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Abstract— Understanding human motor learning and 

adaptation processes is an integral step in developing 

rehabilitative engineering solutions and training strategies for 

assistive technologies. Natural skill acquisition enables continually 

precise movements despite inherent noise in motor execution, 

sensory perception, and dynamic changes in body parameters 

(growth, age, etc.) and the external environment. As an initial step, 

motor learning research has aimed to identify the mechanisms of 

natural human adaptation during the acquisition of motor skills. 

Results presented here confirm previous work on motor 

adaptation using a remote web-based experimental paradigm that 

could provide a valuable option to conduct additional future work 

with expanded more diverse subject populations.  

Keywords—motor adaptation, prostheses, remote human-subject 

experiments, assistive technology, human-machine coordination 

I. INTRODUCTION 

Humans learn motor skills through both a strategic and 
adaptive process where strategic processes are sensitive to goal-
based performance and adaptive processes are sensitive to 
prediction errors between the desired and actual outcome of a 
task [1]. Motor learning research [2]–[4] indicates that during 
motor skill acquisition humans become highly proficient at 
estimating and adjusting to the consequences of their 
movements by creating and storing task-based internal models 
of specific motor skills.  

The idea of an internal model is compelling because humans 
seem to have an uncanny ability to produce precise movements 
despite inherently noisy motor commands, noisy and delayed 
sensory feedback, and an unpredictable external environment. 
Additionally, the human body itself is constantly growing, 
aging, and dealing with fluctuations brought on by disease, 
exercise, and mental state – thus indicating some adaptive 
property of the internal model. Interestingly, transcranial direct 
current stimulus of the cerebellum has been shown to increase 
the rate at which subjects adapt in response to fluctuations [4] 
contributing to the idea that motor adaptation drives internal 
model calibration. The mechanism for how this is done has 
become a major focus of research and researchers have long 
postulated that internal models are maintained through adaptive 

processes in response to sensory prediction errors. Bayesian 
models successfully describe this phenomenon and have been 
validated in many experimental studies including research on 
eye saccades [5] and hand reaching [6]–[10]. 

Existing literature additionally suggests that relevant visual 
and proprioceptive feedback in movement generation could 
bolster the adaptation process for rehabilitative applications [9], 
and the adaptation process can be artificially modulated in task-
relevant dimensions [11]. Moreover, preliminary work in our lab 
demonstrates evidence for Bayesian motor adaptation behavior 
in an electromyography (EMG)-based cursor-to-target task, 
showing potential for application to EMG-driven prostheses 
[12]. Thus, training strategies capitalizing on innate motor 
adaptation processes could combat challenges in prosthetic 
operation including internal changes such as muscle fatigue or 
external changes such as electrode shift by increasing the rate 
users adapt to changing task parameters. Other areas of 
application include human-machine coordination tasks such as 
supernumerary robotic operation [13]. Shenoy and Carmena 
have indicated a similar need in brain-computer interfaces in 
which they argue that neural adaptations are necessary to attain 
clinically viable levels of performance, and that the development 
of decoders (or gesture classification systems) alone is not 
sufficient [1]. They also emphasize that the most effective 
method of gaining prosthetic and motor skill is to find a way to 
train users that mimics natural skill acquisition.  

Two interesting implications for motor adaptation arise from 
Bayesian models of visuomotor tasks [9]. Following a Kalman 
filter (KF) model [14], the first implication is that feedback 
uncertainty (measurement feedback uncertainty in KF theory) 
increases trust in the internal model (thus decreasing reliance on 
sensory feedback) and decreases adaptation rate. For example, 
consider an individual learning to play tennis as dusk sets in. 
Any changes in ball velocity would theoretically result in limited 
adaptation as feedback uncertainty increases with the sky 
darkening. Alternatively, the second implication claims that 
model uncertainty (model prediction uncertainty in KF theory) 
decreases trust in the internal model (thus increasing reliance on 
sensory feedback) and increases adaptation rate. For example, a 
tennis player warming up might be less confident in her internal 
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model of the task and adapt quickly to any unexpected 
inaccuracies while an inaccuracy observed after a sufficient 
warmup might be more likely disregarded. Here the source of 
uncertainty is dictating the adaptation rate by modulating the 
Kalman gain or the relative weighting of model prediction and 
measurement feedback (Fig. 1). While a significant body of 
literature exists supporting this first implication with cursor-to-
target experimental paradigms [6]–[10], research for the second 
implication is comparatively sparse with mixed results [5], [9], 
[10]. For this second prediction, further validation is necessary 
to confirm that distrust in the internal model is the driving factor.  

