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Abstract: The past decade has brought many innovations in optical design for 3D super-
resolution imaging of point-like emitters, but these methods often focus on single-emitter
localization precision as a performance metric. Here, we propose a simple heuristic for designing
a point spread function (PSF) that allows for precise measurement of the distance between two
emitters. We discover that there are two types of PSFs that achieve high performance for resolving
emitters in 3D, as quantified by the Cramér-Rao bounds for estimating the separation between
two closely spaced emitters. One PSF is very similar to the existing Tetrapod PSFs; the other is a
rotating single-spot PSF, which we call the crescent PSF. The latter exhibits excellent performance
for localizing single emitters throughout a 1-um focal volume (localization precisions of 7.3 nm
inx, 7.7 nmin y, and 18.3 nm in z using 1000 detected photons), and it distinguishes between
one and two closely spaced emitters with superior accuracy (25-53% lower error rates than the
best-performing Tetrapod PSF, averaged throughout a 1-um focal volume). Our study provides
additional insights into optimal strategies for encoding 3D spatial information into optical PSFs.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Recent years have brought significant advances in fluorescence nanoscopy, with three-dimensional
(3D) single-molecule tracking and super-resolution microscopy [1,2] approaching atomic reso-
lution. A cornerstone of these methods and of the Nobel Prize in Chemistry 2014 [3-5] is the
switching of a molecule’s emissive state, i.e., experimenter-controlled “blinking,” which enables
individual molecules to be localized independently by minimizing the overlap between their
individual images, or point spread functions (PSFs). Localizations gathered over time are stitched
together to construct a final super-resolved image. Combined with single-molecule blinking,
imaging methods such as interferometry [6—10], fluorescence lifetime imaging near metallic or
carbon surfaces [11-13], and structured illumination with active feedback [14] have all been
demonstrated to localize single fluorescent molecules in 3D space with precisions approaching
0.1-1 nm.

However, because the emissive state of any particular fluorophore can only be controlled
probabilistically, 3D nanoscopes routinely must detect, resolve, and estimate the positions of
molecules whose PSFs overlap. Methods to improve the resolvability of pairs of emitters laterally
separated along the x- and y-axes include PSF engineering for direct imaging [15], as well as
the use of finite optical structures, such as waveguides, for separating spatial modes in indirect
imaging [16]. Additionally, neural networks have achieved impressive performance for the joint
task of designing a PSF and resolving dense constellations of emitters within noisy images
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with high accuracy and resolution [17,18]. Recent studies have also examined the fundamental
performance limits of localizing emitter pairs in 3D using quantum estimation theory [19,20].

Despite decades of innovation, several outstanding questions remain. First, how can we
express the joint task of resolving and localizing overlapping emitters in 3D mathematically as
a performance metric or cost function? Recent advances by Yoav Shechtman and colleagues
[17,18] elegantly adapt a similarity statistic, the Jaccard index, to evaluate if a neural network
accurately identifies and localizes single molecules within test images. However, this strategy
requires careful design and generation of test data that accurately models the imaging task at hand.
Secondly, given a suitable metric, is there a globally optimal PSF that achieves the best possible
performance? Or, are there a few or perhaps many designs that all perform similarly? Finally, are
there general design principles that we may interpret as optimal for resolving emitters in 3D?
Often, PSF designs resulting from numerical optimization studies are difficult to interpret and
generalize. Examples of PSFs that are widely used for 3D single-molecule localization include
both rotating PSFs (e.g., the double-helix [21]) and expanding/translating PSFs (e.g., the Tetrapod
[22] and Airy [23,24] families). Addressing these questions will have numerous implications
for the advancement of fluorescence nanoscopy. Imaging dense emitter configurations in 3D
is key in many biophysical applications, including studies of subcellular localization of mRNA
molecules [25], chromatin looping dynamics [26], and protein organization within cilia [27].
From a methods perspective, the ability to detect and resolve closely spaced emitters in 3D is
critical for high-performance 3D super-resolution imaging [28].

In this theoretical study, we address the questions above by engineering PSFs for resolving
pairs of emitters in all three dimensions. We propose a cost function that quantifies a PSF’s
performance based on the precision to which it can be used to measure the distance between
two emitters with small separation in both the lateral and axial directions. We then apply a
gradient-descent algorithm to search for PSF(s) that minimize this cost function. Surprisingly,
all runs of the algorithm converge to one of two designs, regardless of the initial condition. One
is a “single-spot” PSF that rotates as a function of emitter depth, which we call the crescent
PSF, and the other is a “double-spot” PSF that mimics existing Tetrapod PSFs by expanding
laterally as a function of emitter depth. We quantify the theoretical performance of these PSFs by
calculating the classical Cramér-Rao bounds (CRBs) for estimating positional quantities in one-
and two-emitter configurations. Moreover, a likelihood-ratio test on simulated data demonstrates
that compared to other engineered PSFs, the crescent PSF allows for distinguishing between one
emitter versus two axially separated emitters with superior accuracy.

