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Abstract—Quantum Variational Methods are promising near-
term applications of quantum machines, not only because of
their potential advantages in solving certain computational tasks
and understanding quantum physics but also because of their
feasibility on near-term quantum machines. However, many
challenges remain in order to unleash the full potential of
quantum variational methods, especially in the design of efficient
training methods for each domain-specific quantum variational
ansatzes. This paper proposes a theory-guided principle in order
to tackle the training issue of quantum variational methods and
highlights some successful examples.

Index Terms—quantum variational methods, training, quan-
tum generative adversarial networks, differentiable programming
languages, auto-differentiation

I. INTRODUCTION

With the rapid development of prototypes of quantum
machines, especially the recent establishment of quantum
supremacy [1], [2], the research of quantum computing has
entered a new stage where near-term Noisy Intermediate-
Scale Quantum (NISQ) computers [3] become the important
platform for demonstrating quantum applications.

Quantum Variational Methods (QVMs) (e.g., [4]–[6]), or
the so-called quantum neural-networks, gradually become a
major candidate of quantum applications on NISQ machines.
One appealing factor of adopting QVMs based on classically
parameterized quantum circuits is their feasibility on near-term
quantum machines. Indeed, such classically parameterized
quantum circuits are predicted to be implementable at the scale
of 100∼200 qubits and a reasonable number of gates. Even
though this scale of quantum circuits will not enable the im-
plementation of famous quantum algorithms (e.g., Shor’s and
Grover’s), they are already intractable to simulate by classical
means. As a result, QVMs will enable efficient ”quantum”
mappings from input to output in the near term, which are
already impossible to achieve with any classical means. How
to leverage these quantum mappings is still an active research
field. However, it is commonly believed that QVMs will help
resolve quantum physics related computational problems in the
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near future. They are also likely helpful for solving general
information/computational tasks, especially when the nature of
these tasks exhibits certain structures that can be exploited by
quantum mechanics. Finally, hinted by the significant success
of deep learning, a potential paradigm change in application
design might be emerging, where any new application/program
could be obtained by training parameterized neural-networks
(or programs) over data sets, rather than by a careful case-by-
case design. In this sense, QVMs might serve as an important
approach to achieve quantum applications even when fully-
fledged quantum machines are developed.

Therefore, a lot of study has already been devoted to the
design, analysis, and small-scale implementation of QVMs
(e.g., see the survey [7]). One prominent example is the
variational quantum eigensolver(VQE) [4] which is a QVM
that finds the ground state/energy of physically-interesting
Hamiltonian systems and finds promising applications in quan-
tum chemistry. Another one is the quantum approximate op-
timization algorithm (QAOA) [5] which proposes a near-term
feasible variational circuits that mimic the behavior of quan-
tum adiabatic algorithms in solving optimization problems.
One can also further leverage variational quantum circuits
for classification [6], generative models [8], and several other
learning tasks.

A lot of existing works on quantum variational methods
have been focusing on the design of new applications that
might benefit from the use of variational quantum circuits.
However, an equally important topic, which concerns efficient
training of these variational models, demonstrates a lot of chal-
lenges in unleashing the full potential of quantum variational
methods. Indeed, the training of variational quantum circuits
is known to be hard empirically, even on small instances
of quantum circuits (e.g., ≥ 10 qubits), with some limited
theoretical understanding (e.g., [9]).

In contrast to the study in classical machine learning, where
empirical research has played a major role in investigating the
training methods, empirical research in quantum variational
methods is arguably restricted. This is due to the limitation
of currently available quantum machines as well as the ex-
ponential complexity of simulating them by classical means.
As a result, our current empirical findings will not necessarily
generalize to intermediate-size variational quantum circuits,



which are predicted to be available in the near future.
We propose a theory-guided principle in the research of

QVM-related training issues with the hope to investigate the
behavior of QVM instances beyond the current capability of
empirical research. This approach becomes possible thanks
to the recent development of theoretical understanding of
classical machine learning, especially in the understanding
of the landscape of the loss functions and regularization in
training.

