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A B S T R A C T   

A paucity of detailed relative sea-level (RSL) reconstructions from low latitudes hinders efforts to understand the 
global, regional, and local processes that cause RSL change. We reconstruct RSL change during the past ~5 ka 
using cores of mangrove peat at two sites (Snipe Key and Swan Key) in the Florida Keys. Remote sensing and field 
surveys established the relationship between peat-forming mangroves and tidal elevation in South Florida. Core 
chronologies are developed from age-depth models applied to 72 radiocarbon dates (39 mangrove wood mac-
rofossils and 33 fine-fraction bulk peat). RSL rose 3.7 m at Snipe Key and 5.0 m at Swan Key in the past 5 ka, with 
both sites recording the fastest century-scale rate of RSL rise since ~1900 CE (~2.1 mm/a). We demonstrate that 
it is feasible to produce near-continuous reconstructions of RSL from mangrove peat in regions with a microtidal 
regime and accommodation space created by millennial-scale RSL rise. Decomposition of RSL trends from a 
network of reconstructions across South Florida using a spatio-temporal model suggests that Snipe Key was 
representative of regional RSL trends, but Swan Key was influenced by an additional local-scale process acting 
over at least the past five millennia. Geotechnical analysis of modern and buried mangrove peat indicates that 
sediment compaction is not the local-scale process responsible for the exaggerated RSL rise at Swan Key. The 
substantial difference in RSL between two nearby sites highlights the critical need for within-region replication of 
RSL reconstructions to avoid misattribution of sea-level trends, which could also have implications for 
geophysical modeling studies using RSL data for model tuning and validation.   

1. Introduction 

Relative sea level (RSL) is the net outcome of a variety of physical 
processes operating on characteristic spatial (local to global) and tem-
poral (minutes to millennia) scales. Consequently, similarities and dif-
ferences in RSL across space and through time are interpreted in terms of 
their underlying causes to better understand specific processes. Prior to 
systematic tide-gauge measurements (since ~1900 CE in the south-
eastern United States), patterns of RSL change have been reconstructed 

using proxies preserved in geological archives, such as salt-marsh sedi-
ment (e.g., van de Plassche et al., 1998; Gehrels et al., 2008; Long et al., 
2012; Walker et al., 2021), coral microatolls (Goodwin and Harvey, 
2008; Woodroffe et al., 2012; Hallmann et al., 2018), bioconstructed 
reefs (Suguio and Martin, 1978; Angulo et al., 1999), and archeological 
features (Sivan et al., 2004; Dean et al., 2019). Reconstructions of late 
Holocene RSL change demonstrate that the high rate of rise since the 
mid-19th century was a global phenomenon and without precedent in at 
least the preceding ~3 ka (e.g., Kemp et al., 2018; Kopp et al., 2016). 
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Along the Atlantic coast of North America, salt-marsh records also 
identified earlier phases of regional- and (multi-) centennial-scale sea- 
level variability. Efforts to differentiate between possible causes for this 
earlier sea-level variability (e.g., land ice melt and/or redistribution of 
existing ocean mass by prevailing winds and ocean currents) are hin-
dered by a paucity of near-continuous reconstructions south of Cape 
Hatteras in the Western Atlantic (Fig. 1) and from low latitudes more 
broadly. Recognizing the role of processes causing regional-scale RSL 
change is also important for anticipating future sea-level trends, 

particularly in South Florida where densely-populated urban areas, 
aging flood-control facilities, flat topography, and porous limestone 
bedrock heighten socio-economic vulnerability to future RSL rise (e.g., 
Noss, 2011). 

Along the Atlantic coast of North America, near-continuous re-
constructions of late Holocene RSL are almost exclusively generated 
from sequences of sediment deposited in high salt-marsh environments 
(e.g., Gehrels et al., 2020; Kemp et al., 2018). In South Florida, salt 
marshes are replaced by mangroves and it is unclear if these 

Fig. 1. (A) Location of sites with near-continuous relative sea-level reconstructions generated from salt-marsh or mangrove sediment along the Atlantic coast of 
North America. (B) Study sites and tide gauges with historic sea-level measurements in South Florida. Shading of ocean represents relative sea level predicted at 4 ka 
by a glacial-isostatic adjustment model (ICE-7G_NA VM7; Roy and Peltier, 2017). (C, D) Locations of transects where the elevational range of peat-forming mangroves 
was measured. At Snipe Key and Swan Key cores collected along each transect were used to describe the underlying stratigraphy (panels E and F respectively). Select 
tide gauges deployed by NOAA to establish tidal datums are shown; presented values are for great diurnal tidal range (mean lower low water to mean higher high 
water). MTL: mean tide level. (Kemp et al., 2015, Kemp et al., 2013a; Kemp et al., 2017a; Kemp et al., 2015; Barnett et al., 2017; Barnett et al., 2019). 
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environments can generate RSL reconstructions of comparable accuracy 
and precision (vertical and temporal) to those from salt marshes. Spe-
cifically, bioturbation (e.g., Ellison, 2008; McKee and Faulkner, 2000; 
Woodroffe et al., 2015b) and poor preservation of micro- and macro-
fossils (e.g., Berkeley et al., 2009; Debenay et al., 2004) present chal-
lenges to deriving robust chronologies and detailed RSL reconstructions 
from mangrove sediment. Given the resources required to produce a 
near-continuous RSL reconstruction, the sea-level research community 
has understandably prioritized producing new records to explore 
sea-level variability among regions, rather than replicating RSL records 
within regions. However, this sampling regime is ill-suited to robustly 
differentiate the influence of regional- and local-scale processes, with 
the risk that reconstructed RSL trends will be misattributed to specific 
processes. 

To expand the latitudinal range and density of late Holocene RSL 
reconstructions along the Atlantic coast of North America and evaluate 
the within-region replicability of RSL reconstructions (Kemp et al., 
2017b; Kemp et al., 2018), we develop new records from two sites (Snipe 
Key and Swan Key; Fig. 1) separated by ~160 km in South Florida. These 
near-continuous reconstructions are generated from dated sequences of 
mangrove peat that accumulated during the past ~5 ka. We demonstrate 
that mangrove peat can be a source of detailed RSL reconstructions in 
regions experiencing long-term RSL rise with small tidal range, even if 
foraminifera (and/or other microfossil proxies) are poorly preserved or 
absent. We use a spatio-temporal empirical hierarchical model to 
decompose RSL trends from a network of reconstructions into regional- 
and local-scale signals. This analysis indicates that Snipe Key reflected 
regional-scale trends, but that Swan Key experienced additional RSL rise 
on millennial timescales from local-scale processes other than sediment 
compaction. 

2. Study area 

The Florida Keys are a chain of small limestone islands that extend 
~240 km from southern Miami to Key West, Florida (Fig. 1) and are 
underlain by the Key Largo Limestone and Miami Limestone formations 
(Sanford, 1909; Scott, 2001) that formed during the Last Interglacial 
period (Coniglio and Harrison, 1983). Low-energy, intertidal environ-
ments on the islands (keys) are commonly vegetated by peat-forming 
mangroves established when the rate of deglacial RSL rise slowed to <
~5 mm/a at approximately 6–4 ka (Willard and Bernhardt, 2011; 
Dekker et al., 2015; Saintilan et al., 2020). The mangroves can be 
classified into fringe, basin, scrub, riverine, overwash, or hammock 
forests (Lugo and Snedaker, 1974) occupied by Rhizophora mangle (red), 
Avicennia germinans (black), and Laguncularia racemosa (white). In South 
Florida, monospecific stands of R. mangle occur at the lowest elevations 
fringing bays and tidal channels, and monospecific stands of R. mangle or 
mixed species stands of R. mangle, A. germinans, and L. racemosa occupy 
basins in the interior of mangrove islands (Scholl, 1964; Radabaugh 
et al., 2017). 

Exploration of sites in the lower Florida Keys revealed Snipe Key to 
be underlain by a thick and continuous sequence of mangrove peat that 
was judged likely to produce a late Holocene RSL record. Snipe Key is a 
mangrove island containing fringe and basin monospecific and mixed 
stands of R. mangle, A. germinans, and L. racemosa (Fig. 1). A nearby (<3 
km) tide gauge at Middle Narrows (NOAA station 8724427; Fig. 1C) 
measured great diurnal tidal range (mean lower low water, MLLW to 
mean higher high water, MHHW) to be 0.55 m. Swan Key was selected 
for analysis because previous work by Robbin (1984) showed the site to 
be underlain by a near-continuous sequence of mangrove peat that 
accumulated during the past ~5 ka. This mangrove island is occupied by 
monospecific and mixed fringe, scrub, and basin stands of R. mangle, A. 
germinans, and L. racemosa. A nearby (~2 km) tide gauge at Totten Key 
(NOAA station 8723467; Fig. 1D) measured great diurnal tidal range to 
be 0.44 m. In the Florida Keys, water heights display pronounced sea-
sonality due to the steric effects of strong heating/cooling and salinity 

changes in the Gulf of Mexico and seasonal winds (Liu and Weisberg, 
2012). Lower water levels occur between January and July and elevated 
water levels occur from August to December. To provide a more com-
plete characterization of contemporary mangrove environments and 
sediments, we conducted surveys at three additional sites (Fig. 1C; 
Fig. 2A). Lower Snipe Key and Waltz Key have similar vegetation 
composition and geomorphology to Swan Key and Snipe Key, while 
Upper Saddlebunch Key is occupied by scrub mangroves (suffering 
stunted growth due to nutrient limitation or salinity stress; e.g., Lugo 
and Snedaker, 1974). 