2. Designing imaging systems for resolving closely spaced emitter pairs in
three dimensions

2.1. Mathematical framework

We frame our study on resolving emitters in 3D as a PSF design problem. Formally, the PSF of
an optical system is defined as the image produced by a single idealized point emitter. In this
paper, we restrict ourselves to modeling such emitters, taking them to represent single fluorescent
molecules. To express the PSF of a microscope mathematically, we begin by considering an
emitter located at (xo, Yo, zo) in object space, which produces the following classical wave function

in the Fourier plane of the microscope [29]:
i2nn
2 (xoxp + yoyr + z04/1 — r%)] . (D)

Here, xr and yr are the spatial coordinates in the Fourier plane, n is the index of refraction of
the medium surrounding the emitter, NA is the numerical aperture of the microscope, Ay is the

-1/4
Y (xr, yF; X0,Y0,20) = A (1 - rlzp) circ (%) exp

free-space wavelength of the emitter, and rr = /x% + y%. The circular aperture function circ
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denotes the disk-shaped support of the wavefunction in Fourier space and is defined as

circ(p) = {1 p=l 2

0 otherwise,

and the normalization factor A is given by

A= [271 (1 _Vi- (NA/n)Z)]_l/Z, 3)

ensuring that f/ dxp dyp W (xr, yr; X0, Y0, 20)]> = 1. We also consider a phase mask (PM) in the
Fourier plane, described by a function ¢,k (xF, yg) with range [—, ), which enables us to
design the image of the emitter with high photon efficiency (Fig. 1(A)). The final PSF is given by

1(x1, Y15 %0, Y0, 20) = |F{W(XF, YE3 X0, Y0, 20) €XP [i@mask (Xr> i) |}, “4)

where ¥ is a two-dimensional Fourier transform.
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Fig. 1. Optical system for implementing the crescent PSF. (A) A 4f system comprising
two lenses (L1, L2) and a phase mask (PM) is attached to a standard microscope with an
objective lens (OL) and tube lens (TL). The intermediate image plane (IIP) and camera
(CAM) image planes are conjugate to the focal plane of OL. The coordinates xr and yg
are scaled such that the aperture has radius NA/n. (B) The optimized PM that produces
the crescent PSF. The colorbar represents phase in radians. (C) Images of the optimized
crescent PSF as a function of emitter depth in nm. The color scale is in arbitrary units of
intensity. Scale bar = 1 pm.

-

In single-molecule imaging, the precision to which emitters can be localized is limited by the
probabilistic nature of photon detection. We borrow a powerful result from estimation theory
called the Cramér-Rao bound (CRB): given a quantity of interest 8, which could be an emitter’s
x-coordinate, for instance, the CRB provides a lower bound on the variance of any unbiased
estimator 6 of : )

Var(6) > (O'éCRB)) . 5)
Therefore, o-éCRB) can be used to quantify the precision with which a given optical system can
estimate @ from a noisy image. It is related to the Fisher information F(6) by [30]

(O-;CRB>)2 = [F(O)]". ©6)

Modeling photon detection as a Poisson process, for an image formed by N, signal photons
from the emitter and a constant background flux of Ny photons per pixel, the Fisher information
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with respect to 8 is given by

2

2 ; (N

00

p(xr,y119)

F9) = //dx dy NSZig
Tt Nsigp(xlvyllg) + Nbg

where p(x;, y7|6) represents the probability density of photon detection over image space. For a
single point emitter, this is equivalent to the PSF, given in Eq. (4):

p(xr, yrlxo, yo, z0) = 1(xz, 15 X0, Yo, 20)- (8)

We extend the formalism above to calculate CRBs in the case of two emitters. For two
equally bright incoherent point emitters located at (x, + Ax/2, y., z.), where the subscript c is
used to denote their “centroid” coordinates, the probability density becomes the average of the
contributions from the two emitters:

1 Ax Ax
pxr, yilxe, Ax, ye, z2¢) = 3 [1 (XI,yz;xc + T’yc’Zc) +1 (XI,yz;xc - T’yc’Zc)] . )

If Ax is sufficiently small, then I(x;, yj; x. = Ax/2,y., z.) can be expanded as a Taylor series along
the direction of separation, which gives
2 (92

Ax
Pxr, yilxe, Ax, ye, z¢) = 1(x1, yrs Xe, Yo 2c) + T@I(xz,yz;x,yc,zc)lmf +.... (10

