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Abstract— Understanding human motor learning and
adaptation processes is an integral step in developing
rehabilitative engineering solutions and training strategies for
assistive technologies. Natural skill acquisition enables continually
precise movements despite inherent noise in motor execution,
sensory perception, and dynamic changes in body parameters
(growth, age, etc.) and the external environment. As an initial step,
motor learning research has aimed to identify the mechanisms of
natural human adaptation during the acquisition of motor skills.
Results presented here confirm previous work on motor
adaptation using a remote web-based experimental paradigm that
could provide a valuable option to conduct additional future work
with expanded more diverse subject populations.
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I. INTRODUCTION

Humans learn motor skills through both a strategic and
adaptive process where strategic processes are sensitive to goal-
based performance and adaptive processes are sensitive to
prediction errors between the desired and actual outcome of a
task [1]. Motor learning research [2]-[4] indicates that during
motor skill acquisition humans become highly proficient at
estimating and adjusting to the consequences of their
movements by creating and storing task-based internal models
of specific motor skills.

The idea of an internal model is compelling because humans
seem to have an uncanny ability to produce precise movements
despite inherently noisy motor commands, noisy and delayed
sensory feedback, and an unpredictable external environment.
Additionally, the human body itself is constantly growing,
aging, and dealing with fluctuations brought on by disease,
exercise, and mental state — thus indicating some adaptive
property of the internal model. Interestingly, transcranial direct
current stimulus of the cerebellum has been shown to increase
the rate at which subjects adapt in response to fluctuations [4]
contributing to the idea that motor adaptation drives internal
model calibration. The mechanism for how this is done has
become a major focus of research and researchers have long
postulated that internal models are maintained through adaptive
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processes in response to sensory prediction errors. Bayesian
models successfully describe this phenomenon and have been
validated in many experimental studies including research on
eye saccades [5] and hand reaching [6]-[10].

Existing literature additionally suggests that relevant visual
and proprioceptive feedback in movement generation could
bolster the adaptation process for rehabilitative applications [9],
and the adaptation process can be artificially modulated in task-
relevant dimensions [11]. Moreover, preliminary work in our lab
demonstrates evidence for Bayesian motor adaptation behavior
in an electromyography (EMG)-based cursor-to-target task,
showing potential for application to EMG-driven prostheses
[12]. Thus, training strategies capitalizing on innate motor
adaptation processes could combat challenges in prosthetic
operation including internal changes such as muscle fatigue or
external changes such as electrode shift by increasing the rate
users adapt to changing task parameters. Other areas of
application include human-machine coordination tasks such as
supernumerary robotic operation [13]. Shenoy and Carmena
have indicated a similar need in brain-computer interfaces in
which they argue that neural adaptations are necessary to attain
clinically viable levels of performance, and that the development
of decoders (or gesture classification systems) alone is not
sufficient [1]. They also emphasize that the most effective
method of gaining prosthetic and motor skill is to find a way to
train users that mimics natural skill acquisition.

Two interesting implications for motor adaptation arise from
Bayesian models of visuomotor tasks [9]. Following a Kalman
filter (KF) model [14], the first implication is that feedback
uncertainty (measurement feedback uncertainty in KF theory)
increases trust in the internal model (thus decreasing reliance on
sensory feedback) and decreases adaptation rate. For example,
consider an individual learning to play tennis as dusk sets in.
Any changes in ball velocity would theoretically result in limited
adaptation as feedback uncertainty increases with the sky
darkening. Alternatively, the second implication claims that
model uncertainty (model prediction uncertainty in KF theory)
decreases trust in the internal model (thus increasing reliance on
sensory feedback) and increases adaptation rate. For example, a
tennis player warming up might be less confident in her internal



model of the task and adapt quickly to any unexpected
inaccuracies while an inaccuracy observed after a sufficient
warmup might be more likely disregarded. Here the source of
uncertainty is dictating the adaptation rate by modulating the
Kalman gain or the relative weighting of model prediction and
measurement feedback (Fig. 1). While a significant body of
literature exists supporting this first implication with cursor-to-
target experimental paradigms [6]-[10], research for the second
implication is comparatively sparse with mixed results [5], [9],
[10]. For this second prediction, further validation is necessary
to confirm that distrust in the internal model is the driving factor.