3. Methods and results 

3.1. Indicative meaning of mangroves in South Florida 

The vertical distribution of mangroves is controlled by the frequency 
and duration of tidal inundation, which is principally a function of 
elevation (Ellison, 1993; Spalding et al., 2010; Woodroffe et al., 2016). 
The indicative meaning quantifies the relationship between a sea-level 
proxy and tidal elevation from modern observations (e.g., van de Plas-
sche et al., 1998). To reconstruct RSL using mangroves as a proxy re-
quires that they be assigned an indicative meaning established from 
measurements of modern mangroves. Peat-forming mangroves are pu-
tatively confined to the upper half of the intertidal zone from mean tide 
level (MTL) to highest astronomical tide (HAT) (Thom, 1967; Davis and 
Fitzgerald, 2003; Woodroffe et al., 2016; Khan et al., 2017; Chua et al., 
2021), but surveys to quantify the indicative meaning of mangroves are 
rare (Leong et al., 2018) and restricted to a handful of sites assumed to 
be representative of regional patterns. Furthermore, the distribution of 
mangroves within their indicative range is poorly characterized, despite 
an implicit assumption in most subsequent statistical analyses of a 
normal distribution (e.g., Khan et al., 2017). We quantified the indica-
tive meaning of mangroves in South Florida using two complementary 
approaches: (1) we surveyed the distribution of mangroves along tran-
sects at five sites in the lower and upper Florida Keys (Figs. 1, 2); and (2) 
we used remote sensing products to quantify the distribution of man-
groves across a wide geographic area in South Florida (Fig. 2). 

At the five sites in the Florida Keys (Snipe Key, Lower Snipe Key, 
Swan Key, Waltz Key, and Upper Saddlebunch Key), we established a 
transect through the intertidal zone. At evenly-spaced intervals of dis-
tance (in basin environments with flat topography) or elevation (in 
fringe environments with an elevation gradient) along each transect, we 
recorded qualitative surface sediment lithology. The elevation of each 
sampling location relative to a temporary benchmark was surveyed 
using an automatic level. At Waltz Key the tidal elevation of the tem-
porary benchmark was measured directly by including tidal benchmarks 
in the survey. At the four other sites, we measured the elevation of 
temporary benchmarks relative to the North American Vertical Datum of 
1988 (NAVD88) using a Leica GS15 global navigation system (Snipe 
Key) or an Ashtech differential global positioning system (Lower Snipe 
Key, Swan Key, Upper Saddlebunch Key). Elevations were converted 
from NAVD88 to tidal datums using VDatum (Yang et al., 2012). To 
account for differences in tidal range among sites, elevations were 
converted to standardized water level index (SWLI) units (Horton and 
Edwards, 2005), where a value of 0 corresponds to local MTL and a 
value of 100 corresponds to local MHHW. Along these transects the 
elevation of peat-forming mangroves is well described by a normal 
distribution with a mean and standard deviation of 120 ± 59 SWLI units 
(Fig. 2; Table S1). The highest occurrence of peat-forming mangroves 
(termed HOP) occurred ~0.1–0.3 m above highest astronomical tide 
(HAT), likely due to high seasonal variability in water levels super-
imposed on a microtidal regime, which causes seasonal water levels to 
regularly exceed HAT (a predicted astronomical tide; Kemp et al., 2022). 

In our remote sensing analysis of regional-scale mangrove distribu-
tion in the Florida Everglades, we combined a map of vegetation cover 
derived from aerial photographs (Madden et al., 1999; Welch et al., 
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Fig. 2. Modern elevation distribution of mangroves 
from South Florida. (A) Elevation of peat-forming 
mangroves measured along surface transects at five 
sites in the Florida Keys. Location of surface transects is 
shown in Fig. 1C, D. Elevation is expressed as a stan-
dardized water level index (SWLI). (B-C) Geospatial 
datasets (South Florida Information Access digital 
elevation model from Desmond (2003) [B] and Center 
for Remote Sensing and Mapping Science land cover 
vegetation map from Madden et al. (1999) and Welch 
et al. (1999) [C]) were used to derive the mangrove 
elevation dataset shown in D (expressed relative to the 
North Atlantic Vertical Datum [NAVD88]) and E 
(expressed in SWLI units). VDatum was used to convert 
orthometric heights to local tidal levels; many of the 
orthometric point coordinates (D) were outside of the 
VDatum conversion grid, resulting in a much smaller 
elevation dataset (E). (D, E) Elevation distribution in 
NAVD88 (D) and SWLI units (E) and Q-Q plot of forest 
and scrub mangroves estimated from the elevation 
datasets from B and C. Normal distributions were fitted 
to elevation distributions shown in A, D, and E, and the 
fit was assessed by the Q-Q plot (blue and green circles 
show the empirical cumulative probability of the 
elevation dataset, red lines show the normal theoretical 
quantiles and Lilliefors confidence bounds [Conover, 
1980)]) and measures presented in Table S1. (See 
Section 3.1 for further details). MTL: mean tide level; 
HAT: Highest astronomical tide. Note that mean 
(dotted line) and standard deviation (gray shading) of 
HAT from nearby tide gauges (Table S4) is shown in A 
and E. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web 
version of this article.)   
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1999) with the South Florida Information Access digital elevation model 
(400 m × 400 m grid with vertical accuracy of ±15 cm; Desmond, 
2003). For each polygon of mangrove forest or mangrove scrub, an 
elevation point was extracted from the corresponding location in the 
model using the intersection tool in ArcGIS. We used VDatum to convert 
each elevation from NAVD88 to tidal datums and calculate a SWLI. 
Because some locations are outside the bounds of VDatum, the conver-
sion from NAVD88 caused a reduction in the number of observations 
(from 6805 to 1255; Fig. 2; Table S1). We analyzed the elevations of 
mangrove forest and scrub separately and then together. The distribu-
tion of the separate groups is reasonably well approximated by a normal 
distribution of 86 ± 61 SWLI (mean ± standard deviation) for mangrove 
forest compared to 61 ± 105 SWLI for scrub mangroves (Fig. 2; 
Table S1). When combined, the distribution remains approximately 
normal (81 ± 74 SWLI). These distributions are not directly comparable 
to the field survey of peat-forming mangroves because the remote 
sensing analyses included all areas of mangrove cover regardless of their 
underlying substrate, which can likely grow at lower (non-peat-forming) 
elevations below MTL (e.g., Khan et al., 2019). 

From the survey and remote sensing analyses of mangrove distri-
bution by tidal elevation, we adopted a conservative indicative meaning 
of MTL to HOP (95% confidence) for undifferentiated mangrove peat 
recovered in cores. This range is likely large enough to encompass all 
species of mangrove and their geomorphic settings in South Florida and 
can be reasonably approximated by a normal distribution in statistical 
analyses. For studies that do not differentiate between peat-forming 
mangroves and other types of mangrove sediments (e.g., muds and 
sands), an alternative indicative meaning may be more appropriate. 

3.2. Mangrove stratigraphy 

Similar stratigraphic sequences were identified at Snipe Key and 
Swan Key using hand-driven cores collected along transects (Fig. 1E, F). 
Core-top elevations were measured using the same approach employed 
for surface sediment (Section 3.1). Overlying the limestone basement, 
two principal lithologic units were identified, a black mangrove peat at 
the base of the sequence and a red mangrove peat at the top of the 
sequence (descriptions refer to sediment color rather than the dominant 
peat-forming mangrove species). The black mangrove peat consisted of 
decomposed organic material with identifiable R. mangle mangrove re-
mains (leaf and wood fragments and roots). The red mangrove peat was 
primarily composed of fine R. mangle roots. 

Cores SNK1 from Snipe Key (24.679 ◦N, −81.653 ◦E) and SBC10 
from Swan Key (25.349 ◦N, −80.251 ◦E) were selected for detailed 
analysis because they contained thick sequences of continuous 
mangrove peat that were deemed representative of the stratigraphy 
underlying each site (Fig. 1). In SNK1, black mangrove peat at depths of 
4.9 to 2.4 m was conformably overlain by red mangrove peat (grada-
tional contact) from 2.4 m to the core top (0.31 m MTL). In SBC10, black 
mangrove peat extending from 7.5 to 2.7 m was also conformably 
overlain by red mangrove peat (gradational contact) from 2.7 m to the 
top of the core (0.29 m MTL). The cores were collected in overlapping 
0.5-m intervals using an Eijkelkamp peat sampler to prevent compaction 
and contamination during sampling. To minimize moisture loss and 
microbial activity, cores were placed in split PVC pipe, wrapped in 
plastic, and refrigerated prior to analysis. One replicate of each core was 
sampled for foraminiferal analysis within ~2 h of core collection by 
placing 1-cm thick samples into vials of buffered ethanol. Analysis of 
these samples followed standard methods (Horton and Edwards, 2006) 
and showed foraminifera to be present in the units of red and black 
mangrove peat in both cores, but in concentrations too low to generate 
statistically-robust counts (Kemp et al., 2020) in a reasonable time frame 
(Table S2). 

3.3. Sediment compaction 

Mangrove sediments may compact, resulting in post depositional 
lowering (PDL) of samples used to reconstruct RSL (Bloom, 1964; Kaye 
and Barghoorn, 1964; Toscano et al., 2018). To estimate the contribu-
tion of compaction to reconstructed RSL, we used a three-stage 
geotechnical modeling approach developed for salt-marsh sediments 
(Brain, 2015). In step one, the compression behaviour of modern (sur-
face) mangrove sediments was measured (Fig. 3A). We collected 16 
modern samples (15-cm depth and diameter) from the range of 
contemporary eco-sedimentary zones encountered at Middle Snipe Key 
(n = 5), Lower Snipe Key (n = 6), and Swan Key (n = 5; Fig. 1; Table 1). 
For each sample, we measured (i) organic content by loss-on-ignition 
(LOI; three determinations per sample; e.g., Plater et al., 2015); (ii) 
particle density (Gs) using gas pycnometry; (iii) voids ratio (e1) (one 
determination per sample; Head, 1988); and (iv) compression behaviour 
using automated oedometer testing (Head and Epps, 2011; Rees, 2014). 
LOI in 15 modern samples from peat-forming mangroves ranged from 
57.5 to 75.8% (mean of 67.7% ± 4.4%, one standard deviation). One 
open-bay, sub-tidal sample composed of carbonate mud from Lower 
Snipe Key had a LOI of 24.4%. 