We will present the relevant preliminaries on quantum
information, quantum neural networks and their comparison
with classical neural networks in Section II. After that, we
will illustrate a few successful attempts of ours following this
theory-guided principle. Specifically,

In Section III, we demonstrate a quantitative investigation
on the landscape of loss functions of quantum neural net-
works in [10] inspired by corresponding classical literature.
Specifically, for typical under-parameterized quantum neural
networks, there exists a dataset as shown in [10] that induces
a loss function with the number of spurious local minima
depending exponentially on the number of parameters. While
local minima in classical neural networks are due to non-linear
activations, in quantum neural networks local minima appear
as a result of the quantum interference phenomenon.

In Section IV, we illustrate an example in the context of
quantum generative adversarial networks (GANs), where the
robustness and the scalability of training could be significantly
improved by leveraging the Wasserstein semi-metric between
quantum data [11]. This improvement also enables a surprising
application where the proposed quantum Wasserstein GAN has
been used to generate a 3-qubit quantum circuit of 50 gates
that well approximates a 3-qubit 1-d Hamiltonian simulation
circuit that requires over 10k gates using standard techniques.

Finally, in Section V, we tackle another important aspect of
the training, which is the efficient calculation of gradients in
quantum variational methods by quantum means. In particular,
in [12], we develop an automatic differentiation technique not
only for the plain variational quantum circuits but also for ones
with program features (i.e., controls). Namely, we formalize
the notion of differentiable quantum programming languages,
inspired both by the success of differentiable programming
languages in classical machine learning and the need of
scalable gradient calculations for quantum variational meth-
ods. Furthermore, we showcase how differentiable quantum
programming languages help with the training of more general
variational quantum ansatzes that demonstrate more expressive
power and hence save in the required quantum resources.

II. PRELIMINARIES

Quantum states. Atomic building blocks of quantum com-
puters are qubits. A qubit is a generalization of a classical
binary bit that can be represented as a positive semidefinite
trace-1 Hermitian (density matrices) in C2×2. The density
matrix of a n-qubit state lies in the tensor product of spaces
for single qubits ⊗ni=1C2×2, and is a linear operator with
dimension d = 2n. For quantum states on a Hilbert space
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Fig. 1. Illustrations of classical and quantum neural networks. Both ClaNNs
and QNNs have a layer structure, with distinctions in terms of the encoding,
activation, measurement and parameterization.

CX , let D(X ) denote the set of all density matrices and
H(X ) the set of Hermitian matrices. A quantum state is said
to be pure its density matrix is rank-1. A pure state can be
represented by the vector v ∈ CX such that ρ = vv†. The
dynamics of pure quantum states are represented by unitary
matrices U such that UU † = U †U = I . The action U(ρ) is
given by UρU †. General quantum operations are described by
ensembles {pi, Ui} of unitary matrices that maps a state ρ to∑
i piUiρU

†
i .

Quantum measurements and observables. A quantum
measurement is specified by a set of matrices {Em} such that∑
m E†mEm is identity. Given a quantum state ρ, the outcome

of the measurement is m with probability tr(ρE†mEm). As-
sociating each outcome m with a real-valued scalar λm, the
Hermitian M :=

∑
m λmE†mEm is sometimes refer to as an

observable. The expectation of an observable M on state ρ is
denoted by EM [ρ] := tr(Mρ).

Quantum neural networks. Quantum neural networks
(QNNs) are parameterized machine learning models based
on variational quantum circuits. Similar to classical neural
networks (ClaNNs), QNNs has a layered structure (Figure 1):
for a p-layer QNN with input state ρ(0), the intermediate states
ρ(l) = Ulρ

(l−1)U†l for l ∈ [p], where Ul is the matrix
representation of the l-th layer, and ρ(p) is the output state
of the QNN. If the input state is pure (i.e. ρ(0) = v(0)(v(0))†

for some v(0)), the QNN can be equivalently expressed in the
form of state vectors as v(l) = Ulv

(l−1) for l ∈ [p].
Comparison with Classical neural networks (ClaNNs).

For comparison, typical feed-forward neural networks with
scalar output are parameterized by a sequence of matrices
{Wl}pl=1, such that Wl ∈ Rdl×dl−1 with dp = 1. Given the
input x(0), the output ŷ of the neural network is defined as

ŷ = Wpx
(p−1), with x(l) = σ(Wl−1x

(l−1)) for l ∈ [p] (1)

Here σ(·) denotes the (non-linear) activation on the output of
each layer. Common choices for the activation function include
non-linear element-wise mappings such as ReLU or Sigmoid.

