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Abstract

Modern surveys of gravitational microlensing events have progressed to detecting thousands per year, and surveys
are capable of probing Galactic structure, stellar evolution, lens populations, black hole physics, and the nature of
dark matter. One of the key avenues for doing this is the microlensing Einstein radius crossing time (tE)
distribution. However, systematics in individual light curves as well as oversimplistic modeling can lead to biased
results. To address this, we developed a model to simultaneously handle the microlensing parallax due to Earthʼs
motion, systematic instrumental effects, and unlensed stellar variability with a Gaussian process model. We used
light curves for nearly 10,000 OGLE-III and -IV Milky Way bulge microlensing events and fit each with our
model. We also developed a forward model approach to infer the tE distribution by forward modeling from the data
rather than using point estimates from individual events. We find that modeling the variability in the baseline
removes a source of significant bias in individual events, and the previous analyses overestimated the number of
tE> 100 day events due to their oversimplistic model ignoring parallax effects. We use our fits to identify the
hundreds filling a regime in the microlensing parameter space that are 50% pure of black holes. Finally, we have
released the largest-ever catalog of Markov Chain Monte Carlo parameter estimates for microlensing events.

Unified Astronomy Thesaurus concepts: Gravitational microlensing (672); Astrophysical black holes (98); Time
domain astronomy (2109); Astronomy data modeling (1859)

1. Introduction

Gravitational microlensing was first proposed as a means to
study the dark halo of the Milky Way by Paczynski (1986), and
has since yielded direct constraints on the population of dark
objects (Alcock et al. 1996; Renault et al. 1997; Alcock et al.
1998, 2001; Afonso et al. 2003; Tisserand et al. 2007). These
were achieved through time-domain photometric surveys of the
densest stellar regions of the night sky (the Milky Way bulge
and Magellanic Clouds) with optical telescopes (Udalski et al.
1992; Alcock et al. 1993; Arnaud et al. 1994; Muraki et al.
1999). The field of microlensing has pushed dense field
photometry, difference imaging photometry, transient alerts,
and many more technologies that will be used by upcoming
surveys (e.g., the Legacy Survey of Space and Time and the
Wide Field Infrared Space Telescope, WFIRST) for a variety of
science goals. Though the heritage of microlensing was in the
identification of dark objects to understand the nature of dark
matter, most practitioners are on the hunt for exoplanets today
(see Gaudi 2012; Penny et al. 2019, for a review and a
projection, respectively).

Setting binary systems and exoplanets aside, modeling even
a simple point-source, point-lens (PSPL) microlensing event is
challenging. First, given that most surveys point toward

extremely dense stellar regions, it is virtually impossible to
measure the flux of the source and lens alone for most events.
Given typical seeing from the ground, the baseline flux of most
microlensing events are likely composed of several stars’ light
(Sajadian & Poleski 2019), and given the frequency at which
stars exhibit intrinsic stellar variability, the baseline is likely to
be variable itself. On top of this, since the Galactic bulge is near
the ecliptic, it is near the Sun periodically. The seasonal gaps in
the light curve lead to aliasing, and the variations of
atmospheric seeing, weather patterns, and other systematics
must be considered, especially for long-duration events that
span many of these cycles and seasonal gaps. Additionally, the
motion of the Earth around the Sun complicates the modeling.
The Earth’s orbital parallax effect (caused by variable
magnification due to Earth’s motion around the Sun) is also
on a yearly timescale, so care must be taken to not allow this
physical signal to mix with the systematics.
Most Galactic bulge microlensing events are short (measur-

able magnification for at most a couple months) such that the
Earth’s motion can be either outright ignored or assumed as a
constant acceleration. A number of degeneracies arise with the
latter assumption (see, e.g., Gould 2004). However, microlen-
sing parallax measurements are useful given they help
constrain the mass-distance degeneracy (Wyrzykowski et al.
2016). Microlensing parallax is also useful for exoplanet
studies allowing numerous degeneracies in binary lens caustics
to be resolved (Yee et al. 2015). Given the usefulness,
microlensing parallax is frequently modeled; however, given
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the potential for correlations with troublesome systematics,
there has been no systematic study of microlensing parallax
across entire surveys.

As microlensing surveys began detecting upwards of
thousands of microlensing events, distributions of microlensing
parameters were studied, especially the global tE (Einstein
crossing time) distributions. The tE distribution has become an
important proxy for physical inference on the Galactic
structure. These studies probed several details regarding the
population of lenses—including at the short tE end, the
existence of free-floating planets (Sumi et al. 2011; Mróz
et al. 2017). The global shape of the distribution has been
studied to compare observations (Wyrzykowski et al. 2015;
Mróz et al. 2019) to simulations that probe the present-day
mass function of lenses (Mao & Paczynski 1996). The shape of
the distribution has also been used to probe the matter profile in
the inner Galaxy (Mao & Paczynski 1996; Wegg et al.
2016, 2017; Lam et al. 2020). Wyrzykowski et al. (2015) used
it to probe the spatial distribution of the optical depth in the
Galactic bulge region. Mróz et al. (2019) used it to show the
optical depth and microlensing event rate over roughly 40
square degrees with higher spatial resolution and showed that
the bulge event rates compared well with the expected
microlensing event rate predicted by a Besançon stellar model
(see, e.g., Czekaj et al. 2014). In general, however, the tE
distribution is dependent on the line-of-sight distribution of the
source and lens parallax and relative proper motion (Mróz et al.
2019).

The tE distribution is also a rough proxy of the mass
distribution of lenses (see, e.g., Mao & Paczynski 1996), and
can be used to constrain the fraction of intermediate mass
(∼10–1000Me) primordial black hole dark matter (Gould 1992;
Lu et al. 2019). Lu et al. (2019) showed that OGLE could begin
to probe this with the tE distribution; however, Lam et al.
(2020) showed in a more thorough analysis of PopSyCLE
simulations that utilizing parallax and astrometric measure-
ments would greatly increase the purity of black hole
populations from microlensing. We will explore this question
in more detail in two follow-up studies (W. Dawson et al. 2022,
in preparation; K. Pruett et al. 2022, in preparation).

Black holes in microlensing surveys need not be primordial
in nature. The Milky Way has 108–109 black holes of stellar
origin (Agol & Kamionkowski 2002). The exact number is
uncertain, and methods to detect them, other than microlensing,
are limited, with most incapable of detecting isolated black
holes (i.e., those not in binaries; Remillard & McClin-
tock 2006). Given the clear existence of black holes in the
∼5–30 Me mass range from binary detections, it is reasonable
to expect that isolated black holes have likely been detected
already in microlensing surveys. The typical timescale of these
events would be ∼100 days,8 and events with this duration
have been observed frequently. The problem is that estimating
the mass from the photometric signal that microlensing surveys
probe is challenging. Assuming the same source distance, the
mass–distance degeneracy ensures that a high-mass and far-
away lens can provide a similar observed lensing effect to a
low-mass and nearby lens. This degeneracy is broken with the
parallax effect due to the Earth’s orbit (which causes

asymmetric magnification as well as wiggles in the light curve)
and with astrometric observations of the lensing behavior
(which causes unresolved multiple images of the source and
appears as a deviation from the linear proper motion of the flux
centroid). Parallax is notoriously challenging to model, and the
systematic observation of all events with astrometry is not
possible given the time-consuming observations required.
There is also a degeneracy between massive, fast-moving
lenses and low-mass, slow-moving lenses that is difficult to
disambiguate without high-resolution follow-up over years.
If the route of carefully modeling the Earth’s orbital parallax

is taken, then additional challenges will arise. Black holes are
more massive than typical stars, so the relative parallax
between the source and lens is more likely to be small. A small
parallax manifests a less obvious signal—rather than the
obvious periodic wiggles in the photometric light curve of a
long-duration microlensing event, the rise and fall of the
microlensing signal is very slightly asymmetric. When we
consider that microlensing signal in seeing-limited surveys is
typically highly blended with unlensed flux due to numerous
neighbor stars and consider the frequency that stars exhibit in
measurable photometric variability, there is often a time-
varying signal due to baseline variability in either the source or
blended flux. This signal makes constraining the parallax
challenging when it is intrinsically small (πE< 0.1; see
Section 3 for definition of πE). The timescale of the
microlensing event (the Einstein crossing time, tE) is also
useful to analyze in the context of black holes, as it contains
information about the mass of the lens and distances to and
relative proper motion of the lens and source. Individual events
with long timescales have been scrutinized as black hole
candidates (Agol et al. 2002; Bennett et al. 2002; Mao et al.
2002; Poindexter et al. 2005). In principle long-duration and
low-parallax microlensing events are most likely to be black
holes (Lam et al. 2020); however, given the systematics
described above, picking out and constraining the parallax to a
small value with the signal correlated over several observing
seasons is a challenge.
Gaussian process (GP) models are often used for problems

like these. This additional time-domain-correlated noise has
been fit with GP models across time-domain astronomy
including the transiting exoplanet observations with Kepler
(see, e.g., Brewer & Stello 2009; Foreman-Mackey et al. 2017).
This method has only very recently been used in microlensing
studies of an individual event (Li et al. 2019), and has not been
widely deployed on an entire survey. This is unsurprising given
the computational requirements to invert large matrices
repeatedly in order to infer the hyperparameters of the GP
kernel.
A recent theoretical study of OGLE-like microlensing survey

simulations using a powerful new tool suggests that many
microlensing events are indeed black holes (PopSyCLE; Lam
et al. 2020); however, given the aforementioned challenges, it
seems a population approach is needed. We undertook the
considerable task of analyzing all public Galactic bulge OGLE-
III and -IV microlensing light curves and estimating posteriors
for the microlensing model parameters (including parallax) as
well as inferring GP hyperparameters in order to subtract away
the time-domain-correlated noise that afflicts proper inference
on the microlensing parameters. In Section 2, we describe the
input data for our individual light-curve modeling. In Section 3,
we describe the model and sampling algorithm to estimate the

8 See below for a full discussion of the microlensing math, but assuming
4 kpc to the lens, 8 kpc to the source, and 200 km s−1 transverse velocity of the
lens to the line of sight, 5−30 Me gives lensing event durations of
∼78–191 days.
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posterior probability density function (PDF) for all of the
model parameters. In Section 4, we describe a powerful method
of combining all of the information from our parameter
posterior samples and demonstrate a useful analysis on the
Einstein crossing time global distribution. In Section 5, we
present our individual light-curve results as well as our results
from the global Einstein crossing time analysis before we
discuss and conclude our study in Section 6. We are releasing
our Markov Chain Monte Carlo (MCMC) parameter estimate
chains for all 9350 light curves analyzed at https://gdo-
microlensing.llnl.gov/.

