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ABSTRACT: Hydroxymethanesulfonate (HMS) is produced in the 
aqueous-phase reaction of formaldehyde (HCHO) and sulfur 
dioxide (SO,) and has been proposed as a significant contributor 
to midlatitude wintertime pollution events. Here we report HMS 
detection within submicrometer atmospheric aerosols during 
frequent late summer, regional fog events in an Arctic oil field.
The number fraction of individual particles containing HMS 
increased during fog periods, consistent with aqueous-phase 
formation. The single-particle mass spectra showed the primary 
particle signature (oil field emissions), plus secondary oxidized 
organics and sulfate, consistent with aqueous-phase processing.
HMS mass concentrations ranged from below the ion chromatog­
raphy limit of detection (0.3 ng/m3) to 1.6 ng/m3, with sulfate 
concentrations of 37—222 ng/m3. HCHO and SO, measurements suggest that the fog HMS production rate is ~10 times higher in 
the oil fields than in the upwind Beaufort Sea. Aqueous-phase reactions of local oil field emissions during frequent summertime 
regional fog events likely have downwind impacts on Arctic aerosol composition. The potential for fog-based HMS production was 
estimated to be an order of magnitude higher in Fairbanks and Anchorage, AK, than in the oil fields and may explain the missing 
organosulfate source contributing to Fairbanks air quality.

■ INTRODUCTION

Aqueous-phase reactions in fog and cloud droplets often yield 
products that persist after droplet evaporation and contribute 
to aerosol production.1-5 The majority of global atmospheric 
sulfate (80—90%) is estimated to be formed through aqueous- 
phase hydrogen peroxide and ozone oxidation of sulfur(IV) to 
sulfur(Vl).6-s Munger et al.9 measured S(IV) and form­
aldehyde (HCHO) concentrations in fog and cloud droplets in 
California that exceeded their expected saturation concen­
trations from Henry’s law calculations.9,10 The excess S(IV) 
corresponded to hydroxymethanesulfonate (HMS,
H0CH2S03-) formed from the aqueous reaction between 
HCHO and sulfur dioxide (SO,)9,10 Globally, HCHO is 
produced by hydrocarbon oxidation,11 fossil fuel combus­
tion,12 and biomass burning.13 Major sources of SO, include 
fossil fuel combustion and industry,14'15 as well as the ocean 
and volcanoes.16,17 A theoretical investigation proposed that an 
HMS isomer, hydroxymethyl sulfite, can also be produced 
through the aqueous-phase reaction between SO, and 
HCHO.18

HMS has been measured in fogwater,9,19-23 precipita­
tion,24-26 and aerosol particles 27-35 HMS production is 
favored within fog and cloud droplets, compared to aerosol,

in part due to the increased pH. In particular, single-particle 
mass spectrometry provides HMS identification within 
individual atmospheric particles by detection of its molecular 
ion [m/z —111 (H0CH2S03-)]. 6-38 Whiteaker et al.36 first 
observed individual particles containing HMS during fog 
events in Bakersfield, CA. HMS-enriched single particles have 
since been observed during fog in London, England,39 and 
Guangzhou, China,40 as well as winter haze in Beijing, 
China.32,33 In summertime Atlanta, GA, 10—15% of measured 
individual particles contained HMS, which often coexisted in 
the same particles as carboxylic acids and other oxidized 
organic compounds indicative of aqueous processing.41,42 
Recent studies32-35,43 proposed that the HMS concentration 
can reach significant levels in China during winter haze and 
may be misidentified as sulfate. HMS formation may explain 
high particulate sulfur concentrations in Beijing,43 with
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wintertime concentrations of up to 7.3 fig/m3.35 Song et al.32 
showed that Beijing sulfate model predictions improve through 
the inclusion of HMS formation. Moch et al.34 and Song et 
al.44 recently presented observational and modeling evidence 
of the global presence of HMS.

In the Arctic, there is growing attention on the significance 
of local combustion emissions, including from large oil fields 
across the region.45-47 However, few measurements of 
atmospheric trace gases and aerosols within Arctic oil fields 
exist,4 -52 with none, to the best of our knowledge, examining 
subsequent aqueous-phase processing. The formation, dis­
sipation, and droplet size distribution of Arctic fog, as well as 
aerosol interactions, have previously been investigated,53-55 
with fog frequently observed on the North Slope of Alaska 
during summertime.56,57 As the third largest oil field in North 
America, the North Slope of Alaska oil fields cover ~14000 
km2. In this study, local combustion emissions46'48,50,51 and fog 
processing were investigated using an aerosol time-of-flight 
mass spectrometer (ATOFMS)58 during August and Sep­
tember 2016 at Oliktok Point, AK, within the oil fields. The 
ATOFMS measured the size and chemical composition of 
individual particles, a fraction of which contained HMS, which 
was quantified using ion chromatography (IC). Constrained by 
aircraft near-surface measurements of SO, and HCHO, HMS 
production rates were estimated for the oil fields and compared 
to those of the upwind Beaufort Sea and two cities in Alaska.

