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ABSTRACT

Transformer-based rankers have shown state-of-the-art perfor-
mance. However, their self-attention operation is mostly unable to
process long sequences. One of the common approaches to train
these rankers is to heuristically select some segments of each docu-
ment, such as the first segment, as training data. However, these
segments may not contain the query-related parts of documents.
To address this problem, we propose query-driven segment se-
lection from long documents to build training data. The segment
selector provides relevant samples with more accurate labels and
non-relevant samples which are harder to be predicted. The ex-
perimental results show that the basic BERT-based ranker trained
with the proposed segment selector significantly outperforms that
trained by the heuristically selected segments, and performs equally
to the state-of-the-art model with localized self-attention that can
process longer input sequences. Our findings open up new direction
to design efficient transformer-based rankers.
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1 INTRODUCTION

Transformer-based rankers have shown state-of-the-art perfor-
mance for many tasks. However the self-attention operation in
these models cannot be applied to long sequences, as its complexity
scales quadratically with the sequence length [14]. Unfortunately,
documents in ad-hoc information retrieval are usually much longer
than the length that the self-attention operation can be applied to.
We propose a query-driven segment selector approach to effectively
train the basic BERT-based ranker [3] for long documents.

There are two common approaches for handling long documents
in transformer models. The first addresses the problem by dividing
the document tokens into segments of similar length and applying
the self-attention mechanism only within those segments (local
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self-attention) then aggregating vectors from segments to get the
final score. [1, 5, 9, 10]. A second approach also starts by dividing
the document tokens into segments and treating each of them as
if it were a document in its own right. If the segments are small
enough, the complexity problem is similarly limited. The starting
document’s score is typically found with an aggregation (e.g., av-
erage or max) of the segments’ scores [3, 18]. It appears that the
second approach is more commonly used. Indeed, we note that the
first approach requires limiting the size of the input document in
the training [5] (though allows it to be larger).

To train the second category of approaches, we can consider dif-
ferent segments of a long document to use for training samples. For
example, we can use all segments, a randomly selected subset, the
first or last segment. Choosing the first segment is very common —
and very appropriate for news stories that often provide a summary
of the key points in the first few paragraphs. However the segments
are chosen, each provides a separate training instance. The rele-
vance label of each selected segment of a document is inherited
from the relevance label of the entire document.

In ad-hoc information retrieval, a document is considered rele-
vant to a query even if only a small part of the document is relevant
to the query [13]. This relevant information can occur in any part
of a document and could be as short as a single sentence or even
a clause. Thus, it is possible that heuristically selected segments
do not contain the part of document that is relevant to the query
and, indeed, may actually be completely non-relevant. We demon-
strate in this study that such noise in the training data leads to poor
training of the model and harms performance.

Instead of heuristic selection of document segments to train a
Transformer-based ranker, we propose to explicitly select which
segment of a document should be used for the training. Our pro-
posed method, which we named BeST (BEst Segment Training),
scores different segments of a document and selects the one that
is most related to the query to build the training data for the sub-
sequent ranker. BeST not only provides more accurate labels for
segments from relevant documents, but also chooses the segments
from non-relevant documents with the highest similarity to the
query and builds hard training samples which have been shown to
impact the effectiveness of learned rankers.

We apply BeST to the basic BERT-based ranker [3] and compare
it with the baselines that only use first segments of documents as
training data, and other Transformer-based rankers that are de-
signed to handle longer sequence (local self-attention) [4, 5]. The
experiments on the TREC 2019 Deep Learning Track and Robust04
datasets demonstrate that BeST significantly improves the effec-
tiveness of the ranker. This finding presents new opportunities for
the design and development of efficient Transformer-based rankers.
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2 RELATED WORK

To get a document level score with BERT, applying BERT to appli-
cable length segments and aggregating scores is the most widely
used strategy [3, 19]. For the models where the score is based on
cosine similarity of embeddings between a query and documents,
the maximum cosine similarity scores could be pooled and fed to
final score generating layers [4, 6, 10]. While these embedding simi-
larity based approach has benefit of inference in document scoring,
they still have the problem that the training data are heuristically
selected segments from the documents.