Throughout this paper, all timescale parameters have the
units of days (measured in modified Julian days), and flux
quantities assume mI= 22 for a zero-point in the OGLE
published magnitude system. We will discuss throughout three
different microlensing models. The math for each of these will
be developed in Sections 2 and 3. First is the standard five-
parameter Paczynski (1996) model, which assumes a point-
source, point-lens (PSPL) microlensing with no parallax and a
constant baseline with blended, unlensed flux. We will refer to
this model as PSPL throughout. Second is the parallax model,
still assuming PSPL but with the added physics of Earth’s
motion. We will refer to this as PSPL+parallax model. Third is
the most complicated model, which includes both parallax and
a GP model for the variability in the baseline. We will refer to
this as the PSPL+parallax+GP model. Finally, we will discuss
a PSPL+GP model, but only for plotting purposes in
Section 5.1.

2. Data

2.1. OGLE-III

The OGLE-III survey spanned the years of 2002–2009 and
was operated from Las Campanas Observatory in Chile on the
1.3 m Warsaw University Telescope. The observations were
collected with eight (4× 2) 2048×4096 CCD chips with 0″.26
pixel−1 with a total field of view of 35 35¢ ´ ¢. For more details,
we refer readers to the survey paper Udalski (2003). OGLE-III
published alerts online as part of the OGLE Early Warning
System9 for each of their eight seasons with 4000 events on
their Early Warning System. OGLE-III began the era of
statistical inference on populations of thousands of microlen-
sing events. Wyrzykowski et al. (2015) published 3718 unique
microlensing events, which at the time was the largest-ever
catalog of identified microlensing events. In their analysis, they
fit each event with a Paczynski (1996) model for a PSPL;
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which is dependent on the lens mass (M) and distances to the
lens (DL) and source (DS); I0 is the baseline magnitude of the
light curve in the OGLE I-band. It is convenient to define
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t
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where t0 and u0 are defined as u t u0 0( ) º in the heliocentric
frame, and tE is the Einstein crossing time, or the time it takes
the source to traverse the lens’s angular Einstein radius:

t , 5E
E

rel

( )q
m

=

where μrel is the projected lens–source relative proper motion.
The modeled parameters are then

t t u I f, , , , . 6SPSPL 0 E 0 0{ } ( )q =

Wyrzykowski et al. (2015) first fit this model to all light curves
using a χ2 minimization code in order to use these values as
features in a random-forest classifier for event detection along
with many other light-curve characteristics. There was also an
upper limit of tE= 400 days applied to all the OGLE-III data.
The full OGLE-III catalog was then reduced to 3560 events,
which were then modeled with a MCMC analysis, which
estimates the posterior distributions for the parameters
described above.
In this paper, we will work with the 3560 I-band light curves

as published in Wyrzykowski et al. (2015), perform new fits,
and we will draw comparisons to their analysis of the
distribution of fit parameters of their events.

2.2. OGLE-IV

The OGLE-IV survey commenced in 2010 and continues
today with a 32 chip (2048× 4096 pixel) mosaic camera with
0″.26 pixel−1 with a total field of view of 1.4 square degrees.
The upgraded camera also had a much shorter readout time
allowing for an order of magnitude increase in survey
efficiency over OGLE-III. The most recent full-scale analysis
of OGLE-IV was presented in Mróz et al. (2019), which
analyzes eight years of OGLE-IV data and amasses a catalog of
8000 microlensing events toward the Galactic bulge fields of
the OGLE-IV survey. This increase in statistical power allowed
for higher-resolution modeling of the Galactic structure toward
the bulge and higher-fidelity population statistics of the
microlensing parameters. Similar to the OGLE-III analysis
(Wyrzykowski et al. 2015), this study published the individual
light curves for microlensing events they detected, as well as
Paczynski (1996) curve fits to each event. Similarly to
Wyrzykowski et al. (2015), they also imposed an upper limit
on the timescale (tE< 300 days).
We will use the I-band light curves as published in our

analysis to follow. We note here that this is not a
comprehensive list of OGLE-IV events. It is missing the
central-most Galactic fields, which were published separately
in Mróz et al. (2017) as a stand-alone analysis of the high-
cadence light curves in search for free-floating planets. These
2617 light curves were not made public, and so they are left out
of our study. Additionally we did not include 630 OGLE-IV
events in the Galactic plane recently made public and analyzed
in Mróz et al. (2020).9 http://ogle.astrouw.edu.pl/ogle4/ews/ews.html
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2.3. PopSyCLE Simulation

A third set of microlensing events that we will use for
comparisons to guide the analysis are from a recent simulation
that serves as a detailed mock OGLE-type survey (Lam et al.
2020). For details on the simulation and recording of
microlensing events, we refer readers to Lam et al. (2020),
but in short, PopSyCLE (Population Synthesis for Compact
object Lensing Events) is an open-source tool for simulating
microlensing surveys starting with a stellar model of the Milky
Way, evolving stars through stellar evolution models across an
initial-final mass relation, stochastically assigning compact
object populations to stars that evolve to that stage, and
simulating a microlensing survey on the final Galactic catalog.
We make use of the mock OGLE-III and -IV simulations
presented in Lam et al. (2020) for comparisons to our analysis
(v2—see their Appendix A).

3. Event Modeling

In this section, we describe the modeling framework that we
will carry out in order to fit all OGLE-III and OGLE-IV events
described in Section 2.

3.1. Annual Parallax

In Section 2.1, we described the basic Paczynski (1996)
microlensing model used by both Wyrzykowski et al. (2015)
and Mróz et al. (2019) to model individual events. This model
is an approximation that ignores the motion of the Earth around
the Sun and models the measured flux as the sum of an
unlensed and lensed flux as well as additional complexities
such as binary sources and/or lenses, and finite source effects
(see, e.g., Dominik 1998).

In this subsection, we introduce the effect of observing
microlensing from the Earth. Long tE events or good black hole
candidates are sensitive to parallax effects. This is coupled with
multiple degeneracies in the model space; i.e., multiple
combinations of parameters can yield approximately the same
light curve to within the modeling precision. These degen-
eracies arise from numerous situations including blending of
lensed and unlensed light (Woźniak & Paczyński 1997;
Dominik 2009), the geometry of gravitational lensing gener-
ically (the so-called mass–distance degeneracy; see, e.g.,
Saha 2000), and the fact that Paczynski (1996) parameters
are heliocentric in nature but estimated in the geocentric frame
(Smith et al. 2003; Gould 2004). The last of these, observing
distant lenses and sources from a moving reference frame,
especially when the timescale of the microlensing event is long,
is particularly challenging.

The annual parallax was first observed in a microlensing
event by the MACHO collaboration (Alcock et al. 1995). Our
formulation for microlensing parallax is based on a combina-
tion of Alcock et al. (1995) and Gould (2013). We first
reconciled Equation (2) from Alcock et al. (1995) with
Equation (4) from Gould (2013) in order to add the eccentricity
of Earth’s orbit to the formalism of Gould (2013).10 We then
modeled the parallax as follows.

The observed data of microlensing is a flux time-series or
light curve that is typically constructed either from point-spread

function (PSF) fit photometry or from differential imaging
analysis. Most generally, the flux in the light curve is the sum
of all sources that lie along the line of sight inside of the
extraction profile. However, since the projected angular extent
of the detectable lensing effect is much smaller than the typical
PSF full width at half maximum, it is difficult to determine
which of these sources is the one being lensed. We separate the
flux in the light curve into two categories: S for the source, B
for the blended unlensed flux (this includes lens flux). Then the
flux may be modeled as follows:

F t F t F t A t , 7B S( ) ( ) ( ) ( ) ( )= +

where the individual, unlensed fluxes are time-varying due to
stellar variability in general, and from General Relativity
(Einstein 1936), A t( ) is given by Equation (1); u is still the
magnitude of the lens–source separation in the plane normal to
the observer–source axis in units of θE, but it is modified by
Earth’s motion.
Accounting for Earth’s motion, the lens–source separation in

geocentric coordinates, u, is a vector with ecliptic components
given by the following:

u u

u

sin cos sin

cos sin cos , 8

e e

n n

0 E

0 E

[ ] ˆ

[ ] ˆ ( )

t f f x p x

t f f x p x

= + + W

+ - + W

see Figure 1. For circular orbits,

a b

AU
;

AU
sin , 9e n ( )x x x x b= º = =

where a is the semimajor axis of Earth’s orbit, b is the
semiminor axis of the circular orbit’s projected ellipse on the
plane perpendicular to the Oe–S axis, and β is the ecliptic
latitude; see Figure 2. f is the angle between the ecliptic north
and the direction of the source-lens relative proper motion in
the heliocentric frame. Accounting for the eccentricity, ò, of
Earth’s orbit generalizes this to the following:

t t1 cos 10e p0[ [ ( )]] ( )x x= - W -

Figure 1. The geometry in the plane of the sky normal to the heliocentric
observer-source axis. The lens (black circle) passes to the north and west of the
source with a relative proper-motion direction characterized by the angle f with
a minimum angular separation of u0. These are each model parameters in our
analysis. The unit vectors nx̂ and ex̂ are aligned with the ecliptic coordinate
latitude and longitude, respectively. The unit vector relm̂ is in the direction of
the relative motion of the lens with respect to the Oe–S coordinate.

10 In our reconciliation of Alcock et al. (1995) and Gould (2013), we
discovered that Equation (2) from Alcock et al. (1995) is missing an additive
term u2 sin 20 ( )t f .
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t tsin 1 cos , 11n p0[ [ ( )]] ( )x x b= - W -

where tp is the time of the perihelion, and Ω0 is the angular
frequency of Earth’s orbit:

T

2
, 120 ( )p

W =

where T is the period of the Earth’s orbit around the Sun;

t t t t2 sin , 13c p0 0( ) [ ( )] ( )W = W - + W -

where tc is the time of the Earth’s closest approach to the Sun–
source axis:

t T t
2

, 14c VE ( )l
p

= +

where λ is the equatorial longitude of the source, and tVE is the
time of the vernal equinox; see bottom panel of Figure 2.

Finally, the microlensing parallax πE is

, 15E
rel

E
( )p

p
q

=

where πrel is the relative lens–source parallax.

