

This PDF is available at <http://nap.nationalacademies.org/26629>

Supporting Individual Risk Assessment during COVID-19 (2022)

DETAILS

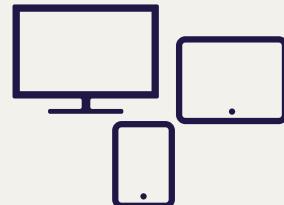
21 pages | 8.5 x 11 | PDF

ISBN 978-0-309-69075-1 | DOI 10.17226/26629

CONTRIBUTORS

National Academies of Sciences, Engineering, and Medicine

BUY THIS BOOK


FIND RELATED TITLES

SUGGESTED CITATION

National Academies of Sciences, Engineering, and Medicine 2022. *Supporting Individual Risk Assessment during COVID-19*. Washington, DC: The National Academies Press. <https://doi.org/10.17226/26629>.

Visit the National Academies Press at nap.edu and login or register to get:

- Access to free PDF downloads of thousands of publications
- 10% off the price of print publications
- Email or social media notifications of new titles related to your interests
- Special offers and discounts

All downloadable National Academies titles are free to be used for personal and/or non-commercial academic use. Users may also freely post links to our titles on this website; non-commercial academic users are encouraged to link to the version on this website rather than distribute a downloaded PDF to ensure that all users are accessing the latest authoritative version of the work. All other uses require written permission. ([Request Permission](#))

This PDF is protected by copyright and owned by the National Academy of Sciences; unless otherwise indicated, the National Academy of Sciences retains copyright to all materials in this PDF with all rights reserved.

Supporting Individual Risk Assessment during COVID-19

Authors

Baruch Fischhoff¹

Susan Joslyn²

Rupali J. Limaye³

Sheila T. Murphy⁴

This rapid expert consultation was produced through the Societal Experts Action Network (SEAN), an activity of the National Academies of Sciences, Engineering, and Medicine that is sponsored by the National Science Foundation.

SEAN links researchers in the social, behavioral, and economic sciences with decision makers to respond to policy questions arising from the COVID-19 pandemic. This project is affiliated with the National Academies' Standing Committee on Emerging Infectious Diseases and 21st Century Health Threats, sponsored by the U.S. Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response.

SEAN is interested in your feedback. Was this rapid expert consultation useful? For further inquiries regarding this rapid expert consultation or to send comments, contact sean@nas.edu or (202) 334-3440.

¹Howard Heinz University Professor, Department of Engineering and Public Policy and Institute for Politics and Strategy, Carnegie Mellon University.

²Professor, Department of Psychology, University of Washington.

³Deputy Director, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health.

⁴Professor of Communication, School for Communication and Journalism, University of Southern California, Annenberg.

Executive Summary

Many individual states and localities have loosened or eliminated mitigation measures as the COVID-19 pandemic has evolved. Individuals who wish to mitigate their risk of contracting COVID-19 must decide on effective strategies in environments that may have returned to pre-pandemic norms. Individuals must assess their level of risk and risk tolerance amid different mitigation measures, regulations, and metrics across states and localities. The public is also exposed to misinformation and disinformation through social and mainstream media—all occurring within a politically polarized environment.

This rapid expert consultation draws on existing social, behavioral, and decision science research to identify actionable guidance for state, local, and tribal decision makers seeking to help members of the public make their own and others' risk assessments related to COVID-19. This guidance comprises the strategies listed in **Box 1**.

BOX 1 Strategies for Supporting Individual Risk Assessment for COVID-19

- **Build trust and credibility:** Transparency is essential to building trust in public health officials, evidence, and recommendations. It requires candor about the limits to existing knowledge and the likelihood that it will change as the pandemic continues to evolve.
- **Foster autonomy and empowerment:** Public health officials must recognize and respect individuals' autonomy in making decisions for themselves and their families. Empowering that autonomy means making the information people need to exercise it authoritative, comprehensible, and accessible.
- **Honor people's emotions and personal stories:** Public health officials must acknowledge the deep emotions and practical challenges that can accompany the decisions individuals are now asked to make. They can demonstrate their concern by hearing personal stories and translating scientific information into terms relevant to individual decisions.
- **Encourage public engagement:** Individuals will be and will feel less alone if they make these decisions as part of a community. Public health officials can foster public engagement by partnering with trusted community organizations that support two-way communications, helping to convey health information and hear individuals' needs.

Introduction

Many states and localities in the United States have loosened or eliminated COVID-19 mitigation measures, including mask mandates, vaccine requirements, and explicit guidelines for returning to work or school after a COVID-19 diagnosis. As a result, individuals must make their own decisions regarding the risks and benefits of various actions, both for themselves and for those who depend on them (e.g. children, aging parents, employees, customers, and students). Those decisions can have health, social, and economic consequences. To make well-informed decisions, individuals must assess the risks their actions can create and reduce. This report summarizes scientific knowledge regarding how public health officials can support the public in making those individually relevant risk assessments.

That support must reflect the uncertainty of the disease, with its ongoing mutations, and complex connections between reported infections, hospitalizations, and deaths. Early on, those indicators often followed similar, time-sequenced patterns, with increased rates of infection leading to increased hospitalizations and then deaths. Over time, though, as vaccination became available and treatment improved, nationally high rates of reported infections were no longer accompanied by comparably high rates of severe outcomes. Nonetheless, variations in vaccination rates and human behavior (e.g., social distancing, conducting and reporting test results) have made it challenging to generalize research results, and medical research continues to reveal new sources of concern and uncertainty (e.g., long COVID, reinfection). Thus, it has become more difficult to assess risks just as the need for those assessments has fallen on a broader public.

That shift in responsibility reflects a shift in the Centers for Disease Control and Prevention's (CDC's) focus from reducing infection and transmission to reducing mortality and strain on the health care system (Centers for Disease Control and Prevention [CDC], 2022a),⁵ a shift that the agency has attributed to the population immunity provided by high levels of vaccination and previous infection, along with the availability of testing and therapeutics (CDC, 2022a). The CDC's new framework reflects the position that COVID-19 will not be eradicated, but must be contained.

As a result of this shift in national priorities, policies for reducing transmission and mortality have fallen to state, local, tribal, and territorial officials, and individuals must now assess their own pandemic responses amid differing mitigation measures, regulations, and metrics across states and localities. What should they do when deciding whether to send their children to school, go to an indoor party, visit someone with compromised immunity, or go back to the office? Moreover, individuals often must make these decisions in a politically polarized environment. How individuals perceive risks and the effectiveness of control measures has been found to affect their decisions regarding self-protective behaviors (Garfin et al., 2021; Reinholtz et al., 2021). This rapid expert consultation⁶ summarizes research examining how individuals understand the risks related to COVID-19 and how public health officials can aid them in increasing that understanding.

⁵The COVID-19 Community Levels framework replaces the Indicators of Community Transmission framework, which had been in place since September 2020, prior to the availability of vaccines. The COVID-19 Community Levels framework focuses on the rate of new cases over the past week, the number of new hospital admissions due to COVID-19, and the percentage of hospital beds occupied by COVID-19 patients, rather than on case counts and test positivity rates.

⁶The full statement of task states: "The National Academies of Sciences, Engineering, and Medicine will produce a rapid expert consultation to assist decision makers in communicating about assessing personal and community risks related to COVID-19 to guide individual decision-making. This assessment will take into consideration that many states and localities have started rolling back mitigation measures, leaving individuals to make their own decisions about protective behaviors and risks. Drawing from research on science and risk communication, decision-making, and psychology, this document will identify actionable guidance and strategies that state and local government decision-makers can use in helping individuals assess their own and others' COVID-19 risk in a context where many mitigation measures are being lifted. This document will be designed to be of practical use to decision makers, but will not recommend specific actions or include other recommendations. It will be reviewed in accordance with institutional guidelines."

CURRENT CONTEXT OF COVID-19

Daily case counts have ebbed and flowed over the pandemic, largely reflecting the transmission patterns of different variants. Figure 1 shows COVID-19 case counts and trends over time, from January 2020 to June 9, 2022, in the United States as reported to the CDC. On June 9, 2022, there were 95,582 new cases and 205 deaths (CDC, 2022b). These figures are lower than the 1,260,526 cases reported on January 10, 2022, and the 4,215 deaths reported on February 1, 2022, at the height of the omicron surge (CDC, 2022b). The reported numbers of cases vary across the country; as of June 9, 2022, for example, the total case rate per 100,000 population was highest for Hawaii at 80 and lowest for South Dakota at 16 (CDC, 2022b).