Some other works proposed a document level modeling, which
either uses much longer sequence with efficient attention or a hier-
archical structure [4, 5]. TKL transformer encodes long document
by encoding a number of overlapping windows separately [4]. The
authors show that including longer sequences for neural rank-
ing models help to retrieve longer documents and this results in
increased retrieval performance [4]. PARADE model divides a doc-
ument into a number of segments and encodes each of them using
Transformer. Encoded segments are again fed to another Trans-
former to get the final document level score [9] *. QDS-Transformer
encodes the long texts with fixed patterns of attentions which allow
local attention among neighboring content tokens, and combines
them with long distance attention [5]. A few revised Transformer
architectures were proposed to solve the quadratic cost problem.
Based on the intuition that not all tokens have to directly attend
to all the other tokens, they limit the number of tokens that self-
attentions could be applied [12]. Self-attention are either limited to
a fixed pattern tokens [1] or learnable patterns [15] such as using
locality sensitive hashing [7].

3 DOCUMENT SEGMENT SELECTION

At ahigh level, the goal of our method is to identify the most related
segments of documents to queries and use those segments in the
training. The selection of the most related segments can be done
by another ranker, which can have the same the architecture as the
ranker to be trained. In this sense, the training of the ranker and the
segment selection can be iterated to even improve the performance.

We assume a set of training instances S where each instance
consists of a query and a set of relevant and non-relevant documents
(g D;’f). The goal is to train a ranker that ranks a set of documents
with respect to a query where its scoring function fy(.) imposes a
token length limit on the input sequence.

Let d; denote the ih segment of document d and I be a pairwise
loss function, which will be I(y1, y2) = max(0, 1-y;+y2) in the case
of the pairwise hinge loss. The loss function for the first segment-
based training can be expressed as

LO =Y > Wfaladd) folgdy)), (1)

q€S d+d-eD}

where 0 is the set of learnable parameters of the scoring function
f and d and dj denote the first segments of a relevant and non-
relevant document to query g, respectively. Typically, 6 is initialized
with pre-trained language models, such as BERT.

“Results of the PARADE model is not directly comparable because they used
transfer learning setup from MSMARCO passage ranking to Robust04

We propose to select the document segments most relevant to
queries for building effective training data, rather than merely using
the first segments of documents. Let i, 5 denote the index of the
segment in document d that is most related to the query g. The set
I ={igql(g.d) € S} then denotes the set of segment indices for
all query-document pairs in S. We propose to learn the scoring
function fp(.) according to 7, which is our best guess of the segment
indices most related to queries. In contrast to Equation 1 where
only the first segments are considered, the loss function for training
with the segment selection can then be expressed as

LOD =Y, > Wfalgd) folgdp) 2)
qeS d*d-eD}”

where j and k are given as iy g+ and iy 4-. Estimating 7 and updating
0 based on it can be considered as training a ranking model with
selected segments from documents. Note that both 0 and I are
unknown at the beginning and need to be estimated. To estimate
0 and 7, we use an iterative approach that includes complete and
incomplete data, which is similar to the EM algorithm. For example,
once we train 9(1), each segments can be scored with fe(l)’ and
7@ could be obtained by taking maximum of them. Then, 7 @) js
used to train 9(2), and so on.