In step two, we measured LOI and dry density in every other 1-cm 
thick sample in SNK1 and SBC10 (Fig. 3B, C) using the methods noted 
above. SNK1 had relatively uniform dry density (0.13 ± 0.02 g/cm3), 
but LOI in the black mangrove peat (71.4 ± 3.4%) was greater than in 
the red mangrove peat (62.4 ± 7.1%), with a full range of 39.5–79.8%. 
Dry density (0.14 ± 0.03 g/cm3) and LOI (63.1 ± 3.4%) were relatively 
uniform within and between the units of black and red mangrove peat in 
SBC10. The observed LOI values in the cores overlap with those 
measured in our modern mangrove samples. As such, we deemed the 
properties measured on modern samples to be geotechnical analogues 
for core material. 

In step three, compression properties were assigned to layers 
throughout each core based on their observed correlation with LOI in the 
modern dataset. We used the semi-empirical equation of Hobbs (1986) 
to predict downcore Gs from measured LOI in each layer during each 
model run; the regression model error was sampled from a uniform error 
distribution defined by the range of observed residuals. To assign values 
of Cr and Cc to layers in each core for each model run, we sampled from a 
uniform probability distribution defined by the range of values observed 
in our modern training set. We observed a statistically-significant rela-
tionship between LOI and e1 (r2

adj = 0.45; p = 0.004). However, the form 
of this relationship (e1 = 0.48*LOI – 20.51) predicts physically 
improbable states for LOI values lower than ~40%. Given the poor 
constraint on the relationship provided by our modern mangrove sam-
ples, we assigned values of e1 by sampling from a uniform probability 
distribution defined by the range of values observed in our modern 
training set. 

Estimates of effective stress and PDL are shown in Fig. 3B, C. Peak 
PDL was 2.6 ± 0.1 cm in SNK1 (at 2.40 m depth) and 3.5 ± 0.1 cm in 
SBC10 (at 3.38 m depth). Measured bulk density is within the one 
standard deviation range of values predicted by the model, supporting 
our approach. 

3.4. Core chronologies 

Sediment accumulation in SNK1 and SBC10 was determined by 
radiocarbon dating and recognition of pollution and land-use changes of 
known age in downcore profiles of elemental abundance and pollen 
assemblages (Tables 2–4). Where possible, plant macrofossils of 
mangrove wood (trunk or branches), terminal stems, and prop root bark 
were separated from the peat matrix for radiocarbon dating (Fig. S1). 
Plant macrofossils were identified with reference to published guides (e. 
g., Tomlinson, 2016) and fresh and subfossil (i.e., plant litter accumu-
lating on the sediment surface at different states of decay) specimens 
collected at the field sites. We distinguished aboveground components of 
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Fig. 3. (A) Observed relationships between geotechnical and physical properties of modern mangrove sediments collected at three sites (symbol shape) in the Florida Keys and across a range of ecological zones (symbol 
color). Due to the narrow range of measured loss-on-ignition (LOI) relative to compression behaviour, we did not observe statistically-significant relationships between LOI and particle density (Gs; r2

adj = 0.03; p =
0.251), recompression index (Cr; r2

adj = 0.08; p = 0.165), or compression index (Cc; r2
adj < 0.001; p = 0.560). (B, C) Estimation of post-depositional lowering (PDL) due to physical compression of core sediments. 

Comparisons of measured and model-predicted (mean and 95% credible interval) loss on ignition (purple) and dry bulk density (green) and modeled effective stress profiles and PDL estimates are shown for sediment 
samples from cores SNK1 (B) and SBC10 (C). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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mangrove wood from roots that formed belowground on the basis of the 
color, morphology, and rigidity of the plant material. The epidermis of 
coarse mangrove roots can be dark red or brown in color, with the 
interior portion darker in color than the exterior. These roots are also 
thin and flexible, and often lateral insertion points where smaller roots 
connected to larger ones can be observed. In contrast, aboveground 
wood components are much more rigid and dark brown to black in color 
(except for prop root bark that is a lighter shade of brown). With large 
enough macrofossils, prop root bark is identifiable by the presence of 
lenticels (small openings that provide gas exchange and an additional 
source of oxygen for the submersed roots), and terminal twigs can be 
identified by leaf scars (mark left by a leaf after it falls off the twig). 
These macrofossils likely formed within the paleomangrove stand (un-
dergoing minimal transport) near-contemporaneously with the 
mangrove sediment surface. Macrofossils were cleaned under a binoc-
ular microscope to remove adhering older sediments and/or younger 
ingrown rootlets (Kemp et al., 2013b). Where mangrove macrofossils 
were absent, the fine-fraction of bulk peat was separated for dating 
following Woodroffe et al. (2015b). Briefly, 1-cm thick horizons of bulk 
peat were passed through a 63-μm sieve, and the <63-μm fraction was 
collected onto a previously baked GF/F (0.7 μm) fiberglass filter under 
vacuum. Samples were oven dried at 55 ◦C and sent to the National 
Ocean Science Accelerator Mass Spectrometer (NOSAMS) laboratory for 
radiocarbon dating. At NOSAMS, mangrove macrofossils were 
acid-base-acid pretreated and fine-grained bulk samples were acid pre-
treated prior to conversion to graphite. Acid washing of bulk sediment 
served to remove carbonates and fulvic acids. Carbonates (if present) are 
likely to be systematically older than the mangrove surface on which 
they were deposited, and in carbonate-rich environments, such as the 
Florida Keys, contamination of bulk sediment ages by allochthonous 
carbonate could bias radiocarbon ages. Fulvic (and humic) acids are 
considered to be active components of peat that may be mobile in the 
sediment column (and surrounding landscapes) and can potentially bias 
bulk sediment ages older or younger (Runge et al., 1973; Wild et al., 
2013). No base washing was performed on the bulk sediment samples 
because its humified nature would result in considerable loss of mass (e. 
g., Shore et al., 1995). This decision was made in consultation with 
NOSAMS staff and implicitly assumes that the mass retained by not base 
washing is not systematically different in age to other fractions of carbon 
in the sediment. δ13C was measured on an aliquot of gas from each 
combusted sample (Table 3 and 4). 

To measure downcore elemental abundance, samples from the upper 
35 cm (2-cm intervals in the upper 10 cm and 1-cm intervals below) of 

SNK1 and SBC10 were freeze dried, ground to a fine, homogenized 
powder and sent to the Meadowlands Environmental Research Institute 
laboratory for commercial analysis of elemental abundance by induc-
tively coupled plasma mass spectrometry (ICP-MS). Unprocessed sedi-
ment samples (1 cm3 at 4 cm intervals in the top 35 cm) were sent to 
LacCore at the University of Minnesota, where pollen slides were pre-
pared according to the methods of Faegri and Iversen (1989). We 
counted 100 pollen grains and spores at 500× magnification; the low 
count was due to sparsity of pollen grains present in the samples. 
Assigning ages to downcore trends in elemental abundance and pollen 
requires recognizing the environmental impact of known historical 
events and/or trends (Table 2). Each age marker was assigned an age 
and depth uncertainty to account for the challenge of identifying a 
specific date in historical records, the possible lag between emission and 
deposition, and the possibility that horizons could be associated with 
multiple, adjacent depths in the core. 

An age-depth model was developed for each core using Bchron 
(Fig. 4; Haslett and Parnell, 2008; Parnell et al., 2011) where input was 
radiocarbon dates and discrete age-depth estimates from marker hori-
zons (assumed to have a normal probability distribution for age). All 
radiocarbon dates were calibrated by Bchron using the IntCal20 cali-
bration curve (Reimer et al., 2020). Throughout the text, median and 
95% credible interval age estimates derived from Bchron are reported. 

The chronology for SNK1 was developed from 47 radiocarbon dates 
(Table 3; Khan et al., 2022) and two pollution horizons (Table 2). No 
pollen horizons representing land-use change or the introduction of 
exotic species were recognized in this core, likely because of its distance 
from population centers and agricultural activities, coupled with pre-
vailing westerly winds that are unlikely to deliver pollen from South 
Florida (Christie et al., 2021). However, it is possible that low pollen 
counts may have contributed to the lack of signal. The core represents 
the past ~5.9 ka and the average age uncertainty for a 1-cm thick sample 
is ±77 years. 

The chronology of SBC10 was derived from 43 radiocarbon dates 
(Table 4; Khan et al., 2022) and four pollen/pollution horizons. The core 
spans the past ~6.3 ka and the average age uncertainty for a 1-cm thick 
sample is ±85 years. Several radiocarbon dates (11 in SNK1 and eight in 
SBC10) were identified as outliers by Bchron in the lowermost section of 
both cores. Because the chronology obtained from these sections of core 
may be unreliable, we truncated both age models at the depth of the 
highest outliers at ~5 ka. 

Table 1 
Physical and geotechnical properties of modern mangrove sediments collected from Lower Snipe Key (LAD), Swan Key (SBC) and Middle Snipe Key (SNK). The 
recompression index, Cr, describes the compressibility of the sample in its pre-yield, reduced compressibility condition. The compression index, Cc, describes the 
compressibility of the sample in its post-yield, increased-compressibility condition. The yield stress, σ’y, defines the transition from reduced-to increased-compress-
ibility states.  