3.2. Intrinsic Variability of the Baseline

In most microlensing analyses to date, it is assumed that FB,
FS, and FL are constant in time thus rendering the baseline
(A t 1( )  ) flat at large |t− t0|, with the exception of
Wyrzykowski et al. (2006), who investigated periodic
variability in the baseline of OGLE data, and Li et al. (2019),
who modeled the baseline variability of a single event using a
GP model. This assumption is never perfect as all stars are
variable at some level due to the complex physics of each star,
and all light curves are afflicted with seasonal throughput
variations due to weather and other systematics; however, it
may be a reasonable assumption for the average microlensing
event that has tE∼ 20 days. Since we are just as interested in
long-timescale events, where stellar variability is more likely to
be a significant systematic, we desire a generic model that can
fit all OGLE-III and OGLE-IV events.
To model the time-variability of the baseline of the light

curve, we use a GP model. For a good summary of GP models
and their use in statistical modeling and machine learning, we
refer readers to Rasmussen &Williams (2005). In short, a GP is
a probability distribution over possible functions. This is an
important aspect that allows for the use of Bayes’ Theorem and
thus integrates the formalism into our preferred probabilistic
sampling algorithms. More concretely, for the problem of
modeling a microlensing light curve, we use a GP model to
handle the variable baseline and correlated noise in the light
curve. This is necessary because of the myriad of sources of
systematic noise in our observed data (e.g., detector peculia-
rities, stellar variability, weather, sky conditions, among
countless others). The use of a GP may be thought of (and
appears in our plots) as fitting the residual of the physical
model, but we caution against this viewpoint. In actuality, we
are simultaneously fitting both the GP model and the physical
model parameters, i.e.,

F t t tphysics GP white noise. 16( ) ( ) ( ) ( )= + +

Conditioned on a finite number of observations, a GP is just
a multivariate Gaussian distribution with a dense covariance
matrix. We must define the μ and Σ—mean and covariance
matrix, respectively—for this multivariate Gaussian to set up
such a distribution. GP models are simplest if we center the
data (i.e., allow μ= 0). In principle we want to allow for
relationships between points in our light curve (this is simple to
imagine in two dimensions). The covariance matrix is
generated by evaluating the kernel function κ, which takes
two points ti and tj and returns the similarity measure between
them as a scalar:

K: ; , 17n n
ij ij i ij

2 2( ) ( )  k k t s d´  S = +

where τij= |ti− tj|, σi is the typical uncertainty in the ith data
point, and δij is the Kronecker-δ. We have also included a
scaling factor, K, on the uncertainty of each measurement,
which helps handle underestimated uncertainty in flux
measurements. This means that choosing a kernel function
strongly influences the range of shapes the function can take.

Figure 2. Top: the microlensing formalism of Gould (2000) augmented by
microlensing parallax relevant parameters. The bold line represents the path of
light from the source (S) to the heliocentric observer (Oe), which is deflected
by the lens (L). DL and DS are the assumed Euclidean distances to the lens and
source from Oe, respectively. The deflection angle α is a function of the
Einstein radius rE(α = 4GM/rEc

2), while θE is the Einstein angular radius on
the sky. The Einstein radius projected onto the S–O normal plane is defined as
rE˜ . In this projection, Earth’s orbit (green dashed line) is angled by the ecliptic
latitude of the source star β. Bottom: the orbit of Earth (dashed green ellipse)
projected onto the S-Oe normal plane. Note that the ellipticity and
corresponding semimajor and semiminor axes a and b, respectively, are
representative of a nearly circular orbit projected on the plane. The frame is
oriented such that the time, tc, at which the Earth is closest to the Oe–S line is
at the top. Within the orbital plane of Earth, λ is the angle of tc from the vernal
equinox. Note that tc can be determined by the time of vernal equinox, tVE and
the ecliptic longitude of S, t T tc 2 VE( )l = +l

p
, where T is the Earth’s orbital

period in days. The angle β in the left figure is simply the ecliptic latitude of S,
and ξn is in the plane of the page and corresponds to the northern celestial
coordinate unit vector. The phase angle of Earth at time t is given by
λ + Ω0 ∗ (t − tc), where Ω0 = 2π/T is the conversion factor for the orbital time
to radians.
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We refer readers to Duvenaud (2014) for an overview of
constructing kernels.

Computationally, adding a GP to our likelihood function
means we now must invert and compute the determinant of a
covariance matrix. To avoid an unsophisticated N3( )
implementation (for N flux measurements in the light curve),
we make use of the celerite python package (Foreman-Mackey
et al. 2017), which scales as N( ) through a number of
simplifications on the kernel choices that are physically
motivated for stellar flux time-series measurements.

The variability in the baseline is complex. It is due to a
number of causes including the variations of photometric
quality over the course of the year and the asteroseismic
oscillations and other internal phenomena that occur at
timescales related to the internal structure of the stellar system
but are also damped by dissipation. For this reason, we use a
damped simple harmonic oscillator (SHO) term for the kernel
provided by celerite. Foreman-Mackey et al. (2017) show the
underlying kernels that are motivated by the Fourier transform
solutions to a stochastically driven, damped SHO (the
derivation proceeds through their Equations (19)–(31)). The
natural kernels that come from this physical picture are shown
to be quasiperiodic and described with exponential kernels,
which celerite exploits to vastly speed up the evaluation. The
power-spectral density of this kernel is given by the following:

S
S

Q

2
, 180 0

4

2
0
2 2

0
2 2 2

( )
( )

( )w
p

w
w w w w

=
- +

where ω0 is the undamped frequency, Q is the quality factor of
the oscillator, and S0 is a constant proportional to the undamped
spectral power. We set Q 1 2= since leaving it
unconstrained gave the GP model unlimited freedom to fit
the microlensing event itself. This also dramatically improves
the speed of hyperparameter estimation and reduces the kernel
to the following:

S exp
1

2

cos
2 4

. 19

ij ij

ij

SHO 0 0 0

0

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )

k t w w t

w t p

= -

´ -

This kernel has been used for the background granulation
noise in time-series flux measurements of stars (Harvey 1985;
Michel et al. 2009; Kallinger et al. 2014; Foreman-Mackey et al.
2017). The source of this noise has been described as a
combination of several effects including convection, acoustic
oscillations, magnetic activity, and rotation (Cranmer et al.
2014); these are all studied in the rich literature of astroseismol-
ogy (see Aerts et al. 2010, for a comprehensive review).

In Figure 3, we show a portion of an example light curve
from OGLE-III (see Section 2.1). There is clearly a
quasiperiodic baseline in the wing of the microlensing event.
The SHO kernel term should handle the periodic fluctuations,
but we must also handle the general trend of the baseline. This
low-order polynomial trend is extremely troublesome for
sampling the posterior of the microlensing parameters of
interest (e.g., πE and tE). Without handling the time-varying
baseline, the model is forced into extremely unlikely regions of
parameter space in order to explain both the true underlying
microlensing event that varies over a small fraction of the
whole light curve and the nearly linear trend over the several

years that flux measurements were made. To handle this type of
light curve, we add a Matérn-3/2 kernel. Note that we may
construct kernels as the sum or product of two valid kernels
(Durrande et al. 2011). The Matérn-3/2 kernel is given by the
following:

1
3

exp
3

, 20ij
ij ij

M3 2
2
⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
( ) ( )k t s

t
r

t
r

= + -

where ρ and σ are the modeled hyperparameters.
All together, our data is modeled with a covariance structure

according to the following:

K , 21ij ij ij i ijSHO M3 2
2 2( ) ( ) ( )k t k t s dS = + +

and the model flux vector is as follows:

w, 22( )m F=

where Φ is as follows:

A t
A t

A t

1
1

1

23

N

1

2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

( )
( )

( )

( )
 

F =

for N flux measurements, where A is given in Equation (1), and

w
F
F

. 24S

B

⎛
⎝

⎞
⎠

( )=

It is convenient to define the baseline, unlensed flux:

F F F 25S Bbase ( )= +

and the source-flux-fraction:

b
F

F F
, 26S

S B
sff ( )=

+

which we will sample in our modeling and can be used to select
dark lenses (Wyrzykowski et al. 2016; Wyrzykowski &
Mandel 2020).
Thus, for observed flux data F, the above formulation allows

for a Gaussian likelihood function with mean μ and covariance
matrix Σ:

F Fp ; , , 27( ∣ ) ( ) ( )q m S~

where  indicates a normal distribution, and θ is the set of
microlensing and GP hyperparameters:

F b t t u S K, , , , , , , , , , , . 28base sff 0 E 0 E 0 0{ } ( )q p f w r s=

3.3. Priors

In addition to the likelihood of the previous section, we must
also define the priors for our model parameters in order to
properly sample the posterior PDF. We discuss these priors in
this subsection individually; however, the key information is
contained in Table 1.

3.3.1. Flux Parameters: Fbase and bsff

The measured flux of a typical microlensing event is an
unknown combination of source, lens, and blended light. It is
possible to disambiguate the three using a combination of high-
resolution follow-up and parallax measurements, but in
principle we do not know flux ratios a priori. Modeling the
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flux parameters is a challenge since these are highly correlated
with several other microlensing parameters. We thus use a
MCMC to sample in the total baseline flux and the source-flux-
fraction with the following priors:

Fp F median , , 29Fbase( ) ( ( ) ) ( ) sµ

where the median is taken over the flux time-series, and σF
refers to the standard deviation of the flux time-series;

p b 0, 1 , 30sff NB( ) ( ) ( )µ +

where a b,( ) describes a uniform distribution between a and b
that is zero elsewhere; òNB allows for a small amount of
“negative blending” (Park et al. 2004; Smith et al. 2007), where

the source apparently contributes more than 100% of the
observed flux. This is, strictly speaking, nonphysical, but it
becomes possible in the parameters due to systematics in the
modeling of the pixels, e.g., if the difference imaging procedure
improperly attributes flux from a neighbor to the source. We
restrict the amount of negative blending to the amount of flux
from a star of mI= 20.5. This follows the analysis of Mróz
et al. (2019), where a comparison of OGLE fields was made to
high-resolution Hubble Space Telescope images and pixel-
level simulations (see Figures 8 and 9 of Mróz et al. 2019).