By ignoring all higher order terms and substituting Eq. (10) into Eq. (7), we obtain approximations
for the Fisher information F(Ax) and corresponding precision o-ix for estimating Ax. For
convenience, we define

- iy oo |
Sy = //dxzd)ﬁ — 1Y%, Ve, 2e) =x, | - (11)
NSig](xl’ YIs Xes Yes Ze) + Nbg Ox2

(Note that Nsis now refers to the total number of photons from both emitters combined.) The
Fisher information can be approximated as F(Ax) ~ Ax*S,/16 and the estimation precision as
4
(CRB)
o N —. (12)
Ax AxVS,

We repeat this process for emitter pairs with y- and z-axis separation. For two emitters located at
(Xcs ye £ Ay, z¢), we define

N2 2 2
Sy = // dx; dy, = D tonyixey @l | (13)
’ Nsigl(xl,yﬁxc’)’caZC) + Nog ay? ‘
and the estimation precision for Ay is approximately
«crp) _ 4
Tpy  F m 14)
Similarly, for two emitters located at (x., y., z = Az), we define
Nie 82 2
5 = // dxy dy Nsigl(xl,yl;xc,yc, Z¢) + Npg 6—221()61,y1;xc,yc,z)|z:zc ’ (15
and the estimation precision for Az is approximately
. (16)

Az AZ\/S_Z :
A comparison of the approximations in Egs. (12), (14) and (16) against their true values is shown
in Appendix A.
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2.2. Point-spread function optimization

In order to engineer a PSF that excels at resolving closel spaced Cpalrs of emitters in 3D, we wish
RB) RB) (CRB)

to find a phase mask that simultaneously minimizes O'Ax , nd o, for two equally

bright incoherent point emitters in various spatial conﬁguratlons The following cost function

simultaneously accounts for all three quantities:

2
Coman) = (o) + () (o19)’ an

The right-hand side implicitly depends on ©mask according to the equations in the previous
subsection. It is worth noting that O'(C ) is well-defined for any placement of two emitters,
including one with nonzero y- and z- separation. However, to reduce the computational complexity
of the problem, we calculate BB for emitters separated along the x-axis only (as in Egs. (12)).

Ax
Similarly, we calculate o-éCRB) for emitters with y-separation only (as in Egs. (13)) and o (CRB) for
emitters with z-separation only (as in Eqs. (15) and (16)). This convention is used throughout the
remainder of the paper.

Besides ¢mask, Co also depends on a multitude of variables, namely x., y¢, z¢, Ax, Ay, Az,
Niig, and Ny, and the engineered PSF should minimize Cy over a reasonable domain of these
parameters. The optical system used in this paper is assumed to be shift-invariant, and since
the integrals in Eqgs. (11), (13) and (15) are evaluated over the entire image space, all o (CRB)
are independent of x. and y.. We therefore fix x, = y, = 0 without loss of generality. We

also set Nz = 1000 and Ny, = 10, which are typical for single molecule-imaging experiments.
Furthermore, our approximate expression for o-éSRB) (Eq. (12)) consists of two separate factors,
one that only depends on the PM and one that only depends on Ax. This implies that a PM that

performs well at one value of Ax will perform well at all other sufficiently small Values((()j£ ]%x o)

there is no need to include Ax in the cost function. The same argument applies for o Ay and
(CRB) (Egs. (14) and (16)). It therefore suffices to minimize
1 1 1
C kK)=—+—+ =, 18
1(@mask) S, Sy S, (18)

which now only depends on the PM and z..

To find a PM that minimizes C; over a range of possible z. values, we define C; to be
proportional to the mean value of C| over 15 equally-spaced values of z. between —500 nm and
500 nm:

Co(Pmask) = 1’% X C1(@mask; Zc)- (19)
z2.€{-500 nm,...,500 nm}

The constant S can be chosen freely to scale the values of C, to any desired order of magnitude.

We apply a gradient descent optimization algorithm to find PMs that minimize C5. To carry out
the computations, the continuous function ¢, is parametrized as a real-valued 256 X 256 matrix
whose elements represent a discretely-sampled (i.e., pixelated) PM. A pseudocode version of the
gradient descent algorithm is shown in Algorithm 1. We use the Python programming language
(version 3.7.11) and TensorFlow machine learning library (version 2.0.0) to implement the
algorithm. While the optimization task is not a machine learning problem, we choose TensorFlow
for its automatic differentiation capabilities, specifically the Gradient Tape function. All PSFs
are calculated for an imaging system with NA = 1.4, n = 1.518, 1o = 550 nm, magnification
M = 111.11, and 4f lens focal length f = 150 mm. For a PM that is N = 256 pixels wide with a
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pixel size of dpy = 49.58 um, the image pixel size is

A

- Y _s35 20
dosiMN m (20)

dy
when calculating the PSF using a 2D discrete Fourier transform. These values are chosen to
reflect a typical laboratory setup and are used to generate all the results in this paper. The nonzero
values of the PM matrix are restricted to a centered disk of radius 38.12 px, which represents the
aperture of the microscope. We also set 8 = 1.6 x 10% in Eq. (19) such that when distances are
inputted in meters, typical values of C, are on the order of 10.

