagram commutes, up to homotopy, it suffices to show that (jo hy o f)
is homotopic to hx. We start with a point g € X

(johy o f)(xo) = j(z¢i(f($0))vi) = Z ¢i(f(20))j(vi) = Z@(f(l’o))ui-

On the other hand, hx(zo) = >, v¥i(zo)u;. Now if ¢;(f(x0)) is non-zero for some i,
then f(zg) € Vi, and consequently zo € f~1(V;) C U;. From our choice of the support
of ¥; and 1;(x0) has to be non-zero. This shows that both (j o hy o f)(x¢) and hx(zg) lie
in an (open) simplex of A(V). Due to convexity of simplices, the following (straight-line)
homotopy is well-defined:

F(z,t) =Y [ti(x) + (1 - t)gi ()] us.

7

This shows that (j o hy o f) is homotopic to hx. ]

Now we are in a position to prove our reconstruction result for Cech complexes.

Theorem 3.10 (Reconstruction via Cech complex). Let X be a geodesic subspace
of RN with a positive convexity radius p and finite distortion 6. Let S be a finite subset
of RN, and let € be a positive number such that

__r
26(46 +1)°

Then, any non-negative integer k we have the following isomorphism

Hy(X) = im(j* s Hy(C.(S)) —— Hk(c(45+1)s(5))) (5)

dy(X,95) <e<

where j. is induced by the simplicial inclusion j : Cc(S) — Cs41)c(S).
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Proof. We first note from dy(X,S) < € and Lemma 3.1 that there is a map £ : S — X
such that for each s € S,

l[s = &(s)lly <e. (6)

Let X’ = £(S). Then, (6) implies di (S, X’) < ¢, hence dy (X, X’) < 2¢ by the triangle
inequality.
We now derive the following chain of simplicial maps:

Co(8) =2 Clp(X') —2— Clasyne(S) —2— Chianine(X)).

The first map ¢ is the composition of the simplicial map C.(S) —— Co.(X’) from
Lemma 3.1 (due to di(S,X’) < €) and the simplicial inclusion Co.(X') —— Cf(;E(X’)
from Lemma 3.6.

Similarly, starting with Ci;E(X') and composing maps from Lemma 3.6 and Lemma 3.1,
respectively, we get the second simplicial map ¢o. The other map ¢3 is also obtained re-
peating the exact same argument for a different scale as for ¢;.

We first observe that the choice of simplicial maps in Lemma 3.6 and Lemma 3.1
makes ¢ o ¢ contiguous to the given natural inclusion j of C.(S) into Cas(a541)(S). We
now consider the following diagram:

o1 ¢2 ®3

|Co(5)| ———— [CL.(X)| ———— |Cas11)e (5)] ——— |CZs611)-(X)]|
h h2| hs
S¢ d > X Id > X

(7)
To show that the diagram commutes up to homotopy, we first explain the horizontal maps
in the bottom row of (7). Since di (X, S) < e, we get the first inclusion X C S¢. The three
vertical maps are homotopy equivalences that come from the Nerve Lemma (Lemma 2.5)
for various good open covers as constructed in Lemma 3.9. The first vertical map hy is
obtained for the open cover U; = {B(x,¢)},es of S¢ by Euclidean balls. The other two
vertical maps, ho and hg, are corresponding to the (intrinsic) covers Us and U3 of (X, dy)
by the intrinsic balls of radii 2de and 46(26+1)e, respectively. The assumption 46(26+1)e < p
implies that they are indeed good (intrinsic) covers of X. Therefore, by Lemma 2.7 we get
the homotopy equivalences ho and hg.

Apply Lemma 3.9 to each of the rectangles in (7) to show that the diagram is homotopy
commutative, and therefore it commutes on the homology level. The commutativity then
implies that ¢; induces a surjective homomorphism and ¢- induces an injective homomor-
phism on the homology groups. As a consequence, Im(¢pa, 0 ¢14) = Im(¢a,) = Hi(X) on
the k-th homology group. Also, we note that ¢5 o ¢1 is homotopic to the given simplicial
inclusion j.