A popular paradigm in motor adaptation experiments  is 
hand reaching in response to visual perturbations [6], [8], [9]. 
These experiments are typically conducted in a controlled 
laboratory setting supervised by on-site researchers. Here 
subjects perform cursor-to-target reaches in a horizontal plane 
while receiving feedback of hand position on a vertical display 
(Fig. 2.a). An important experimental element is that online 
(real-time) feedback during the movement is blocked, allowing 
researchers to add a small amount of shift (or perturbation) to 
the position reported back to the subject at the end of the reach. 
Any subsequent adjustments by the subject in response to these 
perturbations is recorded as the trial-by-trial adaptation rate. 
This metric is of interest because it sheds light on the rate at 
which the internal model updates. Sensory uncertainty is often 
added to probe the effect of sensory uncertainty on adaptation 
rate by displaying cursor endpoint feedback as a cursor cloud [8] 
or a distribution of multiple cursors [9]. 

Strides have been made by Tsay and colleagues to develop a 
web-based platform utilizing a trackpad for motor learning and 
motor adaptation research [15]. Traditional studies require 
elaborate laboratory setups and finely calibrated hardware to 
measure movement kinematics. Additionally, these studies are 
often time intensive as on-site researchers must proctor and 
administer experimental protocols one subject at a time. Tsay et 
al. developed an open-source, remote experimental platform 
(OnPoint) for motor learning studies and demonstrated the 
capability of web-based systems to closely reproduce results 
from motor experiments conducted in person [15]. They 
conducted three visuomotor rotation adaptation experiments in 
which they evaluated adaptation behavior when hand position 
was perturbed by  angular rotation. Their work confirmed that 
learning behavior scales with rotation size when both implicit 

and explicit adaptation processes are involved [16], implicit 
adaptation is invariant to error size [17], and the trial-by-trial 
adaptation rate function is quasi-linear for smaller rotation sizes 
but becomes sub-linear for larger rotation sizes [9]. 

Our work focuses on evaluating the effect of sensory 
uncertainty on motor adaptation rate with the aim of validating 
the use of our remote, web-based experimental paradigm. Fig. 
2.b. depicts our analogous remote experimental setup. 
Following methodology outlined by Wei & Körding, we 
hypothesize that our results will confirm their results [9] by 
showing that increased sensory uncertainty decreases the trial-
by-trial adaptation rate in response to visuomotor perturbations. 
Subject populations are more likely to represent the general 
population when sourced from web-based platforms [18]. 
Therefore, an effective remote experimental paradigm could be 
vital for broadening the homogeneous populations common in 
scientific research [19]. Furthermore, an effective remote 
experimental paradigm could be important for continuing motor 
learning research in challenging circumstances (such as a global 
pandemic). Lastly, it also enables fast, low-cost turnaround for 
explorative studies to examine optimal feedback mechanisms 
and methods to artificially modulate adaptation rate with the 
overall aim of boosting human-machine cooperation. 

II. METHODS 

Eighteen subjects with no history of neurological disorders 
participated in the experiment (15 female; 19.8 ± 1.5 years old). 
Seventeen subjects were right-hand dominant, and all subjects 
had 20/20 vision or corrected to 20/20 vision. Subjects were 
informed of and consented to procedures approved by the 
Institutional Review Board at the University of California, Davis 
(protocol #1677528-2). 

A. Remote Experimental Paradigm 

A central aim of this work was to validate the use of a 
remote, web-based experimental paradigm for motor adaptation 
studies. A remote platform adapted from [15] was developed in 
JavaScript/CSS/HTML and deployed through a server managed 
by the JATOS tool [20]. Subjects completed a cursor-to-target 
task by performing ‘swiping’ movements, or reaches, on a 
laptop trackpad. Key additions to [15] included an automatic 

 

Fig. 1. The Kalman filter gain quantifies the ratio between model uncertainty 
and sensory uncertainty in Bayesian motor adaptation models. Here arrow 
directionality signifies an increase in the indicated quantity. As sensory 
uncertainty increases (toward the left), the adaptation rate decreases, and as 
model uncertainty increases (toward the right) the adaptation rate increases. 
Researchers postulate that the brain is performing a similar weighting process 
when streamlining motor task performance [6]. 