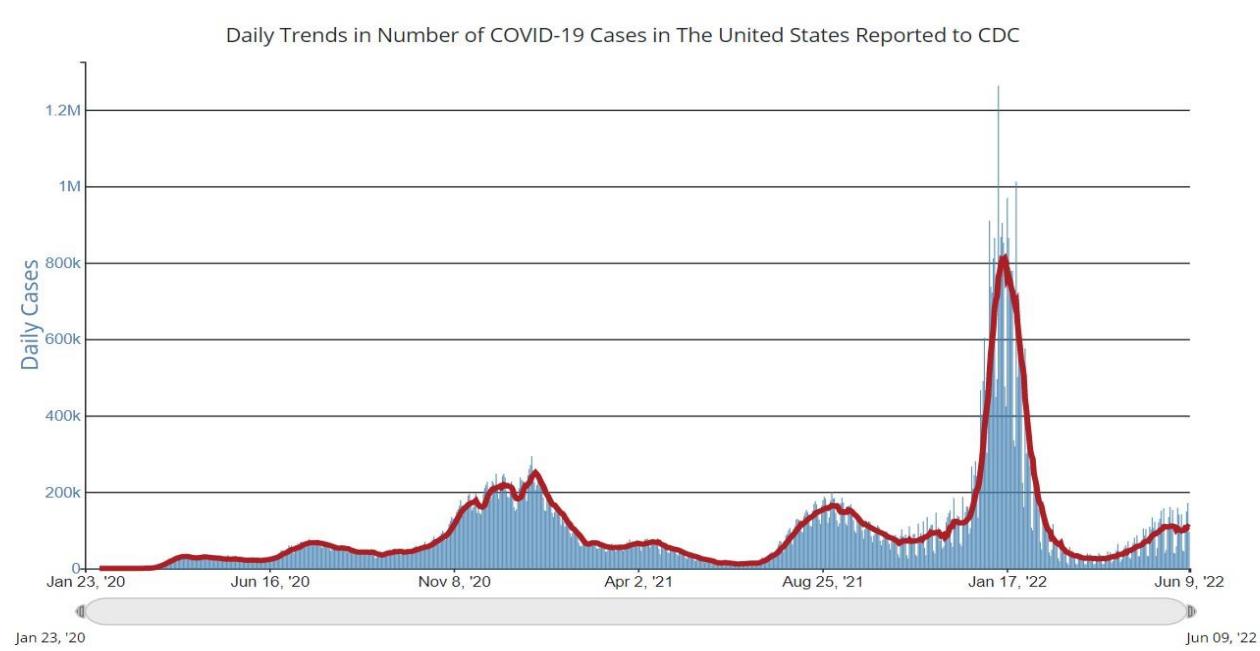


Figure 1 Daily trends in number of COVID-19 cases in the United States reported to the Centers for Disease Control and Prevention.

Source: CDC (2022b).

Importantly, the virus continues to have a disproportionate impact on populations long subject to health inequities. As of March 2022, the COVID-19 cumulative crude death rates per 100,000 population were 453 for Native Americans, 347 for Pacific Islanders, and 343 for Blacks, compared with 325 for Whites, 261 for Latinx individuals, and 160 for Asian Americans.⁷ The CDC data tracker also shows that as of May 26, 2022, 71.5 percent of counties in the United States were classified as having low COVID-19 community levels, with levels classified as medium in 20.7 percent and as high in 7.8 percent (CDC, 2022c). This variation in COVID-19 levels across the country corresponds to differences in the risks facing individuals living in these communities, and thus in the decisions that may be appropriate for them.

Moreover, as the pandemic has evolved, so, too, have the benchmarks used to gauge community transmission, complicating understanding of risk. Individuals must now, for example, recalibrate their risk assessments to reflect the CDC's shift in focus from the portion of positive lab tests to hospitalizations and available hospital capacity (CDC, 2022d). That shift has meant that some counties previously considered high risk are now considered low risk.

⁷See <https://www.apmresearchlab.org/covid/deaths-by-race>.

After interpreting these population-level statistics, individuals must integrate them with other emerging evidence, such as increased reporting of the long-term health⁸ effects of COVID-19 (Lopez-Leon et al., 2021) and its mental health impacts (NASEM, 2021a; Saltzman et al., 2021). Individuals must also consider nonhealth factors, such as effects on their businesses, workforce participation, and childcare responsibilities (Bartik et al., 2020; NASEM, 2021a,b; Wellenius et al., 2021). All these impacts may vary across groups, as will group members' resources for managing them.

CONSIDERATIONS FOR SUPPORTING INDIVIDUAL RISK ASSESSMENT

The lifting of many public health restrictions presents a special dilemma for people at high risk of adverse outcomes from COVID-19, such as those who are immunocompromised or who care for people who are. With rare exceptions, individuals must assess their personal risks while having only aggregate statistics and general guidance. In some cases, that guidance has remained constant throughout the pandemic, even as seemingly relevant conditions have changed (e.g., N95 masks are highly effective, droplets are dangerous, ventilation matters). In other cases, the guidance has changed, with varying levels of explanation (e.g., fabric face masks are useful as part of layered protection, fomites are a minor risk, aerosols are a major problem).

Public health officials need to provide individuals with the information required to estimate their own risks and the risks posed by others (e.g., sitting next to unmasked or unvaccinated individuals in meetings, caring for their children or aged parents). Unless officials provide that information in ways that are readily found and used, people will look elsewhere, rendering them vulnerable to mis- and disinformation (Fischhoff, 2020). Studies from early in the pandemic found that communications were uncoordinated, untested, ambiguous, and conflicting, leading to confusion and distrust (Garfin et al., 2021; NASEM, 2020a, 2021c).

The present, new context for the pandemic requires individuals to understand their risk level in different settings, as well as the costs and expected benefits of possible ways to reduce that risk. To that end, they will need to translate general statistics to the specific settings where they live, work, worship, travel, and play, as well as to estimate the support they will receive from their employers, communities, families, and health systems in sustaining their choices and coping with negative health outcomes. Without necessary support from the government, employers, communities, and families, individuals' decision options may be limited. People with accurate risk perceptions may be forced to act against their own best judgment unless their employers allow needed time off, they have adequate childcare or elder care, they have access to protective measures (vaccines, masks), and they can access appropriate medical treatment.

Assessing personal COVID-19 risks requires translating population risks into personally relevant terms, accommodating such health-related risk factors as obesity, diabetes, chronic obstructive pulmonary disease (COPD), or immunocompromised status (e.g., due to age, cancer treatment); COVID-19 vaccination status; the immunity provided by prior COVID-19 infections; and the behavior of others around them (Joslyn et al., 2021). And they must do so in an often-crowded information environment. They must find the good information in a sea of claims and counterclaims, some of it well-meaning, some of it mis- and disinformation. They must integrate valid information that can use different terms, work off different data sets, address different audiences, and reveal different

⁸There is emerging evidence of potential negative health sequelae following the acute phase of COVID-19 (e.g., recent findings on diabetes and heart problems) and the potential for long COVID, even among people who are up to date in vaccination and healthy (Xie et al., 2022).

uncertainties. The sensitivity of individuals' decisions to their perceptions of risks, costs, and supports has been documented in many settings, including COVID-19 (Gerace et al., 2022). Without accurate information, individuals cannot make effective decisions, however hard they try and however self-aware they are. Table 1 lists personal, social network, and physical environment risk factors that may be taken into consideration when individuals assess their COVID-19 risk. Some online risk assessment calculators have been developed that ask users for a variety of data on such characteristics as location, type of activity, number of people involved, demographics, preexisting conditions, and lifestyle that can be used to calculate an individual's relative risk of COVID-19 exposure and infection. However, these risk calculators have yet to be standardized.

Table 1 Risk Factors for COVID-19

Personal	Social Network	Physical Environment
<ul style="list-style-type: none"> • Age: young or old • Race/ethnicity • Gender assigned at birth • Health-related risk factors: asthma, diabetes, heart disease, obesity • Weakened immune system • Vaccination status: vaccinated + boosted, vaccinated, unvaccinated • Presence of COVID-19 symptoms: fever, body aches, sore throat, headache, etc. 	<ul style="list-style-type: none"> • Elderly • Young children • Immunocompromised • Community transmission rates • Close contact with someone with COVID-19 infection • Vaccination status: vaccinated + boosted, vaccinated, unvaccinated 	<ul style="list-style-type: none"> • Mask usage • Social distancing • Location: number of community cases • Housing situation: crowded conditions • Transportation: car, public transit, airplane • Work environment: remote telework, office or in person, front-line worker • Event space: indoor or outdoor, ventilated or unventilated, air filtration

Previous rapid expert consultations and reports of the National Academies of Sciences, Engineering, and Medicine (NASEM) have provided guidance focused on communicating uncertainty; presenting clear and aligned public health messages; engaging communities in building confidence in COVID-19 vaccines; and ensuring equitable access to testing, therapeutics, and vaccines (NASEM, 2017, 2020a; 2021c,d,e). The NASEM (2020a) report *A Framework for Equitable Allocation of COVID-19 Vaccine* distinguishes two mutually exclusive but mutually supportive activities: risk communication and health promotion.