Sample ID Mangrove eco- 
sedimentary zone 

Loss on ignition, 
LOI (%) 

Particle 
density, Gs 

Voids ratio at 1 
kPa, e1 

Recompression 
index, Cr 

Compression 
index, Cc 

Yield stress, σ’y 
(kPa) 

LAD17/AC01 Mixed-species basin 67.97 1.63 12.84 0.18 6.50 7.0 
LAD17/AC02 Mixed-species basin 72.07 1.59 15.12 0.13 4.72 3.0 
LAD17/AC03 Mixed-species basin 75.84 1.59 13.62 0.31 5.84 5.5 
LAD17/AC04 Fringe red 66.70 1.67 10.04 0.14 4.53 11.0 
LAD17/AC05 Fringe red 64.35 1.65 12.61 0.08 6.95 10.0 
LAD17/AC06 Mud flat/open bay/ 

seagrass bed 
24.44 2.30 6.60 0.09 2.17 5.0 

SBC17/AC01 Muddy red fringe 62.32 1.65 9.34 0.26 9.34 5.5 
SBC17/AC02 Scrub red basin 68.04 1.59 11.41 0.16 5.18 7.0 
SBC17/AC03 Scrub red basin 57.47 1.64 6.83 0.10 2.72 5.0 
SBC17/AC04 Mixed-species basin 68.92 1.58 11.46 0.30 5.23 7.0 
SBC17/AC05 Muddy red fringe 68.05 1.78 11.32 0.33 4.38 6.0 
SNK17/AC01 Mixed-species basin 68.36 1.61 10.87 0.10 4.46 8.0 
SNK17/AC02 Mixed-species basin 63.39 1.66 10.64 0.23 3.83 8.0 
SNK17/AC03 Red basin 70.61 1.62 20.09 0.20 7.09 4.0 
SNK17/AC04 Red basin 70.40 1.64 14.69 0.27 6.16 4.0 
SNK17/AC05 Fringe red 68.09 1.66 11.88 0.19 5.64 15.0  
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3.5. Reconstruction of relative sea level 

Relative sea level (RSL) was reconstructed using the equation: 

RSLi = Altitudei–PMEi (1)  

where the altitude of each sample i was measured directly as the depth 
below the core top of known tidal elevation and PME is paleo-mangrove 
elevation, which must be estimated using a sea-level proxy and 
expressed relative to the same tidal datums as altitude. In near- 
continuous, late Holocene RSL reconstructions, the most widely used 
proxy is salt-marsh foraminifera, and paleo marsh elevation is estimated 
for a subset of depths within the core at which foraminifera are counted. 
However, foraminifera were too sparse (but present throughout the 
units of red and black mangrove peat) in SNK1 and SBC10 (Table S2) to 
be employed as sea-level proxies (Kemp et al., 2020), which is common 

for mangrove sediment (e.g., Berkeley et al., 2009; Woodroffe et al., 
2015a). Therefore, we reconstructed PME by using sediment lithology to 
identify the likely environment of deposition. Samples identified as 
mangrove peat (recognized by the presence of mangrove terminal twigs, 
prop root bark, and roots) accumulated between local MTL and HOP 
(0.47 ± 0.46 m MTL at Snipe Key and 0.38 ± 0.37 m MTL at Swan Key). 
A RSL reconstruction was generated for each alternating 1-cm thick 
sample in the core, where sample age (with uncertainty) is from the age- 
depth model (Section 3.4). 

During the past ~5 ka, Snipe and Swan Keys exhibited substantially 
different magnitudes of RSL rise. RSL rose at Snipe Key by 3.7 m 
(average of ~0.75 mm/a), compared to 5.0 m at Swan Key (average of 
~1.0 mm/a; Fig. 5). At both sites the rate of RSL rise since ~1900 CE 
(2.0–2.1 mm/a) was the fastest during the past ~5 ka. Prior to the 20th 
century, the reconstructions indicate that there were multi-centennial 
phases of faster and slower RSL rise than the multi-millennial average. 
At both sites, the slowest rates of RSL rise occurred during the last 
millennium between ~1500 and 1800 CE (~0.2 mm/a at Snipe Key and 
~ 0.5 mm/a at Swan Key), between 2.1 and 1.9 ka (~0.1 mm/a at Snipe 
Key and ~ 0.5 mm/a at Swan Key), and between 3.5 and 3.2 ka (~0.2 
mm/a at Snipe Key and ~ 0.5 mm/a at Swan Key) estimated by the 
spatio-temporal empirical hierarchical model (see Section 3.6 for more 
details). 

We also compiled historic tide-gauge records (Fig. 6) and sea-level 
index points (Fig. 7) from the last 7 ka from South Florida (Love et al., 
2016; Khan et al., 2017). We recalibrated the ages using the Intcal20 and 
Marine20 datasets (Heaton et al., 2020; Reimer et al., 2020) and ΔR 
values from Toth et al. (2017a, 2017b) where appropriate. We also 
cross-checked and updated the index points with Acropora palmata coral 
data from Stathakopoulos et al. (2020), only using data that met the 
most stringent screening criteria (i.e., rank 0 in their taphonomic- 
ranking protocol) that assessed whether samples were in-situ on the 
reef when they were collected. There are typically a small number of 
coarse resolution (meter- and multi-century scale uncertainties) index 
points for any site in these databases. In South Florida, there are 55 
index points from 28 sites, notably including 10 index points at Swan 
Key from the study of Robbin (1984) (Fig. 7c). Robbin (1984) sampled a 
vertical wall of mangrove peat on the channel branching northeast from 
Broad Creek on the south side of Swan Key (likely at B′ on our coring 
transect) using horizontal push cores accessed via scuba diving from the 
channel cut to avoid compaction during coring. The interpretation of 
these data follows Love et al. (2016) and Khan et al. (2017), where an 
indicative meaning of MTL to HAT was adopted and combined with a 
number of conservative estimates of uncertainty associated with deter-
mining the depth and absolute elevation of the dated peat samples. 

3.6. Spatio-temporal modeling 

We employed a spatio-temporal empirical hierarchical model 
(STEHM; Ashe et al., 2019; Kopp et al., 2016) to examine the evolution 
of late Holocene RSL change in South Florida and explore possible 
driving mechanisms. Inputs for this model included: (1) the new proxy 
records from Swan and Snipe Keys; (2) tide-gauge records from South 
Florida (Fort Meyers, Naples, Key West, Key Colony Beach, Vaca Key, 
Virginia Key, Miami Beach, Lake Worth Pier; Fig. 1) longer than 11 years 
and within 1 degree (~110 km) of proxy data sites, which show 
consistent trends and variability in RSL over their period of operation 
(Fig. 6). Annual tide-gauge data were smoothed by fitting a temporal 
Gaussian Process model to each record and then transforming the fitted 
model to decadal averages, which more accurately reflect the recording 
capabilities of proxy records (Kopp et al., 2016); and (3) sea-level index 
points spanning the last 7 ka from South Florida (Love et al., 2016; Khan 
et al., 2017; Stathakopoulos et al., 2020). 

The STEHM has three levels: (1) a data level, which models the way 
different proxies record RSL with vertical and temporal noise; (2) a 
process level, which distinguishes among RSL changes that are common 

Table 2 
Chronohorizons identified in cores SNK1 (Snipe Key) and SBC10 (Swan Key).  

Age marker Description Age 
(CE) 

SNK1 SBC10 

Barium 
onset 

Elevated Ba 
concentration due to 
the coincidence of an 
increase in oil-drilling  
(Swarzenski et al., 
2006a; Carriquiry and 
Horta-Puga, 2010;  
Weerabaddana et al., 
2021), changes in run- 
off or groundwater 
discharge (Swart 
et al., 1999;  
Swarzenski et al., 
2006b), and increased 
phosphate mining  
(Froelich et al., 1985) 

1970 
± 10 

Increase in 
Ba from 4.0 
to 22.2 mg/ 
kg at 5 ± 4 
cm 

Increase in Ba 
from 3.1 to 
12.2 mg/kg at 
7 ± 4 cm 

Arsenic 
onset 

Usage of arsenic- 
bearing herbicides 
applied to citrus fruit 
groves on industrial 
scales and local use on 
lawns and golf courses 
(Wojeck et al., 1982;  
Whitmore et al., 2008; 
Gerlach et al., 2017) 

1955 
± 5 

Increase in 
As from 12.1 
to 23.2 mg/ 
kg at 9 ± 4 
cm 

Increase in As 
from 5.2 to 
24.2 mg/kg at 
9 ± 9 cm 

Pinusdecline 

Regional expansion of 
forestry and land 
clearance resulting in 
the decline of Pinus in 
north-central  
(Johannes, 1976;  
Hoffman and Collopy, 
1988; Kemp et al., 
2014; Volk et al., 
2017) and southern 
Florida (McAllister, 
1938; Huck, 1995;  
Lauredo, 2018;  
Christie et al., 2021) 

1935 
± 10 – 

Decrease in 
Pinus pollen 
from >26 to 
8% at 13.5 ±
4 cm 

Casuarina 
arrival 

The appearance of 
Casuarina pollen 
coincident with the 
known arrival of the 
non-native species 
brought to Florida to 
provide windbreak  
(Alexander and 
Crook, 1974; Morton, 
1980; Wingard et al., 
2007; Marshall et al., 
2020) 

1910 
± 15 – 

Increase in 
Casuarina 
pollen from 
0 to >2% at 
25.5 ± 5 cm  
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across the database and those that are confined to smaller regions; and 
(3) a hyperparameter level, which characterizes prior expectations 
regarding dominant spatial and temporal scales of RSL variability. 

At the data level, we observe noisy RSL yi and noisy age ti: 

yi = f (xi, ti)+ ϵy
i +w(xi, ti)+ y0(xi) (2)  

ti = t̂i + ϵt
i (3)  

where xi and ti are the geographic location and true age, respectively, of 
observations indexed by i; f(xi, ti) is the true RSL value at xi and ti; ϵi

y is 
the vertical error of each RSL data point (assumed to be independent and 
normally distributed); w(xi, ti) is a supplemental white noise term that 
accounts for variations in the data that cannot be explained by the terms 
in the process-level model; y0(xi) is a site-specific datum offset to ensure 
that RSL data can be directly compared. t̂i is the mean estimated age of 
each RSL data point and ϵi

t is its error. The age uncertainties are incor-
porated using the noisy-input Gaussian Process (GP) method of 
McHutchon and Rasmussen (2011), which uses a first-order Taylor-se-
ries approximation to translate errors in the independent variable into 
equivalent errors in the dependent variable: 

f (xi, ti) ≈ f (xi, t̂i)+ ϵt
i
∂f (xi, t̂i)

∂t (4) 

At the process level, we model the sea-level field, f(xi,ti), as the sum 
of two component fields, f(x, t) = r(t) + l(x, t) where x represents 
geographic location and t represents time. The two components are: a 
common regional term, r(t), representing the time-varying signal shared 
by all sites included in the analysis, and a local term, l(x,t), which 
represents site-specific processes. The priors for each term in the model 
are mean-zero Gaussian processes (Rasmussen and Williams, 2006) with 
3/2 Matérn covariance functions (see Ashe et al., 2019 for more details). 
Hyperparameters defining prior expectations of the amplitudes and 
spatio-temporal scales of variability were estimated through maximum- 
likelihood optimization (Table 5; Table S3). 