Algorithm 1. Gradient descent for desighing PM ¢pask to minimize cost function C, (Eq. (19))

i—0; /* Ipax Sets the number of iterations =/
while i < i,,,, do
v — v —aV,Co(Pmask.y) /* v is a vector of PM pixel

values, a@ is a user-defined learning rate, @pasky 1S
the PM corresponding to v */
[—i+1;

end

return v;

Since there is no reason to assume that C; is a convex function of the PM’s pixel values, the
local minimum to which gradient descent converges may depend on the initial condition. Thus,
we run the algorithm from 14 different initial PMs (Fig. 2(A) and Appendix B). Seven of the
initial PMs correspond to existing PSFs engineered for 3D localization of single emitters: these
are the corkscrew [31] and double-helix [21] PSFs, two PSFs from the Tetrapod family [22]
(termed tetra2 and tetra3 in this paper), two astigmatic PSFs [32], and one PSF from the twin
Airy family [24]. Another PM consists of pixels with random values, i.e., each pixel value is
independently sampled uniformly between — and 7. The six remaining PMs are generated as
linear combinations of 63 Zernike polynomials on the circular domain of the PM with 2 < n < 10,
with coefficients independently sampled from a normal distribution with a mean of 0 and standard
deviation of 0.05. The first three Zernike polynomials (n = 0, 1) are excluded since they do

random random random
corkscrew double-helix pixels Zernike A Zernike C

CSO9®|
CCOCCL

Fig. 2. Optimality and stability of the crescent PSF. (A) The various initial PMs, including
those of the corkscrew [31] and double-helix [21] PSFs, that converge to the crescent PM
when optimized by Algorithm 1. (B) The final PMs, standardized as described in Appendix
D. The PSFs generated by the final PMs are virtually identical to the PSF in Fig. 1(C). The
colorbar represents phase in radians.
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not affect C,. The learning rate « is set to 25 for the corkscrew, double-helix, tetra2, tetra3,
astigmatism, and twin Airy initial conditions, 1 for the random pixels initial condition, and 10 for
the random Zernike initial conditions. The algorithm converges in all cases (Appendix C).

We standardize the final PMs resulting from gradient descent such that their PSFs are centered
laterally in the image plane and similar PSFs share the same orientation (Appendix D). It is then
evident that the PMs fall into two categories: (1) Five PMs consist of a ring-shaped ramp around
a circular region of constant zero phase and are shown in Fig. 2(B). The results are essentially
identical except for minor imperfections at the boundary between the two regions. We therefore
design an idealized version of the PM where the boundary is well-defined (Appendix E); the
final PM is shown in Fig. 1(B). This PM produces a single-spot PSF that rotates as a function of
emitter depth (Fig. 1(C)), which we call the crescent PSF. Its rotation and shape bear a striking
resemblance to the corkscrew PSF [31,33], even though its PM is remarkably different. (2) The
other nine final PMs from gradient descent produce a PSF that resembles those of the existing
Tetrapod family (Appendix B).

3. Precision of crescent PSF for one- and two-emitter localization

To compare the performance of the crescent PSF against that of existing engineered PSFs, we
calculate o-“RB) for various positional quantities within a 1-um depth range (=500 nm < z,. <
500 nm) for one- and two-emitter configurations. All quantities are calculated using the same
microscope parameters as in gradient descent. For the existing engineered PSFs, we consider the
double-helix as well as tetra2, which is the Tetrapod PSF with the best performance within our
chosen range of z,.

For the one-emitter case, we consider an emitter located at (xo, o, zo), and we calculate U'JECRB),
O';CRB), and o-Z(CRB), the precisions of estimating xg, yo, and zg respectively from a noisy image
(Fig. 3(A)). It should be noted that previously in this paper, Fisher information and CRBs were
defined and used in the context of single-parameter estimation only, whereas now we calculate
CRBs for multi-parameter estimation, using the 3 x 3 Fisher information matrix for parameters
X0, Y0, and zo [34]. This more accurately reflects the practical scenario where one needs to
simultaneously estimate xy, yo and zg, and the CRBs may be affected by covariances between
the parameters. The crescent PSF exhibits excellent localization precision (U')ECRB) =73+1.7
nm, o-y(CRB) =77+ 1.7 nm, and a-Z(CRB) = 18.3 £ 1.5 nm, mean =+ std over a depth range of 1 um
using 1000 signal photons and 10 background photons per pixel).