In the first iteration, the goal is to estimate 7 1 and 8. To
estimate J (1), we introduce 9(0), from which 7 will be calcu-
lated. The iteration begins with initializing both 0(®) and §(!) with
pre-trained parameters (e.g., BERT) or random assignments. 0(°)
is trained using all segments of both relevant and non-relevant
documents. The loss function for (°) can be expressed as

k-1
L£LO@ =% > Do (@d). fro(gd)
qeSd+d-eDy™ j=0
where j is the segment index and k is the maximum number of seg-
ments to be considered per document. While 0 is being updated,
T is calculated as indices of maximum scoring segments by fy(0):

IO = {ig gliga = argmax fyo) (q.dp), (q.d) € S} (3)
1

Based on 7, 9(1) js optimized using the loss function shown in
equation 2, which can be written as o) = argming L(0, I(l)).

Exceptionally for the first iteration we optimize 6 at the same
time that 6(%) is optimized. After the first iteration, it is possible
to take scorer f, (D) 45 the final scorer as it outperforms the first-
segment trained models. However, additional iterations of segment-
selection and training could bring even further improvements.

From the second iteration onward, the previously trained
model fp() calculates I by scoring each of the document segments
and selecting the one with the highest score. Specifically, at iteration
n+1, 7™ is calculated as

T = (ig gligq = argmax fym (q.di), (q.d) € S} (4)
1

The loss function is given as

L(Q(HH),I(HH)) — Z Z
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where j and k are given as lya+ and ld-



Parameters 6 ("*1) are then updated to minimize .C(Q(””), T (n+D)y,
Note that 6("*)) is newly initialized instead of updating (" to
minimize the effect of non-optimal training data.

We would like to clarify that each iteration is a complete train-
ing procedure which includes (possibly) multiple epochs of train-
ing, early-stopping, and model selections. In practice, estimated
0, 7" from later iterations may not be better than those from
earlier iterations, probably because the model has many param-
eters and prone to over-fitting. Thus, the iterations need to be
early-stopped based on the validation performance.

4 EXPERIMENT DESIGN

Datasets. We conduct our experiments on two document ranking
datasets, Robust04 and TREC 2019 DL (Deep Learning Track). TREC
2019 DL is a large dataset for adhoc ranking [2]. Its training data
contains about 384,000 judged query and document pairs which
are built from MS MARCO passage ranking datasets [11], by taking
any document that contains a relevant passage (from MS MARCO
passage ranking datasets) as a relevant document. The test split
contains 43 queries, whose top candidates are exclusively judged.
Robust04 is a collection of news articles containing 249 topics with
relevance judgment. Robust04 topics have two types of queries, title
queries and description queries, and we evaluate on both of them.

The documents in TREC 2019 DL has median length is 797 tokens,
with the 90th percentile including 3,259 tokens (in subword). From
Robust04 collection, the median length is 594 tokens, with the 9oth
percentile including 1,561 tokens.

We applied BeST to the BERT-based ranker [3] which fine-tunes
BERT with pooling the [CLS] token’s representation through a
fully connected layer. To control the performance differences by
other factors, we applied the same BERT-based ranker for all the
baselines and BeST. All the BERT models in our experiments used
BERT-Base uncased, as opposed to BERT-Large or other variants.

Compared models. We implemented three baselines models:
BERT (First P), BERT (Max P), and BERT (Gold P). Both BERT (First
P) and BERT (Max P) are trained by taking the first segment of
each document. At inference time, BERT (First P) only uses the first
passage while BERT (Max P) uses the maximum score of all passages.
BERT (Gold P) fine-tunes BERT by using passages of documents
that are relevant to the query according to the MS MARCO passage
ranking dataset. This is possible because the TREC 2019 DL dataset
for document ranking is built based on the MS MARCO passage
ranking dataset, thus the relevant passages of documents can be
obtained. After aligning relevant passages to documents dataset
by query IDs and contents, 58% of relevant passages are used from
MS MARCO passage ranking. We created this baseline because the
goal of BeST is to use the most relevant segments of documents.
Thus, BERT (Gold P) is an oracle that provides an upper bound to
the performance based on ground-truth data.