We ran sensitivity tests to assess the robustness of the local signal to 
alternative model structures and input data (Table S3; Fig. S2). These 
tests included 1) using only the new Swan and Snipe records as input 
data (CrL-SS); 2) changing the common regional term to one that varies 
spatially with a zero-mean prior (RL) or a GIA prior (RL-GIA); and 3) 
adding an additional spatially varying term to the model (CrRL). These 
tests demonstrate that the local signal is relatively insensitive to model 

Table 3 
Radiocarbon ages from Core SNK1.  

Sample ID Depth (cm) 14C age (years) Dated material δ13C (‰) Outlier probability (%) 2σ-calibrated age range (cal a BP) 

OS-136048 20.5 410 ± 15 <63 μm bulk peat −21.7 0.01 462–505 
OS-129399 27.5 665 ± 20 <63 μm bulk peat −22.8 0.00 562–668 
OS-136049 37.5 645 ± 15 <63 μm bulk peat −20.1 0.02 560–655 
OS-126725 49.5 1140 ± 15 <63 μm bulk peat −21.3 0.00 974–1173 
OS-130926 65.5 1330 ± 15 <63 μm bulk peat −25.7 0.01 1178–1295 
OS-129582 83.5 1370 ± 30 Mangrove wood −26.4 0.01 1179–1345 
OS-130694 91.5 1570 ± 20 Mangrove wood −26.0 0.01 1395–1517 
OS-130787 110.5 1660 ± 30 Mangrove wood −25.4 0.01 1416–1690 
OS-136050 119.5 1700 ± 15 <63 μm bulk peat −24.7 0.01 1541–1689 
OS-126753* 124.5 3740 ± 20 <63 μm bulk peat −30.2 1 – 
OS-136051 130.5 2120 ± 15 <63 μm bulk peat −24.1 0.01 2003–2283 
OS-130927 134.5 2060 ± 20 <63 μm bulk peat −24.6 0.03 1943–2100 
OS-130928 152.5 2540 ± 20 <63 μm bulk peat  0.03 2516–2740 
OS-129581 162.5 2520 ± 20 Mangrove wood −25.2 0.01 2497–2726 
OS-130974 171.5 2540 ± 20 <63 μm bulk peat −25.3 0.01 2516–2740 
OS-130638 185.5 2770 ± 20 Mangrove wood −26.3 0.01 2785–2931 
OS-126726* 197.5 2910 ± 20 Mangrove wood −27.0 1 – 
OS-126795 197.5 3180 ± 20 <63 μm bulk peat −26.5 0.01 2964–3149 
OS-130670 215.5 2940 ± 20 Mangrove wood −25.5 0.01 3004–3164 
OS-138072* 220.5 1640 ± 20 Mangrove wood −25.8 1 – 
OS-136221 227.5 3100 ± 20 <63 μm bulk peat −25.6 0.02 3245–3375 
OS-129580 231.5 3500 ± 25 <63 μm bulk peat −26.7 0.01 3693–3841 
OS-130695 245.5 3620 ± 20 Mangrove wood −25.7 0.01 3848–3982 
OS-130975 263.5 3720 ± 25 <63 μm bulk peat −26.1 0.01 3982–4148 
OS-126727 275.5 3810 ± 20 <63 μm bulk peat −26.6 0.01 4096–4288 
OS-130976 286.5 3910 ± 20 <63 μm bulk peat −26.4 0.01 4254–4416 
OS-129579 298.5 3940 ± 25 Mangrove wood −26.3 0.01 4260–4513 
OS-130977 313.5 4150 ± 20 <63 μm bulk peat −26.5 0.01 4580–4822 
OS-130669 313.5 4180 ± 20 Mangrove wood −26.6 0.01 4621–4831 
OS-130978 330.5 4320 ± 20 <63 μm bulk peat −26.2 0.01 4840–4930 
OS-126796 342.5 4350 ± 25 Mangrove wood −27.2 0.01 4850–4972 
OS-130979 358.5 4350 ± 20 <63 μm bulk peat −26.3 0.01 4855–4964 
OS-130696* 370.5 4590 ± 20 Mangrove wood −27.7 0.95 – 
OS-129578 385.5 4450 ± 30 Mangrove wood −27.3 0.01 4886–5283 
OS-138073 390.5 4440 ± 25 Mangrove wood −25.9 0.01 4882–5277 
OS-130980* 399.5 4710 ± 20 <63 μm bulk peat −26.6 1 – 
OS-136222 405.5 4470 ± 25 <63 μm bulk peat −25.9 0.01 4978–5285 
OS-136223* 417.5 4040 ± 25 <63 μm bulk peat −25.6 1 – 
OS-126728 422.5 4540 ± 25 <63 μm bulk peat −26.5 0.02 5053–5315 
OS-126794* 422.5 4880 ± 20 Mangrove wood −27.2 1 – 
OS-130981 437.5 4530 ± 20 <63 μm bulk peat −27.3 0.03 5052–5310 
OS-136224* 442.5 3340 ± 25 <63 μm bulk peat −24.3 1 – 
OS-129583 454.5 4830 ± 25 Mangrove wood −27.1 0.01 5478–5598 
OS-130671 464.5 4940 ± 25 Mangrove wood −28.1 0.01 5598–5718 
OS-129577* 485.5 4180 ± 25 <63 μm bulk peat −26.3 1 – 
OS-130982* 487.5 4050 ± 20 <63 μm bulk peat −25.8 1 – 
OS-126729* 489.5 3600 ± 20 <63 μm bulk peat −24.1 1 –  
* Sample with >95% outlier probability (estimated by Bchron age-depth model) and excluded from further analysis. 
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structure, and our chosen model (CrL; Figs. 5, 6, 7; Fig. S2; Table S3) is 
the most parsimonious and best performing. 

The optimized values indicate that the largest signal comes from the 
common regional term, which has a prior standard deviation of ±5.6 m 
and a decorrelation timescale of 3.9 ka (Fig. 7D). The local term con-
tributes ±0.2 m with a decorrelation timescale of 2.1 ka and a decor-
relation length scale of ~3 km. The supplemental white noise term is 
small (~1 cm), indicating that the stated measurement uncertainties are 
adequate to explain the difference between the process model and the 
proxy data observations. The output of the model includes an estimate of 
the posterior probability distribution of the sea-level field, f(x,t), con-
ditional on the tuned hyperparameters and the data. The reported rates 
of sea-level change are 100-year average rates based on a linear trans-
formation of f(t), and model predictions are expressed as the mean and 
1σ uncertainty, unless otherwise stated. 

Our new mangrove reconstructions indicate that the sites experi-
enced different RSL changes during the past ~5 ka, with a faster 
millennial-scale rate of rise occurring at Swan Key compared to Snipe 
Key (Fig. 5). To better understand which site (if any) was more/less 
representative of regional-scale RSL trends, we used the STEHM to place 
the new reconstructions into a wider geographic and temporal context 
(Fig. 7). Decomposition of the full RSL signal by the STEHM attributes 
~1 m of RSL rise at Swan Key to local-scale processes during the past ~5 
ka (Fig. 5). Importantly, our near-continuous RSL reconstruction from 

Swan Key is compatible with index points derived from Robbin (1984) at 
the same site (Fig. 7C). This result indicates that both studies are likely 
representative of RSL at the site and the RSL reconstructions are 
reproducible within a site (among cores). 

4. Discussion 

4.1. Near-continuous RSL reconstructions from mangrove sediment 

The Atlantic coast of North America has the greatest number and 
highest density of near-continuous, late Holocene RSL reconstructions, 
and these records were generated exclusively from sequences of salt- 
marsh sediment (Fig. 1A). The success of this approach arises because 
long-term, GIA-driven RSL rise (e.g., Peltier, 1996) created accommo-
dation space that was filled by in-situ, organic sediment with a high 
concentration of recognizable plant macrofossils and microfossils that 
grew immediately below (e.g., rhizomes), or on (e.g., foraminifera), 
paleo marsh surfaces. Plant macrofossils are ideal specimens for radio-
carbon dating paleo marsh surfaces (e.g., Kemp et al., 2013b), and the 
preservation of foraminifera enables the tidal elevation of those surfaces 
to be quantitatively reconstructed (e.g., Horton and Edwards, 2005; 
Kemp and Telford, 2015). Ongoing burial reduces bioturbation from the 
typically small and shallow roots of salt-marsh plants and promotes 
preservation by introducing paleomarsh surfaces to anoxic conditions as 

Table 4 
Radiocarbon ages from core SBC10.  