3.3.2. Time of Closest Approach: t0

The time of closest approach is defined in the heliocentric
frame; i.e., it is the time when, as viewed from the Sun, the lens
and source are nearest in their trajectories on the sky. This is
troublesome for modeling light curves with large microlensing
parallax signals because then the peak of the light curve is
different than t0; thus we cannot set a tight prior on t0 to the
peak of the light curve. Since a high microlensing parallax is
rare, and most light curves have good agreement between t0
and the peak of the light curve, we use a Gaussian prior,
centered on the reported t0 values from OGLE (Wyrzykowski
et al. 2015; Mróz et al. 2019);

p t t , 100 days . 310 0,OGLE( ) ( ) ( )µ

3.3.3. Einstein Crossing Time: tE

The time it takes for the source to transit the angular Einstein
radius, θE, is again defined in the heliocentric reference frame,
which is parameterized by tE. Dominik (2009) showed
reparameterizations that are useful for fitting Earth-based
microlensing observations including defining the effective-
timescale teff= tE u0 and modeling in u0 and teff. We use tE and
u0 parameters in our analysis since teff is most useful for shorter
events, and we want to be capable over a large range in tE. The
timescale distribution of microlensing surveys is often reported
as a histogram of tE point estimates from the population of
events. For OGLE-III and -IV, this distribution has proven to
have a peak roughly at 20 days with tails toward short
timescales as short as 1 day and as long as several hundred
days. Recently, Lam et al. (2020) published the first simulated
OGLE-like microlensing survey that largely confirmed these
findings (though the peak of the tE distribution is slightly
lower). We use the output from the Lam et al. (2020) OGLE-
like PopSyCLE simulation to develop our tE prior. However,
we inflate the distribution to allow for the possibility of longer
timescale events in the OGLE database. We sample in tlog10 E,
so our tE prior is given by the following:

p tlog , 2 , 32t t10 E log log
10 E 10 E( ) ( ) ( ) m sµ

where the mean and standard deviation refer to the values from
the PopSyCLE OGLE simulation ( t 1.13435log E

10
m = and

t 0.33751log E10
s = ). In addition, we truncate this prior to only
allow for 0.5< tE< 3000 days.

3.3.4. Impact Parameter: u0

The impact parameter is defined as u u t0 0( )º . It is again
defined in the heliocentric frame and often reparameterized as a
factor of the effective timescale (teff= tE u0). Geometrically,
given the random sources and lenses with random motion on

Figure 3. Example OGLE-III light curve (OGLE BLG 156.7.141434) showing
the baseline of the light curve. The baseline is clearly rising over the course of
several years in addition to a quasiperiodic oscillatory behavior. We have
designed our GP kernel to handle these systematics specifically since these are
frequent in OGLE data.

Table 1
Summary of Prior Probability Density Functions for Modeled Parameters

Parameter (1) Distribution (2) Inputs (3)

Fbase  Fmed( )m = , σ = σF

bsff  lower = 0, upper = 1 + òNB
t0  μ = t0,OGLE, σ = 100 days

tlog10 E  μ = 1.13435, σ = 0.67502a, truncated
between 0.5 < tE < 3000 days

ulog10 0  μ = −1, σ = 2, truncated between
10−5 < u0 < 3

log10 Ep  μ = −0.884205, σ = 0.072755,a trun-
cated between 10−5 < πE < 3

f  lower = 0, upper = 2π
Slog 0 0

4( )w  F
2m s= , σ = 5

log 0w  μ = 0, σ = 5
logs  μ = 0, σ = 5
ρ Γ−1 see Section 3.3.8 for details

Klog 2( )  μ = 0.0953, σ = 1

Note. Column 1 gives the parameters in our PSPL+parallax+GP model.
Column 2 gives the distribution assumed for the prior PDF for each parameter.
 ,  , and Γ−1 indicate a normal, uniform, and inverse-gamma distribution,
respectively. Column 3 gives the input values for each of these distributions.
For the normal distributions, a mean (μ) and standard deviation (σ) are listed.
In some cases, these normal distributions are truncated, with zero probability
outside the specified range. In the case of uniform distributions, the lower and
upper limits are listed; outside this range, the prior PDF is zero. We refer
readers to the corresponding text for details of the inverse-gamma distribution.
a Based on PopSyCLE output.
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the sky, the distribution of impact parameters for any pair is
roughly uniform out to large radii. However, when modeling a
population of microlensing events, this is weighted by the
detection sensitivity of the survey. Large impact parameter
microlensing events are difficult to detect since the peak
magnification gets buried in the noise of the flux measure-
ments. We sample in ulog10 0 under the prior:

p ulog 1, 2 3310 0( ) ( ) ( )µ -

truncated between 10−5< u0< 3. Note that we are only
modeling the positive u0 solutions. We discuss this choice in
more detail in Section 4. We checked that there is no bias in the
population modeling made by this choice.

3.3.5. Microlensing Parallax, πE

The microlensing parallax is a measure of the effect of the
Earth’s orbit relative to the size of the projected angular
Einstein radius. No population distribution of this parameter
has ever been constructed from data, so we again turn to the
PopSyCLE simulation results. We sample in log10 Ep under the
prior:

p log , 3410 E log log
10 E 10 E( ) ( ) ( )p m sµ p p

truncated between 10−5< πE< 3. Here, again, the mean and
standard deviation values are computed from the PopSyCLE
output ( 0.884205log10 E

m = -p and 0.072755log10 Es =p ).

3.3.6. Relative Proper-motion Angle: f

In most characterizations of microlensing parallax, it is
treated as a vector quantity with a magnitude equal to the
relative parallax between the lens and source in units of the
angular Einstein radius. The direction of the vector is, by
convention, aligned with the lens–source relative motion vector
and often quoted in ecliptic coordinate components. In our
parameterization, we instead model the magnitude of the
parallax and, separately, the angle f measured from the ecliptic
north to the direction of the projected relative proper motion of
the source and lens. This proper motion is in the heliocentric
coordinate frame. We sample under a uniform parallax angle
prior:

p 0, 2 . 35( ) ( ) ( )f pµ

In practice, sampling in a periodic angle can cause issues since
the sampler sees a discontinuity, so we sampled in sinf and
cosf following the method developed in the exoplanet python
package (Foreman-Mackey et al. 2019).

3.3.7. Simple Harmonic Oscillator Gaussian-process Kernel Priors:
S0 and ω0

Our model includes a stochastically driven, damped SHO
covariance function as part of the covariance matrix for the
likelihood function. This GP term has two hyperparameters S0
and ω0. These are related to the power-spectral density at the
characteristic frequency of the SHO described by the kernel.
They are often highly correlated, and since the power-spectral
density of this kernel is a function of S0 0

4w , we sample in
Slog 0 0

4( )w and log 0w with priors:

p Slog , 5 , 36F0 0
4 2( ( )) ( ) ( )w sµ

p log 0, 5 , 370( ( )) ( ) ( )w µ

where F
2s is the variance of the flux time-series, following the

celerite tutorials for time-series data.

3.3.8. Matérn-3/2 Gaussian-process Kernel Priors: σ and ρ

Our model also includes a Matérn-3/2 kernel term, which is
parameterized by ρ and σ, which are the characteristic
timescale and amplitude of the flux variability, respectively.
We allow for a wide range of flux variability:

p log 0, 4 . 38( ( )) ( ) ( )s µ

For the timescale hyperparameter, we use an inverse-gamma
prior with 1% of the probability below the typical data spacing
and above the length of the time-series:11

p a b, . 391( ) ( ) ( )r µ G-

3.3.9. Diagonal Covariance Scale Factor: K

Finally, we model an additional parameter that linearly
scales the uncertainty of the flux measurements. This is
sampled following the prior:

p Klog log 1.1 , 1 . 402( ( )) ( ( ) ) ( )µ

We note that more sophisticated methods of scaling the
uncertainty estimates have been carried out, especially for high
magnification photometric measurements where each data
point caries much information (e.g., Yee et al. 2012; Li et al.
2019); however, since our primary interest is in longer
timescale events with no caustic-crossings, we implement this
simpler method here since it readily is modeled simultaneously
with our MCMC sampling.

3.4. Sampling

Our model has 12 parameters and many known degeneracies
and correlations between subsets of the model parameters.
Thus, in order to sample from the posteriors, we must make use
of an efficient sampling algorithm. In the previous section, we
listed one by one the prior PDFs we will use. The likelihood
function is given in Equation (27). Each likelihood evaluation
is computationally expensive, given the GP in our model. We
make use of celerite and exoplanet packages to not only
speed up this portion of our analysis but also because these
packages were built into the framework of PyMC3 (Salvatier
et al. 2016), which is a Python package for Bayesian statistical
modeling. We make use of the No-U-Turn Sampler (NUTS;
Hoffman & Gelman 2011), which is related to the Hamiltonian
Monte Carlo (HMC) algorithm. HMC is a MCMC algorithm
that uses gradient information to converge with complicated
posteriors more quickly than Metropolis or Gibbs sampling (for
a review, see Betancourt 2017). NUTS is an improvement on
HMC because it computes important tuning parameters as it
samples and removes the potential for user error. The NUTS
implementation in exoplanet computes the mass matrix
internally through a series of tuning steps that enable more
efficient sampling of the dense regions of high-dimensional
posterior PDFs (Foreman-Mackey et al. 2019).

11 Following https://betanalpha.github.io/assets/case_studies/gp_part1/part1.html.
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After we tune the sampler with 4000 tuning steps, we sample
all 3560 OGLE-III light curves and 5790 OGLE-IV light
curves under the described model for 40,000 samples (20,000
steps of burn-in and 20,000 saved samples). We provide the
chains for all 9350 posterior samples for all parameters in an
online data set12 totaling roughly 23 GB.

4. Population Modeling

In the microlensing literature, many authors present
distributions of point estimates over each of their fits. This is
especially prevalent with the tE (Sumi et al. 2011; Wyrzy-
kowski et al. 2015; Mróz et al. 2017, 2019). Given that
microlensing modeling is riddled with degeneracies and
correlations, there is reason to believe these distributions are
potentially biased given that they were modeled without
parallax, and the variability of the baseline was not modeled.
In this section, we will discuss the proper Bayesian methods for
combining the full posteriors from each light curve.

4.1. A Hierarchical Model

Often, MCMC methods are used to sample the complicated
posteriors for binary lens and source systems throughout the
recent literature, and there are now open-source modeling
packages available to the community, e.g., pyLIMA (Bachelet
et al. 2018) and MulensModel (Poleski & Yee 2019).

As Bayesian methods have become more popular, authors
have provided a varying amount of this information in the
literature. Some authors do not report posteriors and only the
maximum likelihood, maximum a posteriori (MAP), or the
marginal median values for each parameter along with typical
confidence intervals on modeled parameters (often 68%, 90%,
or 95% credible intervals). Some others provide graphical
representations including corner plots, which show the
marginal two-dimensional posteriors and correlations in
addition to the marginal one-dimensional distributions. Others
still provide all the samples. We have chosen to provide all the
samples, so our posteriors can be maximally useful for
comparisons and extensions to our work as well as any
subsequent analysis.