■ MATERIALS AND METHODS
Atmospheric measurements were conducted at the Atmos­
pheric Radiation Measurement (ARM) Mobile Facility 
(AMF3) located at Oliktok Point, AK (70°29'41.4" N, 
149°53'10.9" W). Meteorological data, including temperature, 
wind speed, wind direction, relative humidity (RH), and 
precipitation, were obtained from a Vaisala WXT520 weather 
transmitter at a height of ~10 m. Ambient visibility was 
obtained by a visibility sensor (Vaisala PWD). Weather data 
from the three closest airports were also used to identify fog 
events. These were the airports at Deadhorse (70° 11 '24" N, 
148°27'36" W), Ugnu-Kupmk (70°19'S2" N, 149°3S'39" W), 
and Nuiqsut (70°12'32" N, 151°0'20" W), which are located 
20—70 km from Oliktok Point (Figure Si). Meteorological 
data were also included from Utqiagvik (71°17'41" N, 
156°45'52" W, formerly known as Barrow), which is the 
largest city of the North Slope Borough and is 270 km 
northwest of Oliktok Point.

ATOFMS58 measurements were conducted from August 22 
to September 17, 2016, using a PM10 (<10 fim particulate 
matter) cyclone inlet (URG Corp., Chapel Hill, NC) and are 
described by Gunsch et al.49 The ATOFMS measured 32880 
individual particles from 0.07 to 1.6 fim (vacuum aerodynamic 
diameter). As summarized by Gunsch et al.49 and in the 
Supporting Information, ART-2a clustering analysis59 identi­
fied eight single-particle types, with number concentration 
percentages shown in parentheses: organic carbon (OC)- 
amine-sulfate (45%), sea spray aerosol (15%), OC (16%), 
elemental carbon (EC, 2%), EC and OC (ECOC, 10%), 
biomass burning (8%), mineral dust (3%), and incineration 
particles (l%). HMS-containing particles were identified by 
searching the individual particle mass spectra for m/z —111 
(H0CH2S03-), based on previous field and laboratory 
work,36 using a threshold of 0.01 relative peak area. The 
isomer hydroxymethyl sulfite, recently predicted from 
theoretical work,18 cannot be distinguished using this method.

HMS could not be identified in sea spray aerosol, because of 
the lack of m/z —111 formation by NaCH3S04,37,38 in 
incineration particles, because of the KC1,- isobaric interfer­
ence, or in OC and biomass burning particles, because of the 
lack of negative ion mass spectra due to water accumulation 
during transport.37

From August 18 to September 18, 2016, 10 PM3 (<1 fim 
particulate matter) samples were collected on 90 mm diameter 
quartz fiber filters over 1—4 day periods using a medium 
volume sampler (URG Corp.). HMS and sulfate were 
separated and quantified (Figure S2) using a Metrohm Peak 
Ion Chromatograph (Compact 761, Metrohm, Herisau, 
Switzerland), operated with a 250 fiL sample loop and a 
Metrosep A Supp 5-150/4.0 anion column with 3.2 mM 
Na2(CO3)/1.0 mM NaHC03 eluent. Uncertainty in measured 
HMS mass concentrations is estimated to be 20% + the limit of 
detection, which ranged from 0.3 to 1 ng/m3. Additional 
sampling and IC details are provided in the Supporting 
Information.

SO, and HCHO were measured during the first deployment 
of the Atmospheric Tomography Mission (ATom-l) aboard 
the NASA DC-8 aircraft. During the flight on August 1 and 2, 
2016, from 14:30 to 00:39 UTC, the aircraft flew from 
California to the western Arctic, making continuous SO, and 
HCHO measurements, including at <2000 m agl (above 
ground level) at five locations: Beaufort Sea 1, Beaufort Sea 2, 
Deadhorse, Fairbanks, and Anchorage (Table Si). SO, was 
measured using the Caltech time-of-flight chemical ionization 
mass spectrometer (CIT-CIMS),60 via reaction with the 
CF30- reagent ion and subsequent monitoring of ions at m/ 
z 83 (FSO,-) and m/z 101 (FSO, H,0-). The NASA In Situ 
Airborne Formaldehyde instrument61 measured formaldehyde 
using laser-induced fluorescence with a 2>y limit of detection 
(LOD) of 36 ppt.