For the two-emitter case (Fig. 3(B)), we consider emitter pairs separated along the x-, y-, and

z-axes. For emitters at (100 nm, 0 nm, z.), we calculate a')ECCRB), the precision of estimating
the x-coordinate of the centroid x., as well as o“RB)  For emitters at (0 nm, £100 nm, z.), we

Ax
calculate ay(fRB) and O'LC;RB). For axially separated emitters at (x., y., zc = 100 nm), we calculate
(CRB)
o

2. and O'XSRB). Note that the plotted values of o-ﬁRB), UZ(;RB), and O'XSRB) are exact values,
unlike the approximations in Eqs. (12), (14) and (16). Furthermore, the centroid estimation
CRBs are calculated using the Fisher information matrix for parameters x., y., and z., and the
separation estimation CRBs are calculated using the Fisher information matrix for Ax, Ay, and
Az. The separation of 200 nm is chosen specifically so that the two emitters would be difficult but
not impossible to resolve. For reference, a standard microscope with the set of parameters used
throughout this paper has an Abbe diffraction limit of 15/2NA = 196 nm. Localization precision
for two-emitter configurations with smaller and larger separations, as well as separations along
multiple axes simultaneously, is addressed in Appendix F.

The crescent PSF performs well in resolving closely separated emitters in 3D without sacrificing

performance in localizing single emitters. The crescent PSF outperforms tetra2 and double-helix

in axial separation estimation precision (G'ESRB) = 60.2 £ 5.7 nm for crescent, compared to
O'XSRB) = 65.5 + 8.4 nm for tetra2 and O'ESRB) = 95.4 + 4.2 nm for double-helix, mean =+ std over
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Fig. 3. Localization precision of the double-helix (cyan), tetra2 (green), and crescent (red)
PSFs for (A) imaging a single isolated emitter at axial position z and (B) two closely spaced
emitters centered at axial position z.. The precisions are calculated for emitters that are
separated along the x-axis (O'JECCRB) and O'SRB)), along the y-axis (O';CCRB) and o-é(;RB)), or

along the z-axis (a'Z(CCRB) and O'ERB)) by 200 nm. All data are calculated using Ngjg = 1000

photons and Npg = 10 photons per pixel.

a depth range of 1 um using 1000 total signal photons and 10 background photons per pixel),
and this performance is more uniform throughout the focal volume compared to tetra2. For

estimating lateral separation, the crescent PSF performs similarly to tetra2 (o-gSRB) =18.0+4.9

nm for crescent, compared to o-gSRB) = 17.1 £ 3.5 nm for tetra2). Interestingly, the crescent

PSF is also suitable for classic single-emitter localization, performing similarly to tetra2 and
significantly better than double-helix, both of which were optimized for single-emitter localization

a-)(CCRB) =73+ 1.7 nm, O';CRB) = 7.7 £ 1.7 nm, and o-Z(CRB) = 18.3 + 1.5 nm for crescent;
o-)ECRB) =7.1%1.2 nm, U;CRB) = 7.1 £ 1.2 nm, and o-Z(CRB) = 17.7 £ 2.0 nm for tetra2;
o =103 £ 1.6 nm, o{*® = 15.6 + 1.1 nm, and (%P = 24.2 + 1.0 nm for double-helix).

4. Accuracy of crescent PSF in distinguishing between one and two emitters

To further quantify the crescent PSF’s ability to resolve emitters with a small separation in the
axial direction, we test its performance in distinguishing between noisy images of one emitter
versus two emitters. We use a likelihood-ratio test to discriminate between one emitter at (0, 0, z..)
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versus two equally bright, incoherent emitters at (0,0, z, + Az/2) within a noisy image. To
calculate the likelihood of each case, we begin by assuming a Poisson photon detection process,
so the number of photons detected at a pixel at (x;,y;) in image space is Poisson-distributed
with mean Nsigp(xl, y1) + Npg. Here, Ny, is the total number of photons contained in the image,
p(x7,yr) is the probability distribution of photon detection in the image space, and Ny, is the
background flux in photons per pixel. For the one-emitter case, we use Eq. (8) to find that the
mean photon count at (x;, y;), which we denote by I;(x;, y;), is given by

I ()C],y]) = Nsigl(xl,YI; 0,0, Zc) + Nbg~ 21

For the two-emitter case, we define I5(x;, y;) correspondingly, and it is given by

Nsig
L(xp,y) = — + Npg- (22)

2

A A
1 (xl,y1;0,0,zc + TZ) +I(X1,y1;0,0,zc - TZ)

Furthermore, denote the photon counts in the actual noisy image by J(x;, y;). The likelihoods of
the two scenarios are defined as the conditional probabilities of observing J while assuming the
number of emitters as ground truth [35]. Using the Poisson probability mass function, these are

(11 (xy, y[)]l(xz,yz)
exp[/1(xz, y)[J (e, yp)]!