Sample ID Depth (cm) 14C age (years) Dated material δ13C (‰) Outlier probability (%) 2σ-calibrated age range (cal a BP) 

OS-134377 33.5 105 ± 20 Mangrove wood −26.6 0.01 30–258 
OS-132811 50.5 350 ± 15 Mangrove wood −24.2 0.02 319–474 
OS-134378* 67.5 165 ± 15 Mangrove wood −24.5 0.99 – 
OS-132812 77.5 1030 ± 20 Mangrove wood −27.0 0.01 920–956 
OS-134336 91.5 1140 ± 15 Mangrove wood −24.9 0.01 974–1173 
OS-132813 98.5 1110 ± 15 Mangrove wood −26.1 0.02 959–1057 
OS-132814 107.5 1530 ± 25 Mangrove wood −25.0 0.01 1349–1514 
OS-134379 126.5 1720 ± 20 Mangrove wood −26.6 0.01 1545–1696 
OS-129823 145.5 1800 ± 15 <63 μm bulk peat −24.8 0.01 1627–1733 
OS-134337 159.5 1700 ± 15 Mangrove wood −26.8 0.03 1541–1689 
OS-133069 178.5 2150 ± 20 <63 μm bulk peat −25.3 0.01 2008–2298 
OS-134690 191.5 2330 ± 20 <63 μm bulk peat −26.4 0.15 2331–2358 
OS-133066 211.5 2160 ± 15 <63 μm bulk peat −25.6 0.01 2069–2299 
OS-134574 236.5 2350 ± 25 <63 μm bulk peat −25.7 0.01 2333–2462 
OS-129771 250.5 2500 ± 20 Mangrove wood −25.3 0.01 2494–2721 
OS-134380 261.5 2580 ± 30 Mangrove wood −26.5 0.01 2521–2758 
OS-132815 278.5 2790 ± 20 Mangrove wood −25.0 0.01 2805–2957 
OS-134691 297.5 2940 ± 20 <63 μm bulk peat −27.0 0.01 3004–3164 
OS-132816 318.5 2970 ± 20 Mangrove wood −25.7 0.01 3069–3210 
OS-134692 330.5 3180 ± 25 <63 μm bulk peat −26.6 0.01 3365–3448 
OS-129824 349.5 3550 ± 20 Mangrove wood −27.0 0.12 3725–3901 
OS-134338 361.5 3470 ± 20 Mangrove wood −25.9 0.01 3647–3829 
OS-132817 382.5 3350 ± 20 Mangrove wood −27.0 0.89 3491–3682 
OS-134381 394.5 3600 ± 30 Mangrove wood −27.8 0.01 3781–4058 
OS-133068 415.5 3870 ± 20 <63 μm bulk peat −26.1 0.02 4164–4408 
OS-134575 439.5 3830 ± 20 <63 μm bulk peat −25.6 0.03 4103–4352 
OS-129772 455.5 4260 ± 25 Mangrove wood −26.6 0.06 4732–4864 
OS-134382 473.5 4250 ± 25 Mangrove wood −27.0 0.01 4657–4861 
OS-132818 490.5 4410 ± 25 Mangrove wood −26.3 0.01 4868–5230 
OS-132819* 515.5 5230 ± 25 Mangrove wood −27.0 1 – 
OS-134576 532.5 4650 ± 20 <63 μm bulk peat −27.0 0.01 5316–5462 
OS-129825* 548.5 5290 ± 20 Mangrove wood −27.7 1 – 
OS-134693 568.5 4960 ± 25 <63 μm bulk peat −27.7 0.01 5602–5732 
OS-134577* 588.5 5360 ± 20 <63 μm bulk peat −26.6 1 – 
OS-133067* 614.5 4520 ± 20 <63 μm bulk peat −26.3 1 – 
OS-134383* 630.5 5490 ± 20 Mangrove wood −27.4 1 – 
OS-129826 648.5 5000 ± 20 Mangrove wood −28.7 0.01 5610–5881 
OS-134339 657.5 5120 ± 25 Mangrove wood −28.1 0.01 5754–5929 
OS-132820 676.5 5230 ± 25 Mangrove wood −27.1 0.01 5920–6167 
OS-134384 691.5 5380 ± 30 Mangrove wood −29.7 0.01 6009–6281 
OS-132821 714.5 5340 ± 25 Mangrove wood −29.6 0.01 6003–6265 
OS-134385* 731.5 3580 ± 20 Mangrove wood −28.6 1 – 
OS-129827 750.5 5370 ± 20 Mangrove wood −26.9 0.01 6009–6276  

* Sample with >95% outlier probability (estimated by Bchron age-depth model) and excluded from further analysis. 
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sediments accumulate over time (e.g., Niering et al., 1977). 
Mangroves replace salt marshes in warmer regions and become the 

dominant ecosystem in low-energy, intertidal environments (Saintilan 
et al., 2014). Therefore, mangrove peat has been used to produce index 
points in much the same way as salt-marsh peat (e.g., Ellison, 1993; 
Toscano and Macintyre, 2003; Woodroffe et al., 2015a). However, 
developing near-continuous, late Holocene RSL reconstructions from 
sequences of mangrove peat has proven challenging, primarily for two 
reasons. First, foraminifera are subject to poor or selective preservation 
in buried mangrove sediment (Berkeley et al., 2009; Khan et al., 2019), 
despite being observed to form elevation-dependent groups of calcar-
eous and agglutinated taxa in surface sediment from analogous modern 

environments (Horton et al., 2003, 2005; Woodroffe et al., 2015a). We 
used sediment lithology as a sea-level proxy and a classification 
approach that treated elevation as a discrete variable by recognizing that 
mangrove peat formed between MTL and HOP with the highest proba-
bility of formation halfway between these points. This approach con-
strained the elevation of paleomangrove surfaces to within ±0.23 m at 
Snipe Key and ± 0.19 m at Swan Key (1σ), ~56% of tidal range at each 
site. This vertical resolution is likely sufficient to make meaningful in-
ferences about late Holocene RSL change in South Florida. However, the 
precision of this approach is a function of tidal range, thus in regions 
with larger tidal ranges, reconstruction uncertainty would be corre-
spondingly larger. Therefore, in the absence of foraminifera, it is 

1955 ± 5

1970 ± 10

1955 ± 5

1970 ± 10

1935 ± 10

1910 ± 15

σ

σ

σ

σ

Fig. 4. Core chronologies from (A) Snipe Key (B) and Swan Key. Downcore profiles of As, Ba, 210Pb, 137Cs, and Pinus and Casuarina pollen abundance for cores SNK1 
(red circles) and SBC10 (yellow circles). Shaded depth intervals indicate each horizon (and sampling uncertainty), and the labeled ages show its assigned age (and 
uncertainty) included in the age-depth model. Radiocarbon ages and the probability distribution of the 2σ calibrated age range are shown in dark purple (SNK1) and 
green (SBC10). The shaded envelopes show the 95% credible interval of the Bchron age-depth model. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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particularly important that efforts to produce detailed RSL re-
constructions using classification of sediment type focus on regions with 
small tidal range. Indeed, even in cores of salt-marsh peat with excellent 
preservation and abundant foraminifera, some studies in regions of 
exceptionally small tidal range opted to use a classification approach 
because the accuracy and precision of the reconstruction was not 

improved by using more complex methods such as transfer functions 
that treat elevation as a continuous variable (e.g., Barlow et al., 2013; 
Kemp et al., 2014, Kemp et al., 2017b). 

The second challenge associated with developing near-continuous 
RSL reconstructions from mangrove archives is that their radiocarbon 
chronologies often exhibit ages out of stratigraphic order and differences 
in sample age depending on the material dated, and it is often unclear 
how dated materials (e.g., roots) relate to paleomangrove surfaces (Ono 
et al., 2015; Punwong et al., 2013; Woodroffe et al., 2015a; Sefton et al., 
2022). These issues likely arise, at least in part, from the size and depth 
reached by the roots of mangrove trees that cause physical bioturbation 
and deepen the oxic zone in sediment, which is often compounded by a 
lack of long-term RSL rise to create accommodation space. The low- 
latitude regions where mangroves exist are commonly far-field sites 
with respect to the distribution of ice sheets at the Last Glacial Maximum 
(Clark et al., 1978; Peltier, 2004; Khan et al., 2015; Saintilan et al., 
2020). Far-field sites typically experienced RSL fall from a mid-Holocene 
highstand (or minimal rise). Under this background regime of RSL 
change, accommodation space is not created and paleomangrove sur-
faces are not buried, resulting in prolonged exposure to oxic conditions 
and higher likelihood of physical reworking. 

Radiocarbon dates in both cores showed stratigraphic ordering 
within and among different dated materials (e.g., fine-fraction bulk peat 
or macrofossils; Fig. 4; Fig. S3). This result suggests that reliable chro-
nologies can be obtained from near-continuous sequences of mangrove 

σ σ

Fig. 5. (A) Relative sea-level (RSL) reconstructions from Snipe Key and Swan Key and the decomposition of local signals from these records using the spatio-temporal 
statistical model. For all plots, the model mean and 1σ/2σ uncertainty are represented by a solid line and shaded envelopes. 

Fig. 6. Annual mean sea level (MSL) recorded by tide gauges in South Florida. 
Data were downloaded from NOAA NOS Center for Operational Oceanographic 
Products and Services or the Permanent Service for Mean Sea Level (PSMSL). 
The Key West tide-gauge record is extended by the addition of archival data 
recovered and presented by Maul and Martin (1993). 
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peat by radiocarbon dating several types of subsamples and that these 
sample types can be reasonably combined with one another to produce a 
chronology of sediment accumulation. Agreement between ages from 
macrofossils and bulk sediment suggests that the carbon fractions 
removed through base washing are not systematically different in age to 
other carbon fractions in the peat matrix, which has been observed in 
other Holocene radiocarbon dating applications (e.g., Wild et al., 2013). 
The robust chronologies from South Florida likely reflect a somewhat 
unusual set of circumstances where mangroves are present in a region 
experiencing long-term RSL rise from ongoing GIA subsidence. South 
Florida is an intermediate- rather than far-field site because of its loca-
tion on the collapsing forebulge of the Laurentide Ice Sheet (e.g., Peltier, 

2004; Milne et al., 2005; Love et al., 2016). Without this mechanism for 
creating accommodation space, it is possible that a reliable, 
stratigraphically-ordered chronology could not have been obtained. 