In this subsection, we will demonstrate a use case with the tE
chains. We follow the method described by Hogg et al. (2010),
which develops the probability theory for combining the
samples of eccentricity posteriors from the analysis of
individual exoplanet orbits from radial velocity data. We refer
readers to that paper for the full details. In short the method sets
out to forward model the distribution of the parameter of
interest itself, rather than estimate the distribution from
histograms of single point estimates or summed MCMC
samples, which can result in biased estimates.

We have N microlensing events labeled n n N1( )  with
Mn flux measurements at times tj, labeled j j M1 n( ))  , Fnj.
From these data and the likelihood function given in
Equation (27) and the prior PDFs p n( ( ))q in Section 3.3, we
have computed samples from the the individual posterior PDFs:

p F
p F p

Z
, 41n n

n n n

n
( ∣ ) ( ∣ ) ( ) ( )q qq

=

where Zn is a normalization constant. Then, assuming all of the
light curves are independent (note this is mostly true, but

sources of telescope and detector systematic error make it not
fully true), the total likelihood for all of the light-curve
parameters is the product of each likelihood function. Instead
we want the likelihood for the set of parameters, α, that
describe the distribution of interest over the individual chains,
f tE( )a . We can think of this distribution as a better prior PDF
for the parameter of interest. Mathematically this amounts to a
change of variables and integrating out the individual light-
curve parameters. We follow Hogg et al. (2010):

p F

d p F p , 42
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n n n n
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( )q a
q
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The integrals are taken over 12N dimensions, and yield a
marginal likelihood or probability of the data given the
parameters α. This integral is not practical in most cases, but
since we have already generated K-element samplings with
elements θnk,

d p F f
K

f
1

, 44n n n n
k

K

nk
1

( ∣ ) ( ) ( ) ( )ò åq q q q»
=

where the posterior PDF in the integrand represents the
posteriors from the individual fits, and f n( )q is an arbitrary
function of the parameters. Since all of the integrals in
Equation (44) can be approximated by sums over samples of
the individual posteriors, the marginal likelihood for α is as
follows:

K

f t

p t

1
. 45

n

N

k

K
E

E1 1

nk

nk

( )
( )

( ) å»a
a

= =

L

Here the sum is over the ratio of the new prior; we want to infer
over the prior we used for tE in the individual light-curve
model. Importantly, we must make sure that the old prior has
support over the full range of interest for the new distribution.
Hogg et al. (2010) recommend uninformative priors for the
individual fits; however, as long as there is support over the full
domain of f tE( )a , this need not be entirely uninformative. In
fact, uninformative priors are often informative in ways that the
modeler did not intend.13 We note that our prior is supported in
the range, 0.5 days< tE< 3000 days with a smooth normal
distribution in tlog10 E( ). With this likelihood function, we can
then multiply by a prior PDF for α, normalized and sampled to
obtain a posterior PDF distribution for α fully forward
modeled from the individual light curves.
Now we turn our attention to choosing a functional form for

f tE( )a and a prior PDF for α. We make relatively simple
choices for each of these since our intention is to demonstrate
the power of our publishing of chains for all public Galactic
bulge OGLE-III and OGLE-IV microlensing events from
Wyrzykowski et al. (2015) and Mróz et al. (2019), respectively.
We model the distribution as a step-function following Hogg
et al. (2010). This is useful to compare to back to the traditional
histograms used in point-estimate distributions presented in

12 https://gdo-microlensing.llnl.gov/ 13 See Bailer-Jones (2015) for an illustrative example.
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Wyrzykowski et al. (2015), Mróz et al. (2019). It is sort of a
nonparameteric model (the parameters are the bin heights
themselves) where we do not have to assume an overly
simplified functional form.

f t s t
m

M

m

M
log ;

1
, , 46

m

M

m10 E
1

E⎛
⎝

⎞
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( ( )) ( )å aº
-

a
=
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s x L H
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H L L x H
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⎨
⎩

( ) ( ) ( ) º
<

-
<

-

and

1. 48
m

M

m
1

( )å a =
=

This can be thought of as a normalized histogram with M equal
width bins in tlog10 E( ). For the prior PDF on α (i.e., the bin
amplitudes), we use a Dirichlet prior:

ap Dir . 49( ) ( ∣ ) ( )a aµ

Here the Dirichlet distribution is parameterized by the
Dirichlet concentration vector a, which has the same number of
elements M as α. The Dirichlet prior describes a vector-valued
multinomial distribution, which has the convenient property in
that it naturally satisfies Equation (48). We construct a by
conditioning on the weights w( ) for a histogram of MAP tE
values for all events, from the respective survey, and compute
the Dirichlet concentration parameters as follows:

a w w b cmin ; 50( ( )) ( )= - +

b tunes the allowable bin amplitude variance about the prior,
where the larger b, the less variance there will be for each bin
amplitude m away from wm, c influences how uniform the bin
height prior is across the M bins, where c< 1 will more closely
follow w, and c> 1 will approach uniform. A full Bayesian
analysis would open these up for modeling; however, we tested
a large range for both of these parameters and found negligible

difference in the results for the tE distribution. We set b= 20
and c= 0.02. The priors for both OGLE-III and OGLE-IV are
shown in Figure 4.

4.2. Sampling

For sampling this model, we again make use of PyMC3 and
the NUTS algorithm. We sample the model over all tE chains
for OGLE-III and OGLE-IV separately. We sample for 3200
steps, burning the first 1600. We again ensured that the number
of effective samples was sufficiently large to avoid biased
results from autocorrelation. The results of this analysis are
presented in Section 5.2.

5. Results

In Section 3, we described in detail the model and sampling
algorithm that we used to generate posterior samples for 12
individual event microlensing and GP hyperparameters simul-
taneously for 3560 OGLE-III and 5790 OGLE-IV microlensing
events. In Section 4, we described the advantage of modeling
the population distribution of important microlensing para-
meters by importance sampling the individual samples gener-
ated in Section 3 and estimating the distribution parameters in a
Bayesian, hierarchical framework. In this section, we will
present the key results from these sections separately.

5.1. Individual Events

Each light curve has been sampled with the likelihood
function given in Equation (27) (the PSPL+parallax+GP
model) and prior PDFs on 12 parameters given in Section 3.3.
We also computed the MAP values for all 12 parameters as well
as the representative MAP estimates for the PSPL+parallax
+GP model and the PSPL model. The MAP models were
computed with a Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (see, e.g., Byrd et al. 1987). The posterior PDF for 12
parameters for all of the publicly available OGLE-III (Wyrzy-
kowski et al. 2015) and OGLE-IV (Mróz et al. 2019) Galactic
bulge microlensing events were sampled, and all samples are
available for download with this publication. In this subsection,
we will present the results for a few representative examples.

Figure 4. Graphical representation for the prior probability density function for the population modeling of the Einstein crossing time distribution for OGLE-III (left
panel) and OGLE-IV (right panel). The blue histogram in each panel shows the normalized bin heights for the MAP tE values for our individual fits. The orange bars
show the 68% confidence interval, about the mean (solid orange curve), for random samples from the Dirichlet-prior distribution (shown in gray ticks). The Dirichlet
priors are for b = 20 and c = 0.02.
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In Figure 3, we presented the type of time-domain-correlated
noise that can cause troubles with fitting microlensing events
with a model that has a constant baseline (such as the PSPL or
PSPL+parallax models). In Figure 5, we show the MAP model
(with the GP and PSPL+parallax components separated) along
with samples from the posterior in the data-space for this same
event. Though technically the microlensing parameters and GP-
kernel hyperparameters are fit simultaneously, this plotting
technique helps visualize how the model is working. The
spread in the baseline flux for the random posterior samples is
indicative of the combined uncertainty in the GP model and the
baseline flux; however, the microlensing parameters are all well
sampled with minimal autocorrelation. The PSPL+GP and
PSPL+parallax+GP models are in good agreement for this
event.

In Figure 6, we show (analogously to Figure 5) a light curve
that has a much flatter baseline. Here the posterior samples are
tightly clustered around the MAP in both the microlensing and
GP panels, and the sampler has sufficiently mapped out the
posterior for all parameters. This is due to the relatively high
signal-to-noise ratio (S/N) of the data. Similar to the previous
example, there is not a substantial difference between the

PSPL+parallax+GP and PSPL+GP models. This is largely
due to the short timescale of these events.
In Figure 7, we show (analogously to Figure 6) another light

curve that has a much flatter baseline flux; however, in this
example, there is a clear parallax signal evident in the
asymmetry of the microlensing event. This relatively long
event with the parallax signal demonstrates a limitation of
observing Galactic bulge events, which are always unobser-
vable for a portion of the year since the bulge is close to the
ecliptic and therefore periodically close to the Sun; the seasonal
viewing means there are large gaps in the time-series. This
yearly pattern ensures larger uncertainty in the level of
microlensing parallax since the residual from nonparallax
models is also periodic on yearly timescales. Readers will
notice the increased spread in the posterior samples (orange
curves) in the third panel of Figure 7. In Section 6.5, we discuss
how this presents a challenge for selecting black hole
microlensing events with photometric microlensing data. This
event has a much lower S/N and has little signal in the GP
model.
In Figure 8, we show (analogously to Figure 7) a light curve

that has both GP signal and a parallax signal. Once again, the

Figure 5. Example OGLE-III light curve (OGLE BLG 156.7.141434) with results from our MCMC analysis. First panel: raw data published by Wyrzykowski et al.
(2015); second panel: GP component of the PSPL+parallax+GP model with the MAP in thick black and 50 random draws from our posteriors in orange. The data has
the MAP PSPL+parallax subtracted from the raw data in the first panel and rescaled uncertainty on each measurement by the MAP value of K in our model. Third
panel: 200 microlensing posterior samples (orange) and MAP parallax model (solid blue) subtracting away the MAP GP from the panel above. The MAP PSPL+GP
model is also plotted for comparison. The data is detrended, meaning the MAP GP model realization (black curve in the second panel) is subtracted away. Fourth
panel: residual flux after subtracting the PSPL+GP model. The blue curve shows the difference between PSPL+parallax+GP and PSPL+GP models. In this case, the
two are similar (PSPL+parallax+GP to PSPL+GP likelihood-ratio = 1.6).
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spread in the orange curves of the third panel are largest in the
seasonal observing gaps. This event demonstrates the power of
the simultaneous GP and microlensing inference. The second
and fourth panels show that the flux of the stellar variability
and microlensing parallax signals are similar in magnitude as
well as coincident in time. Nevertheless, the full model is again
well sampled and unaffected by autocorrelation. The parallax
signal is clearly detectable over at least three years.