Risk communication, the focus of this rapid expert consultation, provides just the facts, including the associated uncertainties, that people need to have when making independent personal decisions and evaluating public policies (NASEM, 2020a). Health promotion seeks to induce specific behaviors, whether overtly (e.g., with persuasion or incentives) or covertly (e.g., with manipulations of choice architecture) (NASEM, 2020a). Risk communication supports health promotion by demonstrating officials' respect for the public and by creating the mental models needed to understand the rationale for recommended actions (Bruine de Bruin and Bostrom, 2013). Risk communication is undermined by the perception that facts are being spun to manipulate recipients' behavior.

Individual decisions have always played a key role in the pandemic. That role has grown with the elimination of public mandates and other mitigation measures. People are faced with many decisions—for example, “Should I visit my family?” “Should I get tested before that visit?” “Should I go to a concert?” “Should I wear a mask?” In this new context, people will not only need to assess the

risks, but also to feel personal responsibility for managing them, sometimes supported by social pressures, sometimes not. The science of risk communication studies how to help people assess risks; use those assessments in their decision making; and, where necessary, defend them (Fischhoff, 2013).

THE SCIENCE OF RISK COMMUNICATION

Risk communication has been formally defined by the World Health Organization (WHO) as “the real-time exchange of information, advice and opinions between experts or officials, and people who face a threat (hazard) to their survival, health or economic or social well-being” (World Health Organization, 2020a, para. 1). The science of health risk communication focuses on those goals in the specific context of health-related decisions (DiClemente and Jackson, 2017).

The NASEM (2020a) report *Framework for Equitable Allocation of COVID-19 Vaccine* emphasizes the need for risk communication to go hand in hand with community engagement. The report also states that those communications need to be “(1) consistent with the evidence, (2) consistent with one another, (3) responsive to public needs, (4) tested for comprehension by members of target audiences, and (5) delivered by trusted sources through effective channels” (NASEM, 2020a, p. 176).

Risk communication research has identified factors that can influence perceptions of risk and hence must be addressed by risk communications. Those factors include the magnitude of the risks, how well they are understood by those exposed to them and by science, how controllable they appear to be, and how much of a feeling of dread they evoke (Slovic, 1987). Failure to address these factors can be seen in the atmosphere of mistrust accompanying the Ebola outbreak in West Africa (Bedrosian, et al., 2016; Transparent Communication in Epidemics, 2014). In contrast, after some initial missteps, U.S. authorities achieved a relatively high level of understanding among the public of the risk posed by that outbreak (Fischhoff et al., 2018).

Risk communication research has also shown the importance of providing information in the form that people need. For example, comparisons of relative risk are inherently incomplete; an action doubling a risk may raise it from 1 in a million to 2 in a million or from 1 in 10 to 1 in 5. Such comparisons are misleading when individuals guess the wrong baseline or erroneously infer that the source would not have used a big number if it were not a big risk.

A rapid scoping review⁹ of communication during the COVID-19 pandemic found that people receive pandemic-related health risk information from a broad range of formal channels and sources, including television; newspapers; scientific articles and summaries; federal, state, and local government websites; radio; government SMSs; and a web of interpersonal and informal sources, including friends, family, health care professionals, social media, and other online outlets (Berg et al., 2021).

Research on the COVID-19 pandemic has also shown how individuals’ decisions regarding self-protection and vaccine uptake reflect their risk perceptions (Garfin et al., 2021; Reinholtz et al., 2021; Viswanath et al., 2021). For example, people who perceived a greater risk of contracting or dying

⁹A scoping review is a preliminary assessment of the potential size and scope of available research literature. The aim is to identify the nature and extent of research evidence on a topic, usually including ongoing research (Grant and Booth, 2009).

from COVID-19 were more likely to practice social distancing and less likely to engage in risky behaviors, such as dining indoors (Garfin et al., 2021; Reinholtz et al., 2021). Individuals' personal risk assessments also reflect their beliefs about the effects of others' behavior, such mask wearing and vaccination (Joslyn et al., 2021).

Box 2, drawing on the science of risk communication, presents strategies for meeting the key challenges facing state, local, and tribal decision makers seeking to encourage sound risk assessment and decision making by individuals in their specific communities. The sections below elaborate on each in turn, providing practical implications and points of access to the supporting research literatures.

BOX 2

Strategies for Supporting Individual Risk Assessment for COVID-19

- **Build trust and credibility:** Transparency is essential to building trust in public health officials, evidence, and recommendations. It requires candor about the limits to existing knowledge and the likelihood that it will change as the pandemic continues to evolve.
- **Foster autonomy and empowerment:** Public health officials must recognize and respect individuals' autonomy in making decisions for themselves and their families. Empowering that autonomy means making the information people need to exercise it authoritative, comprehensible, and accessible.
- **Honor people's emotions and personal stories:** Public health officials must acknowledge the deep emotions and practical challenges that can accompany the decisions individuals are now asked to make. They can demonstrate their concern by hearing personal stories and translating scientific information into terms relevant to individual decisions.
- **Encourage public engagement:** Individuals will be and will feel less alone if they make these decisions as part of a community. Public health officials can foster public engagement by partnering with trusted community organizations that support two-way communications, helping to convey health information and hear individuals' needs.

Build Trust and Credibility

Officials need to explain how their decisions are made and why they change over time (Smith, 2006). Such transparency demonstrates respect for the public's right to know and its ability to understand. Officials can prepare the public for expected changes of course that will occur as part of the pandemic and frame official statistics, recommendations, and policies as adaptive rather than erratic.

Such explicit acknowledgment of uncertainty might have reduced the confusion that has plagued communications since the onset of the pandemic. For example, WHO's initial mask message, on January 29, 2020, was that face masks offered limited protection against the spread of coronavirus for members of the public (WHO, 2020b). Despite emerging evidence to the contrary (e.g., NASEM, 2020b), WHO reiterated the limited value of masks for members of the public in a subsequent message on April 6, 2020 (WHO, 2020c). By some accounts, WHO sought to downplay the value of

masks so they would be reserved for health care workers (Jingnan, 2020). Explaining that motivation would have expressed trust in the public to reserve masks for those with the greatest need. It would have protected WHO from criticism for inconsistency and inaccuracy when masks were later recommended for all. When people trust official health information, public health outcomes can improve (e.g., Quinn et al., 2013).

Such transparency enhances the credibility essential to effective communication (Briñol and Petty, 2009). Credibility increases with the speed and accuracy with which information is provided and the empathy and openness shown for its audience (Agley, 2020; Devine et al., 2021; Reynolds and Quinn, 2008). The goal is “social trust” (Siegrist, 2021) in “those who have the responsibility for making decisions and taking actions related to the management of technology, the environment, medicine, or other realms of public health and safety” (Siegrist, Cvetkovich, and Roth, 2000, p. 354). Research on COVID-19 reinforces the general finding that social trust increases the adoption of mitigation measures (Siegrist and Bearth, 2021).

The actions of officials during the pandemic will naturally be seen in the context of their other actions. That context includes historical legacies of injustices in medical research and services, along with current structural inequities (Evans and Hargittai, 2020), creating a priori distrust that new communications must overcome. The NASEM (2020a) report *Framework for Equitable Allocation of COVID-19 Vaccine* describes strategies for achieving warranted trust. Foremost among them is partnering with community-serving organizations that can provide trusted channels, tailor messages, and hear community concerns. Emphasizing common values and aligned interests can also help in building trust.

Those recommendations reflect the large body of research showing the value of building trust by engaging credible, trusted people and sources within communities (Balog-Way, McComas, and Besley, 2020; Institute of Medicine, 1999; NASEM, 2008, 2021c,d,e). Research on COVID-19 has found that greater trust in information sources is associated with greater adherence to recommendations (Coroiu et al., 2020; Fridman et al., 2020). A study in Arkansas found that such trusted sources included academic medicine and health science researchers, local health care providers, and public health organizations and leaders (Purvis et al., 2021). A study of U.S. adults found that traditional media (television, radio, and newspapers) were the most trusted sources, followed by government websites and social media (Ali et al., 2020). That study also found that trust varied by gender, age, education level, and political affiliation (Ali et al., 2020). Practical experience from the early COVID-19 outbreak in Lombardy, Italy, showed the importance of using the communication methods that people trusted most (Brivio, Oliveri, and Pravettoni, 2020), which requires knowing the views of each population group.