We conclude that mangrove peat in South Florida is a viable source 
of near-continuous, late Holocene RSL reconstructions due to the com-
bination of a small tidal range and background trend of RSL rise. Where 
similar conditions exist, we propose that RSL reconstructions of com-
parable resolution could be successfully generated from mangrove peat. 
Sites in Bermuda (e.g., (Ellison, 1993; Kemp et al., 2019), Central 
America (e.g., Belize, Panama, and Honduras; McKee et al., 2007; 
Cahoon et al., 2003), and the Caribbean (e.g., Ramcharan and McAn-
drews, 2006; Woodroffe, 1981) are known to have thick sequences of 
mangrove peat that accumulated under conditions of GIA-driven RSL 
rise. Even in far-field regions predicted to experience late Holocene RSL 
fall, it is possible that some localities experienced (for example) linear 
tectonic subsidence with sufficient magnitude to cause net RSL rise (e.g., 
Bloom, 1970; Ellison and Strickland, 2015; Kelsey, 2015). Such loca-
tions are candidates for developing near-continuous RSL reconstructions 
from mangrove peat to expand the geographic distribution of records. 

4.2. Within-region replication of RSL reconstructions 

We reconstructed RSL at two sites to distinguish the influence of local 
and regional-scale processes on RSL in South Florida. Previous studies of 
late Holocene RSL change in the western North Atlantic Ocean typically 
emphasized RSL variability among regions by reconstructing RSL at 

σ

-

-

-

-

-

-

-

-

Fig. 7. Comparison of the new relative sea-level (RSL) reconstructions from SNK1 and SBC10 to existing sea-level data from mangrove and coral indicators in South 
Florida. (A) Location of index points from the South Florida database. (B) Sea-level index points (depicted as boxes) for all sub-regions in South Florida, including 
data from an earlier study by Robbin (1984) at Swan Key (C). The color of each index point and model estimate corresponds to the colored circles which denote their 
location/sub region on the site map (B). (D) Decomposition of the spatio-temporal statistical model applied to the regional dataset, where the mean (solid line) and 
shading (1σ uncertainty) for each of the sub regions are shown. (E) Spatial patterns in rates of RSL change in South Florida estimated from the spatio-temporal 
statistical model over 1000-year intervals for the past 6 ka. 

Table 5 
Optimized hyperparameters for the spatio-temporal empirical hierarchical 
model.  

Term Prior standard 
deviation (m) 

Characteristic 
timescale (ka) 

Characteristic length 
scale (degrees) 

r(t) [common 
regional] 

± 5.6 3.9 – 

l(x,t) [local] ± 0.2 2.1 0.01 
w(x,t) [additional 

uncertainty] 
± 0.01 – – 

y0(t) [site-specific 
offset] 

± 0.0 – –  
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single sites spaced far from other reconstructions (e.g., Kemp et al., 
2011, 2014; Gehrels et al., 2020). Given the growing number and den-
sity of near-continuous RSL reconstructions along the Atlantic coast of 
North America, investigations of within-region (and within-site) vari-
ability are increasingly important to gauge the robustness of recon-
structed local and regional patterns of RSL change and their attribution 
to specific physical processes (e.g., Barlow et al., 2013; Kemp et al., 
2017b, 2018; Bush et al., 2020). For example, GIA modeling studies 
often use RSL data for model tuning and validation; RSL records with 
substantial unrecognized influence from local-scale processes may bias 
comparisons to model predictions (e.g., Garrett et al., 2020). 

There are several lines of evidence to suggest that Snipe and Swan 
Key (~160 km apart; Fig. 1) should share common RSL trends in the 
absence of significant local effects. Tide gauges in South Florida measure 
spatially-coherent RSL trends on annual to multi-decadal timescales 
(Fig. 6), with no discernible difference between trends at Key West and 
Vaca Key (closest to Snipe Key) and those at Miami Beach and Virginia 
Key (closest to Swan Key). Piecuch et al. (2018) combined tide-gauge 
measurements, a database of proxy RSL reconstructions, continuous 
global positioning satellite measurements, and a suite of Earth-ice model 
predictions to estimate multi-decadal to century-scale trends in RSL and 
vertical land motion. In that analysis, the difference in trend between 
Snipe Key and Swan Key is −0.1 ± 1.2 mm/a (median ± 95% credible 
interval) for RSL, 0.0 ± 1.1 mm/a for vertical land motion, and 0.0 ±
0.6 mm/a for sea surface height. On multi-centennial to millennial 
timescales, most Earth-ice model pairings predict no meaningful RSL 
difference between Snipe Key and Swan Key (Fig. 1B). Those predictions 
that do, estimate higher RSL at Swan Key compared to Snipe Key by as 
much as 0.8 m (Fig. S4), opposite the pattern we reconstructed. Finally, 
predictions of how Mississippi Delta loading influences RSL rise through 
subsidence and distortion of the geoid indicate that Snipe Key and Swan 
Key are far enough away to experience no effect from these processes (e. 
g., Wolstencroft et al., 2014; Kuchar et al., 2018). These lines of evidence 
suggest no a priori expectation that the two study sites should experi-
ence and record different RSL histories. 

4.3. Drivers of local RSL change 

The reproducibility of RSL records at Swan Key (Fig. 7C) demon-
strates that the site’s apparently anomalous RSL history does not arise 
from the approaches used, but rather that the site is influenced by 
physical process(es) acting at local scales over millennial timescales. 

Sediment compaction of shallow and deeper strata contributes to 
variable rates of land subsidence that cause PDL of the sediment used to 
reconstruct RSL and subsequently results in overestimation of the 
amount and rate of RSL rise (e.g., Bloom, 1964; Kaye and Barghoorn, 
1964; Brain et al., 2011, 2017). Our quantitative estimates of PDL 
through sediment autocompaction indicate that it cannot be reasonably 
invoked as a significant local-scale process. We estimate PDL of the 
samples used to reconstruct RSL to be approximately two orders of 
magnitude smaller than the difference in RSL between Snipe Key and 
Swan Key (Figs. 3, 5). Furthermore, geotechnical analysis of another 
core of mangrove peat collected at Swan Key led Toscano et al. (2018) to 
similarly conclude that compaction of late Holocene strata at the site 
was minimal, which demonstrates that different approaches to esti-
mating PDL produce similar results and thus are likely robust. 

Groundwater withdrawal can accelerate subsidence by reducing 
porewater pressure, which leads to compression and reduced volume of 
subsurface sediment units (e.g., Dixon et al., 2006; Kolker et al., 2011; 
Karegar et al., 2016; Johnson et al., 2018). Depending on the underlying 
aquifer and geological structures, the resulting subsidence can manifest 
at local to regional scales. However, groundwater withdrawal is unlikely 
to be the cause of the RSL difference between Swan Key and Snipe Key 
for (at least) four reasons. First, there is no pumping at the site, so any 
contribution would be part of a regional trend (and therefore common to 
both sites and others analyzed in the spatio-temporal model). Second, 

both study sites are likely sufficiently distal to areas of active pumping in 
the Biscayne aquifer (e.g., Miller, 1990) to directly be impacted by this 
effect. Third, if the 1-m RSL difference between Swan Key and Snipe Key 
is caused by recent (i.e., 20th century) groundwater withdrawal, there 
would be a pronounced difference in the rate of modern RSL rise, for 
which there is no evidence from proxy reconstructions (Fig. 5), tide 
gauges (Fig. 6), or space geodetic constraints (Peltier et al., 2015). 
Fourth, the effect of groundwater withdrawal in karst systems is 
instantaneous adjustment through sink hole collapse rather than the 
gradual process that is observed in non‑carbonate systems (e.g., 
Lamoreaux and Newton, 1986; Waltham and Fookes, 2003). This tem-
poral trend is in contrast to the prolonged contribution inferred from 
spatio-temporal modeling. 

Isostatic uplift induced by karstic mass loss has been proposed as a 
mechanism to explain regional-scale RSL change over million-year time 
scales (e.g., Opdyke et al., 1984; Adams et al., 2010; Creveling et al., 
2019), but localized carbonate weathering at the base of sedimentary 
sequences has received less scrutiny as a mechanism to explain local 
subsidence. The acidity of mangrove peat can dissolve underlying car-
bonate at the bedrock-peat contact, causing shallow depressions in 
limestone to become deeper (Zieman and Joseph, 1972; Odum et al., 
1982). Mangroves in the depression must fill the newly-created ac-
commodation space to maintain their position in the tidal frame. Dong 
et al. (2018) identified 1.5 to 2-m deep, 80 to 200-m diameter de-
pressions in limestone bedrock beneath wetlands in the Big Cypress 
National Preserve (Fig. 1b). They used a reactive-transport kinetics 
model to estimate that the depressions likely formed within the past 9.5 
ka and deepened at ~0.1–0.4 mm/a over this time. Similarly, Cham-
berlin et al. (2018) and Zhang et al. (2019) estimated the development 
of these depressions began in the early to mid Holocene at rates 
consistent with those suggested by Dong et al. (2018) based on radio-
carbon dating of wetland sediments and weathering rates constrained by 
mass balance of calcium and phosphorous. 