ZL(1 emitter) = P(J|1 emitter) = Z
(xr,yr)

(23)

[L2(xg, yl)]f(xh,w)
expl L (e, y) Il (. yp)1!

L(2 emitters) = P(J|2 emitters) = Z 24)

(xr.yr)
where the summations are taken over all pixels in the image. We conclude that there are two
emitters if £(2 emitters)>£L(1 emitter) and conclude one emitter otherwise.

We run the likelihood-ratio test on simulated noisy images of one and two emitters with the
standard (no PM), double-helix, tetra2, and crescent PSFs, in three different conditions: Az = 100
nm and N, = 10000 photons, Az = 200 nm and Ny, = 2000 photons, and Az = 400 nm and
Niig = 1000 photons, all with N, = 10 photons per pixel and the same microscope parameters as
in gradient descent. In each condition, we vary z. from —500 nm to 500 nm, and for each value
of z., we run the test on 10000 simulated images and calculate the fraction of runs for which it
correctly predicts the number of emitters. Since single-molecule localization algorithms must
perform joint detection and estimation simultaneously in practice, we note that this quantity is a
best-case estimate of discrimination performance.

The crescent PSF is able to distinguish between the one- and two- emitter cases with an
accuracy that is greater on average and more uniform as a function of z, compared to the
other three PSFs (Figs. 4(A) and 4(B)). There are particular values of z. where the crescent is
outperformed by tetra2, the next best-performing PSF, but the mean error rate of the crescent
PSF is lower than that of tetra2 when averaged over the entire range of z.. This improvement
is consistent across all three conditions. For a two-emitter ground truth, for Az = 100 nm and
N;ig = 10000, the mean error rate of the crescent PSF is 7.9%, compared to 11.1% for tetra2. For
Az = 200 nm and Ngig = 2000, the mean error rates are 6.1% for crescent and 8.2% for tetra2.
For Az = 400 nm and Ny, = 1000, the mean error rates are 0.15% for crescent and 0.32% for
tetra2. The standard and double-helix PSFs perform significantly worse than both crescent and
tetra2. These values are similar for a one-emitter ground truth.

One qualitative observation that may explain the crescent PSF’s advantage in resolving
axially separated emitters is that with the crescent PSF, the images of the one- and two-emitter
configurations differ more greatly than with tetra2 (Fig. 4(C)). This contrast is due to the crescent
PSF’s compact shape, which allows it to concentrate light into a relatively small area, resulting in
higher photon counts that enable more accurate discrimination between overlapping emitters
versus Poisson shot noise.
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Fig. 4. Accuracy of distinguishing between images containing one versus two emitters for
the standard (gray), double-helix (cyan), tetra2 (green) and crescent (red) PSFs in three
different conditions for (A) one-emitter ground truth and (B) two-emitter ground truth. Left:
separation Az = 100 nm and Ngjg = 10000 photons, middle: Az = 200 nm and Ngjg = 2000
photons, and right: Az = 400 nm and Ngjg = 1000 photons. (C) Comparison of the images
produced by one emitter (zg = 200 nm) and two emitters (z. = 200 nm, Az = 400 nm) with
a constant signal level, using the tetra2 vs. crescent PSFs. To best visualize the advantage of
the crescent PSF, z. and Az are chosen such that the crescent PSF performs significantly
better than tetra2. The one-emitter image is subtracted from the two-emitter image to produce
the difference image. For clarity, images are shown without Poisson noise and background
noise. Color scales are in an arbitrary unit of intensity. The four 1-emitter and 2-emitter
images share the same color scale, and the two difference images share the same color scale.
Scale bar = 1 pm.
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5. Conclusion

In this paper, we studied the ability of engineered PSFs to resolve closely spaced emitters in 3D.
Using simple mathematical reasoning, we developed a heuristic for optimizing the precision
of estimating the separation distance between two emitters. Gradient descent optimization of
our cost function revealed a new type of PSF, which we call the crescent PSF, that rotates as a
function of emitter depth but has a simpler PM design compared to existing corkscrew-like PSFs
[17,18,31,33]. Quantifying estimation precision in terms of the Cramér-Rao bound, we showed
that the crescent PSF performs 8% better than the best Tetrapod PSF in estimating the separation
between emitters along the axial direction, and its performance is also more uniform throughout
the focal volume. The crescent PSF also performs well in single-emitter localization, similar to
the Tetrapod PSF. Lastly, we showed that with a simple likelihood-ratio test, the crescent PSF
allows for distinguishing between the noisy images produced by one versus two emitters with a
29-53% lower error rate, averaged throughout the focal volume, than with the Tetrapod PSF.

