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Abstract: Herein, an inexpensive commercially available sensoris presented for the detection of
4-nitrophenol (4NP) pollutant. Sodium fluorescein (NaFl) is used as a sensor to detect trace amounts
of 4NP in acetonitrile (MeCN). The photophysical properties of NaFl were studied in two different
solvents, MeCN (aprotic) and water (protic), with varying concentrations of different nitroaromatics
using UV-visible absorption and fluorescence spectrophotometry. In an aqueous medium, photophys-
ical properties of NaFI did not change in the presence of nitroaromatics. However, examination of the
photodynamics in MeCN demonstrated that NaFI is extremely sensitive to 4NP (limit of detection:
0.29 pug/mL). This extreme specificity of NaFI towards 4NP when dissolved in MeCN, as compared
to other nitroaromatics, is attributed to hydrogen bonding of 4NP with NaFl in the absence of water,
resulting in both static and dynamic quenching processes. Thus, NaF| is demonstrated as a simple,
inexpensive, sensitive, and robust optical turn off sensor for 4NP.

Keywords: absorption; fluorescence; 4-nitrophenol; sodium fluorescein; sensors

1. Introduction

Nitroaromatics are a class of industrial chemicals generally used in dyes, polyurethane
foams (material found in mattresses and other furniture items), herbicides, insecticides,
nuclear weapons, and explosives [1]. As a result of widespread industrial usage, nitroaro-
matic pollutants are quite common and found primarily as derivatives of nitrotoluenes,
nitrophenols, and nitrobenzenes [2]. Due to their widespread use, the detection of such
compounds is extremely vital in many areas including military and civilian safety, the
chemical industry, and environmental monitoring [3,4]. Among the various derivatives
of nitroaromatics, the pollutant 4-Nitrophenol (4NP), is especially harmful to the human
body [5]. This pollutant can irritate and cause inflammation of the eyes, skin, and respira-
tory tract as well as trigger allergic responses. When ingested, 4NP can cause abdominal
pain and vomiting [6]. Furthermore, it can also cause confusion and unconsciousness due
to 4NP-induced methemoglobinemia [2]. Hence, 4NP has been listed as a priority pollutant
by the US Environmental Protection Agency (EPA) due to its toxicity and environmental
persistence [7]. Consequently, it is very important to detect 4NP in the environment.

Based on the arguments mentioned earlier, there is a great need for the development
of a highly sensitive sensor for 4NP in order to protect the environment, human health,
homeland security, and civilian safety [3]. Techniques such as liquid chromatography [8],
gas chromatography-mass spectrometry [9], 'H and '3C nuclear magnetic resonance [10],
energy dispersive X-ray diffraction [11], and surface-enhanced raman spectroscopy [12]
have been employed for the detection of 4NP with high sensitivity. However, these methods
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2.3. Sensitivity of NaFlto Nitroaromatics in Aqueous Solution

Initially, stock solutions of 1 mM of NaFl and nitroaromatics (4NP, 3NP; 4NT, 2,4DNT)
solutions were prepared separately in water. To test the sensitivity of NaFl towards
nitroaromatics in aqueous solution, a total of 66 sample vials were prepared using a
constant 50 yM NaFI solution and 10 different concentrations of the five nitroaromatic and
phenol solutions. Each concentration was tested in triplicate, for an aggregate test data set
of 198 sample vials (66 x 3). The composition of each sample vial tested is presented in
Table S1 of Supporting Information. Absorption and fluorescence emission spectra of NaFlI
in the presence of selected nitroaromatics were recorded.

2.4. Sensitivity of NaFI to Nitroaromatics in MeCN Solution

The absorption and fluorescence emission of NaF| were studied in the presence of
different nitroaromatics in MeCN medium. A Branson 3510RDTH bath ultrasonicator
(40 kHz) was used to prepare NaFI solutions in MeCN. Since NaFl is partially soluble (not
highly soluble) in MeCN, a small aliquot of NaF| stock solution prepared in water was
rapidly addedto 5 mL of MeCN under sonication and allowed to sonicate for an additional
30 min. Similar to earlier tests in aqueous media, three trials of 10 test solutions were
prepared in MeCN, where NaFI| concentration was held constant while the concentrations
of nitroaromatics varied.

2.5. Sensitivity of NaFl to Nitroaromatics on an Economical Filter Paper (as a Solid Phase Sensor)

In order to develop a portable sensor, ashless filter paper and glass fiber paper were
cut into small rectangular strips (0.5 in > 1.75in). A NaFl solution was prepared in MeCN
solvent. A paper strip was then immersed in the NaFl| solution for 5 min and air dried for
15 min. Subsequently, 10 yL aliquots comprised of varying concentrations of individual
nitroaromatics were tested on the paper strips containing NaFl to observe changes in
fluorescence under UV lamp illumination.