Linear neural networks [13] is a special case of ClaNN
where σ is chosen to be the identity mapping σ(w) = w.
They can be represented as ŷ = WpWp−1 · · ·W1x

(0), which
is similar to the vector representation of QNNs with pure input
states (See Figure 1), but with differences in terms of input,
parameterization and output scheme as specified below.

Input. The input to QNNs are quantum states. Therefore
for a classical dataset, the feature vectors first need to be



encoded into quantum states (common encoding scheme can
be found in e.g., [7], [14], [15]). For generality, we don’t make
assumptions on the encoding scheme and will work directly
with training sets composed of pairs of density matrices and
labels S = {(ρi, yi)}mi=1.

Parameterization. While the matrices {Wl}pl=1 in ClaNNs
could be any general matrices, the matrix representations
{Ul}pl=1 in QNNs must be proper quantum channels. Here
we only consider unitary Ul’s. Furthermore, in contrast to
the directly parameterized matrices Wl, QNNs are typically
composed of quantum gates parameterized by real parameter
θ via matrix exponentials with the form exp(−iθH). The
Hermitian H is referred to as the Hamiltonian that generates
the rotation. Common choices of parameterized gates are Pauli
rotations (e.g., [6], [16], [17]), generated by single-/multi-qubit

Pauli matrices (i.e. tensor products of X =

[
0 1
1 0

]
, Y =[

0 −i
i 0

]
, Z =

[
1 0
0 −1

]
).

While a layer in QNNs may consists of more than one
parameterized rotation by grouping gates that can be executed
in parallel, we assume one parameterized gate per layer
without loss of generality:

U(θ) = Vp(θp)Vp−1(θp−1) · · ·V1(θ1), (2)

where Vl(θl) = e−iθlHl for Hamiltonian Hl and l ∈ [p].
Output. The output of QNNs are real-valued scalars, so

quantum measurements are performed on the output states to
extract information from QNNs. The prediction ŷ associated
with an observable M on the output state ρ(p) is given by
ŷ := EM [ρ(p)] = tr(ρ(p)M). For a QNN with the matrix rep-
resentation U(θ), we use f(ρ,θ) to denote the output with in-
put state ρ and parameter θ: f(ρ,θ) := tr(U(θ)ρU(θ)†M).

III. TRAINING LANDSCAPE OF QUANTUM SUPERVISED
LEARNING

The success of parameterized machine learning models
depend heavily on their trainability. An principled way to
characterize the trainability in the classical literature is to
study the optimization landscape. For example, [18]–[22] show
that many spurious local minima may exist in ClaNNs; [13],
[23]–[26] shows that for certain designs of neural networks,
the landscape can be benign.

On the quantum side, in [10], we conduct a quantitative
investigation on the training landscape for QNNs for square
loss function. Their result suggests that almost all under-
parameterized QNNs can be hard to train, highlighting the
necessity of adapting QNN designs to specific learning prob-
lem, or devising training algorithms beyond gradient-descent.

Training Landscape of QNNs. A common practice to
perform supervised learning is through empirical risk min-
imization (ERM), i.e. finding a set of parameters that best
aligns with the training sample with respect to a specific loss

function l. Under the framework of ERM, training with the
quantum dataset S = {(ρi, yi)}mi=1 involves minimizing

L(θ;S) :=
1

m

m∑
i=1

(
tr(U(θ)ρiU

†(θ)M)− yi
)2
. (3)

θ is a local minimum if and only if there is an open set U
containing θ∗ such that L(θ∗;S) ≤ L(θ;S) for all θ ∈ U . A
local minimum is global if the minimum value of L(·;S) is
attained at θ∗.

Construction of Hard Datasets. The first result in [10]
reveals that hard datasets can be constructed to introduce expo-
nentially many spurious local minima in number of parameters
for almost all QNNs with respect to the following measure:

U(θ) = e−iθpWpHW†
p · · · e−iθ1W1HW†

1 (4)

where {Wl}pl=1 are sampled independently with respect to the
Haar measure on the d-dimensional unitary group U(d), and H
is a d-dimensional trace-0 Hermitian with eigenvalues ±1. Up
to a unitary transformation, the random model is equivalent to
a circuit with p interleaving parameterized gate {e−iθlH}pl=1

and unitary {W̃l}pl=1 randomly sampled with respect to the
Haar measure; and any p-parameter QNN generated by two-
level Hamiltonians can be expressed in Eqn. (4).