The trust warranted by an organization’s risk communications depends on its institutional accountability¹⁰ mechanisms for ensuring and demonstrating its transparency. The framework proposed in the NASEM (2020a) report *A Framework for Equitable Allocation of COVID-19 Vaccine* is intended to “not only be equitable, but also [to] be perceived as equitable by audiences who are socioeconomically, culturally, and educationally diverse, and who have distinct historical experiences with the health system” (p. 33). To that end, the report proposes a framework that “can be easily and equally well understood by the diverse audiences that the vaccine allocation mechanism must

¹⁰Accountability refers to the objective and balanced reporting of an entity’s activities and policies, which represents the entity’s acceptance of responsibility (Rawlins, 2008).

address" and that "distinguishes scientific and ethical judgments in their application" (p. 34).

Had early communications regarding masks reflected such accountability mechanisms, some of the associated controversy and erosion of trust might have been avoided. Had subsequent communications included the evidence supporting the changes in policy, trust might have been slowly regained. Such explanations show health officials' competence, in tracking the evidence, and their respect for the public, in sharing it. They require sharing uncertainties, avoiding spin, and preparing people for changes. In an open society with multiple information sources, health officials are vulnerable to criticism if they exaggerate risks to motivate action or underplay them to reassure the public (NASEM, 2020a). If officials withhold information, people look for it elsewhere, potentially in less authoritative or beneficent sources (Kovic and Füchslin, 2018).

When asked, members of the public report that they want to know the truth, even if it is bad (Fischhoff et al., 2018; Garfin et al., 2021). One COVID-19-related study found that providing negative information can increase trust (Petersen et al., 2021). Another found that when officials acknowledge uncertainty, they build trust and do not undermine confidence in the information or its source (van der Bles et al., 2020). A study of weather forecasts found that adding numeric expressions of uncertainty "increases trust and gives people a better idea of what to expect in terms of both the range of possible outcomes and the amount of uncertainty in the particular situation, all of which benefit precautionary decisions" (Joslyn and LeClerc, 2013, p. 308). A related study (Grounds and Joslyn, 2018) found that numeric probabilistic forecasts were as useful for individuals with no more than a high school education as for those with a college degree. These authors emphasize the need for preparatory research ensuring that the expression of uncertainty is compatible with both the decisions people face and their cognitive processes (also, Fischhoff and Davis, 2014).

FOSTER AUTONOMY AND EMPOWERMENT

Such user-centered preparatory research is essential for all communications, especially when sharing unfamiliar information with diverse individuals from different backgrounds. Without the feedback that preparatory research provides, officials may mistakenly assume that their audience cannot understand them when they in fact have not made themselves clear. If officials give up on the public, they may undermine its autonomy instead of empowering it to participate in personal and public decision making (Patton, 2008). When officials make a recommendation (e.g., wearing masks, returning to school), they need to explain its rationale and acknowledge individuals' right to choose.

Research on science and risk communication reveals ways for scientists to earn trust by identifying and overcoming barriers to understanding. It often finds that rigorously developed 898989 messages¹¹ can make potentially abstruse scientific information clear (Joslyn and Demnitz, 2021). The first step is learning how people intuitively think about an issue. Those "mental models" of how things work are acquired over a lifetime of formal and informal science education, personal experience, and input from other sources (Gentner and Stevens, 1983; Johnson-Laird, 1983). Scientific claims that connect with mental models enable people to absorb more information than is achievable with a string of facts while empowering them to explain their beliefs and choices to themselves and others (Bruine de Bruin and Bostrom, 2013).

If people do not understand officials' messages, they may rightly assume that officials do not understand them. To reduce that risk, messages need to be tested before they are disseminated.

¹¹This is a short code that can send SMS and MMS messages to mobile phones.

Researchers have evaluated ways to communicate many topics (as illustrated by references cited in this report). Those evaluations are subjected to the same arduous process required for any peer-reviewed research. In practical settings, though, testing can be as simple as asking a few people, drawn from the target audience, to think aloud as they read successive drafts of a communication. These “concurrent verbal protocols” (Ericsson and Simon, 1994) may reveal passages that seemed clear to the authors but confused the readers, passages that seemed clear to the readers but were not interpreted as intended, missing facts that the authors mistakenly thought went without saying, and tone that was inadvertently inappropriate. Such simple testing may reveal that officials have misinterpreted their public’s ability, opportunity, and motivation to pursue recommended actions (MacFarlane et al., 2021; Michie, Van Stralen, and West, 2011). Such testing can also guide tailoring of communications to audiences varying in their numeracy, statistical, and graphic literacy skills (Galesic and Garcia-Retamero, 2010, 2011). And it can help in selecting among different visual and numerical formats (e.g., icon arrays, natural frequencies) (Trevena et al., 2013).

Fostering empowerment requires attention to a message’s tone and framing as well as its content (Lakoff, 2010). For example, telling people to “calm down” implies that they are in a panic, conveying a lack of confidence in them, even though panic is rare (Jones, 2020; Tierney, 2003; Wessely, 2005). Communications must also recognize the personal values that can lead reasonable people to choose different health behaviors (Nieh et al., 2018). Although often stable, personal values may change or have uncertain implications for responding to novel threats like the COVID-19 pandemic (Daniel et al., 2022).

However excellent their content, communications have little value unless they can be found easily, in the places where people naturally look. For example, websites without proper user testing may, effectively, hide vital information in plain sight. Effective dissemination, too, requires preparatory research and may benefit from community partnerships. A 2007 outbreak of acute hemorrhagic conjunctivitis in Keelung City and Taipei City was controlled through a multifaceted risk communication plan that included interpersonal messages, print, and mobile technology channels (Yen et al., 2009). And Lejano and colleagues (2020) embedded risk communication in a community-building program in a refugee resettlement camp.

HONOR PEOPLE’S EMOTIONS AND PERSONAL STORIES

Emotions can both aid decision making, by directing attention to problems, and undermine it, by clouding judgments (Finucane et al., 2000). Years of research on “fear appeals” has found that “messages that incite fear tend to only be successful in producing a desired behavior when people feel a strong sense of efficacy” (Van Bavel et al., 2020, p. 461). Thus, when decisions are difficult to make and carry out and their outcomes are uncertain, communications need to acknowledge those realities, thereby demonstrating empathy and sympathy for decision makers’ circumstances. That recognition can also reduce outcome bias, which occurs when people judge decisions by how things turned out rather than by how thoughtfully they were made (Baron and Hershey, 1988).

COVID-19 stories that contextualize risks without resorting to fear tactics can help people assess risk by envisioning possible situations and creating mental models for how to behave in those situations. Narratives that acknowledge the challenges individuals face and their capabilities can show empathy, emotion, compassion, and concern (Pfattheicher et al., 2020; Reynolds and Quinn, 2008; Seeger, 2006). Narratives can also address the weariness that many people feel with the prolonged pandemic, including its often poor communications (Guidry et al., 2017). Narratives have been found

effective in other health settings, resulting in better recall and fewer counterarguments (Green, 2006; Leshner et al., 2018; Shaffer et al., 2021), although a challenge with narratives is properly representing the diversity of potential scenarios (Bruine de Bruin et al., 2009). An example of the use of narratives can be seen in cancer research in a randomized controlled trial that compared the impact of a culturally based narrative film and a nonnarrative film. The culturally based narrative film was found to be more effective in increasing cervical cancer–related knowledge, attitudes, and intentions among Mexican Americans than the nonnarrative film (Murphy et al., 2015).

ENCOURAGE PUBLIC ENGAGEMENT

As the COVID-19 pandemic wears on and new threats (e.g., monkeypox) emerge, consistent engagement strategies are needed to avoid overwhelming the public. One such strategy is engaging with trusted, credible community partners who are committed to sustained relationships (Lewandowsky, Ecker, and Cook, 2017). Identifying trusted and credible messengers requires community partnerships and buy-in, which can be achieved through community engagement (NASEM, 2020a). Community engagement is particularly important given the dynamic nature of a pandemic, which means that treatment and mitigation guidance is evolving (NASEM, 2020a). A two-way process between officials and community leaders who are trusted and credible includes: (1) continuous community engagement that entails establishing two-way communication channels and hearing multiple voices; (2) engagement using multiple channels to accommodate those who cannot attend in-person meetings, those who cannot access the internet, those who are incarcerated, and those who speak other languages; (3) timeliness, which requires monitoring and anticipating community needs; and (4) trustworthiness, which involves maintaining transparency and providing information when problems are encountered (NASEM, 2020a).