2.6. Electrochemical Analysis

Cyclic voltammetry experiments were performed using a silver/silver chloride
(Ag/AgCl) reference electrode and platinum working and reference electrodes at a scan
rate of 50 mV/s from —1V to 0 V. A solution of 0.1 M tetrabutylammonium hexafluo-
rophosphate was used as supporting electrolyte. A 0.1 mM solution of 4NP was prepared
in MeCN and 1 mM solution of NaFl was prepared in water. The cyclic voltammogram
was recorded for 4NP in the absence of NaFIl. After adding a few microliters of 1 mM NaFI
into the 4NP and supporting electrolyte solution, the cyclic voltammogram was recorded
in order to investigate proton transfer from 4NP to NaFlI.

3. Results and Discussion

In order to develop a colorimetric sensor for nitroaromatics on the basis of hydrogen
bonding interactions, solvent choice is very important. In this regard, a solvent that can
dissolve nitroaromatics and is miscible with NaFl aqueous solution is most desirable. In
addition, the chosen solvent should avoid hydrogen bonding interactions with nitroaro-
matics. For this reason, Kamlet and Taft parameters of different solvents were investigated
prior to experimentation. A list of Kamlet and Taft parameters for different solvents are
tabulated in Table S2 of Supporting Information. A solvent with high alpha values acts
as a hydrogen bonding donor and a solvent with high beta values serves as a hydrogen
bond acceptor. In this study, NaFl was used to develop an inexpensive ratiometric and
fluorescent sensor for 4NP due to possible -1 and hydrogen bonding interactions between
these two molecules. Absorption spectra of 4NP were also recorded in different solvents
(Figure S1 of the Supporting Information). The peak in the region of 400 nm was assigned to
hydrogen bonding interactions of 4NP with a solvent. Examination of the spectra revealed
hydrogen bonding interactions of the phenolic group of 4NP with all other solvents except
MeCN. Therefore, all solvents with hydrogen bond donor and acceptor capabilities were
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avoided to achieve the bestresponse upon interactions of NaFl with 4NP. Thus, MeCN
was used for additional experiments. Absorption and fluorescence spectra of NaFl and
4NP were also recorded in water as an example of a hydrogen bonding solvent, in order
to validate that hydrogen bonding interactions were playing a key role in developing this
turn off fluorescent sensor for 4NP.

Initially, absorption and fluorescence spectra of each compound, NaFl and nitroaro-
matics, were recorded at various concentrations in a hydrogen bonding solvent (water) as
well as in a non-hydrogen bonding solvent (MeCN), separately, using a UV-Vis absorption
spectrophotometer and a fluorescence spectrophotometer. Absorption wavelength maxima,
molar absorptivity, and fluorescence emission maxima for NaFl| and nitroaromatics in
different solvents are listed in Table 1.

Table 1. Absorption and fluorescence emission maxima and the molar extinction coefficient of all compounds in water and

MeCN.
Fluorescence
Compounds Solvent Absorption Wavelength (nm) Molar Absorptivity (M—1cm—1) Emission
Wavelength (nm)

NaFI H,O/MeCN 490/510 62,500/31,800 515/528
3-nitrophenol (3NP) H,O0/MeCN 225, 290/220, 280 4600, 1500/6100, 2300 —
4-Nitrophenol (4NP) H,O/MeCN 230, 320, 405/225, 310 9300, 8100, 15,700/7200, 10,000 —
4-nitrotoluene (4NT) H,O/MeCN 285/275 8600/12,900 —
2,4-dinitrotoluene (2,4DNT) H,O0/MeCN 250/245 6400/11,300 —

Examination of absorption spectra for NaFl, recorded in two different solvents, re-
vealed a shift of approximately 10 nm at peak maxima (Figure 1). A bathochromic shift of
NaF| peak maxima in MeCN was observed, which is consistent with previously reported
work [16]. This shift is very well correlated with the a and  parameters of Kamlet and
Taft [31,32]. The absorption spectra of NaFl in water, a protic solvent, exhibited an absorp-
tion peak maxima at shorter wavelength, which was attributed to hydrogen bonding in
comparison to MeCN, an aprotic solvent with no tendency to hydrogen bond [18].

NaF| was excited at 490 nm and 510 nm for water and the MeCN solvent, respectively.
The fluorescence emission spectra of NaFl in the two solvents were similar in shape, with a
difference in peak maxima of 10 nm (Figure S2 of the Supporting Information), as observed
for the absorption spectra (Figure 1).