We also report the results of IDST which is one of the best per-
forming runs in the original TREC 2019 Deep Leaning TRACK [2].
There are other runs which have better performance than IDST,
but they are inappropriate for comparison because they either use
full-ranking instead of re-ranking, use larger pre-trained models,
or use ensemble models. Still, IDST has a few other factors that con-
tribute to its high performance, such as additional language model

pre-training and using the entire passage-level labels as training
data [17]. We also consider existing models that are especially de-
signed to handle long inputs. QDS-Transformer is a ranker with
local and hierarchical attention which can efficiently model long
sequences [5]. RoOBERTa (Max) and Longerformer-QA were used as
the baselines for QDS-Transformer. TKL processes long sequences
by local self-attention mechanism [4]. Unlike other models, TKL
uses Glove embeddings instead of pre-trained language models.
Unless mentioned otherwise, all the methods use a fixed number
of leading tokens (which can vary from 512 to 4000 depending on
models) for the document representation in the training.

Implementation details. For TREC 2019 DL, we used pair-
wise hinge loss by taking one positive document (judged) and one
negative from the top 100 documents (not judged). Documents
are split into segments only at the sentence boundary. Instead
of splitting documents into segments of the maximum possible
length (which is determined by the input size limit), we randomized
the length of each segment for training, so that the model does
not predict document relevance based on the segment length. The
document title is repeated in each of its segments.

For Robust04, we used point-wise cross-entropy loss by taking
one positive and 10 negative documents for each query. Because
Robust04 has a smaller number of queries than TREC 2019 DL,
using pairwise loss makes more repetition of positive documents
during the training, which was less effective than using diverse
negative documents in the training. For BeST we only used up to
four leading segments (less than 2,048 tokens) of the documents in
the training, due to the computational efficiency. At inference time,
however, all document segments are used. Document segments are
obtained by a non-overlapping moving window through contents.

We compare all models in the re-ranking setup, where only the
top-100 documents retrieved for each query are used for training
and inference of neural rankers. The Robust04 dataset does not
have designated training and test splits, therefore we repeat each
experiment 5 times using 5-fold cross validation similar to previ-
ous work [3, 5]. To compare our experimental results with those
reported in existing work, we report the commonly used metrics
for each of dataset, which are NDCG@10 for TREC 2019 DL and
NDCG@20 for Robust04. We also list mean reciprocal rank (MRR)
for the development split of TREC 2019 DL, which is used for vali-
dation including early-stopping of training.

Results. Table 1 shows the performance of the ranker trained
with BeST and other models. The ranker trained with BeST out-
performs those trained with the first segments as supervision data,
BERT (First P) and BERT (Max P). The differences between the
models trained with first segments and BeST are mostly statisti-
cally significant (p < 0.01) using paired t-test. This result strongly
demonstrates the benefit of segment selection to remove noise in
training data. It is noteworthy that BeST achieves a similar per-
formance as BERT (Gold P), which is trained with ground-truth
passage level evidences. The reason could be that the segment se-
lection of BeST is as precise as the human judged passage-level
evidences, or BeST has other benefits such as more difficult nega-
tive examples. In the TREC 2019 DL dataset, BeST shows a similar
performance to QDS-Transformer [5], and outperforms TKL [4].
TKL being worse than both BeST and QDS-Transformer could be



Table 1: Ranking performance on the TREC 2019 DL and Robust04 datasets. The metrics for each dataset are the ones that are
widely used for the datasets. Input size is the number of (word or subword) tokens that the models take for each instance. The
superscripts on the scores of BeST indicates the models that the difference is statistically significant (p < 0.01).