A second public engagement strategy is acknowledging the public’s contributions and sacrifices in the collective response to the pandemic (Levy, 2020). A third is tailoring communication processes and content to the social contexts of diverse publics, including their group identities, ages, genders, resources, and norms (Airhihenbuwa et al., 2020; Cash et al., 2003). Such tailoring shows awareness of how different communities are affected by the pandemic and can be sensitive to preferred forms of engagement, such as whether people prefer prescriptive guidance; suggested guidance; or none at all, just the facts they need to decide for themselves.

A public engagement strategy also needs to anticipate disagreements in a political and value-laden environment, some of which will challenge the legitimacy of the evidence being communicated (Cairney, 2016; Head, 2007; Lewandowsky et al., 2017; Mulgan, 2005). Health officials can take the initiative by evoking the overarching social norm that guides them: serving all the people. That stance may be easier to maintain when the focus is on empowering individual decisions rather than, as it has been, on encouraging or enforcing mandatory policies. When addressing the risks that people create for others (e.g., not wearing a mask in a crowded environment), communications can evoke the shared responsibility to protect those who cannot protect themselves (Cammett and Lieberman, 2020; Grant and Hofmann, 2011; Schultz et al., 2007). That strategy, which is faithful to the public health mission, may also elicit a sense of togetherness, encouraging people to look beyond differences and build a sense of shared fate and responsibility (Jetten et al., 2020; Van Bavel et al., 2020; van Zomeren, Postmes, and Spears, 2008). A study of 6,000 respondents in 11 countries found that whether people believed “we are all in this together and we all need to come out of it together” predicted whether they reported adhering to COVID-19 mitigation measures (Jetten et al.,

2020).

CONCLUSION

The continuing evolution of the COVID-19 pandemic has seen a shift from societal control to individual decision making. If individuals are to bear that responsibility effectively, they need support in assessing risks and choosing among ways to manage them. Central to that support is clear, accurate, transparent, agile, trustworthy information, delivered by trusted, credible messengers in ways that people can easily access, understand, and use. Research on communication identifies strategies for providing these communications in ways that empower individuals to make sound decisions while fostering trust in the sources of the information. Central to these strategies is listening to people in order to understand their needs, desires, constraints, and resources, and then continuing to listen when revising communications as people respond and circumstances change.

SEAN is interested in your feedback. Was this rapid expert consultation useful? Send comments to sean@nas.edu or (202) 334-3440.

REFERENCES

Agley, J. (2020). Assessing changes in US public trust in science amid the COVID-19 pandemic. *Public Health*, 183, 122–125. DOI: <https://doi.org/10.1016/j.puhe.2020.05.004>.

Airhihenbuwa, C.O., Iwelunmor, J., Munodawafa, D., Ford, C.L., Oni, T., Agyemang, C., Mota, C., Ikuomola, O.B., Simbayi, L., Fallah, M.P., Qian, Z., Makinwa, B., Niang, C., and Okosun, I. (2020). Peer reviewed: Culture matters in communicating the global response to COVID-19. *Preventing Chronic Disease*, 17, 1–8. DOI: <http://dx.doi.org/10.5888/pcd17.200245>.

Ali, S.H., Foreman, J., Tozan, Y., Capasso, A., Jones, A.M., and DiClemente, R.J. (2020). Trends and predictors of COVID-19 information sources and their relationship with knowledge and beliefs related to the pandemic: Nationwide cross-sectional study. *JMIR Public Health and Surveillance*, 6(4), 1–15. DOI: <https://doi.org/10.2196/21071>.

Balog-Way, D., McComas, K., and Besley, J. (2020). The evolving field of risk communication. *Risk Analysis: An Official Publication of the Society for Risk Analysis*, 40(S1), 2240–2262. DOI: <https://doi.org/10.1111/risa.13615>.

Baron, J., and Hershey, J.C. (1988). Outcome bias in decision evaluation. *Journal of Personality and Social Psychology*, 54(4), 569–579. DOI: <https://doi.org/10.1037/0022-3514.54.4.569>.

Bartik, A.W., Bertrand, M., Cullen, Z., Glaeser, E.L., Luca, M., and Stanton, C. (2020). The impact of COVID-19 on small business outcomes and expectations. *Proceedings of the National Academy of Sciences*, 117(30), 17656–17666. DOI: <https://doi.org/10.1073/pnas.2006991117>.

Bedrosian, S.R., Young, C.E., Smith, L.A., Cox J.D., Manning, C., Pechta, L., Telfer, J.L., Gaines-McCollom, M., Harben, K., Holmes, W., Lubell, K.M., McQuiston, J.H., Nordlund, K., O'Connor, J., Reynolds, B.S., Schindelar, J.A., Shelley, G., and Daniel, K.L. (2016). Lessons of risk communication and health promotion: West Africa and United States. *Morbidity and Mortality Weekly Report Supplements*, 65(3), 68–74. DOI: <http://dx.doi.org/10.15585/mmwr.su6503a10>.

Berg, S.H., O'Hara, J.K., Shortt, M.T., Thune, H., Brønnick, K.K., Lungu, D.A. Røislien, J., and Wiig, S. (2021). Health authorities' health risk communication with the public during pandemics: A rapid scoping review. *BioMed Central Public Health*, 21(1), 1–23. DOI: <https://doi.org/10.1186/s12889-021-11468-3>.

Briñol, P., and Petty, R.E. (2009). Source factors in persuasion: A self-validation approach. *European Review of Social Psychology*, 20(1), 49–96. DOI: <https://doi.org/10.1080/10463280802643640>.

Brivio, E., Oliveri, S., and Pravettoni, G. (2020). Empowering communication in emergency contexts: Reflections from the Italian coronavirus outbreak. *Mayo Clinic Proceedings*, 95(5), 849–851. DOI: <https://doi.org/10.1016/j.mayocp.2020.03.021>.

Bruine de Bruin, W., and Bostrom, A. (2013). Assessing what to address in science communication. *Proceedings of the National Academy of Sciences*, 110 (Supplement 3), 14062–14068. DOI: <https://doi.org/10.1073/pnas.1212729110>.

Bruine de Bruin, W., Güvenç, Ü., Fischhoff, B., Armstrong, C.M., and Caruso, D. (2009). Communicating about xenotransplantation: Models and scenarios. *Risk Analysis*, 29, 1105–1115. DOI: <https://doi.org/10.1111/j.1539-6924.2009.01241.x>.

Cairney, P. (2016). *The politics of evidence-based policy making*. London: Palgrave Pivot.

Cammett, M., and Lieberman, E. (2020). Building solidarity: Challenges, options, and implications for COVID-19 responses. *COVID-19 Rapid Response Impact Initiative White Paper*, 4. Available: <https://ethics.harvard.edu/files/center-for-ethics/files/safrawhitepaper4c.pdf?m=1585845049>.

Cash, D.W., Clark, W.C., Alcock, F., Dickson, N.M., Eckley, N., Guston, D.H., Jäger, J., Mitchell, R.B., and Mitchell, R. B. (2003). Knowledge systems for sustainable development. *Proceedings of the National Academy of Sciences*, 100(14), 8086–8091. DOI: <https://doi.org/10.1073/pnas.1231332100>.

Centers for Disease Control and Prevention (CDC). (2022a). *COVID-19 community levels*. Available: <https://www.cdc.gov/coronavirus/2019-ncov/your-health/covid-by-county.html>.

_____. (2022b). *Trends in number of COVID-19 cases and deaths in the US reported to CDC, by state/territory*. Available: https://covid.cdc.gov/covid-data-tracker/#trends_dailycases.

_____. (2022c). *COVID-19 integrated county view*. Available: https://covid.cdc.gov/covid-data-tracker/#county-view?list_select_state=all_states&list_select_county=all_counties&data-type=CommunityLevels.

_____. (2022d). *Indicators for Monitoring COVID-19 Community Levels and Making Public Health Recommendations*. Available: <https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/indicators-monitoring-community-levels.html>.

Coroiu, A., Moran, C., Campbell, T., and Geller, A.C. (2020). Barriers and facilitators of adherence to social distancing recommendations during COVID-19 among a large international sample of adults. *PLOS ONE*, 15(10), 1–20. DOI: <https://doi.org/10.1371/journal.pone.0239795>.