 

Fig. 2. A depiction of A) a traditional cursor-to-target experimental paradigm, 
and B) the setup of our analagous remote, web-based experimental paradigm. 



reset of the cursor to the starting point at the conclusion of each 
trial (reducing additional visual and proprioceptive feedback 
during the return process), gamification and built-in timeouts to 
encourage compliance, and the capability to display cursor 
feedback as a collection of normally distributed cursors. The 
cursor was a smiley face, the start position was an Earth icon, 
and the target was an asteroid icon (Fig. 3). Short instruction 
prompts preceded each block of trials. Attention checks were 
implemented between blocks and required subjects to 
comprehend the instructions and click on the correct icon to 
advance through the experiment. Subjects could time out of the 
experiment if they were idle for more than 30 seconds (s) during 
the experimental trials (a 10-s warning was provided after 20 s 
of no activity). A ‘Trial Counter’ tracked subject progress 
through each block as a proportion of trials completed to total 
trials remaining and ‘study progress’ tracked overall progress 
throughout the experiment as a percentage.  

B. Experimental Setup 

Prior to the start of the experiment, subjects viewed an 
instructional video to orient themselves to the task and to learn 
the appropriate setup. They were instructed to select a flat 
surface to work, free of obstructions, where they could sit 
directly in front of their laptop. Additionally, they needed to 
ensure that they had good wrist support, full access to the 
trackpad surface, and only used their dominant hand throughout 
the entirety of the task. Visual examples were shown to 
demonstrate good and bad setups. Fig. 2.b. shows an appropriate 
setup. Subjects then viewed examples of successful reaches and 
the several potential feedback representations or messages they 
could see during the experiment on the user interface (e.g., 
endpoint feedback of cursor position with sensory uncertainty, 
movement speed warnings, etc.). They were reminded to avoid 
looking down at their trackpad during trials and to focus their 

attention on the screen. This reminder was repeated periodically 
throughout the experimental blocks as well. 

Subjects viewed a computer screen with the start directly in 
the center of the screen. The target distance was set to 300 pixels 
(px). The start radius, target radius, and cursor radius were 
scaled according to the target distance resulting in radii of 
42.1875 px, 42.1875 px, and 33.75 px, respectively. To 
successfully complete a reach, subjects had to finish their 
movement between 30 and 90 milliseconds (ms). Enforcing this 
range ensured that movement time would not be a significant 
factor when conducting analysis and confirmed that subjects 
were not moving slow enough to incorporate visual feedback 
mid-reach [21]. Subjects were not required to stop on the target, 
but simply pass through it, and feedback was provided at the 
point the subject crossed the target distance boundary. After 
each trial, the cursor was automatically reset to the start. When 
both the cursor and target appeared, the next reach could be 
initiated. 

C. Experimental Tasks 

Each subject completed an adaptation protocol following [9] 
in which a perturbation was applied prior to providing cursor 
feedback to the subject. As a result, trial-by-trial adaptation rate 
could be quantified by the relationship between change in hand 
angle of trial k+1 with respects to trial k in response to the 
perturbation in trial k.  

The three phases of the experiment were executed as 
follows: 1) Familiarization + Condition 1, 2) Washout, and 3) 
Condition 2 (Fig. 4).  Familiarization was the same for all 
subjects and oriented the subjects to the user interface and 
required movement. Condition 1 and Condition 2 varied only in 
the amount of sensory uncertainty provided in the feedback and 
allowed a within-subject comparison of the effect of sensory 
uncertainty on adaptation rate. The order of sensory uncertainty 
level (low or high) for Conditions 1 and 2 was counterbalanced 
between subjects. See the Condition 1 & 2 description below for 
more details. 

1) Familiarization 
All subjects completed a Familiarization block so that they 

could practice the ‘swiping’ motion and ensure that they could 
complete reaches within the required timeframe. Subjects 
completed 50 trials to a 45° target (+x axis at 0°, following a 
positive counterclockwise rotation convention). Once the cursor 
left the start, it was hidden from view. After the cursor crossed 
the target distance boundary, subjects received a ‘Trial 
Complete!’ message. The left-handed subject followed the same 
protocol but saw a target position at 135° to mirror the wrist 
movement right-handed subjects used to perform reaches. 

 

Fig. 4. A within-subject experimental design was utilized to compare the effect 
of low and high sensory uncertainty on trial-by-trial adaptation rate. The order 
of sensory uncertainty was counterbalanced between subjects. 

 

Fig. 3. User interface for the cursor-to-target task. The Earth icon represents 
the starting point. Prior to each trial, the cursor (smiley face) resets to Earth, 
and subjects perform 'swiping' movements on their laptop trackpads to hit the 
target (asteroid) as quickly and accurately as possible. A ‘Trial Counter’ tracks 
subject progress through each block of trials. A ‘study progress’ indicator 
tracks overall progress through the experiment as a percentage. Note figure is 
drawn for clarity and is not to scale. 