A very interesting change in absorption spectra of the solvated 4NP was observed
when comparing the two different solvents. Notably, a single peak for 4NP at 312 nm
(peak maxima) was observed in MeCN (Figure 2) while a broad absorption spectrum was
observed in water. As shown in Figure 2, a bathochromic shift of peak maxima (322 nm)
was observed in water. In addition, a shoulder at 410 nm was observed in the absorption
spectrum of 4NP in water, which was not observed in MeCN. The additional shoulder
peak was attributed to hydrogen bonding interactions between the phenolic hydrogen of
4NP and water. The red shift of the 4NP absorption peak suggests that the excited state of
4NP is more polar as compared to the ground state [33].
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3.1. NaFl sensor for Nitroaromatics in Aqueous Media

The photophysical properties for a fixed concentration of NaFl in the presence of dif-
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other nitroaromatics due to hydrogen bonding. Since all nitroaromatics are nonfluorescent
molecules, no fluorescence emission results are presented for these nitroaromatics.

3.1. NaFI Sensor for Nitroaromatics in Aqueous Media

The photophysical properties for a fixed concentration of NaFl in the presence of
different concentrations of nitroaromatics in aqueous media were studied. First, NaFl was
exposed to 10 different concentrations of 4NP. Similar to the pure aqueous solution of
NaFl, the absorption peak maxima for NaF| was observed at 490 nm in the presence of
4NP (Figure 3). The peak intensity of 4NP at 320 nm increased as the concentration of 4NP
increased in the solution mixture, while aslight decrease was observed for absorbance of
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bonding solvent (e.g., water). In an aqueous medium, both 4NP and NaFI are more likely

to exhibit hydrogen bonding interactions with the aqueous solvent. Furthermore, inter-
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cantly as the concentration of 4NP increased (Figure 5). A slight decrease in NaFI fluores-
cence emission signal was expected since the absorption intensity of NaFl was also low-
ered. However, the fluorescence emission of NaFl was completely quenched at higher
concentrations of 4NP. This significant quenching of absorption and fluorescence intensi-
ties is attributed to enhanced hydrogen bonding and m-mt interaction of 4NP with NaFl in



Sustain. Chem. 2021, 2

516

the concentration of 4NP increased (Figure 5). A slight decrease in NaF| fluorescence emis-
sion signal was expected since the absorption intensity of NaFI was also lowered. However,
the fluorescence emission of NaFl was completely quenched at higher concentrations of

4NP. This significant quenching of absorption and fluorescence intensities is attributed
to enhanced hydrogen bonding and -1 interaction of 4NP with NaFI in MeCN media in
the ground state. Ratiometric behavior in absorption spectra, and substantial changes in
fluorescence intensities were not observed in aqueous media. Experiments were conducted
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not exhibit similar behavior as 4NP due to intramolecular hydrogen bonding [36]. No
changes in the absorption and fluorescence intensity of NaFl were detected for 3NP due
to its poor hydrogen donor ability. Exploitation of hydrogen bonding ability to prepare
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similar behavior as 4NP due to intramolecular hydrogen bonding [36]. No changes in
the absorption and fluorescence intensity of NaFl were detected for 3NP due to its poor
hydrogen donor ability. Exploitation of hydrogen bonding ability to prepare selective
sensors is well supported in the literature [29,30].

To further prove that the stronger acidic property of 4NP is the primary cause of
quenching, NaFI spectral responses were also recorded in the presence of HCI and NaOH.
In the presence of NaOH, no change in the photophysical properties of NaFl was observed
as shown in Figure S8 of Supporting Information. However, the absorption spectra of NaFl
recorded in the presence of HCl showed a hypsochromic shift as depicted in Figure S9
of Supporting Information. The absorption wavelength maxima in the presence of HCI
is the same as for the neutral fluorescein molecule [23]. Moreover, the fluorescence is
completely quenched in the presence of HCI due to the protonation of fluorescein. This
observation aids in explaining the results observed for NaFI fluorescence emission with
increased concentrations of 4NP in MeCN.

The pure spectrum of NaF| absorption recorded in water did not show any peak shift.
However, there was hydrogen bonding between NaFI and water. Moreover, the peak shift
in the absorption spectra of NaF| was not observed with 4NP as observed in HCI, which
indicates that complete proton transfer did not occur in the ground state. However, it is
loosely bonded to 4NP through hydrogen bonding as bonded in water. Conversely, in
the excited state, complete transfer occurred, which quenched the fluorescence emission
of fluorescein. Under aqueous and basic conditions, NaFI| did not show any fluorescence
quenching of emission. However, it showed significant quenching in acidic media. Thus, it
can be concluded that significant fluorescence quenching of NaFl by 4NP occurred due to
complete proton transfer.