Fog droplet HMS production rates were calculated on the 
basis of estimated liquid water content (LWC) and measured 
SO, and HCHO. SO, partitioning to fog results in a pH- 
dependent equilibrium distribution among SO,, HS03-, and 
S032- for subsequent reaction with HCHO (reactions R1 and

9,10,19,20,62

HCHO + HS03- b CH2(0H)S03- (ri)

HCHO + SO/- ^ CH/0-)S03- (R2)

HMS production rates (PHMs) are calculated using eq El:

%MS = (fciai + k2«2)[S02^q)][HCHO^q)] X LWC X Mhms

(El)

where kx (777.8 mM-1 h-1) and fc, (5.59 X 107 mM-1 h-1) are 
the forward rate constants for Rl and R2, respectively, at the 
campaign average temperature (276.35 K). a1 and a, are the 
HS03- and S032- fractions, respectively, based on SO, 
equilibrium and pH. S02l J1|;i and HCHOlai|1 concentrations 
were calculated from SO,(g) and HCHO(g), respectively, using 
their Henry’s law constants (0.0288 mol m-3 Pa-1 for SO, and 
0.1593 mol m-3 Pa-1 for HCHO) at the campaign average 
temperature.63 Mass transport processes do not limit PHMS, as 
discussed in the Supporting Information. The fog droplet 
LWC was estimated from visibility data using the previously 
reported relationship between LWC and visibility at Utqiagvik, 
AK.53 Mhms is the HMS molecular weight.



■ RESULTS AND DISCUSSION

Regional Fog across the North Slope of Alaska Oil 
Fields. Fog was frequently observed at Oliktok Point, AK, 
from August 18 to September 19, 2016 (Figure S3). Periods of 
fog were identified by reduced visibility (<10 km), high RH 
(>80%), minimal precipitation (<0.1 mm h-1), low wind speed 
(<8 m/s), and local observations, when available. Fog periods 
lasted for 44 min, on average (ranged from 10 min to 7.5 h), 
and accounted for 7% of the campaign time; 72% of the fog 
occurred between 21:00 and 9:00 AKDT when the temper­
ature was lower and the RH was higher. Fog events at Oliktok 
Point were accompanied by fog at one or more of the three 
closest airports (Deadhorse, Ugnu-Kupruk, and Nuiqsut) 
during 67% of the campaign (Figure S3), even though the 
airports are located 20—70 km away (Figure Si). At Utqiagvik, 
fog events occurred 23% of the time and overlapped with 46% 
of the fog time at Oliktok Point, despite being located ~270 
km away. This demonstrates that fog often formed on a 
regional scale, covering the oil fields and surrounding region of 
the North Slope of Alaska. This is in agreement with previous 
work showing that fog can be widespread across the Beaufort 
Sea57 and is most abundant in the Arctic from June to 
September.64

Individual HMS-Containing Particles. The ATOFMS 
measured 1100 individual particles containing HMS at Oliktok 
Point, AK, from August 22 to September 17, 2016.49 These 
particles were 3.3% of the total number measured in the size 
range of 0.07—1.6 jam.49 During fog periods, the number 
fraction of HMS-containing particles was 7%, which is 
comparable to the fraction observed during Beijing winter 
haze of ~10%.32 Eighty-one percent of the HMS-containing 
particles, by number, were classified as organic carbon particles 
containing alkylamines and sulfate (OC-amine-sulfate par­
ticles).49 The remaining HMS-containing particles were 
classified as ECOC (15%, by number), EC (2%), and mineral 
dust (1%). This is in approximate order of expected particle 
hygroscopicity, as previously observed by Whiteaker and 
Prather;36 the most hygroscopic particles will be more likely to 
take up water and form fog droplets, promoting HMS 
formation in the aqueous phase. The observed particle types 
were previously determined to be most abundant during oil 
field plumes and emitted locally within the oil fields from 
industrial and diesel combustion sources.49 As discussed 
below, both the OC-amine-sulfate and ECOC particles were 
internally mixed with oxidized organic carbon and sulfate (see 
the Supporting Information), consistent with aqueous-phase 
processing65 and previous observation of HMS formation 
within individual internally mixed OC and sulfate particles.36