The parameterized operator exp(−iθlWlHlW
†
l ) contains

terms proportional to cos θl and sin θl. The measurement in the
Heisenberg’s picture U(θ)†MU(θ) can therefore be expanded
in the Fourier basis as∑

ξ∈{0,1,2}p
Φξ(M)

∏
l:ξl=1

cos 2θl
∏

l′:ξl′=2

sin 2θl′ . (5)

The following theorem identifies a sufficient condition for the
existence of hard datasets in terms of the Fourier components
{Φξ(M)}, which holds with high probability:

Theorem 3.1 (Construction: exponentially many local min-
ima): Consider a random QNN sampled with respect to the
measure defined in Eqn (4) with p = O(log(d)). Then with
probability ≥ 1−O(d−1), (1) {Φξ(M)}ξ∈{0,1,2}p,ξ 6=0 forms a
linearly independent set, and (2) a dataset S can be constructed
to induce a loss function L(θ;S) with 2p local minima within
each period, and 2p − 1 of these minima are spurious with
positive suboptimality gap.

The construction relies on the classical idea of symmetry
breaking, which involves constructing a training set S0 with
L(θ,S0) invariant under the translation θl 7→ θl + π

2 and
an asymmetric training set S1 that breaks the symmetry
to create the suboptimal gaps. Concrete constructions of
S0 and S1 are determined by linear systems, the solvabil-
ity of which are guaranteed by the linear independence of
{Φξ(M)}ξ∈{0,1,2}p,ξ 6=0.

The linear independence of the Fourier components follows
from the positve definiteness of the Gram matrix

[
G
]
ξ,ξ′

:=

tr(Φξ(M)Φξ′(M)). By estimating the moments of the matrix
elements, the smallest eigenvalue of the Gram matrix G is
shown to be positive with probability ≥ 1−O(e−p) for dimen-
sion d : log(d) = Θ(p), and hence the linear independence.



Upper Bound for Number of Local Minima. The second
result in [10] states that the construction above is almost
optimal in number of local minima:

Theorem 3.2 (Upper bound: the number of local minima):
Consider non-degenerated QNNs composed of unitaries gen-
erated by two-level Hamiltonians {Hl}pl=1 with p parameters.
For training set S , within each period, the loss function
L(θ;S) possesses at most (4p)p (strict) local minima.

This implies that the number of local minima in QNNs is
upper-bounded, separating the landscape of QNNs from that
of ClaNNs: The classical work of [18] shows that bm/pcp
local minima can be constructed for ClaNNs with m training
samples, which is unbounded as m grows.

The proof of Theorem 3.2 follows by bounding the number
of local minima with the number of roots to a polynomial
system: for arbitrary choice of two-level {Hl}pl=1, observ-
able M and training set S , the support K of the Fourier
spectrum of the loss function L(θ;S) is bounded in `1-
norm: maxk∈K

∑p
l=1 |kl| ≤ 2p. Under the change of variable

cl = cos(θl/Tl), sl = sin(θl/Tl), ∀l ∈ [p], the number
of local minima for the training loss function can be upper-
bounded by the number of (isolated) solutions to a p-variable
polynomial system with degree 2p.

Empirical Evaluation. Constructions with 8 - 17 parame-
ters are trained with gradient-based methods (Adam, RMSProp
and L-BFGS), each with 5000 random initializations. It is
observed in the numerical simulation, that for all three op-
timizers, the success rate for finding the global minima decay
exponentially as the number of parameters increases. This
indicates that the constructed spurious local minima indeed
make it hard to optimize with gradient-based methods.