To further elucidate the quenching mechanism of NaFl in the presence of 4NP
in MeCN, fluorescence emission data were analyzed in detail using the Stern—-Volmer
Equation (1) below.

EFO =1+ ksy[Q] (1)

where Fg is the fluorescence emission intensity in the absence of quencher, F is the fluores-
cence emission intensity in the presence of quencher, kgy is the Stern—\Volmer constant, and
Q is the concentration of quencher. A graph of Fy/F versus 4NP concentration is plotted
and is shown in Figure 6. Examination of the upward curvature suggests both static and
dynamic quenching between NaFl and 4NP [37]. This behavior is attributed to hydrogen
bonding interactions between NaF| and 4NP that occur in the ground state as well as the
possibility that NaFl accepts a proton from 4NP in the excited state, which completely
diminished the fluorescence signal of NaFl. In the Stern—Volmer plot, the ratio of Fy/F
gradually increases for low concentrations of 4NP. However, after ~50 uM concentration of
4NP, a steeper slope is observed. Since for all experiments the concentration of NaFl was
held constant at 50 uM, the concentration of 4NP up to 50 uM can only donate one proton
to NaFl and produce monoanion fluorescein. It is well known that the monoprotonated
(monoanionic) form of fluorescein is fluorescent with low quantum yield, while the neutral
fluorescein (diprotonated form) is nonfluorescent [23]. It is possible that at alow concentra-
tion of 4NP, only the monoprotonated form of NaFl is formed, which is weakly fluorescent
as compared to dianionic fluorescein. Therefore, a slight decrease in fluorescence intensity
is observed. At higher concentrations (100 uM) of 4NP, NaFl is neutral (diprotonated), and,
thus, the signal is completely quenched resulting in a drastic decrease in intensity.
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efficiency for all nitroaromatics in both water and MeCN using NaFl is shown in Figure 7.
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The sensitivity of the present sensor was compared with other reported sensors for
4NP in Table S4 of the Supporting Information. The present low-cost NaFl sensor in
MeCN is very sensitive and selective towards 4NP with a high quenching efficiency of
~98% in comparison to other expensive materials, metallic compounds which required



complex synthesis. Moreover, the other sensors are not just selective for 4NP.
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The sensitivity of the present sensor was compared with other reported sensors for
4NP in Table S4 of the Supporting Information. The present low-cost NaFI sensor in MeCN
is very sensitive and selective towards 4NP with a high quenching efficiency of ~98% in
comparison to other expensive materials, metallic compounds which required complex
synthesis. Moreover, the other sensors are not just selective for 4NP.

Since the turn off response was so evident in the solution, a portable inexpensive
paper-based solid sensor was explored. Other studies have shown that fluorescent paper
strips can be developed to have high selectivity and sensitivity towards nitroaromatic
pollutants due to m-m stacking [39]. In this study, a paper-based sensor approach was
explored for accelerating the turn off fluorescence quenching of NaFl in the presence of
nitroaromatic pollutants. MeCN was used to dissolved nitroaromatic compounds since it
can enhance the hydrogen bonding between NaFI and nitroaromatic compounds. Thus,
filter paper could serve as a simple, inexpensive, and portable sensor for the detection
of 4NP. NaF| was adsorbed onto the filter paper and tested for each nitroaromatic. Then,
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of the nitroaromatic pollutant, 4NP, is presented. Results obtained in this study confirm
that this NaFl sensor is quite selective and highly sensitive towards 4NP. The critical in-
teraction between 4NP and NaFl is determined to be a strong hydrogen bonding interac-
tion that produces a significant decrease in absorption and the fluorescence emission sig-
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this NaFI sensor is quite selective and highly sensitive towards 4NP. The critical interaction
between 4NP and NaFl is determined to be a strong hydrogen bonding interaction that
produces a significant decrease in absorption and the fluorescence emission signal intensity
of NaFI. Both dynamic and static quenching occur simultaneously between 4NP and NaFlI
in MeCN due to hydrogen bonding in the ground state and complete proton transfer in the
excited state. An electrochemical experiment also supports a proton transfer mechanism
between 4NP and NaFl. A paper-based portable sensor is demonstrated for the simple,
facile detection of 4NP. Thus, in this manuscript, we have presented a novel, inexpensive,
and portable turn off fluorescent sensor using a hydrogen bonding mechanism that may be
exploited for a variety of other applications.
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