Individual OC-amine-sulfate and ECOC particles comprised 
96% of the identified HMS-containing particles. Due to 
desorption/ionization matrix effects that impact ion signals 
between particles of significantly different composition,66 we 
focus here on these two carbonaceous sulfate particle types. 
The number percentage of these particles containing HMS was 
significantly higher (p = 0.004, unpaired f-test) when fog was 
present (average of 12%, range of 0—34%), compared to when 
fog was not present (average of 5%, range of 0—20%) (Figure 
l). HMS was present at higher levels within the individual 
particles during fog (p = 0.07). The average relative peak area, 
which is proportional to mass, of the ion at m/z — 111 was 20% 
higher during fog for these HMS-containing particles (Figure 
l). As in previous studies,27,29,32,33,36,39-42 the measured
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Figure 1. Number fractions of individual OC-amine-sulfate and 
ECOC particles, measured by the ATOFMS, containing HMS (m/z 
— 111) during fog and no fog periods. The boxes show 25th, 50th, and 
75th percentiles; the whiskers show 5th and 95th percentiles, and the 
markers show mean fractions. The average HMS (m/z — 111) relative 
peak areas, with 95% confidence intervals, for HMS-containing OC- 
amine-sulfate and ECOC particles are shown during fog and no fog 
periods. The average number fractions and HMS relative peak areas 
are significantly higher (p = 0.004 and 0.07, respectively) during fog 
than during no fog conditions.

particles here correspond to interstitial aerosol, rather than 
fog droplet residues. The enhancement during fog is consistent 
with aqueous-phase HMS formation, likely within fog 
droplets,9,19-23 followed by droplet evaporation.

The individual HMS-containing OC-amine-sulfate and 
ECOC particles had additional chemical composition differ­
ences when compared to particles that did not contain HMS 
(Figure 2 and Figure S4). The HMS-containing OC-amine- 
sulfate and ECOC particles were characterized by larger sulfate

A) OC-amine-sulfate
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Figure 2. Average individual particle mass spectra for (A) OC-amine- 
sulfate and (B) ECOC particles that contained HMS (m/z —111).
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[m/z —97 (HS04“) and m/z —81 (HS03~)] peak areas, 
relative to those not containing HMS. Additional sulfate- 
containing ions, including those at m/z 175 (K2HS04+) and 
m/z 213 (K3S04+), were at least 4 times more frequently 
observed in HMS-containing particles. A higher sulfate mass 
within the individual particles is consistent with aqueous-phase 
production of both HMS and sulfate,6'7'9'67 as well as sulfate 
formation where HMS is an intermediate product.68'69 

Oxidized organic carbon was also more abundant [larger m/ 
z 43 (C2H30+) peak area] for HMS-containing particles and is 
indicative of a higher organic aerosol oxidation state,70 

consistent with aqueous processing.71 Sulfuric acid [m/z 
—195 (H,S04HS04-)] and amines {m/z 58
(C2H3NHCH,+), 59 [N(CH3)3+], 86 [(C,H5),NCH,+], and 
118 [(C2H5)3NOH+]} were less abundant, exhibiting smaller 
peak areas (reduced mass), in the HMS-containing particles. 
The extent of amine uptake is reduced for less acidic 
particles,72'73 consistent with the lower observed sulfuric acid 
content and higher pH required for HMS formation.9'19'74

Bulk PMt HMS Mass Concentrations. From August 18 
to September 18, 2016, bulk PM2 HMS mass concentrations 
for 1—4 day filter samples ranged from below the IC limit of 
detection (0.3 ng/m3) to 1.6 ng/m3 (Figure S3). To the best 
of our knowledge, these are the first Arctic HMS measure­
ments, which will aid in the evaluation of global models 34,44 In 
comparison, the PM2 sulfate concentration, measured by IC, 
ranged from 37 to 222 ng/m3. While these PM2 sulfate and 
HMS mass concentrations are low compared to those of 
midlatitude polluted regions, these levels are important in the 
rapidly changing Arctic, where sulfate is simulated to have a 
significant negative radiative forcing impact.79 When HMS was 
present, the IC HMS/sulfate molar ratios ranged from 0.01 to 
0.02, with these ratios and HMS mass concentrations in line 
with global modeling of more polluted North American 
locations during wintertime44 Because the level of HMS 
production is increased at lower temperatures,44 it is important 
to note that this late summer Arctic study had an average air 
temperature of 3.2 °C, more similar to lower latitude 
wintertime conditions.