In Figures 9 and 10, we present the longest timescale events
in OGLE-III and -IV from our modeling, respectively. For the
OGLE-III event, most of the parallax signal is present in the
seasonal observing gap; however, there remains a parallax
signal across consecutive observing seasons due to the long
timescale. There is minimal baseline variability in this light
curve. For the OGLE-IV event in Figure 10, the majority of the
posterior samples suggest a dramatic parallax signal with the
highest peak occurring in the gap between observing seasons,
once again demonstrating this challenging aspect of observing
long-duration microlensing events toward the Galactic bulge
that exhibit strong parallax from a single site. This light curve
also shows a discrepancy between the MAP and the majority of
the posterior samples. There are only about 1% of the posterior
samples trending down toward the MAP realization, which
prefers a less dramatic peak in the data gap. Further inspection
in the second panel of Figure 10 suggests that the GP signal in
the MAP model is stealing a fraction of the parallax signal.

Again here, the vast majority of the posterior samples disagree
with this picture. We discuss this in detail in Section 6.1.
The samples for all 12 model parameters for 3560 OGLE-III

and 5790 OGLE-IV are available online.

5.2. Population

In Section 4, we described our model the global tE
distribution based on our samples for the individual microlen-
sing event posterior PDFs. We chose a relatively simple model,
a step-function (i.e., histogram), over tlog10 E. We fixed the
number of bins to 30 log-spaced bins between 0.5 and 3000
days for linear tE. We used a Dirichlet prior and sampled the
relative bin heights for the OGLE-III and OGLE-IV popula-
tions separately. This is a necessary choice since the two
surveys are not coincident on the sky and therefore will not
necessarily have the same intrinsic tE distribution.
The results for our OGLE-III and OGLE-IV population tE

distribution modeling are presented in Figures 11 and 12,
respectively. For OGLE-III, the results are plotted as a series of
confidence intervals on the bin heights in comparison to the
histogram of tE values published by Wyrzykowski et al. (2015)
for their PSPL model fits to the OGLE-III events (orange bins).
We also plot the histogram of MAP tE values for our PSPL
+parallax+GP model fits (blue histogram). The bins are in
general agreement for short-timescale events but start to
diverge at greater than 2σ around 100 days, with PSPL fits

Figure 6. Example OGLE-III light curve (OGLE BLG 155.1.13052) with results from our MCMC analysis. This figure is analogous to Figure 5 but with a much
simpler GP component. Again there is little parallax signal (PSPL+parallax+GP to PSPL+GP likelihood-ratio = 1.1).
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showing more events with longer timescales. This remains true
for all bins corresponding to tE> 100 days. The hierarchical
modeling is in general agreement with the MAP tE histogram
for our PSPL+parallax+GP fits across the domain.

For OGLE-IV (Figure 12), the results are plotted similarly
except the orange histogram corresponds to the distribution of
PSPL model tE point estimates from Mróz et al. (2019). The
results for our OGLE-IV analysis largely follow the same
trends as the OGLE-III results. We find evidence for fewer
long-timescale events as compared to the histogram of point
estimates from the previous OGLE analysis, which again
assumed a simple PSPL model.

6. Discussion

In this section, we have categorized some of the main points
that were mentioned as worthy of further discussion throughout
the text above as well as a handful of key concerns that the
astute reader may have raised thus far.

6.1. Gaussian-process Model Fitting

The model parameters we have sampled include both the
microlensing parallax and GP hyperparameters. These were fit
simultaneously, meaning we can estimate correlations between
them. This is important because one of the key worries of

utilizing GP models in microlensing is the concern that the GP
model might absorb some or all of the actual microlensing
signal. This is of further concern for our model since the yearly
parallax signal causes a quasiperiodic deviation from the PSPL
model curve, and our GP was designed to handle quasiperiodic
signals in the baseline. In Figure 8, we showed an example fit
with a temporally coincident GP and a parallax signal of
approximately the same magnitude. In Figure 13, we show the
posterior corner plot for this event, which shows the full set of
one- and two-dimensional marginal posterior PDFs for all
samples in the chain. By and large, the GP hyperparameters are
more well behaved than the microlensing parameters; however,
there is a slight correlation between tE and the Matérn 3/2
parameters. This despite no obvious acceptance of a parallax
signal by the GP model in Figure 8.
In order to explore the effect of including the GP model in

our likelihood function, we injected and fit microlensing
events. Since OGLE only published light curves with
microlensing events, we selected the 50 events with the shortest
tE, so that when we removed the data points with a significant
microlensing signal, we were left with as much data as
possible. We masked the data between t0± 5tE and injected
microlensing events drawn randomly from our prior distribu-
tions onto the masked baseline. We rescaled the uncertainty in
the remaining flux measurements assuming Poisson noise. We

Figure 7. Example OGLE-III light curve (OGLE BLG 122.6.83113) with results from our MCMC analysis. This figure is analogous to Figure 5 but with a much
simpler GP component and a clear parallax signal. Despite most of the parallax signal lying in the seasonal gaps in observability, the parallax model is still a better fit
(PSPL+parallax+GP to PSPL+GP likelihood-ratio = 4.8).
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fit these synthetic data with our model and computed the
relative bias as follows:

bias , 51
med inj ( )
q q

s
=

-

q

where the difference in the numerator is between the marginal
inferred median value and the injected truth for each parameter,
and the denominator indicates the standard deviation in the
chains for each parameter.

We present the results from this analysis in Table 2 as the
parameters of a Gaussian fit to the bias values for each of the
microlensing parameters. If there is no inherent bias, we expect
the bias values to be normally distributed with zero mean and
unit variance. We find that for most of the microlensing
parameters this holds approximately true.

There is a slight positive bias for bssf, and the spread in
relative bias for Fbase is much smaller than expected. The
relative bias in bsff is largely due to poor inference in highly
blended events. That is, when the injected value of bsff is close
to zero, the posterior tends to have a large spread, and the
median value tends toward the median of the prior, which is
closer to 0.5. On the other hand, the small spread in the bias for
Fbase is due to an enhancement in the denominator of
Equation (51) for that parameter due to the GP model. An
example of this is present in Figure 5, where the uncertainty in

the GP model manifests additional uncertainty in the baseline
flux. The positive bias in u0 may also be of concern, but this is
again due to a one-sided prior (bounded at zero), and a
tendency for low-S/N events to trend toward the median of the
prior. Note that if we had included negative u0 models, there
would be a dichotomy in this bias (negative for u0< 0 injected
models and positive for u0> 0). We again note that we checked
for a bias in our tE population modeling by including only
u0> 0 and found none. This follows from the geometry.
Another test for our GP inference is to remove it and fit the

same data with only the microlensing model. For the majority of
our events, there is good agreement, since the baseline flux is
generally smooth; although, in some cases, there are catastrophic
breakdowns, which was the impetus for developing this GP in the
first place. We did this for the OGLE-III events shown in
Figures 5, 6, and 8 to demonstrate a range of scenarios. In
Figure 14, we show overlapping posteriors for models with
(orange) and without (green) the GP component of our model for
the light curve shown in Figure 5. This demonstrates the
importance of including a GP for events with strong variability in
the baseline flux. Without the GP model, the microlensing model
is forced into a corner of parameter space that has nearly zero flux
from the source, a near-zero impact parameter, and an extremely
long timescale despite this clearly not being the case upon visual
inspection. It is also clear that the modeling including the GP
model is handling parallax better. Given the short timescale of the

Figure 8. Example OGLE-III light curve (OGLE BLG 102.7.44461) with results from our MCMC analysis. This figure is analogous to Figure 5 but with a much
simpler GP component and a clear parallax signal (PSPL+parallax+GP to PSPL+GP likelihood-ratio = 25).
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event, there is little ability to estimate πE or f, so the sampler
explored the entire prior distribution. In Figure 15, which
corresponds to the light curve in Figure 6, we show that when
there is no baseline variability, the GP and non-GP posteriors are
in excellent agreement. As a final example, we present Figure 16
corresponding to the light curve shown in Figure 8, which has
both baseline variability (albeit much less than the case shown in
Figure 5) and parallax signal. Here we found the posterior PDFs
for all parameters were inflated with the inclusion of the GP into
the model. This may seem counterintuitive since one might
expect the more-complicated GP model to be able to estimate
physical parameters more tightly, but it is expected since the GP
model propagates additional uncertainty into the model. Similar
to Figure 14, there is a significant bias in the no-GP model,
however to a lesser degree, suggesting that the bias is correlated
with the level of intrinsic stellar variability.

Figures 14–16 show the posterior PDFs for the two models
for the microlensing parameters in common. There is an
additional parameter we left out, Klog 2( ), since it was vastly
different for the two models in light curves with baseline
variability. In the absence of the GP model, this parameter is
inflated in an attempt to mask over the variable baseline. The
additional modeling flexibility of the GP is more correct in
turning model biases into additional propagated uncertainty
(the bias/variance trade-off). Also evident is the inflated

uncertainty in the Fbase parameter in the GP model, especially
in Figure 14. Cases such as this caused the low σ value for that
parameter in Table 2. Figures 14 and 16 show the value of
adding a GP to model the variable baseline. Without it, the
model is overly confident and often biased (as is the case here–
note the green posteriors in Figure 16 are often at the edge of
the larger orange posteriors). In more catastrophic scenarios,
the model is forced into extremely unlikely scenarios, as in
Figure 14. Only when there is an intrinsically flat baseline, as in
the best-case scenario (Figure 15), does the GP inference agree
with the non-GP modeling.

6.2. Analysis of the Model Residuals

We performed three tests on the residuals of the model fits.
In all cases, we computed the MAP model for two cases: one
with and one without the GP portion of the model. We then
subtracted that respective model from the data to examine the
residuals. We retrieved a random subset of 100 light curves
from both the OGLE-III and OGLE-IV data sets and carried out
three tests on the two different residuals:

1. Augmented Dickey–Fuller test, which tests the null
hypothesis that a time-series is nonstationary (i.e., it has
time-dependent structure or nonconstant variance over
time). This tests for stationarity in the residuals.

Figure 9. Example OGLE-III light curve (OGLE-III BLG 122.1.184151) with results from our MCMC analysis. This figure is analogous to Figure 5 and shows the
results for the OGLE-III event with the largest Einstein crossing time. There is strong parallax (PSPL+parallax+GP to PSPL+GP likelihood-ratio = 8.8), but again
much is apparently missing as it occurs in a gap in the data.