To see that the first rectangle commutes, we consider the covers U; and Uy of S°
and (X, dy). Note that for any € S, the choice of £(x) implies that i =1 (B(z,¢)) = B(z,£)N
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X C BE(&(x),20¢). Consequently, B(x,e) N X C BL(&(x),45¢). A similar argument also
applies to other rectangle. Therefore by Lemma 3.9, the diagram (7) commutes. O

Remark 3.11. We remark that Theorem 3.5 and Theorem 3.10 of this section can be
formulated in terms of any natural functor from the category of topological spaces (with
continuous maps as morphisms) to the category of groups (with group homomorphisms). In
particular, the results extend immediately to homology groups H,(-; G) with coefficients in
any abelian group G, or homotopy groups ().

4. Geometric Reconstruction

In the previous section, we used filtrations of both the Cech and the Vietoris-Rips complexes
to compute the homology and homotopy groups of our hidden geodesic subspace X from
a noisy sample S around it. The results, however, do not provide us with a topological
space that faithfully carries the topology of X. To remedy this, we consider the problem of
geometric reconstruction of geodesic subspaces.

In Section 4.1, we introduce a new metric d. on S. As our first step towards capturing
the homotopy type, we show in Theorem 4.3 that the Vietoris-Rips complex of (S, d.) and
X have isomorphic fundamental groups. Finally in Section 4.2, we further use this complex
for the geometric reconstruction of embedded graphs.

4.1. Recovery of the Fundamental Group

For any fixed ¢ > 0, we first consider the Euclidean Vietoris-Rips complex R.(S) on the
sample S. Regardless of how dense the sample S is, R.(S5) is not guaranteed to be homo-
topy equivalent to X in general; as shown in Figure 5. This is not surprising, because the
Euclidean metric on S, used to compute the complex, can be very different from the length
metric dy, on X. Our goal is to approximate dy, by the shortest path metric, denoted d., on
the one-skeleton of R.(S). Let us denote the one-skeleton of R.(S) by G.. Since R.(S) is
an abstract simplicial complex, G¢ inherits the structure of an abstract graph. However, we
turn its geometric complex ‘Gsl into a metric graph by defining the metric d. on it in the
following way: the metric, when restricted to an edge (s, t), is isometric to a real interval of
length ||s — t||,.

We show in Lemma 4.1 that d. nicely approximates the metric dz,, which the Euclidean
sample is oblivious to. For any positive scale «;, we denote the Vietoris-Rips complex of S in
the d. metric by RE (S). The metric d. can be computed in O(k3)-time from a sample (S, d>)
of size k. In the following lemma, we compare the metric d. with the standard Euclidean
metric de and the length metric dr..

Lemma 4.1 (Minimal Covering of Paths). Let X be a geodesic subspace of R . Let S
be a subset of RN and ¢ > 0 such that dg(X,S) < 5. For any path vy joining any two
points z,y € X, we can find a sequence {a;}¥_y C S with ||a;+1 — a;, < € such that

k—1

> laips — ailly < 31(v).
1=0
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Moreover, ag and ay can be chosen to be any points with ||z — aoll, < § and |ly —ax|, < 5.

Proof. Since dy (X, S) < §, there exists ag € S such that ||z — agl|, < §. We now iteratively
define the sequence {a;} C S, along with a sequence {t;}§ C [0, 1] that defines a partition
of [0,1]. We set to = 0. Assuming both a; and ¢; are defined, we define ¢;4; € [0, 1] in the
following way: if v([t;, 1]) N OB (a;, %) # 0, we set

tiv1 =min{t € [t;, 1] [ v(¢) € OB <ai’ 23€>}

Otherwise if v([t;,1]) N OB (a;, 3) = 0, set t;11 = 1. Since dy (S, X) < £, we set a4, € S
to be a point in S such that [|y(¢i11) — ait1]l, < §. This procedure forces ¢;1; to be strictly
greater than t;, hence {¢;} defines a partition of [0, 1]. Therefore,

k k k k
€ 1
l(v) = Z (Yitastina)) = Z (tiv1)lly > Z 3=3 Z lait1 — asll, -
i=0 i=0 i=0 i=0
We also note that
e 2
0 < [lait1 — ailly < flaivs —y(tip)lly + [Iy(tiv1) — aill, < 5 3t3=¢ |

Analogous to Lemma 3.1, we get the following useful simplicial maps.