Our study primarily relies on numerical methods to explore the design space and assess
performance. Starting the optimization from existing engineered PSFs serves to direct the
algorithm to possible minima near a high-performing PSF (exploitation), while starting from
random conditions ensures that many areas of the parameter space are surveyed (exploration). Of
course, we cannot disprove the existence of additional sharp local minima in the cost function.
While the crescent PSF outperforms existing PSFs engineered for 3D single-emitter localization
in many cases, our data do not prove that is optimal for all imaging tasks. Further work remains
to design optimal PSFs for imaging within thick specimens, especially in the presence of optical
aberrations [36-38].

Our results demonstrate that localizing single emitters, resolving closely spaced emitters in the
lateral direction and resolving them in the axial direction are three very different problems, and
the PSFs that are optimal for one task are not necessarily optimal for another. As a result, we
believe that simulating carefully designed emitter configurations, as we did in Section 4, can help
experimentalists choose and/or design PSFs that are optimal for their particular application.

It is notable that optimizing the cost function C; (Eq. (19)), a second-order approximation of
the CRB for estimating the separation between two emitters, resulted consistently in two types of
PSFs: one rotating single-spot PSF and another translating double-spot PSF. These PSFs are
created by PMs with remarkable symmetry and simple phase profiles. We speculate that these
PMs, which both separate Fourier space into a central disk and surrounding ring, are related to
optimal axial localization of single emitters via interferometry [9]. That is, both PMs contain
a central disk whose radius is ~70% that of the aperture, and this size is very similar to that
of the annular mirror (r/r4 = 0.63) within the optimal interferometer in Ref. [9]. It is likely
that these rings in Fourier space are ideal locations for discriminating wavefront curvature as an
emitter becomes defocused. Further studies on the relationship between detection, estimation,
and resolution of multiple point emitters, and the role of annular-style PMs, will be insightful for
pushing 3D super-resolution imaging to its ultimate limits.

,and o \CRB)

AL : : : (CRB) _(CRB)
Appendix A: Errors in approximate expressions for o Az

Ax » O y

We evaluate the error in our approximate expressions for o-ﬁRB), o CRB)

d o CRB)
Ay - and o e,
Egs. (12), (14) and (16), respectively, for various PSFs. For a given PSF, separation distance,
and z., if the approximate value of a precision bound is oapprox and its actual value is Tycryal, We

calculate the absolute fractional error, defined as

_ |0—appr0x — Oactuall ‘ (25)

Oactual

The results are shown for the standard (no PM), double-helix, tetra2, and crescent PSFs in Fig. 5.
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Fig. 5. Absolute fractional errors (Eq. (25)) in approximate expressions for O'XERB) O'SRB),

and o-(CRB) (Egs. (12), (14) and (16) respectively) for various PSFs. Errors are plotted as a
functlon of axial centroid z. and appropriate emitter separation Ax, Ay, or Az. The color
scale represents the absolute value of the fractional error of the expression, relative to its
true value. The dashed white lines are contour lines at a fixed error of 0.3 = +30%. All
data are calculated using Nsjg = 1000 photons and Nyg = 10 photons per pixel.

Although the approximations begin to deviate significantly from their true values for separations
of a few hundred nanometers, the approximations are correct within 30% for lateral separations
of up to 100-200 nm and axial separations of up to 300-500 nm. Since we are concerned with
resolving closely spaced emitters (whose separation is perhaps on the same order as the Abbe
diffraction limit, 19/2NA = 196 nm), these approximations are appropriate to use, thus greatly
reducing the computational complexity of the optimization task in Section 2.2. While these
approximate CRBs are convenient for optimization, we use exact expressions for the CRB when
evaluating PSF performance.

Appendix B: New Tetrapod-like PSF from gradient descent

The initial PMs and final PMs that converge to a two-spot translating PSF are shown in Fig. 6.
The behavior of the PSF as a function of emitter depth is similar to those in the existing Tetrapod
family. The performance of our new Tetrapod-like PSF produced by gradient descent is very
similar to that of the existing tetra2 PSF (Fig. 7), so we do not report on it further.
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Fig. 6. Optimality and stability of the new Tetrapod-like PSF from gradient descent. (A)
The various initial PMs that converge to a new Tetrapod-like PSF. (B) The final PMs,
standardized as described in Appendix D. (C) The Tetrapod-like PSF generated by the final
PM from the tetra2 initial condition. The color scale represents intensity. Scale bar = 1 um.