IV. QUANTUM GENERATIVE ADVERSARIAL NETWORKS

The applicability of a model of machine learning depends
on its capacity to accurately capture functions with required
properties, as well as the robustness and scalability of training
its parameters to attain those properties. An example of these
issues can be seen in the application of quantum machine
learning to generative learning. Generative learning is the
task of learning a procedure to generate samples from some
unknown distribution D. Specifically, we learn a generator
function G such that samples z from some latent distribution Z
are mapped to samples G(z) from the generated distribution.
Generative Adversarial Networks (GANs) [27] have emerged
as a powerful method of using ClaNNs to perform deep
generative learning. In a GAN, an additional function known
as a discriminator is introduced that attempts to distinguish the
generated (”fake“) samples from (true) samples drawn from
the real distribution. The training of such a system is modeled
as an adversarial game; where the discriminator is trained
to maximally differentiate real and fake samples, while the
generator is simultaneously trained to minimize the difference.
At equilibrium, the generated samples are distributed similarly
to the target distribution.

The success of classical GANs raise the natural question
of whether meaningful quantum counterparts exist. Quantum

GANs could provide potential quantum speedups due to the
fact that parameterized quantum circuits (in the generator
and discriminator) cannot be efficiently simulated by classical
models. There might therefore exist distributions that can be
learned by an efficient quantum generator while an equally
good classical generator may be infeasible to train or sample
from. Since the seminal work of [8], there were several follow-
ing proposals [28]–[34] of constructions of quantum GANs to
generate quantum or classical data. Proof-of-principle practical
demonstrations have also been achieved on a physical quantum
computer [32], [34]. Many of these proposals for quantum
GANs focused on using quantum generators to generate
classical data. There are however many applications such as
the investigation of quantum systems in condensed matter
physics or quantum chemistry, which require the ability to
generate quantum data, and it is often not natural to capture
these learning tasks with the same loss functions as used in
classical GANs. Furthermore, the training of classical GANs
is notoriously delicate, and this phenomenon was strongly
manifested in the quantum GAN proposals that did learn
quantum data [28], [29]. Classically, the training behavior
is often seen to depend on the metric used to capture the
distance between real and fake distributions [35]. Widely used
metrics such as the Kullback-Leibler (KL) divergence, Jensen-
Shannon (JS) divergence, and total variational distance, can
fail to be differentiable or even continuous in the parameters
of the generator, when learning distributions with low dimen-
sional support. A Quantum Wasserstein GAN (qWGAN) has
been proposed by [11] to improve the robustness of learning
quantum data, using a Wasserstein-type metric to capture the
distance between distributions. The Wasserstein (or optimal
transport) metric was proposed by the seminal work [35] to
improve robustness for GAN training. This metric is appealing
from the perspective of optimization due to its smoothness in
terms of the training parameters of the generated distribution.
A semi-metric for quantum states inspired by the Wasserstein
distance that retains these smoothness properties is formulated
in [11]. This is then used to construct a robustly trainable
architecture for a GAN.

Quantum Wasserstein Semi-metric. The classical Wasser-
stein distance between distributions P,Q over X ,Y respec-
tively can be defined for any cost function c : X ×Y → R as
the minimum expected cost for any distribution over X × Y
that has P,Q as its marginals. Classical distributions can be
represented by diagonal density matrices, and classical cost
functions by diagonal Hermitian matrices. The marginal of a
distribution over X ×Y on X or Y is evaluated by taking the
partial trace over Y or X respectively. In density matrix form,
the distance is defined as

W(P,Q) = min
π

tr(πC) (6)

s.t. π ∈ D(X × Y) (7)
trY π = diag(P ), trX π = diag(Q), (8)
C = diag(c(x, y)) (9)

Quantum distributions (or quantum states) are already density



matrices so the diagonality restrictions on the marginals as
well as C can be removed. With the additional restriction that
identical states are at distance 0 from each other, it can be
shown that in the quantum case C must be fixed to C0 =
(I+SWAPX×Y)/2 where SWAP is defined to be the unique
unitary operation such that SWAP(x ⊗ y) = (y ⊗ x) for all
x ∈ CX ,y ∈ CY . The quantum Wasserstein semi-metric is
then defined as

min
π

tr(πC0) =
1

2
tr(π(I + SWAP)) (10)

s.t. π ∈ D(X × Y), trY π = P, trX π = Q (11)