Lemma 4.2 (Vietoris-Rips Inclusion by d.). Let X a geodesic subspace X C RN . Let
S CRY ande > 0 be such that du(X,S) < 5. For any o > 0,

(1) there exists a natural simplicial inclusion
RE(S) —— Ra(5).
(2) there exists a simplicial map
£ Re(X) —— R5.(9)

induced by the vertex map & that sends a vertex v € X to s € S such that ||z — s, < £

Proof.

(1) Follows immediately from the definition of the metric d..
(2) As observed before in Lemma 3.1, the assumption dp (X, S) < § ensures that there is a
vertex map £ : X — S such that for each z € X we have ||z —£(z)|, < 5.

We show that the map extends to a simplicial map. Let o = {xg,x1, - , 2} be a
k-simplex of ’Ré (X). Then, di(x;,z;) < a Vi,j. Now by Lemma 4.1, there exists a path
joining &(x;) and {(x;) in G., moreover d.(£(z;),&(x;)) < 3a. So, £(0) is a simplex of

50.(5). Hence, the vertex map extends to a simplicial map. O

We now show that the fundamental group of the Vietoris-Rips complex on S under the
metric d. is isomorphic to that of X. We tolerate the sloppiness from ignoring the basepoint.
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Theorem 4.3 (Fundamental Group). Let X be a connected geodesic subspace of RN
with a positive convexity radius p and a finite distortion 5. Let S C RN and e > 0 be such
that

R
du(X,8) < 3 < 6(156 +2)°

Then, the fundamental groups of Ri_s(S) and X are isomorphic.

Proof. We derive the following chain of simplicial maps:

o
R(S) —2— Rbis (X) —2— RE5.(S) —— Risge(S) —2— Ri1s5421e/5(X)-

The map ¢4 is the composition of the simplicial map R.(S) —— R% (X) from Lemma 3.1
and the simplicial inclusion Rs: (X) —— R%E5(S) from Lemma 3.4, thanks to the as-

sumption dy (S, X) < 5. By a similar compositfon but at different scales, we get ¢4. We
also obtain ¢9 from Lemma 4.2 and ¢3 from Lemma 4.2.

We argue that ¢ induces the desired isomorphism on the fundamental groups. By The-
orem 3.5 and since € < WM, the simplicial map ¢4 o ¢3 o ¢2 induces an isomorphism on
all homotopy groups. Therefore, ¢ induces an injective homomorphism on the homotopy
groups, particularly the fundamental group of X.

We now show that the induced homomorphism is also surjective on the fundamental
groups by showing that ¢o o ¢; induces a surjection. As observed Theorem 3.5, it suffices
to show the surjection for the the natural inclusion i : R.(S) —— R5;.(S), because i is
contiguous to ¢s o ¢1.

We start with a loop 7 in RE;.(S). We can assume that 7 is made up of edges (one-
simplices) of Rzs.. Let us consider an edge o = {a, b} in 7, then we have d.(a,b) < 5de. By
the definition of d., there must be a sequence of points a = xg, 1, - ,xr = b such that for
each ¢, the segment [x;, x;11] is an edge of R.(S). Moreover, we observe for later that the
diameter of the whole set {z,--- ,x;} in the d. metric is not greater than 5&4.

a = Tg b=z

Fig. 4: The red one-simplex [a,b] of REs.(S) is shown to be pushed off to a path a =
Xo, L1, ok = b in Re(S). All the nodes form a simplex (shown in green) in REs.(.5).