Stratigraphic investigations show that the cores from Swan and Snipe 
Keys were collected from depressions in limestone bedrock (Fig. 1). The 
depression at Snipe Key is elongate and extends a considerable distance 
along the Snipe Keys chain (Fig. 1), suggesting that the mangrove islands 
formed in a pre-existing tidal channel, rather than in a local dissolution 
basin. In contrast, the core from Swan Key was collected from a bedrock 
depression with morphology that is analogous to those found in Big 
Cypress reserve. Furthermore, the lithology of the Key Largo coralline 
limestone bedrock underlying Swan Key is more porous and prone to 
weathering than the oolitic Miami Limestone that underlies Snipe Key 
(Hickey et al., 2010; Harris et al., 2018). This contrasting morphology 
and lithology of underlying carbonate could support a hypothesis that 
the enhanced rate of RSL rise at Swan Key (as compared to Snipe Key and 
the wider region) arises from carbonate dissolution. The estimated rate 
of deepening (~0.1–0.4 mm/a; Dong et al., 2018; Chamberlin et al., 
2018) is similar to the difference in RSL rise between Snipe Key and 
Swan Key, and furthermore, it is likely to be a process that occurred 
throughout the late Holocene rather than being initiated recently (e.g., 
groundwater withdrawal) or acting sporadically (e.g., sink hole crea-
tion). Moreover, Dong et al. (2018) found a relationship between soil 
thickness and maximum weathering rate (reached at thicknesses of 1.5 
to 2 m), which could explain the enhanced rates of the local process 
observed at Swan Key (Fig. 5) as the peat column reached and then 
exceeded this thickness between 4 and 2 ka. However, given that 
limestone weathering rates are controlled by complex interactions 
among soil thickness, climate, and local hydrologic and biotic processes 
(Dong et al., 2018), further investigation is ultimately needed to eval-
uate if conditions at Swan Key could sustain equivalent weathering rates 
to those estimated at Big Cypress. This could be achieved empirically 
through reconstructing RSL using other cores from outside of the 
bedrock depression along the stratigraphic transect that we investigated 
(Fig. 1f). Importantly, this mechanism of local-scale RSL change is (at 
least along the Atlantic coast of North America) restricted to South 
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Florida because karst bedrock is not present elsewhere and it cannot 
therefore be invoked to explain local-scale differences at sites in New 
England, for example. As such, reconstructed differences in RSL among 
closely-spaced sites in South Florida do not necessarily indicate that late 
Holocene RSL reconstructions more widely fail to exhibit within-region 
reproducibility. 

Another local-scale process to consider is non-stationarity of Holo-
cene tides. Modeling of Holocene tides along the U.S. Atlantic and Gulf 
of Mexico coasts suggests that tidal range was largely unchanged at 
regional scales during the last ~7.0 ka (Hill et al., 2011), and the in-
fluence on the distribution of mangrove and coral sea-level indicators in 
South Florida and the greater Caribbean region over this time was small 
(<0.15 m; Khan et al., 2017). However, the paleo-bathymetric resolu-
tion of the Hill et al. (2011) paleo-tidal model cannot accurately esti-
mate local-scale variations in paleo tidal range (e.g., Hall et al., 2013; 
Hawkes et al., 2016). Given the geomorphic setting (i.e., absence of 
complex barrier/inlet systems and connection to the open ocean), it is 
unlikely that the influence of non-stationary tides was considerable, 
although incorporating higher-resolutionpaleogeographies into paleo- 
tidal models may ultimately help to resolve the impact of this process 
on South Florida RSL reconstructions. 

A final consideration to explain the difference between the Swan and 
Snipe records is the indicative meaning we assumed in our approach. 
First, the conservative indicative meaning we used in our sediment 
classification approach did not divide peat-forming mangroves into 
more precise sub-zones. For example, it is possible that mangroves at 
Snipe Key maintained a higher position in the intertidal zone and 
accumulated peat at a rate consistent with RSL rise (i.e., PME was 
constant over the period of accumulation). In contrast, mangroves at 
Swan Key may have initiated at a lower PME within the indicative range 
(e.g., close to MTL) and over time the rate of peat accumulation was 
greater than RSL rise (i.e., emergence). Alternatively, if Snipe Key 
experienced submergence with constant PME at Swan Key, the effect 
would be the same. Given the indicative range of peat-forming man-
groves at each site (± 0.46 m at Snipe Key and ± 0.37 m at Swan Key), 
this scenario could explain ~30–40% of the apparent 1-m difference in 
RSL between the two sites and also account for its decrease over time. A 
number of factors, such as resource availability (e.g., nutrients, space, 
and light), stressor gradients (e.g., salinity, nutrients), and sediment 
delivery can interact with RSL changes to influence productivity and 
accretion in mangroves (Lugo and Snedaker, 1974; Rovai et al., 2018; 
Rivera-Monroy et al., 2019). Jones et al. (2019) proposed that a period 
of frequent storms and prolonged drought in the late Holocene resulted 
in rapid transgression across Florida Bay at ~3.4–2.8 ka as mangroves 
transitioned to estuarine environments. This observation is further 
supported by geochemical profiles from Shark River Estuary in the Ev-
erglades, which indicated a period of intense hurricane activity at 
~3.4–3.0 and ~2.2–1.5 ka (Yao et al., 2020). However, these mecha-
nisms are related to regional-scale climate variability, and presumably 
would influence both sites. Indeed, at both sites, very low accumulation 
rates are observed between ~3.4–3.2 and ~2.0–1.7 ka. Furthermore, 
the timing of these climatic changes is inconsistent with when the largest 
differences in the Snipe and Swan Key records are observed between 
~5–3 ka. Therefore, this explanation cannot fully reconcile the differ-
ences between the sites and still requires at least a moderate contribu-
tion from a local process acting over at least the past 5 ka. 

Relatedly, it is possible that increased salinity in Biscayne Bay during 
the 20th century could have placed stress on mangroves, resulting in 
decreased production and accretion, and causing mangroves to form at 
progressively lower elevations during the 20th century. However, this 
seems to be unlikely given that core SBC10 was collected nearby to the 
elevation apex of the island close to HAT (thus occurring towards the 
top, rather than bottom of the range) and the age-depth model suggests 
an increase (rather than decrease) in sedimentation rate over this time 
interval. Furthermore, Snipe Key also exhibited a rapid 20th century RSL 
rise, but under contemporary conditions, Snipe Key’s location in the 

backcountry of the Florida Keys is not strongly influenced by changes in 
outflows through the Everglades and western Florida Bay because they 
tend to follow a trajectory where they exit to south of the Keys through 
channels in the Middle Keys and therefore do not reach the backcountry 
(Smith, 1994; Boyer and Jones, 2001). 

A second potential issue with the indicative meaning we assumed in 
our approach is the possibility that some sections of the cores that suf-
fered from poor preservation of foraminifera may actually have formed 
under freshwater conditions at an elevation higher than the indicative 
meaning we estimated for mangroves. This may particularly be the case 
at Swan Key due to its greater connection to freshwater outflows from 
the Everglades, which would likely have been enhanced in the mid to 
late Holocene when RSL was lower (McPherson and Halley, 1996). 
Although patchy towards the base of the core, foraminifera were pre-
served at all depths of core SNK1, whereas core SBC10 suffered from 
lack of preservation below 3 m in depth (Table S2). Although wood and 
roots preserved in SBC10 suggest a mangrove origin (a conclusion also 
obtained by Robbin, 1984), it is possible for mangrove roots to penetrate 
to deeper depths, complicating the identification of mangrove peats on 
the basis of plant macrofossils alone. However, if the base of SBC10 did 
include freshwater peat, this would exacerbate the difference in recon-
structed RSL at Swan and Snipe Keys because the indicative meaning of 
freshwater peat could potentially be higher than that of mangroves, 
resulting in lower reconstructed RSL. Furthermore, any potential bias 
introduced would likely be small. Peat-forming freshwater vegetation 
communities in the Everglades found in close association with man-
groves occur at low elevations comparable to the elevation distribution 
of mangroves (Fig. S5). Given the bathymetry of the Florida shelf and the 
proximity of Swan Key to the steep shelf slope, it seems unlikely that this 
location would have been very far inland from the paleo shoreline as the 
shelf was flooded. Therefore, higher elevation, inland peat-forming 
freshwater environments are likely not a good analogue for conditions 
at Swan Key. This suggests that if SBC10 did include peat that accu-
mulated under freshwater influence (but in close association with 
mangroves), the potential bias introduced in the interpretation of the 
indicative meaning of the cores would likely be small. 

5. Conclusions 

We produced the first near-continuous records of RSL change from 
mangrove archives for the past 5 ka from two cores collected from Snipe 
and Swan Keys in South Florida. From site surveys and remote sensing 
analysis, we corroborated the putative indicative meaning of mangrove 
indicators and demonstrate that they form within a normal distribution 
approximately between MTL and HAT. Due to poor preservation of 
foraminifera in the cores, we adopted a conservative indicative meaning 
of MTL to HOP (2σ distribution) for undifferentiated mangrove peat 
recovered in cores, a range likely large enough to encompass all species 
of mangrove and their geomorphic settings in South Florida. We also 
outlined an approach to produce accurate chronologies from mangrove 
archives by dating mangrove macrofossils (where present) and the fine 
fraction of bulk peat in the absence of macrofossils. Radiocarbon dates in 
both cores were in stratigraphic order regardless of the material dated, 
which suggests that reliable chronologies can be obtained from near- 
continuous sequences of mangrove peat by dating several types of sub- 
samples. We show that mangrove peat can provide detailed RSL re-
constructions in microtidal regions that have undergone long-term RSL 
rise, even in cases where foraminifera are poorly preserved. We suggest 
that in locations where similar conditions persist, mangrove peat should 
provide reconstructions of comparable resolution to those presented 
here. 

During the past ~5 ka, RSL rose at Snipe Key by 3.7 m (average of 
~0.75 mm/a), compared to 5.0 m at Swan Key (average of ~1.0 mm/a). 
At both sites, the rate of RSL rise since ~1900 CE (~2.1 mm/a) is the 
fastest during the past ~5 ka. We used a spatio-temporal model to 
decompose trends from RSL reconstructions from a network of sites 
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across South Florida to quantify regional- and local-scale signals. This 
analysis demonstrated that Snipe Key was representative of regional- 
scale trends, but that Swan Key experienced RSL rise that included a 
substantial contribution from (millennial) local-scale processes that do 
not include sediment compaction. If Swan Key had been the only site in 
South Florida where we reconstructed RSL, it is likely that we would 
have incorrectly interpreted this RSL trend as a regional signal, which 
demonstrates the potential pitfalls in the misattribution of trends to 
specific processes in the absence of within-region replication. Therefore, 
investigating within-core, within-site, and within-region replicability of 
RSL reconstructions is a constructive avenue for future research. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.gloplacha.2022.103902. 
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Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., 
Talamo, S., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration 
curve (0–55 cal kBP). Radiocarbon 62, 725–757. https://doi.org/10.1017/ 
RDC.2020.41. 

Rivera-Monroy, V.H., Danielson, T.M., Castañeda-Moya, E., Marx, B.D., Travieso, R., 
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