A popular paradigm in motor adaptation experiments is
hand reaching in response to visual perturbations [6], [8], [9].
These experiments are typically conducted in a controlled
laboratory setting supervised by on-site researchers. Here
subjects perform cursor-to-target reaches in a horizontal plane
while receiving feedback of hand position on a vertical display
(Fig. 2.a). An important experimental element is that online
(real-time) feedback during the movement is blocked, allowing
researchers to add a small amount of shift (or perturbation) to
the position reported back to the subject at the end of the reach.
Any subsequent adjustments by the subject in response to these
perturbations is recorded as the trial-by-trial adaptation rate.
This metric is of interest because it sheds light on the rate at
which the internal model updates. Sensory uncertainty is often
added to probe the effect of sensory uncertainty on adaptation
rate by displaying cursor endpoint feedback as a cursor cloud [8]
or a distribution of multiple cursors [9].

Strides have been made by Tsay and colleagues to develop a
web-based platform utilizing a trackpad for motor learning and
motor adaptation research [15]. Traditional studies require
elaborate laboratory setups and finely calibrated hardware to
measure movement kinematics. Additionally, these studies are
often time intensive as on-site researchers must proctor and
administer experimental protocols one subject at a time. Tsay et
al. developed an open-source, remote experimental platform
(OnPoint) for motor learning studies and demonstrated the
capability of web-based systems to closely reproduce results
from motor experiments conducted in person [15]. They
conducted three visuomotor rotation adaptation experiments in
which they evaluated adaptation behavior when hand position
was perturbed by angular rotation. Their work confirmed that
learning behavior scales with rotation size when both implicit
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Fig. 1. The Kalman filter gain quantifies the ratio between model uncertainty
and sensory uncertainty in Bayesian motor adaptation models. Here arrow
directionality signifies an increase in the indicated quantity. As sensory
uncertainty increases (toward the left), the adaptation rate decreases, and as
model uncertainty increases (toward the right) the adaptation rate increases.
Researchers postulate that the brain is performing a similar weighting process
when streamlining motor task performance [6].

Fig. 2. A depiction of A) a traditional cursor-to-target experimental paradigm,
and B) the setup of our analagous remote, web-based experimental paradigm.

and explicit adaptation processes are involved [16], implicit
adaptation is invariant to error size [17], and the trial-by-trial
adaptation rate function is quasi-linear for smaller rotation sizes
but becomes sub-linear for larger rotation sizes [9].

Our work focuses on evaluating the effect of sensory
uncertainty on motor adaptation rate with the aim of validating
the use of our remote, web-based experimental paradigm. Fig.
2.b. depicts our analogous remote experimental setup.
Following methodology outlined by Wei & Kording, we
hypothesize that our results will confirm their results [9] by
showing that increased sensory uncertainty decreases the trial-
by-trial adaptation rate in response to visuomotor perturbations.
Subject populations are more likely to represent the general
population when sourced from web-based platforms [18].
Therefore, an effective remote experimental paradigm could be
vital for broadening the homogeneous populations common in
scientific research [19]. Furthermore, an effective remote
experimental paradigm could be important for continuing motor
learning research in challenging circumstances (such as a global
pandemic). Lastly, it also enables fast, low-cost turnaround for
explorative studies to examine optimal feedback mechanisms
and methods to artificially modulate adaptation rate with the
overall aim of boosting human-machine cooperation.

II. METHODS

Eighteen subjects with no history of neurological disorders
participated in the experiment (15 female; 19.8 + 1.5 years old).
Seventeen subjects were right-hand dominant, and all subjects
had 20/20 vision or corrected to 20/20 vision. Subjects were
informed of and consented to procedures approved by the
Institutional Review Board at the University of California, Davis
(protocol #1677528-2).

A. Remote Experimental Paradigm

A central aim of this work was to validate the use of a
remote, web-based experimental paradigm for motor adaptation
studies. A remote platform adapted from [15] was developed in
JavaScript/CSS/HTML and deployed through a server managed
by the JATOS tool [20]. Subjects completed a cursor-to-target
task by performing ‘swiping’” movements, or reaches, on a
laptop trackpad. Key additions to [15] included an automatic



reset of the cursor to the starting point at the conclusion of each
trial (reducing additional visual and proprioceptive feedback
during the return process), gamification and built-in timeouts to
encourage compliance, and the capability to display cursor
feedback as a collection of normally distributed cursors. The
cursor was a smiley face, the start position was an Earth icon,
and the target was an asteroid icon (Fig. 3). Short instruction
prompts preceded each block of trials. Attention checks were
implemented between blocks and required subjects to
comprehend the instructions and click on the correct icon to
advance through the experiment. Subjects could time out of the
experiment if they were idle for more than 30 seconds (s) during
the experimental trials (a 10-s warning was provided after 20 s
of no activity). A ‘Trial Counter’ tracked subject progress
through each block as a proportion of trials completed to total
trials remaining and ‘study progress’ tracked overall progress
throughout the experiment as a percentage.