Regularization and Construction of GAN. The optimiza-
tion problem (10) is difficult to solve when the underlying
distributions are parameterized due to the presence of hard
semidefinite constraints (which can become non-convex in the
parameters). Classically [36] strongly convex regularizers can
be added to the objective of a primal optimization problem
to remove hard constraints in the dual. Using the quantum
relative entropy as a regularizer for the quantum-Wasserstein
semimetric results in the optimization problem

min
π

Tr(πC0) + λTr(π log(π)− π log(P ⊗Q)) (12)

s.t. π ∈ D(X × Y), trY π = P, trX π = Q (13)

By SDP-duality and employing the Golden-Thompson trace
inequality the above optimization problem is shown to be
upper bounded by

QW(P,Q) = max
φ,ψ
EQ[ψ]− EP [φ]− EP⊗Q[ξR] (14)

s.t. φ ∈ H(X ), ψ ∈ H(Y) (15)

where ξR is a regularizing Hermitian:

ξR =
λ

e
exp

(
−C − φ⊗ IY + IX ⊗ ψ

λ

)
(16)

A quantum Wasserstein GAN learning state Q formulates the
generated state as G(θ1)ρ0G(θ1)† where ρ0 is some fixed
starting state, and G is a parameterized This results in the
adversarial game

min
θ1

max
φ∈H(X ),ψ∈H(Y)

EQ[ψ]− EG(θ1)ρ0G(θ1)† [φ]

− EG(θ1)ρ0G(θ1)†⊗Q[ξR] (17)

Hermitian matrices can be parameterized using parameterized
quantum circuits by defining φ = U(θ2)HxU(θ2)†, ψ =
V (θ3)HyV (θ3)†, where Hx, Hy are diagonal measurements
that can be easily performed. This yields an adversarial uncon-
strained optimization problem in θ1,θ2.θ3. Due to the formu-
lation of the quantum Wasserstein semi-metric the objective
can be shown to be continuous and differentiable in the real
parameters [11].

Empirical Evaluation. The qWGAN has been used to learn
pure quantum states with 1,2,4 and 8 qubits, as well as mixed
states with 1,2 and 3 qubits. Convergence to 99% fidelity is
observed for pure states in ∼ 150 iterations for 1 and 2 qubit
states, ∼ 400 iterations for 4 qubit states, and ∼ 800 iterations

for 8 qubit states. For mixed states, we observe convergence in
∼ 200 iterations for 1, 2 qubit states, and ∼ 600 iterations for 3
qubit states. In comparison, previous approaches for learning
quantum data either only demonstrate learning 1 qubit pure
and mixed states [28] (converging after ∼ 150 iterations) or
show that gradient based methods no longer make progress
beyond 6 qubit pure states [29]. In contrast the qWGAN can
be trained to learn 8 qubit states using simple gradient descent.

Circuit Compression. A quantum generative model can be
used to compress a large circuit U : CX × CY by training a
smaller variational ansatz G so that (I ⊗G)ΦΦ†(I ⊗G)† ap-
proximates (I⊗U)ΦΦ†(I⊗U)† where Φ =

∑
x∈X x⊗x. The

qWGAN has been used to compress a circuit simulating the
1d 3-qubit Heisenberg model: the original circuit that requires
∼ 11900 gates via the best known theoretical bounds is fitted
to 99% fidelity using an ansatz with 52 gates, indicating that
for a large majority of inputs the smaller circuit effectively
reproduces the larger one.

Fig. 2. Learning pure state with qWGAN

Fig. 3. Learning mixed states with qWGAN

V. DIFFERENTIABLE QUANTUM PROGRAMMING
LANGUAGES

The predicted future applications of variational quantum
systems and QNNs has highlighted the importance of a
scalable and convenient system for implementing them pro-
gramatically. The typical practice for ClaNNs is to encode
their evaluation in computation graphs so that the gradients of
the system can be efficiently computed. Gradients for possibly
complicated systems can be time consuming to program from
scratch (even when efficient schemes are known) and their im-
plementations introduce an additional source of bugs. Popular
auto-differentiation packages such as Autograd and JAX [37]



automate the process of generating procedures to compute the
gradients given the source code of a parameterized function.

However, computing these gradients of loss functions from
variational quantum circuits has a similar complexity of simu-
lating quantum circuits, which is infeasible for classical means.
Thus, the ability of evaluating ”quantum” gradients efficiently
by quantum means is critical for the scalability of quantum
variational methods.

