
Effects of Cyclic Mechanical Stretch on MDA-MB-231 Breast Cancer Cell Behavior

Joel Mudloff¹, Daniel Chavarria², Aaron Baker²

Introduction: While it is known that physical activity has been linked to a decrease in breast cancer prevalence, the mechanisms through which physical activity regulates breast cancer cell behavior remains poorly understood^{1,2}. Studies have shown that cancer cells have differences in mechanical properties such as stiffness, elasticity, and adherence when compared to normal cells³. In addition, more recent studies have produced better in-vitro systems for modeling local organ microenvironments under flow conditions⁴ which had previously limited investigations of cancer cell metastasis. This study investigates the effects of cyclic mechanical stretch on breast cancer cell adhesion, proliferation, and chemotherapeutic resistance.

Materials and Methods: MDA-MB-231 breast cancer cells were pretreated an hour before being stretched at 7.5% strain at 1 Hz for 1 hour. For the cell survival assay, cells were fixed, permeated, and stained with DAPI before being imaged utilizing confocal microscopy. Cell nuclei were counted using FIJI's analyze particle function. For the cell adhesion assay, cells were trypsinized, labeled, and allowed to recover for 1 hour. Cells were sheared under physiological conditions (0.5 dynes/cm²) for 1 hour and the number of adhered cells was read using a plate reader. Cells were then exposed to incremental shear stresses for 1-minute intervals and adhered cells were read in between runs with the plate reader.

Results and Discussion: Doxorubicin and Verteporfin treatments significantly decreased cell survival, while cyclic mechanical stretch showed no significant effect on breast cancer cell survival. At shear stresses below or at 2 dynes/cm² cyclic mechanical stretch significantly affected the adhesion of breast cancer cells treated with DMSO.

Figure 1. Cells were stretched for 24 hours at 7.5% strain at 1 Hz. Cells were pretreated for 1 hour before stretching. Cells were detached from stretch plates and allowed to recover for an hour before administration of adhesion assav.

Conclusions: Inflammation of endothelial cells used in the adherence assay was controlled for with TNF- α (10ng/mL). However, initial adherence was higher than previous reiterations leading us to believe that there may have been some oil residue on the HT-CAP that caused more inflammation on endothelial cells. The effects of cyclic mechanical stretch should be investigated in other breast cancer cells such as MCF-7.

Acknowledgments: This work was supported by the BUILDing SCHOLARS program supported by the National Institute of General Medical Sciences of the National Institutes of Health under linked Award numbers RL5GM118969, TL4GM118971, and UL1GM118970.

References:

- 1. Jain R. K., Martin J. D., & Stylianopoulos T. (2014), The Role of Mechanical Forces in Tumor Growth and Therapy. *Annual Review of Biomedical Engineering*, 16, 321-346
- 2. Butcher D. T., Alliston T., & Weaver V. M. (2009), A tense situation: Forcing tumour progression. *Nature Reviews Cancer*, 9, 108-122
- 3. Suresh S. (2007). Biomechanics and biophysics of cancer cells. Acta Biomaterialia, 3(4), 413-438
- 4. Spencer A., Spruell C., Nandi S., Wong M., Creixell M., & Baker A. B. (2016). A high-throughput mechanofluidic screening platform for investigating tumor cell adhesion during metastasis. *Lab on a Chip*, 16, 142-152

¹ Department of Metallurgical, Materials, and Biomedical Engineering, University of Texas at El Paso, TX

² Department of Biomedical Engineering, University of Texas, Austin, TX