B. Experimental Setup

Prior to the start of the experiment, subjects viewed an
instructional video to orient themselves to the task and to learn
the appropriate setup. They were instructed to select a flat
surface to work, free of obstructions, where they could sit
directly in front of their laptop. Additionally, they needed to
ensure that they had good wrist support, full access to the
trackpad surface, and only used their dominant hand throughout
the entirety of the task. Visual examples were shown to
demonstrate good and bad setups. Fig. 2.b. shows an appropriate
setup. Subjects then viewed examples of successful reaches and
the several potential feedback representations or messages they
could see during the experiment on the user interface (e.g.,
endpoint feedback of cursor position with sensory uncertainty,
movement speed warnings, etc.). They were reminded to avoid
looking down at their trackpad during trials and to focus their

£«
L1

Start

Trial Counter: 10 / 20

study:progress: 0% .

Fig. 3. User interface for the cursor-to-target task. The Earth icon represents
the starting point. Prior to each trial, the cursor (smiley face) resets to Earth,
and subjects perform 'swiping' movements on their laptop trackpads to hit the
target (asteroid) as quickly and accurately as possible. A ‘Trial Counter’ tracks
subject progress through each block of trials. A ‘study progress’ indicator
tracks overall progress through the experiment as a percentage. Note figure is
drawn for clarity and is not to scale.

attention on the screen. This reminder was repeated periodically
throughout the experimental blocks as well.

Subjects viewed a computer screen with the start directly in
the center of the screen. The target distance was set to 300 pixels
(px). The start radius, target radius, and cursor radius were
scaled according to the target distance resulting in radii of
42.1875 px, 42.1875 px, and 33.75 px, respectively. To
successfully complete a reach, subjects had to finish their
movement between 30 and 90 milliseconds (ms). Enforcing this
range ensured that movement time would not be a significant
factor when conducting analysis and confirmed that subjects
were not moving slow enough to incorporate visual feedback
mid-reach [21]. Subjects were not required to stop on the target,
but simply pass through it, and feedback was provided at the
point the subject crossed the target distance boundary. After
each trial, the cursor was automatically reset to the start. When
both the cursor and target appeared, the next reach could be
initiated.

C. Experimental Tasks

Each subject completed an adaptation protocol following [9]
in which a perturbation was applied prior to providing cursor
feedback to the subject. As a result, trial-by-trial adaptation rate
could be quantified by the relationship between change in hand
angle of trial k+/ with respects to trial k£ in response to the
perturbation in trial £.

The three phases of the experiment were executed as
follows: 1) Familiarization + Condition 1, 2) Washout, and 3)
Condition 2 (Fig. 4). Familiarization was the same for all
subjects and oriented the subjects to the user interface and
required movement. Condition 1 and Condition 2 varied only in
the amount of sensory uncertainty provided in the feedback and
allowed a within-subject comparison of the effect of sensory
uncertainty on adaptation rate. The order of sensory uncertainty
level (low or high) for Conditions 1 and 2 was counterbalanced
between subjects. See the Condition 1 & 2 description below for
more details.

1) Familiarization

All subjects completed a Familiarization block so that they
could practice the ‘swiping’ motion and ensure that they could
complete reaches within the required timeframe. Subjects
completed 50 trials to a 45° target (+x axis at 0°, following a
positive counterclockwise rotation convention). Once the cursor
left the start, it was hidden from view. After the cursor crossed
the target distance boundary, subjects received a ‘Trial
Complete!” message. The left-handed subject followed the same
protocol but saw a target position at 135° to mirror the wrist
movement right-handed subjects used to perform reaches.

Familiarization =~ Condition 1 (low or high sensory uncertainty)
50 trials 150 trials

>

Condition 2 (low or high sensory uncertainty)

9 150 trials

Fig. 4. A within-subject experimental design was utilized to compare the effect
of low and high sensory uncertainty on trial-by-trial adaptation rate. The order
of sensory uncertainty was counterbalanced between subjects.