Co-located online aerosol chemical speciation monitor 
[ACSM75,76 (described in the Supporting Information)] 
measurements49 show agreement with the IC sulfate mass 
concentrations (Figure S6). However, the significantly higher 
ACSM excess sulfate signal (SO+ and SO,+ signals beyond that 
attributed to inorganic sulfate),32 compared to the IC 
measured HMS concentration (Figure S3), highlights the 
uncertainty in attributing this ACSM excess sulfate signal solely 
to HMS, as shown in a recent study.77 This suggests that 
additional organosulfur compounds contributed to the ACSM 
excess sulfate, which ranged from 7 to 33 ng/m3, on average, 
during the filter sampling periods. Moffett et al.78 reported 
methanesulfonate concentrations ranging from 2 to 41 ng/m3 

at Oliktok Point during the summers of 2015—2017, which 
included this study. Therefore, this marine organosulfur 
compound likely explains a significant fraction of the ACSM 
excess sulfate signal at this coastal site.

Comparison of HMS Production Rates among 
Alaskan Oil Field, Marine, and Urban Sites. Potential 
HMS production rates were calculated for Deadhorse [located 
within the North Slope of Alaska oil fields (Figure Si)] and 
compared to those of two sites over the upwind Beaufort Sea, 
as well as the high-latitude cities of Fairbanks and Anchorage, 
AK (Figure 3). These calculations used the campaign average
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Figure 3. Calculated HMS production rates, shown on a log scale and 
constrained by measured S02 and HCHO mole ratios at these 
locations, using the campaign average estimated fog LWC (4.8 mg/ 
m3) and measured temperature (276 K) at Oliktok Point, AK. 
Boundary layer S02 and HCHO mole ratios from the ATom-1 
aircraft measurements on August 1 and 2, 2016, for five locations are 
shown (described in Table Si): Beaufort Sea 1, Beaufort Sea 2, 
Deadhorse (within the North Slope of Alaska oil fields), Anchorage, 
and Fairbanks. The S02 mole ratios shown and used in the 
calculations for the two Beaufort Sea sites correspond to 0.5 times 
the LOD (defined as 3 times the standard deviation of the 
background measurement, for 1 min averaging, at that location). 
Bars show the pH range from 4 (bottom bar) to 6 (top bar).

temperature, calculated fog LWC, and near-surface (<2000 m 
agl) SO, and HCHO mole ratios from clear-air aircraft-based 
measurements during August 1 and 2, 2016 (Table Si). Given 
the pH sensitivity of HMS production,9'19'32 the fog pH was 
assumed to be 5 and varied from 4 to 6, based on typical 
fogwater pH80 and previous HMS studies,9'10'19'32'74'80 which 
showed HMS decomposition above pH 6 and a reduced level 
of HMS formation below pH 4/7,43,74,77,81,82 The HMS 
production rate within the oil fields was calculated to be 0.12 
ng m-3 h_1, for SO, and HCHO levels of 40 and 282 ppt, 
respectively (Figure 3). The SO,/HCHO ratio of 0.14 suggests 
that HMS production was SO, limited within the oil fields.34 

The HMS production rate is highly sensitive to pH and 
increases 2 orders of magnitude from pH 4 to 6. Other factors, 
including the LWC uncertainty and lack of ground-based SO, 
and HCHO measurements during fog, contribute to the high 
HMS production rate uncertainty.

Potential fog HMS production rate estimates for the cities of 
Fairbanks (average values for SO, of 237 ppt and for HCHO 
of 794 ppt) and Anchorage (average values for SO, of 194 ppt 
and for HCHO of 631 ppt) are 1.4—2.1 ng m-3 h_1, an order 
of magnitude higher than within the oil fields (Figure 3 and 
Table Si). At these mole ratios, HMS production is predicted 
to be limited by SO,.34 The potential for fog-based HMS 
production in these high-latitude cities is notable as this 
chemistry could potentially explain the missing organosulfate 
source contributing to Fairbanks air quality issues.83

The HMS production rate within the North Slope of Alaska 
oil fields was estimated to be ~10 times higher than that of the 
Arctic background (Beaufort Sea 1 and 2, located upwind of 
the oil fields), where SO, levels were below measurement



limits of detection and the HCHO level was 83 ppt (Figure 3 
and Table Si). This suggests that fog processing within and 
downwind of the North Slope of Alaska oil fields impacts the 
atmospheric composition. Fog-based HMS formation likely 
occurs in other areas of the Arctic influenced by shipping, oil 
and gas extraction activities, and smelters. This is particularly 
important to consider because the Arctic is home to major SO, 
sources, including the metal smelters in Norilsk, Russia (one of 
the largest global SO, sources), as well as periodic volcanic 
eruptions.84 Rapid warming and declining sea ice in the 
Arctic85,86 is making the region more accessible to oil and gas 
extraction and shipping.45, 6,87 Observational and modeling 
studies are needed to further evaluate the importance of Arctic 
aqueous aerosol formation and the HMS contribution to the 
Arctic atmospheric sulfur budget.
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