Daniel, E., Bardi, A., Fischer, R., Benish-Weisman, M., and Lee, J.A. (2022). Changes in personal values in pandemic times. *Social Psychological and Personality Science*, 13(2), 572–582. DOI: <https://doi.org/10.1177%2F19485506211024026>.

Devine, D., Gaskell, J., Jennings, W., and Stoker, G. (2021). Trust and the coronavirus pandemic: What are the consequences of and for trust? An early review of the literature. *Political Studies Review*, 19(2), 274–285. DOI: <https://doi.org/10.1177/1478929920948684>.

DiClemente, R., and Jackson, J. (2017). Risk communication. In *International encyclopedia of public health* (pp. 378–382). Elsevier Inc. DOI: <https://doi.org/10.1016/B978-0-12-803678-5.00389-1>.

Ericsson, A., and Simon, H. (1994). *Verbal reports as data* (2nd ed.). Cambridge, MA: MIT Press.

Evans, J.H., and Hargittai, E. (2020). Who doesn't trust Fauci? The public's belief in the expertise and shared values of scientists in the COVID-19 pandemic. *Socius*, 6, 1–13. DOI: <https://doi.org/10.1177/2378023120947337>.

Finucane, M.L., Alhakami, A., Slovic, P., and Johnson, S.M. (2000). The affect heuristic in judgments of risks and benefits. *Journal of Behavioral Decision Making*, 13(1), 1–17. DOI: [https://psycnet.apa.org/doi/10.1002/\(SICI\)1099-0771\(200001/03\)13:1%3C1::AID-BDM333%3E3.0.CO;2-S](https://psycnet.apa.org/doi/10.1002/(SICI)1099-0771(200001/03)13:1%3C1::AID-BDM333%3E3.0.CO;2-S).

Fischhoff, B. (2013). The sciences of science communication. *Proceedings of the National Academy of Sciences*, 110 (Supplement 3), 14033–14039. DOI: <https://doi.org/10.1073/pnas.1213273110>.

_____. (2020). Making decisions in a COVID-19 world. *Journal of the American Medical Association*, 323(22), 139–140. DOI: <https://doi.org/10.1001/jama.2020.10178>.

Fischhoff, B., and Davis, A.L. (2014). Communicating scientific uncertainty. *Proceedings of the National Academy of Sciences*, 111 (Supplement 4), 13664–13671. DOI: <https://www.pnas.org/cgi/doi/10.1073/pnas.1317504111>.

Fischhoff, B., Wong-Parodi, G., Garfin, D., Holman, E.A., and Silver, R. (2018). Public understanding of Ebola risks: Mastering an unfamiliar threat. *Risk Analysis*, 38, 71–83. DOI: <https://doi.org/10.1111/risa.12794>.

Fridman, I., Lucas, N., Henke, D., and Zigler, C.K. (2020). Association between public knowledge about COVID-19, trust in information sources, and adherence to social distancing: Cross-sectional survey. *JMIR Public Health and Surveillance*, 6(3), 1–31. DOI: <https://www.doi.org/10.2196/22060>.

Galesic, M., and Garcia-Retamero, R. (2010). Statistical numeracy for health: A cross-cultural comparison with probabilistic national samples. *Archives of Internal Medicine*, 170(5), 462–468. DOI: <https://doi.org/10.1001/archinternmed.2009.481>.

_____. (2011). Graph literacy: A cross-cultural comparison. *Medical Decision Making*, 31(3), 444–457. DOI: <https://doi.org/10.1177/0272989X10373805>.

Garfin, D.R., Fischhoff, B., Holman, E.A., and Silver, R.C. (2021). Risk perceptions and health behaviors as COVID-19 emerged in the United States: Results from a probability-based nationally representative sample. *Journal of Experimental Psychology: Applied*, 27(4), 584–598. DOI: <https://doi.org/10.1037/xap0000374>.

Gentner, D., and Stevens, A. (1983). *Mental models*. Hillsdale, NJ: Erlbaum.

Gerace, A., Rigney, G., and Anderson, J.R. (2022). Predicting attitudes towards easing COVID-19 restrictions in the United States of America: The role of health concerns, demographic, political, and individual difference factors. *PLOS ONE*, 17(2), 1–27. DOI: <https://doi.org/10.1371/journal.pone.0263128>.

Grant, M.J., and Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. *Health Information and Libraries Journal*, 26(2), 91–108. DOI: <https://doi.org/10.1111/j.1471-1842.2009.00848.x>.

Grant, A.M., and Hofmann, D.A. (2011). It's not all about me: Motivating hand hygiene among health care professionals by focusing on patients. *Psychological Science*, 22(12), 1494–1499. DOI: <https://doi.org/10.1177/0956797611419172>.

Green, M.C. (2006). Narratives and cancer communication. *Journal of Communication*, 56, S163–S183. DOI: <https://doi.org/10.1111/j.1460-2466.2006.00288.x>.

Grounds, M.A., and Joslyn, S.L. (2018). Communicating weather forecast uncertainty: Do individual differences matter? *Journal of Experimental Psychology: Applied*, 24(1), 18–33. DOI: <https://doi.org/10.1037/xap0000165>.

Guidry, J.P., Jin, Y., Orr, C.A., Messner, M., and Meganck, S. (2017). Ebola on Instagram and Twitter: How health organizations address the health crisis in their social media engagement. *Public Relations Review*, 43(3), 477–486. DOI: <https://doi.org/10.1016/j.pubrev.2017.04.009>.

Head, B.W. (2007). Community engagement: Participation on whose terms? *Australian Journal of Political Science*, 42(3), 441–454. DOI: <https://doi.org/10.1080/10361140701513570>.

Institute of Medicine. (1999). *Toward environmental justice: Research, education and health policy needs*. Washington, DC: The National Academies Press. Available: <https://nap.nationalacademies.org/read/6034>.

Jetten, J., Reicher, S.D., Haslam, S.A., and Cruwys, T. (2020). *Together apart: The psychology of COVID-19*. Sage Publications. Available: <https://www.socialsciencespace.com/2020/05/addressing-the-psychology-of-together-apart-free-book-download>.

Jingnan, H. (2020). *Why there are so many different guidelines for face masks for the public*. National Public Radio. Available: <https://www.npr.org/sections/goatsandsoda/2020/04/10/829890635/why-there-so-many-different-guidelines-for-face-masks-for-the-public>.

Johnson-Laird, P. N. (1983). *Mental models: Towards a cognitive science of language, inference, and consciousness* (No. 6). Cambridge, MA: Harvard University Press.

Jones, E. (2020). The psychology of protecting the UK public against external threat: COVID-19 and the Blitz compared. *Lancet Psychiatry*, 7, 991–996. DOI: [https://doi.org/10.1016/S2215-0366\(20\)30342-4](https://doi.org/10.1016/S2215-0366(20)30342-4).

Joslyn, S., and Demnitz, R. (2021). Explaining how long CO₂ stays in the atmosphere: Does it change attitudes toward climate change? *Journal of Experimental Psychology: Applied*, 27(3), 473–484. DOI: <https://psycnet.apa.org/doi/10.1037/xap0000347>.

Joslyn, S., and LeClerc, J. (2013). Decisions with uncertainty: The glass half full. *Current Directions in Psychological Science*, 22(4), 308–315. DOI: <https://doi.org/10.1177/0963721413481473>.

Joslyn, S., Savelli, S., Duarte, H.A., Burgeno, J., Qin, C., Han, J.H., and Gulacsik, G. (2021). COVID-19: Risk perception, risk communication, and behavioral intentions. *Journal of Experimental Psychology: Applied*, 27(4), 599–620. DOI: <https://psycnet.apa.org/doi/10.1037/xap0000398>.

Kovic, M., and Füchslin, T. (2018). Probability and conspiratorial thinking. *Applied Cognitive Psychology*, 32(3), 390–400. DOI: <https://psycnet.apa.org/doi/10.1002/acp.3408>.

Lakoff, G. (2010). Why it matters how we frame the environment. *Environmental Communication*, 4(1), 70–81. DOI: <https://doi.org/10.1080/17524030903529749>.

Lejano, R.P., Rahman, M.S., and Kabir, L. (2020). Risk communication for empowerment: Interventions in a Rohingya refugee settlement. *Risk Analysis*, 40(11), 2360–2372. DOI: <https://doi.org/10.1111/risa.13541>.

Leshner, G., Bolls, P., Gardner, E., Moore, J., and Kreuter, M. (2018). Breast cancer survivor testimonies: Effects of narrative and emotional valence on affect and cognition. *Cogent Social Sciences*, 4(1), 1–18. DOI: <https://doi.org/10.1080/23311886.2018.1426281>.