2) Condition 1 & 2 
Both Condition blocks consisted of 50 trials at each 

perturbation level {-15°, 0°, 15°} in a randomized order for a 
total of 150 trials. Again, the target was set to 45° (or 135° for 
the left-handed subject), however, feedback was displayed as a 
distribution of five cursors to impart a quantifiable amount of 
sensory uncertainty. Each cursor was displaced following a 
normal distribution about the position of the hand angle that the 
cursor crossed the target distance boundary plus the relevant 
perturbation. Each Condition block varied only in the spread of 
the cursors (Fig. 5). Moving forward, these two levels will be 
referred to as low sensory uncertainty and high sensory 
uncertainty for the smaller distribution of cursors and the larger 
distribution of cursors, respectively. Fig. 5 shows an example of 
the two sensory uncertainty levels for a perturbation of 15°. The 
order of sensory uncertainty level provided (low or high) was 
counterbalanced across subjects.  

The distribution size of cursors for low sensory uncertainty 
corresponded to a distribution for which 95% of cursor locations 
were within 1/3 of the perturbation size or ±5°. This 
corresponded to a standard deviation of √170 px. The 
distribution size for high sensory uncertainty corresponded to a 
distribution in which 80% of cursor locations were within the 
perturbation size (±15°). This corresponded to a standard 
deviation of √2726 px and was selected such that the 
perturbations were still perceivable and trial-by-trial adaptation 
could still occur.  

3) Washout 
Separating the two Condition blocks was a washout task. 

The purpose of the washout task was to reduce the impact of 
Condition 1 on Condition 2. This task employed the keyboard 
arrows as the input to prevent any additional cursor movement 
calibration outside the Condition blocks. The task was selected 
out of convenience using existing infrastructure. In this task, the 
subject’s cursor acted as a spotlight that would light up portions 
of a grid. The task required subjects to utilize velocity control to 
effectively direct the spotlight around the grid to count the 
number of circles with orange centers (targets) before the trial 

time expired. Subjects were then asked to report the number of 
targets they located. Lastly, they were provided a score based on 
accuracy. All subjects completed a short training on the task 
followed by three trials of the grid search. Note that the washout 
trials were not analyzed and were completed only to create an 
interlude between Condition blocks. 

D. Analysis 

Subjects who were unable to complete 90% (135/150 trials) 
of trials successfully during both Conditions 1 and 2 were 
eliminated from the analysis as any extended length of time 
between trials may have affected the accurate quantification of 
trial-by-trial adaptation rate and/or indicate noncompliance. Of 
the 18 subjects who completed the experimental protocol, three 
did not meet this standard. As a result, our final analysis 
consisted of 15 subjects (12 female; 1 left-hand dominant). The 
inclusion of the left-handed subject did not alter the significance 
of our results. 

Equations (1), (2), and (3) provide a detailed look at the 
Kalman filter for a linear discrete-time system with timestep k. 
Equations (1) and (2) give the model prediction and 
measurement update steps, respectively, where x is the state 
(target position) estimation, A is the state matrix, and y is the 
visual feedback. These steps can alternatively be represented as 
a single equation (3) where the Kalman gain (Lk) minimizes the 
variance of the state estimate by assigning weights based on the 
relative trust of model prediction versus measurement feedback 
[14]. 

Rearranging (3) yields Lk as a function of the change in hand 
angle to the experimentally applied perturbation (the feedback 
position with the rotation minus the true cursor position). Thus, 

 

Fig. 5. During Conditions 1 and 2,  subjects experienced trial-by-trial perturbations selected randomly from a uniform distribution of {-15°, 0°, 15°}. In A), a +15° 
perturbation is shown in which the cursor is rotated 15° counterclockwise (unbeknownst by the subject) from the true cursor endpoint (opaque smiley face). 
Depending on the respective condition, subjects received feedback as either B) a smaller distribution of five cursors (LOW sensory uncertainty, σ = √170) or C) a 
larger distribution of five cursors (HIGH sensory uncertainty, σ = √2726). Each of the five cursor positions were displaced following a normal distribution about 
the angle that the cursor crosses the target distance boundary plus the relevant perturbation. Note figure not to scale. 

 
 

 
 

 

(1) 

(2) 

(3) 



adaptation rate can then be calculated from the linear regression 
of the change in hand angle to the perturbation from the previous 
trial [12] (slope in Fig. 6). Two adaptation rates were calculated 
per subject corresponding to the low and high sensory 
uncertainty conditions. 