2) Condition 1 & 2

Both Condition blocks consisted of 50 trials at each
perturbation level {-15°, 0°, 15°} in a randomized order for a
total of 150 trials. Again, the target was set to 45° (or 135° for
the left-handed subject), however, feedback was displayed as a
distribution of five cursors to impart a quantifiable amount of
sensory uncertainty. Each cursor was displaced following a
normal distribution about the position of the hand angle that the
cursor crossed the target distance boundary plus the relevant
perturbation. Each Condition block varied only in the spread of
the cursors (Fig. 5). Moving forward, these two levels will be
referred to as low semsory uncertainty and high sensory
uncertainty for the smaller distribution of cursors and the larger
distribution of cursors, respectively. Fig. 5 shows an example of
the two sensory uncertainty levels for a perturbation of 15°. The
order of sensory uncertainty level provided (low or high) was
counterbalanced across subjects.

The distribution size of cursors for low sensory uncertainty
corresponded to a distribution for which 95% of cursor locations
were within 1/3 of the perturbation size or +5° This
corresponded to a standard deviation of V170 px. The
distribution size for high sensory uncertainty corresponded to a
distribution in which 80% of cursor locations were within the
perturbation size (+15°). This corresponded to a standard
deviation of 2726 px and was selected such that the
perturbations were still perceivable and trial-by-trial adaptation
could still occur.

3) Washout

Separating the two Condition blocks was a washout task.
The purpose of the washout task was to reduce the impact of
Condition 1 on Condition 2. This task employed the keyboard
arrows as the input to prevent any additional cursor movement
calibration outside the Condition blocks. The task was selected
out of convenience using existing infrastructure. In this task, the
subject’s cursor acted as a spotlight that would light up portions
of a grid. The task required subjects to utilize velocity control to
effectively direct the spotlight around the grid to count the
number of circles with orange centers (targets) before the trial

time expired. Subjects were then asked to report the number of
targets they located. Lastly, they were provided a score based on
accuracy. All subjects completed a short training on the task
followed by three trials of the grid search. Note that the washout
trials were not analyzed and were completed only to create an
interlude between Condition blocks.

D. Analysis

Subjects who were unable to complete 90% (135/150 trials)
of trials successfully during both Conditions 1 and 2 were
eliminated from the analysis as any extended length of time
between trials may have affected the accurate quantification of
trial-by-trial adaptation rate and/or indicate noncompliance. Of
the 18 subjects who completed the experimental protocol, three
did not meet this standard. As a result, our final analysis
consisted of 15 subjects (12 female; 1 left-hand dominant). The
inclusion of the left-handed subject did not alter the significance
of our results.

Equations (1), (2), and (3) provide a detailed look at the
Kalman filter for a linear discrete-time system with timestep .
Equations (1) and (2) give the model prediction and
measurement update steps, respectively, where x is the state
(target position) estimation, 4 is the state matrix, and y is the
visual feedback. These steps can alternatively be represented as
a single equation (3) where the Kalman gain (L) minimizes the
variance of the state estimate by assigning weights based on the
relative trust of model prediction versus measurement feedback
[14].

Rrpk—1 = Ak—1X—1jk-1 )
Ripe = Ak-18k-1jk-1 + L (Ve = Viege-1) (2)
Rie = Rigk-1 + Le(Vie = Yire—1) 3)

Rearranging (3) yields Ly as a function of the change in hand
angle to the experimentally applied perturbation (the feedback
position with the rotation minus the true cursor position). Thus,

Fig. 5. During Conditions 1 and 2, subjects experienced trial-by-trial perturbations selected randomly from a uniform distribution of {-15°, 0°, 15°}. In A), a +15°
perturbation is shown in which the cursor is rotated 15° counterclockwise (unbeknownst by the subject) from the true cursor endpoint (opaque smiley face).
Depending on the respective condition, subjects received feedback as either B) a smaller distribution of five cursors (LOW sensory uncertainty, ¢ = J 170)or C) a
larger distribution of five cursors (HIGH sensory uncertainty, ¢ = \/2726). Each of the five cursor positions were displaced following a normal distribution about
the angle that the cursor crosses the target distance boundary plus the relevant perturbation. Note figure not to scale.
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Fig. 6. Trial-by-trial adaptation rate of a representative subject. The gray circles
indicate individual trial data, black circles and errorbars are the mean and
standard deviations for each perturbation size, and the blue line is the linear
regression (adaptation rate). Note that the more negative the adaptation rate,
the more proclivity the subject has to adapt to perturbations.

adaptation rate can then be calculated from the linear regression
of the change in hand angle to the perturbation from the previous
trial [12] (slope in Fig. 6). Two adaptation rates were calculated
per subject corresponding to the low and high sensory
uncertainty conditions.