Now, we define a loop " in R.(S) by replacing each constituent edge [a,b] of i by the
path joining the points in the sequence a = xg,z1,- - ,xr = b consecutively, as shown in
Figure 4. We note that 7’ is indeed a loop in R.(S). We now show that (¢2 o ¢1)(7') is
homotopic to the loop 7 in REs.(S). As observed before, {a = z¢, -,z = b} is a simplex
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of REs.(S). We can then use a (piece-wise) straight line homotopy that maps each edge [a, b]
of 1 to the segment [a = xg, z1]U- - U[zr_1, 2 = b] of /. Hence, [1'] is, in fact, a preimage
of [n]. This shows, in turn, that ¢ induces a surjective homomorphism on 7;. This completes
the proof. O

4.2. Reconstruction of Embedded Graphs

We finally turn our attention to the geometric reconstruction of embedded graphs. We start
with the formal definition of an embedded graph.

Definition 4.4 (Embedded Metric Graph). An embedded metric graph G is a subset
of RY that is homeomorphic to a one-dimensional simplicial complex, where the induced
length metric dy, is the shortest path distance on G. For simplicity of exposition, we call
such G embedded graphs.

We note that if G has finitely many vertices and b is the length of its shortest simple
cycle, then the convexity radius p is %. In this paper, we always assume that G has finitely
many vertices. We now consider the shadow of the Vietoris-Rips complex R (S), which is
defined in Section 4.1.

Definition 4.5 (Shadow of a Complex). Let A be a subset of RV, and let K be an ab-
stract simplicial complex whose vertex set is A. For each simplex 0 = {x1,22,..., 21}
in IC, we define its shadow, denoted Sh(c), as the convex-hull of the Euclidean point
set {x1, 22, ..., 71 }. The shadow of K in RY, denoted by Sh(KC), is the union of the shadows
of all its simplices, i.e., Sh(K) := |J Sh(o).

ceK

We, therefore, have the following natural projection map p : ’IC’ — Sh(K). In gen-
eral, Sh(XC) may not have the same homotopy type as |KC|. However, as proved in [31], the
fundamental group of the Vietoris-Rips complex of a planar point set is isomorphic to the
fundamental group of its shadow. In [16], the authors further the understanding of shadows
of Euclidean Rips complexes. In the case of planar subsets and I = R¢(S), we prove a
similar result now.

Lemma 4.6 (Shadow). Let X be a connected planar subspace with a positive convexity
radius p and a finite distortion 6. Given S C R? finite and ¢ > 0 such that

S
du(X,5) <3 < 5(156 +2)°

Then, the shadow projection p : |R5.5(S)| —— Sh(R5.5(S)) induces isomorphism on the
fundamental groups.

Proof. From Theorem 4.3, we have the following chain of simplicial maps:

¢:
R(S) —2s RE;5(X) —22 RE;(S) 2 Risse(S) —2— R 155401 /3(X).

We have shown that ¢2 induces an isomorphism on 1. As we have also noted that (¢4 0 @30
¢2) induces an isomorphism on all homotopy groups. So, we conclude first that ¢3 induces
an injective homomorphism on 7y .
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! ’ S — — )
Fig. 5: We implement Algorithm 1 on a Lissajous G with 51(G) = 8. On the left, the
Euclidean Vietoris-Rips complex R.(S) (in red) on an e-dense sample S of 150 points
fails to capture the homotopy type, as its 8; = 9. On the right, the shadow G (green) of
t5c () is shown to correctly reconstruct G. The pictures were generated using the shape
reconstruction library available on www.smajhi.com/shape-reconstruction.

Now, we consider the following commutative diagram:

RoS) e A RE(S) e R (S)

_ (8)

p p

Sh(RSs,(S)) > Sh(Ras(3)
where i is contiguous to the composition (¢2 o ¢1), and p,p are the natural (shadow) pro-
jections.