The PSFs generated by the other final PMs are virtually indistinguishable and are therefore
not shown.
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Appendix C: Convergence of cost function in gradient descent

Each run of gradient descent is run for a total of 600 iterations, which is sufficient for the cost
function C, (Eq. (19)) to converge upon a local minimum in all cases (Fig. 8).
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Fig. 8. Cost function C, (Eq. (19)) versus number of elapsed iterations  for all runs of
gradient descent (Algorithm 1). Legend labels indicate the initial PM of the run; rZ =
random Zernike.

Appendix D: Standardization of the final phase masks from gradient descent

The gradient descent algorithm imparts no constraints on the location of the PSF in the image
nor on the orientation of the PSF. Therefore, the final PSF outputted by the algorithm is not
necessarily centered in the image and can have an arbitrary rotation. In order to ensure that
similar PSFs appear visually similar to the reader, we standardize the final PSFs from gradient
descent by translating them to be centered in the image (by adding a linear function to the PM)
and rotating them to match a common orientation (by rotating the PM by the desired amount)
(Fig. 9). The appropriate linear functions and rotation angles are chosen by hand.
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Appendix E: Creating an idealized phase mask for the crescent PSF

The five final PMs from gradient descent with ring-shaped ramps around circular regions of
constant zero phase are essentially identical except for minor imperfections at the boundary
between the two regions (Fig. 2(B)). To create an idealized version of the crescent PM, we remove
these imperfections, and we vary the radius of the boundary between the two regions to find the
value that results in the best performance (Fig. 10(A)). Specifically, we would like the crescent
PSF to simultaneously perform well in estimating x., v, z., Ax, Ay, and Az for configurations of
two closely spaced emitters. Define the quantity

ooMm = \/O'/ECRB)O'(CRB)O'(CRB)(T(CRB)O'(CRB)O'(CRB)

Ye Zc Ax Ay Az ’ (26)

where O'ESRB) is calculated for emitters at (xs, 0, z.), o CRB)

Ay
and O'XZ:RB) is calculated for emitters at (0,0, z. + s). Then oGy serves as a general measure of

performance of the PSF for fixed values of s and z. (Fig. 10(B)). Next, define (ogm) to be the
average value of oGy for z. € {—500 nm, 500 nm}. Based on the values of {(ogym) as a function
of PM’s inner radius for s = 100, 200, and 400 nm (Fig. 10(C)), we choose the final design of the
crescent PM to have an inner radius equal to 0.69 times the radius of the aperture. This final PM
and its corresponding PSF are shown in Fig. 1(B) and Fig. 1(C), respectively.
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Fig. 10. Creating an idealized PM for the crescent PSF. (A) The idealized PM consists of
an outer ring, where the phase shift is equal to the polar angle, and an inner circle, where
the phase shift is zero. We denote radius of the boundary between the two regions as r
and the radius of the aperture as r4. (B) Mean precision oy vs. centroid location z. for
0.65 < r/rg < 0.75. The blue curve represents r/r4 = 0.65, the green curve represents
r/ra = 0.75, and curves for intermediate values of r/r4 lie in the gray region. (C) Mean
precision {(oGm) vs. r/ra. All data are calculated using Ngjg = 1000 photons and Ny = 10
photons per pixel.

Appendix F: Precision of the crescent PSF for two-emitter localization with vary-
ing separation distances and directions

Figure 3 only shows the two-emitter Cramér-Rao bounds for emitter separations of 200 nm along
the axis corresponding to the quantity being estimated. Here, we consider different values of
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this separation distance, as well as simultaneous separations along multiple axes. Figure 11
shows the two-emitter localization precisions for emitter separations of 100 nm and 400 nm.
Figure 12 shows the localization precisions for two emitters separated by 200 nm with an equal
component along each axis, i.e. one emitter at x; = y; = z; = (200 nm)/ V3 and the other at
X2 = y2 = 2o = —(200 nm)/V3. In both cases, the relative performances of the three PSFs are
similar to those in Fig. 3, with a few exceptions.
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Fig. 11. Localization precision of the double-helix (cyan), tetra2 (green), and crescent (red)
PSFs for imaging two closely spaced emitters centered at axial position z.. The precisions

o BB and O'(CRB)), along the

are calculated for emitters that are separated along the x-axis (o7,

- Ax
y-axis (ay(?RB) and O'SRB)), or along the z-axis (o-Z(CCRB) and a_gRB)) by (A) 100 nm or (B)

400 nm. All data are calculated using Nsjg = 1000 photons, and Npg = 10 photons per pixel.
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Fig. 12. Localization precision of the double-helix (cyan), tetra2 (green), and crescent
(red) PSFs for imaging two closely spaced emitters centered at axial position z.. The
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X3 = yp =z = —(200 nm)/V3. All data are calculated using Nsig = 1000 photons and
Npg = 10 photons per pixel.
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