III. RESULTS

Fig. 6 shows a representative subject in which the blue line
gives the adaptation rate. Individual trials are plotted (unfilled
gray circles) along with the mean and standard deviation of
change in hand angle for each respective perturbation level
(filled black circles and error bars). Note that the more negative
the slope of the line, the more proclivity the subject has to adapt.

Adaptation rates (mean + standard mean error; sem) across
subjects were -0.168 + 0.029 and -0.096 + 0.026 for the low
sensory uncertainty condition and high sensory uncertainty
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condition, respectively (Fig. 7). A pairwise t-test indicated that
adaptation rate is significantly different (p < 0.05) and the low
sensory uncertainty adaptation rate is significantly more
negative (p < 0.01). Thus, human subject data shows that
feedback uncertainty slows the rate of adaptation following the
Kalman filter model. These results support motor adaptation
theory that increased inability to accurately perceive motor
consequences encourages subjects to rely more on their internal
models, slowing any subsequent internal model updates.

IV. DISCUSSION

Our reported adaptation rates across subjects (mean + sem)
for the low sensory uncertainty and high sensory uncertainty
conditions, respectively, are: -0.168 = 0.029 and -0.096 + 0.026.
Wei and Kording (2010) also verified the first implication of the
Bayesian framework by showing that increasing sensory
uncertainty decreased trial-by-trial adaptation rate. Reported
adaptation rates across subjects (mean + sem) for the low
sensory uncertainty and high sensory uncertainty conditions,
respectively, are as follows: -0.178 = 0.015, -0.133 £ 0.017, also
found to be statistically significant [9]. Thus, our results confirm
our hypothesis that increased sensory uncertainty will decrease
adaptation rate and confirms published data using a remote and
web-based experimental paradigm. Additional support for this
implication using lab-based experiments is abundant [6]-[10].
Moreover, our work adds to the efforts of [15] by demonstrating
the efficacy for the use of a remote platform for motor adaptation
research.

A limitation of our study is the homogenous nature of our
subject population — recruited primarily through university
undergraduate channels. Recent attention has been brought on
the need to reduce research bias [22]. Thus, our remote paradigm
could allow the use of web-based resources such as Amazon
Mechanical Turk (mtruk.com) and Prolific (prolific.co) to
diversify the subject population [18]. Another challenge with
our remote study is an inability to control the testing
environment, and more specifically, prevent the subject from
receiving proprioceptive and visual feedback of their own
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Fig. 7. Adaptation rates (mean + sem) A) were -0.168 + 0.029 and -0.096 + 0.026 for the low sensory uncertainty and high sensory uncertainty conditions,
respectively. A pairwise t-test indicates that the adaptation rates are significantly different (p < 0.05) and the low sensory uncertainty adaptation rates are significantly
more negative (p < 0.01). Results are shown B) for individual subjects as a histogram. Data met the assumption of normality (Shapiro-Wilks) and support the
Kalman filter model prediction that increased sensory uncertainty slows the rate of adaptation.



movements. In traditional motor adaptation studies, a platform
blocks the subject’s hand from view. However, our reaching
movement is small and utilizes a trackpad rather than a tablet or
robot manipulandum resulting in less informative visual and
proprioceptive feedback. We also utilize fast movement times to
prevent the effectiveness of any in-motion visual feedback.

Despite these challenges, we propose our work as an initial
step to illustrate that careful implementation of a remote study
including attention checks, gamification, and built-in timeouts is
effective for motor adaptation studies and successful in
verifying previously published work. Future work can capitalize
on this platform for quick piloting capabilities in the face of
limited cost or limited access to in-person testing and continue
to move motor learning and motor adaptation research forward.
Our next aim is to design experiments, using our remote
paradigm, that may help study the second implication of the
Bayesian model of motor adaptation that increased model
uncertainty leads to increased adaptation rate. This implication
is less studied and has mixed results [10], but shows initial
promise for application in assistive technologies [12]. Future
work will focus on expanding lessons learned to assistive and
robotic technologies.
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