We show that the induced map p. is an isomorphism on the fundamental groups. From
the commutativity of the diagram (8), we note that p, is an injection on 7y, since ¢3, is
injective and p, is also injective on m by [31]. For surjectivity, we follow the same lifting
argument, presented in [31]. O

As a consequence of Lemma 4.6, we finally present our main geometric reconstruction
result.

Theorem 4.7 (Geometric Reconstruction of Planar Subspaces). Let X be a con-
nected geodesic subspace of R? with a positive convezity radius p and a finite distortion &,
which has the homotopy type of a finite simplicial complex. Let S € R? be finite, and £ > 0



September 27, 2022 11:46 WSPC/Guidelines reconstruction

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

On the Reconstruction of Geodesic Subspaces of RN 23

be such that

€ p
dp(X,8) < = < ———. 9
1.5 <3 < 5B 1 2 (®)
Then, the shadow complex X = Sh(RE.5(S)) of RE.5(S) has the homotopy type of X.
Moreover,

dy(X,X) < <55 + ;) €. (10)

Proof. By Lemma 4.6, the shadow X = Sh(RE_5(5)) and X have isomorphic fundamental
groups, via the map p of diagram (8). Note that, by assumption, both Sh(R:_5(S)) and X
have a homotopy type of a finite wedge of circles and therefore trivial higher homotopy
groups. By the Whitehead’s theorem [32], applied to the map p, we conclude that p is a
homotopy equivalence.

For statement (10), we note that for any finite vertex set ¢ C S with diam(o) < 5de we
have o C Sh(c) and dy (o, Sh(c)) < diam(c). As a consequence, dg (X, S) < 5de. By the
triangle inequality, we conclude the result. O

Corollary 4.8 (Geometric Reconstruction of Embedded Graphs). Let G be a finite,
connected embedded graph in R2. Let b be the length of the shortest simple cycle of G, and
let § be its distortion. Let S C R? be finite and € > 0 be such that

b

g
(G5 <3< Gamor )

Then, the shadow of§' = Sh(R:_s5(S)) has the same homotopy type as G and (10) holds
for X =G and X =G.

Proof. It suffices to note that the convexity radius of G is % and apply Theorem 4.7.
|

Based on Corollary 4.8, we devise Algorithm 1 for the geometric reconstruction of (pla-
nar) embedded graphs. For a demonstration, see Figure 5.

5. Discussion

In this paper, we successfully reconstruct homology/homotopy groups of general geodesic
spaces. We also reconstruct the geometry of embedded graphs. Currently, the output of
such geometric reconstruction is a thick region around the hidden graph; see Figure 5. One
can consider a post-processing step to prune the output shadow G in order to output an
embedded graph that is isomorphic to the hidden graph G. A natural extension of our work is
to consider the geometric reconstruction of higher-dimensional simplicial complexes. Unlike
the graphs, such a space may have non-trivial higher homotopy groups. The reconstruction
result remains, therefore, an object of future work.
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Algorithm 1 Graph Reconstruction Algorithm

Require: Finite sample S C R?, £ > 0,6, and b

Ensure: dy(G,S) < £ <

: Initialize G ¢ 0

: Compute the one-skeleton of R.(S)

: Compute (S, d.)

: for all {a,b,c} € S do

if d.(a,b) < 5de and d. (b, c) < 50ec and d(c,a) < 5de then
G + G U CONVEX-HULL ({a, b, ¢}

end if

: end for

b
15(156+2)

: return G

© 0 N DU A W N R

On the other hand, we also note that both approaches are not performing well when
we deform X, e.g., by “pinching” a pair of points in X, i.e., deforming X to bring these
points e—close in the extrinsic Euclidean distance but with bounded intrinsic distance. Cre-
ating such an e-pinch generally results in a small wfs as well as large distortion of the
resulting submanifold.

Based on these considerations, we conjecture that there should be a stability result within
an appropriate class of geodesics subspaces of RY | saying that a fixed sample S satisfying
assumptions of Theorem 3.5 and Theorem 3.10, statements (3.5) and (5) should be valid not
only for a given X but also for any e—close perturbation within the class. We will address
this claim in the forthcoming work.
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