15

The Astrophysical Journal Supplement Series, 260:2 (25pp), 2022 May Golovich et al.



Figure 10. Example OGLE-IV light curve (OGLE-IV BLG 514.15.53029) with results from our MCMC analysis. This figure is analogous to Figure 5 except with
OGLE-IV data from Mróz et al. (2019). It shows the results for the OGLE-IV event with the largest Einstein crossing time. This event has the most dramatic apparent
parallax signal; however, the vast majority is fit within the observing gaps (PSPL+parallax+GP to PSPL+GP likelihood-ratio = 3.0).

Figure 11. OGLE-III population results for the global observed tE distribution (no survey efficiency corrections have been applied to any of the distributions). The
black thin and thick bars show the 68% and 95% confidence intervals on the bin heights in our hierarchical model of the global distribution. The orange histogram
shows the binned values presented in Wyrzykowski et al. (2015) for comparison, and the blue histogram shows the MAP-point estimates from our individual PSPL
+parallax+GP model fits. In the lower panel, we show the prior PDF on tE given by Equation (32). Note that the effect of our broadening of the tE prior is apparent by
the amplitude that varies from ∼0.1 to 0.5, whereas the actual distribution amplitudes vary by approximately 3 dex.
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2. Ljung–Box test, which tests the null hypothesis that a time-
series is independently distributed (i.e., that the correlations
are only the result of randomness in the sampling process).
This tests for autocorrelations in the residuals.

3. Anderson–Darling test, which tests for departures from
normality in the residuals.

In all tests, the model including the GP performs as well as
or better than the model without the GP. In the cases where the
GP performed significantly better than the model without the
GP, it appears to be predominantly due to stars with high stellar
variability suggesting the GP is performing as intended. Only
one event with the GP model failed the augmented Dickey–
Fuller test, and this was for an event where only the first part of
the event (i.e., before peak) was observed, and the MAP did not
well model the actual event. While the with-GP model
performed better than the no-GP model in all events for the
Ljung–Box test, there are still 20% of the with-GP residuals
that have a p-value <0.05 suggesting that significant
autocorrelations persist in the residuals. This is not surprising
since our GP model is still a constrained model that is not
optimized for various types of stellar variability. Finally, we
find that 15% of the no-GP residuals fail the Anderson–Darling
test, with critical values computed at the 99% level, while 13%
of the with-GP residuals fail the test. These failures are
correlated with the Ljung–Box failures and events with large
intrinsic variability where the GP did not fully model the
variability. While the GP model is not perfect at modeling the
stellar variability and other systematics, it does improve the fit
relative to the model excluding the GP component.

6.3. Multimodality of Individual Posterior PDFs

It is well documented that the parallax signal in photometric
microlensing data leads to a multimodal likelihood (Smith et al.
2002; Gould 2004; Poindexter et al. 2005; Smith et al. 2005).

There are numerous degeneracies that have different values for
microlensing parameters. These issues mostly arise for short-
timescale events. It is typical in the literature to identify these
degeneracies and initialize sampling algorithms in these
subpeaks and present the maximum likelihood models for
each of the degenerate solutions. In our analysis, we have not
gone through this procedure since we are not interested in the
peculiarities of any single event.
The degeneracies emerge from ambiguities on the compo-

nents of the relative proper-motion vector parallel and
perpendicular to the Earth’s acceleration. Since this is purely
geometric and randomly distributed over the thousands of
OGLE-III and OGLE-IV events, we allow our sampler to settle
in a random mode for individual events by initializing the chains
randomly under the prior PDF. The differences in the modes of
any single event do not affect the population analysis, especially
for long-duration events (tE> 100 days) where the difference in
tE for different modes is fractionally small, especially for low-πE
events, which are most likely to be black holes (see Section 6.5).
However, we do caution against downloading the chains for an
individual event and making inference on that event without a
fuller exploration of the posterior.

6.4. The tE Distribution

The peaks of the tE distribution that we estimated using the
samples of all of our fits largely agree with the histograms of
point estimates presented by Wyrzykowski et al. (2015), Mróz
et al. (2019)—this despite our prior having a lower peak
timescale. Our prior was constructed from the OGLE-like survey
simulated by Lam et al. (2020) where it was found that two
different Galactic bar angles could match either the observed
stellar density map or the microlensing event rates; but not both.
In all cases simulated, the tE distribution peaked at shorter
timescales than the observed distributions (see also Medford
et al. 2020). As can be seen from the bottom panels of

Figure 12. OGLE-IV population results for the global observed tE distribution (no survey efficiency corrections have been applied to any of the distributions). The
black thin and thick bars show the 68% and 95% confidence intervals on the bin heights in our hierarchical model of the global distribution. The orange histogram
shows the binned values presented in Mróz et al. (2019) for comparison, and the blue histogram shows the MAP-point estimates from our individual PSPL+parallax
+GP model fits. In the lower panel, we show the prior PDF on tE given by Equation (32). Note that the effect of our broadening of the tE prior is apparent by the
amplitude that varies from ∼0.1 to 0.5, whereas the actual distribution amplitudes vary by approximately 3 dex.
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Figures 11 and 12, we significantly broadened the PopSyCLE-
based prior to reduce the impact of this discrepancy.

There are significantly fewer long-timescale events across a
range of timescales above 100 days in our tE distribution as
compared to both the OGLE-III and -IV results.14 However,

Figure 13. Posterior corner plot for OGLE-III BLG 102.7.44461. The strongest correlations are between microlensing parameters. There is a slight correlation
between tE and the Matérn-3/2 kernel parameters; however, in general, the GP hyperparameters are much more well-behaved than the microlensing parameters.

Table 2
Summary of Injection Analysis

Parameter μbias σbias

Fbase −6.8 × 10−4 0.040

bsff 0.32 1.1

t0 −7.8 × 10−3 1.4
ulog10 0 0.16 1.3

tlog10 E −0.12 0.52

log10 Ep 0.11 0.77

fπ −0.029 0.97

Note. Here μ and σ refer to the mean and standard deviation of the bias (see
Equation (51)) for each parameter listed.

14 To investigate whether the discrepancy between our results is due to the tE
prior decreasing at longer tE (see, e.g., the bottom panel of Figure 11), we
importance sampled the individual light-curve samples, replacing the prior of
Table 1 with a uniform prior in tlog E( ) space from 1 day < tE < 1000 days. As
can be seen from the results of this exercise in Appendix, the decrement of
high-tE events relative to the distributions of Wyrzykowski et al. (2015), Mróz
et al. (2019) is not due to our choice of prior.
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both distributions also suggest that there are multiple events
with tE> 400 days despite none being reported in either point-
estimate histogram. This is due to the accumulation of high-tE
tails adding weight to these bins. Note that both Wyrzykowski
et al. (2015), Mróz et al. (2019) apply a cap on the maximum
PSPL tE point estimates of a few hundred days during the event
detection and distillation process. We recommend not applying
such long tE selection limits in the future, as they greatly impact
the ability to conduct black hole studies.

Previous studies of the tE distribution often make reference
to the slope of the short- and long-timescale rise of the
distribution and the position of the peak. They especially note
agreement with theory (e.g., Mao & Paczynski 1996) if the

slopes of the tlog E distribution tails are ±3 (e.g., Wyrzykowski
et al. 2015; Mróz et al. 2019). This “expectation” for

tlog 3E =  slopes is an oversimplification of the potential
Mao & Paczynski (1996) model diversity. While Mao &
Paczynski (1996) show that this is true for many choices of
present-day mass function and galactic velocity distributions.
They also show that it is not a universal tendency (see, e.g.,
Figures 1 and 3 of their paper). The choice of slope (α) for the
present-day mass function can greatly affect both the high- and
low-end tE slope, with the potential for the effect to increase
with wider mass distributions. Note though that, for single
power-law mass models, varying α usually only causes tE slope
deviations from ±3 on one end or the other. For example, a

Figure 14. Posterior corner plot for OGLE-III BLG 156.7.141434 (see Figure 5) covering the microlensing model parameters with and without the GP component of
the model.
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power-law mass distribution with a steeper negative slope (e.g.,
α=−2.5; i.e., more total mass in low-mass objects) will
maintain the +3 slope on the low-tEend; however, this will
result in a shallower negative slope on the high-tEend (i.e.,
slope > −3). Notably, their model with α=−2.5, β= 2
shifted the peak of the tE distribution to the left, which is
evident in the models presented by Lam et al. (2020). More-
complex mass distributions, such a bi-modal distributions, can
also cause deviations in the slopes (see Figure 17; and Lu et al.
2019).
Based on Mao & Paczynski (1996) and our arguments

above, it is not clear how it is physically possible to produce a

slope steeper than ±3.15 Note that the high-tE slopes of our
distributions are consistent with −3 although favoring slightly
steeper slopes. This may be indicative of bias due to the long tE

Figure 15. Posterior corner plot for OGLE-III BLG 155.1.13052 (see Figure 6) covering the microlensing model parameters with and without the GP component of the
model.

15 Wyrzykowski et al. (2015), Mróz et al. (2019) only provide tE efficiency
corrections based on point-source, point-lens models without parallax, meaning
we are not able to reliably apply their efficiency corrections to our parallax-
based tE distribution (additionally, as Mróz et al. (2019) note, their corrected
distribution will be biased at the high-tE end). Furthermore, without access to
the full OGLE data sets, we are unable to develop appropriate efficiency
corrections. Thus, care should be taken when interpreting our tE distributions in
terms of the Mao & Paczynski (1996) formalism. That said, both Wyrzykowski
et al. (2015), Mróz et al. (2019) suggest rather flat efficiency corrections at the
high-tE end, so it seems reasonable to consider the high-tE slope with respect to
the theoretical expectations for the slope.
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selection cuts of Wyrzykowski et al. (2015), Mróz et al. (2019)
applied to the tE Paczynski (1986) model parameter. Mao &
Paczynski (1996) also note that the long tails of the tE
distribution will also be modified by the motion of the Earth.
However, when we use the Paczynski (1986) model with GP,
we find a distribution more consistent with our parallax+GP
model distribution, suggesting that the bias may be primarily
due to not modeling the intrinsic stellar variability, as we
discussed in Section 6.1.