Fortunately, there has been progress towards similar proce-
dures for quantum circuits. Mitarai et. al [14] and Schuld et.
al [38] introduced and refined a parameter shift rule that mod-
ifies a parameterized circuit to obtain circuits computing the
partial derivatives of the loss function. Libraries for quantum
programming such as Pennylane [39] and TensorFlow Quan-
tum [40] use these methods to autodifferentiate computation
graphs consisting of quantum nodes representing individual
parameterized quantum circuits.

The above approach, however, does not handle general
quantum programs that may have conditional statements or
loops conditioned on registers representing quantum states.
Such programs are interesting for two reasons: (1) Dynamic
control flow has proved advantageous [41], [42] in several
classical learning systems, and (2) loops and conditional
statements can allow more complex programs to be imple-
mented using a smaller number of quantum registers which has
particular advantages for near-term noisy hardware implemen-
tations. Hardware providers have begun to natively provide
the option for mid-circuit measurement and reuse of quantum
registers [43], making it likely that such programs can be
natively compiled without inflating the required resources.

A general auto-differentiation scheme for quantum pro-
grams, called differentiable quantum programming languages,
has been formulated by Zhu et. al [12]. In particular, Zhu et.
al provide a rigorous formalization of the auto-differentiation
technique applied to quantum circuits, which includes a formal
formulation of quantum programs, their semantics, and the
meaning of differentiation of them. They also design the
code-transformation rules for auto differentiation of general
quantum programs and prove their correctness.

An implementation of these rules is publicly available1 and
has been used to perform the following case study which
demonstrates the effectiveness of using quantum control in
a resource constrained variational system.

The case study compares two 4-qubit QNNs to solve a
simple classification problem over 4-bit inputs z = z1z2z3z4 ∈
{0, 1}4 with true label given by f(z) = ¬(z1 ⊕ z4). Two
4-qubit QNNss P1 (no control) and P2 (with control) are
constructed that each consists of a single-qubit Pauli rotation
gate on each qubit. For parameters Γ = {γ1, . . . , γ12} define
the program

Q(Γ) ≡ RX(γ1)[q1];RX(γ2)[q2];RX(γ3)[q3];RX(γ4)[q4];
RY(γ5)[q1];RY(γ6)[q2];RY(γ7)[q3];RY(γ8)[q4];
RZ(γ9)[q1];RZ(γ10)[q2];RZ(γ11)[q3];RZ(γ12)[q4],

1https://github.com/LibertasSpZ/adcompile.

where q1, q2, q3, q4 refer to 4 single qubit registers and
Rσ(θ) = exp(iσθ/2) whenever σ is a Pauli matrix. Given
parameters Θ = {θ1, . . . , θ12},Φ = {φ1, . . . , φ12}, define

P1(Θ,Φ) ≡Q(Θ);Q(Φ). (18)

Similarly, for parameters Θ = {θ1, . . . , θ12},Φ =
{φ1, . . . , φ12}, Ψ = {ψ1, . . . , ψ12}, define

P2(Θ,Φ,Ψ) ≡ Q(Θ); case M [q1] = 0→ Q(Φ)
1→ Q(Ψ).

(19)
Note that P1 and P2 require the same number of qubits and
quantum gates for each single run. To use a program Pi for
training or classification, q1, q2, q3, q4 are initialized to the
classical feature vector z = z1, z2, z3, z4 and then execute the
program. The predicted label is given by measuring the fourth
qubit q4 in the 0/1 basis. Learning is performed by minimizing
a loss function given by the squared loss function over all
inputs, treating the expectation value of the output as the
output of the circuit. P1 is trained using Pennylane and P2 is
trained using gradient descent where the gradient is computed
according to the transformation rules [12]. It is observed that
after 1000 epochs with manually optimized hyperparameters,
the loss for P1 (no control) attains a minimum of 0.6931 in
less than 100 epochs and subsequently plateaus. The loss for
P2 (with control) continues to decrease and attains a minimum
of 0.0936.

Fig. 4. Training P1 and P2 to classify inputs according to the labelling
function f(z) = ¬(z1 ⊕ z4).
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