Levy, D. L. (2020). COVID-19 and global governance. *Journal of Management Studies*, 58(2), 562–566. DOI: <https://doi.org/10.1111/joms.12654>.

Lewandowsky, S., Ecker, U.K., and Cook, J. (2017). Beyond misinformation: Understanding and coping with the “post-truth” era. *Journal of Applied Research in Memory and Cognition*, 6(4), 353–369. DOI: <https://doi.org/10.1016/j.jarmac.2017.07.008>.

Lopez-Leon, S., Wegman-Ostrosky, T., Perelman, C., Sepulveda, R., Rebolledo, P.A., Cuapio, A., and Villapol, S. (2021). More than 50 long-term effects of COVID-19: A systematic review and meta-analysis. *Scientific Reports*, 11, 1–12. DOI: <https://doi.org/10.1038/s41598-021-95565-8>.

MacFarlane, D., Tay, L.Q., Hurlstone, M.J., and Ecker, U.K. (2021). Refuting spurious COVID-19 treatment claims reduces demand and misinformation sharing. *Journal of Applied Research in Memory and Cognition*, 10(2), 248–258. DOI: [10.1016/j.jarmac.2020.12.005](https://doi.org/10.1016/j.jarmac.2020.12.005).

Michie, S., Van Stralen, M.M., and West, R. (2011). The behavior change wheel: A new method for characterising and designing behavior change interventions. *Implementation Science*, 6(1), 1–12. DOI: <https://doi.org/10.1186/1748-5908-6-42>.

Mulgan, G. (2005). Government, knowledge and the business of policy making: The potential and limits of evidence-based policy. *Evidence & Policy: A Journal of Research, Debate and Practice*, 1(2), 215–226. DOI: <https://doi.org/10.1332/1744264053730789>.

Murphy, S.T., Frank, L.B., Chatterjee, J.S., Moran, M.B., Zhao, N., Amezola de Herrera, P., and Baezconde-Garbanati, L.A. (2015). Comparing the relative efficacy of narrative vs. nonnarrative health messages in

reducing health disparities using a randomized trial. *American Journal of Public Health*, 105(10), 2117–2123. DOI: <https://doi.org/10.2105/AJPH.2014.302332>.

National Academies of Sciences, Engineering, and Medicine (NASEM). (2008). *Public participation in environmental assessment and decision making*. Washington, DC: The National Academies Press. Available: <https://nap.nationalacademies.org/catalog/12434/public-participation-in-environmental-assessment-and-decision-making>.

_____. (2017). *Communicating science effectively: A research agenda*. DOI: <https://doi.org/10.17226/23674>.

_____. (2020a). *A Framework for equitable allocation of COVID-19 vaccine*. Washington, DC: The National Academies Press. DOI: <https://doi.org/10.17226/25917>.

_____. (2020b). *Rapid expert consultation on the effectiveness of fabric masks for the COVID-19 pandemic (letter report)*. Washington, DC: The National Academies Press. DOI: <https://doi.org/10.17226/25776>.

_____. (2021a). *School-based strategies for addressing the mental health and well-being of youth in the wake of COVID-19*. Washington, DC: The National Academies Press. DOI: <https://doi.org/10.17226/26262>.

_____. (2021b). *Short-term strategies for addressing the impacts of the COVID-19 pandemic on women's workforce participation*. Washington, DC: The National Academies Press. DOI: <https://doi.org/10.17226/26303>.

_____. (2021c). *Strategies for building confidence in the COVID-19 vaccines*. Washington, DC: The National Academies Press. DOI: <https://doi.org/10.17226/26068>.

_____. (2021d). *Understanding and communicating about COVID-19 vaccine efficacy, effectiveness, and equity*. Washington, DC: The National Academies Press. DOI: <https://doi.org/10.17226/26154>.

_____. (2021e). *Communication strategies for building confidence in COVID-19 vaccines: Addressing variants and childhood vaccinations*. Washington, DC: The National Academies Press. DOI: <https://doi.org/10.17226/26361>.

Nieh, H.P., Wu, W.C., Luh, D.L., Yen, L.L., Hurng, B.S., and Chang, H. Y. (2018). Will personal values predict the development of smoking and drinking behaviors? A prospective cohort study of children and adolescents in Taiwan. *Journal of Health Psychology*, 23(7), 982–992. DOI: <https://doi.org/10.1177%2F1359105316681063>.

Patton, M.Q. (2008). *Utilization-focused evaluation* (4th ed.). Thousand Oaks, CA: Sage Publications.

Petersen, M.B., Bor, A., Jørgensen, F., and Lindholt, M.F. (2021). Transparent communication about negative features of COVID-19 vaccines decreases acceptance but increases trust. *Proceedings of the National Academy of Sciences*, 118(29), 1–8. DOI: <https://doi.org/10.1073/pnas.2024597118>.

Pfattheicher, S., Nockur, L., Böhm, R., Sassenrath, C., and Petersen, M.B. (2020). The emotional path to action: Empathy promotes physical distancing and wearing of face masks during the COVID-19 pandemic. *Psychological Science*, 31(11), 1363–1373. DOI: <https://doi.org/10.1177%2F0956797620964422>.

Purvis, R.S., Willis, D.E., Moore, R., Bogulski, C., and McElfish, P.A. (2021). Perceptions of adult Arkansans regarding trusted sources of information about the COVID-19 pandemic. *BMC Public Health*, 21(1), 1–9. DOI: <https://doi.org/10.1186/s12889-021-12385-1>.

Quinn, S.C., Parmer, J., Freimuth, V.S., Hilyard, K.M., Musa, D., and Kim, K.H. (2013). Exploring communication, trust in government, and vaccination intention later in the 2009 H1N1 pandemic: Results of a national survey. *Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science*, 11(2), 96-106. DOI: [10.1089/bsp.2012.0048](https://doi.org/10.1089/bsp.2012.0048).

Rawlins, B. (2008). Give the emperor a mirror: Toward developing a stakeholder measurement of organizational transparency. *Journal of Public Relations Research*, 21(1), 71–99. DOI: <https://doi.org/10.1080/10627260802153421>.

Reinholtz, N., Maglio, S.J., and Spiller, S.A. (2021). Stocks, flows, and risk response to pandemic data. *Journal of Experimental Psychology: Applied*, 27(4), 657–668. DOI: <https://doi.org/10.1037/xap0000395>.

Reynolds, B., and Quinn, S.C. (2008). Effective communication during an influenza pandemic: The value of using a crisis and emergency risk communication framework. *Health Promotion Practice*, 9(4_suppl), 13S–17S. DOI: <https://doi.org/10.1177/1524839908325267>.

Saltzman, L.Y., Lesen, A.E., Henry, V., Hansel, T.C., and Bordnick, P.S. (2021). COVID-19 mental health disparities. *Health Security*, 19(S1), S-5. DOI: <https://doi.org/10.1089/hs.2021.0017>.

Schultz, P.W., Nolan, J.M., Cialdini, R.B., Goldstein, N.J., and Griskevicius, V. (2007). The constructive, destructive, and reconstructive power of social norms. *Psychological Science*, 18(5), 429–434. DOI: <https://doi.org/10.1111%2Fj.1467-9280.2007.01917.x>.

Seeger, M.W. (2006). Best practices in crisis communication: An expert panel process. *Journal of Applied Communication Research*, 34(3), 232–244. DOI: <https://doi.org/10.1080/00909880600769944>.

Shaffer, V.A., Brodney, S., Gavaruzzi, T., Zisman-Ilani, Y., Munro, S., Smith, S.K., Thomas, E., Valentine, K.D., and Bekker, H.L. (2021). Do personal stories make patient decision aids more effective? An update from the International Patient Decision Aids Standards. *Medical Decision Making: An International Journal of the Society for Medical Decision Making*, 41(7), 897–906. DOI: <https://doi.org/10.1177/0272989X211011100>.

Siegrist, M. (2021). Trust and risk perception: A critical review of the literature. *Risk Analysis*, 41(3), 480–490. DOI: <https://doi.org/10.1111/risa.13325>.

Siegrist, M., and Bearth, A. (2021). Worldviews, trust, and risk perceptions shape public acceptance of COVID-19 public health measures. *Proceedings of the National Academy of Sciences*, 118(24). DOI: <https://doi.org/10.1073/pnas.2100411118>.

Siegrist, M., Cvetkovich, G., and Roth, C. (2000). Salient value similarity, social trust, and risk/benefit perception. *Risk Analysis*, 20(3), 353–362. DOI: <https://doi.org/10.1111/0272-4332.203034>.