6.5. Selecting Black Hole Candidates

Black hole microlensing has not been mainstream science
since the early constraints on MACHO dark matter in the
1990 s and 2000 s. There have been searches for black holes in
the MACHO Survey (Agol et al. 2002; Bennett et al. 2002;
Poindexter et al. 2005) and OGLE-III (Lu et al. 2016;
Wyrzykowski et al. 2016; Wyrzykowski & Mandel 2020)
since then, but as MACHOs went out of style as a dark matter

Figure 16. Posterior corner plot for OGLE-III BLG 102.7.44461 (see Figures 8 and 13) covering the microlensing model parameters with and without the GP
component of the model.
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candidate, the focus instead was placed on detecting astro-
physical black holes. Interest further heightened for both types
of black holes with LIGO as it revealed both higher-than-
expected black hole masses (Bird et al. 2016) without resolving
the possible mass gap between the neutron star and black hole
populations (Littenberg et al. 2015).
For either type of black hole, as the mass increases the event

moves down and to the right in tE− πE space, meaning
searching for longer timescale events with less microlensing
parallax is the best way to identify black hole lenses
photometrically. This has not been fully appreciated in any
black hole search to date, although Lam et al. (2020) pointed it
out in their Figure 13. Estimating by eye from their Figure 13,
the purity of astrophysical black holes is very high with events
satisfying the following:

t blog 0.8 log , 5210 E 10 E ( )p < +

where b is an arbitrary intercept. We varied the intercept of this
inequality until the mock OGLE-III and -IV catalogs
(separately) from Lam et al. (2020) yielded a 50% purity of
black holes. We found b=−2.67 for OGLE-III and b=−2.57
for OGLE-IV. We then checked our fits for these two surveys.
Using the median marginal tlog10 E and log10 Ep values, 107 and
283 events lie within the region of 50% purity (see Figure 18).

We note that this does not mean that there are necessarily
50% of 107 and 283 black holes detected in OGLE-III and -IV,
respectively. In fact, there are likely more. The systematics
involved with these data (seasonal gaps in the observability
from one hemisphere, noisy ground-based data, time-domain
variability of the baseline, unresolved blended stars that are not
well characterized, to name a few) make it challenging to
estimate small πE for many black hole events. It is likely that
πE values from our modeling are overestimated for many low-
S/N events with intrinsically small πE. In those cases, the
posterior is more heavily weighted by the prior PDF than the
likelihood (the data), and thus the median value of the πE
marginal posterior samples is skewed high. Our prior was
developed from the PopSyCLE simulations and is strongly
driven by stellar microlensing events with higher πE than the

typical black hole microlensing event toward the Galactic
bulge. This is also evident in Table 2 where the mean of log10 Ep
is biased high—when the sampler can identify the parallax
signal, it fits it well. This occurs more frequently for
intrinsically high-πE microlensing events, but when it cannot
fit for πE well, it reverts to the prior. This is especially evident
in Figure 18, for tE< 30 days, where the parallax signal is
small no matter the intrinsic value. This is the cause of the ridge
of events that align with πE≈ 0.1. Since we are plotting median
values, we are effectively reporting the median of the prior for
these events.
This, coupled with the fact that the black hole purity

increases as tE increases and πE decreases and there are a
significant number of events offset in this direction from the
50% purity line, means that 50% of 107 and 283 black holes
detected in OGLE-III and -IV is likely a lower limit based on
the Lam et al. (2020) model. This is supported by the lower
panels in Figure 18, where the posteriors for individual events
near the cut line clearly extend to both sides. This is the
expectation though; the mass-distance degeneracy in photo-
metric microlensing data typical makes inferring individual
events as black holes to be very challenging. We have
presented this figure to motivate population studies of
photometric microlensing. Further estimation on our samples
is beyond the scope of our analysis here, but it will be explored
in detail in a follow-up paper (W. Dawson et al. 2022, in
preparation).
Another avenue for selecting black hole candidates is to

make cuts on bsff (e.g., Wyrzykowski et al. 2016). However,
this parameter is notoriously challenging to fit with OGLE data
as the vast majority of events are highly blended, and it is
difficult to find events where all of the flux is from the source
star. Wyrzykowski & Mandel (2020) have shown that when
Gaia parallax and proper motion can be coupled with the
microlensing fits for select events with high bsff, this
complexity can be reduced, enabling this potentially powerful
method.
Even without blending cuts, a relatively pure set of

candidates could be generated to follow up with extensive
astrometric observations to model the astrometric shift in the
photometric centroid. We are actively carrying out such a
survey with Keck adaptive optics (PI: Lu).

6.6. Conclusions

We have modeled all public Galactic bulge microlensing
events from OGLE-III and -IV, yielding the most comprehen-
sive public catalog of MCMC fits for microlensing light curves
to date. Our model includes both microlensing parallax due to
Earth’s orbital motion and a GP model for variable baseline
flux due to intrinsic stellar variability. This was a computa-
tionally intensive task, and our modeling used roughly 1
million CPU-hours on Lawrence Livermore National Labora-
tory’s high-performance computing resources.16 Below we
offer a list of the main takeaways of our analysis.

1. We obtained 3560 from Wyrzykowski et al. (2015) and
5790 microlensing events from Mróz et al. (2019).

2. Our PSPL+parallax+GP model was able to capture and
separate the yearly parallax signal and the intrinsic
variability in the baseline from flux of the source and/or

Figure 17. An example tE distribution from the Mao & Paczynski (1996)
formalism, modified for a mixture model composed of two separate power-law
mass distributions (blue curve). Mixture component 1 has a min and max mass
range of 0.1–3 Me and power-law slope of −1.5, while mixture component 2
has a min and max mass range of 1–100 Me and power-law slope of −1.5. The
relative proportion of each mixture is 0.8 and 0.2, respectively. The black
dashed lines plot ±3 power-law slopes. There is clearly deviation from the −3
slope due to the second mass component.

16 We used the Quartz computing system: https://hpc.llnl.gov/hardware/
platforms/Quartz.
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blended light. This represents the largest-ever catalog of
microlensing events modeled for the parallax signal due
to Earth’s motion around the Sun.

3. We have made public 20,000 samples for all 12
parameters in our model (7 microlensing and 5 GP) for
all 9350 OGLE-III and -IV events we analyzed.

4. Nonidentifiability is a common critique of GP analyses.
We completed an analysis for bias in our results and
explained our findings in terms of our model. We did not

identify any issues with the GP model systematically
overfitting the parallax signal that should have been
modeled by the microlensing model.

5. We developed a Bayesian hierarchical forward model for
the tE distribution following the sample reweighting
method developed by Hogg et al. (2010). We found that
the parallax and GP modeling favors fewer events with
tE> 100 days than were reported by Wyrzykowski et al.
(2015), Mróz et al. (2019). Motivated from theoretical

Figure 18. Top row: marginal tE–πE values for 3560 OGLE-III (left panel) and 5760 OGLE-IV (right panel) microlensing events. The points represent the median
posterior values for the two parameters. The lines demarcate 50% purity of astrophysical black holes in the PopSyCLE OGLE-III and -IV simulations (Lam
et al. 2020); i.e., a random event below the line is roughly 50% likely to be a black hole conditioned on the PopSyCLE simulations. There are 107 and 283 events
below the lines for OGLE-III and -IV, respectively. The bulk of the short-timescale events lie along the median of the prior PDF for the timescale since there are few
points to allow the likelihood to pull the posterior PDF away from the prior. The posterior PDF is wide for any given event here (see the lower panels for typical
uncertainty in a given event). The dashed box is presented as an inset below. Bottom row: zoom into the likely black hole regime. We have presented the same data as
the above panels and added 68% confidence intervals to a random selection of 50 points to show that the confidence in any one point is low; however, the bulk of the
posterior is below the cut for many events. Furthermore, even events well above the line have tails that extend well into the region below the cut line. Thus, the
numbers of point estimates below the line (107 and 283 for OGLE-III and -IV on the left and right, respectively) are likely conservative.
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modeling (Mao & Paczynski 1996), we showed how
different physical model choices can manifest starkly
different tE distributions (Figure 17). One could follow
our population analysis method and use our published
samples to forward the model physical characteristics of
the Galaxy.

6. Using PopSyCLE (Lam et al. 2020), we demonstrate
how relatively pure catalogs of black holes can be
identified from photometry alone. We found 390
microlensing events in OGLE-III and -IV that PopSy-
CLE simulations suggest are ∼50% black hole lensing
events. While this benefits from the full rise and fall of
the microlensing event, if parallax can be constrained
below such a cut on the rising portion of an event, this
technique could be used to identify the best targets for
astrometric follow-up.

7. We recommend not applying long tE selection limits in
future population studies of microlensing events, as they
greatly impact the ability to conduct black hole studies.

8. At a minimum, when working with OGLE light curves,
the baseline flux must be checked for quasiperiodic and
low-order polynomial trends, especially for long-time-
scale events. We demonstrated catastrophic failures in an
MCMC analysis by not modeling these parameters. We
recommend the use of additional model parameters to
specifically handle these systematics where present.
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Appendix
The tE Distribution with a Uniform Prior

As noted in Section 6.4, we observed a decrement of
tE> 100 day events relative to the distributions of Wyrzy-
kowski et al. (2015), Mróz et al. (2019), see Figures 11 and 12.
To investigate whether our prior is responsible, we importance
sampled the individual light-curve samples, replacing the tE
prior of Table 1 with a uniform prior in tlog E( ) space from
1 day< tE< 1000 days. As can be seen from the results of this
exercise in Figures 19 and 20, the decrement of high-tE events
relative to the distributions of Wyrzykowski et al. (2015), Mróz
et al. (2019) is not due to our prior. This result is as expected
since the prior of Table 1 is much broader than the typical

Figure 19. The same as Figure 11 except that the hierarchical parallax tE
distribution (black) in the top panel corresponds to events fit with a uniform
prior in tlog E( ) space from 1 day < tE < 1000 days (see bottom panel) instead
of the prior noted in Table 1 and shown in Figure 11. We observe the same
significant decrement of tE > 100 day events relative to the distribution from
Wyrzykowski et al. (2015; orange), suggesting that the prior is not responsible
for the observed decrement.

Figure 20. The same as Figure 12 except that the hierarchical parallax tE
distribution (black) in the top panel corresponds to events fit with a uniform
prior in tlog E( ) space from 1 day < tE < 1000 days (see bottom panel) instead
of the prior noted in Table 1 and shown in Figure 11. We observe the same
significant decrement of tE > 100 day events relative to the distribution from
Mróz et al. (2019; orange), suggesting that the prior is not responsible for the
observed decrement.

24

The Astrophysical Journal Supplement Series, 260:2 (25pp), 2022 May Golovich et al.



posterior distribution of any given light-curve fit, thus further
broadening the prior is unlikely to cause a significant change.
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