TREC 2019 DL Robust04
Dev Test Title Description | Pre-trained Input size From
MRR NDCG@10 | NDCG@20 NDCG@20 model
1 BERT (First P) 0.375 0.637 0.464 0.505 BERT 512
Baselines 2 BERT (Max P) 0.349 0.626 0.471 0.519 BERT 512
3 BERT (Gold P) 0.363 0.664 - - BERT 512
Segment selection 4 BeST 0.388 0.664% 0.48712 0.53712 BERT 512
] 5 IDST R 0.704 R - BERT+@ 512 [17]
Models w/ short input | . o BERTa (Max P) | 0.320 0.630 0.439 - RoBERTa 512 5]
7  Longformer-QA 0.326 0.627 0.448 - Longformer 2,048 [5]
Models w/ long input | 8 QDS-Transformer | 0.360 0.667 0.457 - Longformer 2,048 [5]
9 TKL 0.329 0.644 - - Glove 4,000 [4]

attributed to only using Glove and not using bigger pre-trained
language models.

In the Robust04 dataset, RoOBERTa (Max P) and QDS-Transformer
under-perform BERT (Max P) and BeST. We believe the implementa-
tion of ROBERTa (Max P) and QDS-Transformer [5] are less-optimal
in terms of negative sampling strategy or choices of loss functions,
as our implementation of BERT (Max P) matches the number re-
ported in another previous work [3]. Nevertheless, BeST is showing
consistent improvement over BERT (Max P) on both title and de-
scription queries of the Robust04 dataset.

Theoretically, models that process long sequences of 2,048 or
more tokens at once, such as QDS-Transformer and TKL, have
some advantages over BeST. First, they have the potential of iden-
tifying relevance evidences that are far apart of each other in a
document and thus appear in different document segments. Sec-
ond, with the same amount of tokens to be used as training data
for rankers, these models have the potential of processing more
tokens from document bodies. This is because these models build
one training instance from each document, while building multi-
ple training instances from different document segments requires
query tokens and document titles to be repeated. Despite their ad-
vantages, QDS-Transformer and others only consider the leading
tokens of documents for the inferences, which can be problematic
for documents that are longer than their input length limit. The
performance gap between BeST and IDST could be attributed to
using a larger amount of training data (we used 45% of the passage-
ranking dataset that can be aligned with documents in the TREC
2019 DL dataset) and to an additional pre-training strategy specifi-
cally designed for the task [17], which is shown to be effective in
other tasks as well [8, 16].

In addition to extrinsic evaluation of BeST through ranking per-
formance, we also intrinsically evaluate the performance of BeST
in selecting document segments. For this purpose, we consider a
selected document segment with respect to a query as correct if the
selected segment contains the relevant passage for the correspond-
ing query in the ground-truth of the MS MARCO passage-ranking
dataset. BeST and baselines rank the segments of each document,
and their performance is measured using Precision at the top 1
segment. We report the performance of BeST at different iterations

Table 2: Performance of segment ranking based on the
ground truth of the MS MARCO passage-ranking dataset.

Segment ranking Document ranking

Train Dev Dev
P@1 P@1 MRR

Random 0.109 0.085 -
BERT (MaxP)  0.465 0.391 0.349
Tter 1 0.412 0.412 0.371
Iter 2 0.488 0.449 0.368
BeST Iter 3 0.522 0.491 0.388
Iter4 0.525 0.458 0.364

corresponding to different fp(n) in Section 3. As baselines for the
intrinsic evaluation, we report the performance of Random ranking
of document segments and ranking by BERT (Max P). Table 2 shows
the performance of ranking document segments with respect to
queries. For reference, the performance of the document ranking
task over the dev split is also listed in the table. The results show
that BeST consistently outperforms the baselines in all iterations,
and the performance of BeST increases as the iteration number
increases. Another observation is that the performance of segment
selection and document ranking are closely correlated. Using the
performance of ranking over the dev split to stop training of seg-
ment selection, the learned model at iteration 3 will be selected as
it achieves the highest MRR.

5 CONCLUSION

We proposed BeST, a query-driven segment selector to build train-
ing data for transformer-based rankers that are unable to process
long sequences. Our experiments show that the explicit selection
of training data could improve the performance. It shows that chal-
lenge of scoring long documents can be addressed without expen-
sive attentions or complex hierarchical architectures.
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