Slovic, P. (1987). Perception of risk. *Science*, 236(4799), 280–285. DOI: <https://doi.org/10.1126/science.3563507>.

Smith, R.D. (2006). Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management. *Social Science and Medicine*, 63(12), 3113–3123. DOI: <https://doi.org/10.1016/j.socscimed.2006.08.004>.

Tierney, K.J. (2003). Disaster beliefs and institutional interests: Recycling disaster myths in the aftermath of 9/11. In L. Clarke (Ed.), *Research in social problems and public policy: Vol. 11. Terrorism and disaster: New threats, new ideas* (pp. 33–51). New York: Elsevier Science.

Transparent Communication in Epidemics (2014). *What Ebola taught us about risk communication*. Available: <http://www.tellmeproject.eu/content/what-ebola-taught-us-about-risk-communication>.

Trevena, L.J., Zikmund-Fisher, B.J., Edwards, A., Gaissmaier, W., Galesic, M., Han, P.K., King, J., Lawson, M.L., Linder, S.K., Lipkus, I., Ozanne, E., Peters, E., Timmermans, D., and Woloshin, S. (2013). Presenting quantitative information about decision outcomes: a risk communication primer for patient decision aid developers. *BMC Medical Informatics and Decision Making*, 13(2), 1-15. DOI: <https://doi.org/10.1186/1472-6947-13-S2-S7>.

Van Bavel, J.J., Baicker, K., Boggio, P.S., Capraro, V., Cichocka, A., Cikara, M., Crockett, M.J., Crum, A.J., Douglas, K.M., Druckman, J.N., Drury, J., Dube, O., Ellemers, N., Finkel, E.J., Fowler, J.H., Gelfand, M., Han, S., Haslam, S.A., Jetten, J., ... and Willer, R. (2020). Using social and behavioural science to support COVID-19 pandemic response. *Nature Human Behavior*, 4, 460–471. DOI: <https://doi.org/10.1038/s41562-020-0884-z>.

van der Bles, A.M., van der Linden, S., Freeman, A.L., and Spiegelhalter, D.J. (2020). The effects of communicating uncertainty on public trust in facts and numbers. *Proceedings of the National Academy of Sciences*, 117(14), 7672–7683. DOI: <https://doi.org/10.1073/pnas.1913678117>.

van Zomeren, M., Postmes, T., and Spears, R. (2008). Toward an integrative social identity model of collective action: A quantitative research synthesis of three socio-psychological perspectives. *Psychological Bulletin*, 134(4), 504–535. DOI: <https://doi.org/10.1037/0033-2909.134.4.504>.

Viswanath, K., Bekalu, M., Dhawan, D., Pinnamaneni, R., Lang, J., and McLoud, R. (2021). Individual and social determinants of COVID-19 vaccine uptake. *BMC Public Health*, 21(1), 1–10.

Wellenius, G.A., Vispute, S., Espinosa, V., Fabrikant, A., Tsai, T.C., Hennessy, J., Dai, A., Williams, B., Gadepalli, K., Boulanger, A., Pearce, A., Kamath, C., Schlosberg, A., Bendebury, C., Mandayam, C., Stanton, C., Bavadekar, S., Pluntke, C., Desfontaines, D., ... and Gabrilovich, E. (2021). Impacts of social distancing policies on mobility and COVID-19 case growth in the US. *Nature Communications*, 12(1), 1–7. DOI: <https://doi.org/10.1038/s41467-021-23404-5>.

Wessely, S. (2005). Don't panic! Short and long-term psychological reactions to the new terrorism. *Journal of Mental Health*, 14, 1–6.

World Health Organization. (2020a). *Emergencies: Risk communication*. Available: <https://www.who.int/news-room/questions-and-answers/item/emergencies-risk-communication>.

_____. (2020b). *Advice on the use of masks in the community, during home care and in health care settings in the context of the novel coronavirus (2019-nCoV) outbreak: Interim guidance*, 29 January 2020. Available: <https://apps.who.int/iris/handle/10665/330987>.

_____. (2020c). *Advice on the use of masks in the context of COVID-19*:

Interim guidance, 6 April 2020. Available: https://apps.who.int/iris/bitstream/handle/10665/331693/WHO-2019-nCov-IPC_Masks-2020.3.eng.pdf?sequence=1&isAllowed=y.

Xie, Y., Xu, E., Bowe, B., and Al-Aly, Z. (2022). Long-term cardiovascular outcomes of COVID-19. *Nature Medicine*, 28(3), 583–590. DOI: <https://doi.org/10.1038/s41591-022-01689-3>.

Yen, M.Y., Wu, T.S.J., Chiu, A.W.H., Wong, W.W., Wang, P.E., Chan, T.C., and King, C.C. (2009). Taipei's use of a multi-channel mass risk communication program to rapidly reverse an epidemic of highly communicable disease. *PLOS ONE*, 4(11), e7962. DOI: <https://doi.org/10.1371/journal.pone.0007962>.

ACKNOWLEDGMENTS

We thank the sponsors of SEAN—the National Science Foundation—and of the Standing Committee on Emerging Infectious Diseases and 21st Century Health Threats—the U.S. Department of Health and Human Services, Assistant Secretary for Preparedness and Response. Special thanks go to members of the SEAN executive committee, who dedicated time and thought to this project: Mary T. Bassett (co-chair), New York State Department of Health; Robert M. Groves (co-chair), Georgetown University; Dolores Acevedo-Garcia, Brandeis University; Mahzarin R. Banaji, Harvard University; Dominique Brossard, University of Wisconsin–Madison; Janet Currie, Princeton University; Michael Hout, New York University; Maria Carmen Lemos, University of Michigan; Adrian E. Raftery, University of Washington; and Wendy Wood, University of Southern California. We thank as well the Standing Committee on Emerging Infectious Diseases and 21st Century Health Threats.

We extend gratitude to the staff of the National Academies of Sciences, Engineering, and Medicine, in particular to Emily P. Backes, Malvern T. Chiweshe, and Chelsea Fowler, who contributed research, editing, and writing assistance. We thank Mary Ghitelman, who led the communication and dissemination of the project. Thanks are also due to Elizabeth Tilton, who managed the administrative aspects of the project and assisted with report production. From the Division of Behavioral and Social Sciences and Education, we thank Kirsten Sampson Snyder, who shepherded the report through the review process. We thank as well Rona Briere and John Hawkins for their skillful editing.

To supplement their own expertise, the authors received input from several external sources, whose willingness to share their perspectives and expertise was essential to this work. We thank Ron Carlee, Old Dominion University; Gretchen Chapman, Carnegie Mellon University; Sandra Adamson Fryhofer, American Medical Association; Branden Johnson, Decision Research; Leslie M. Kantor, Rutgers University; and Elizabeth Tricomi, Rutgers University.

We also thank the following individuals for their review of this rapid expert consultation: Karen S. Cook, Department of Sociology, Stanford University; Mirta Galesic, Human Social Dynamics, Sante Fe Institute; Kirsten Johnson, Commissioner of Health, City of Milwaukee Health Department; Daniel Kahneman, Woodrow Wilson School, Princeton University; Vish Viswanath, Harvard T.H. Chan School of Public Health and Dana-Farber Cancer Institute.

Although the reviewers listed above provided many constructive comments and suggestions, they were not asked to endorse the conclusions of this document, nor did they see the final draft before its release. The review of this document was overseen by Alicia L. Carriquiry, Department of Statistics, Iowa State University, and Robert A. Moffitt, Department of Economics, Johns Hopkins University. They were responsible for making certain that an independent examination of this rapid expert consultation was carried out in accordance with the standards of the National Academies and that all review comments were carefully considered. Responsibility for the final content rests entirely with the authors, and this document has been reviewed and approved for release by the National Academies.

SOCIETAL EXPERTS ACTION NETWORK (SEAN) EXECUTIVE COMMITTEE

MARY T. BASSETT (*Co-chair*), New York State Department of Health
ROBERT M. GROVES (*Co-chair*), Georgetown University
DOLORES ACEVEDO-GARCIA, Brandeis University
MAHZARIN R. BANAJI, Harvard University
DOMINIQUE BROSSARD, University of Wisconsin–Madison
JANET CURRIE, Princeton University
MICHAEL HOUT, New York University
MARIA CARMEN LEMOS, University of Michigan–Ann Arbor
ADRIAN E. RAFTERY, University of Washington
WENDY WOOD, University of Southern California

Staff:

EMILY P. BACKES, *Senior Program Officer*
MALVERN T. CHIWESHE, *Program Officer*
CHELSEA FOWLER, *Associate Program Officer*
ELIZABETH TILTON, *Senior Program Assistant*