III. RESULTS 

Fig. 6 shows a representative subject in which the blue line 
gives the adaptation rate. Individual trials are plotted (unfilled 
gray circles) along with the mean and standard deviation of 
change in hand angle for each respective perturbation level 
(filled black circles and error bars). Note that the more negative 
the slope of the line, the more proclivity the subject has to adapt. 

Adaptation rates (mean ± standard mean error; sem) across 
subjects were -0.168 ± 0.029 and -0.096 ± 0.026 for the low 
sensory uncertainty condition and high sensory uncertainty 

condition, respectively (Fig. 7). A pairwise t-test indicated that 
adaptation rate is significantly different (p < 0.05) and the low 
sensory uncertainty adaptation rate is significantly more 
negative (p < 0.01). Thus, human subject data shows that 
feedback uncertainty slows the rate of adaptation following the 
Kalman filter model. These results support motor adaptation 
theory that increased inability to accurately perceive motor 
consequences encourages subjects to rely more on their internal 
models, slowing any subsequent internal model updates.    

IV. DISCUSSION 

Our reported adaptation rates across subjects (mean ± sem) 
for the low sensory uncertainty and high sensory uncertainty 
conditions, respectively, are: -0.168 ± 0.029 and -0.096 ± 0.026. 
Wei and Körding (2010) also verified the first implication of the 
Bayesian framework by showing that increasing sensory 
uncertainty decreased trial-by-trial adaptation rate. Reported 
adaptation rates across subjects (mean ± sem) for the low 
sensory uncertainty and high sensory uncertainty conditions, 
respectively, are as follows: -0.178 ± 0.015, -0.133 ± 0.017, also 
found to be statistically significant  [9]. Thus, our results confirm 
our hypothesis that increased sensory uncertainty will decrease 
adaptation rate and confirms published data using a remote and 
web-based experimental paradigm. Additional support for this 
implication using lab-based experiments is abundant [6]–[10]. 
Moreover, our work adds to the efforts of [15] by  demonstrating 
the efficacy for the use of a remote platform for motor adaptation 
research.  

A limitation of our study is the homogenous nature of our 
subject population – recruited primarily through university 
undergraduate channels. Recent attention has been brought on 
the need to reduce research bias [22]. Thus, our remote paradigm 
could allow the use of web-based resources such as Amazon 
Mechanical Turk (mtruk.com) and Prolific (prolific.co) to 
diversify the subject population [18]. Another challenge with 
our remote study is an inability to control the testing 
environment, and more specifically, prevent the subject from 
receiving proprioceptive and visual feedback of their own 

 

Fig. 6. Trial-by-trial adaptation rate of a representative subject. The gray circles 
indicate individual trial data, black circles and errorbars are the mean and 
standard deviations for each perturbation size, and the blue line is the linear 
regression (adaptation rate). Note that the more negative the adaptation rate, 
the more proclivity the subject has to adapt to perturbations. 

 

Fig. 7. Adaptation rates (mean ± sem) A) were -0.168 ± 0.029 and -0.096 ± 0.026 for the low sensory uncertainty and high sensory uncertainty conditions, 
respectively. A pairwise t-test indicates that the adaptation rates are significantly different (p < 0.05) and the low sensory uncertainty adaptation rates are significantly 
more negative (p < 0.01). Results are shown B) for individual subjects as a histogram. Data met the assumption of normality (Shapiro-Wilks) and support the 
Kalman filter model prediction that increased sensory uncertainty slows the rate of adaptation. 



movements. In traditional motor adaptation studies, a platform 
blocks the subject’s hand from view. However, our reaching 
movement is small and utilizes a trackpad rather than a tablet or 
robot manipulandum resulting in less informative visual and 
proprioceptive feedback. We also utilize fast movement times to 
prevent the effectiveness of any in-motion visual feedback. 

Despite these challenges, we propose our work as an initial 
step to illustrate that careful implementation of a remote study 
including attention checks, gamification, and built-in timeouts is 
effective for motor adaptation studies and successful in 
verifying previously published work. Future work can capitalize 
on this platform for quick piloting capabilities in the face of 
limited cost or limited access to in-person testing and continue 
to move motor learning and motor adaptation research forward. 
Our next aim is to design experiments, using our remote 
paradigm, that may help study the second implication of the 
Bayesian model of motor adaptation that increased model 
uncertainty leads to increased adaptation rate. This implication 
is less studied and has mixed results [10], but shows initial 
promise for application in assistive technologies [12]. Future 
work will focus on expanding lessons learned to assistive and 
robotic technologies. 
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