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Abstract: When using boundary integral equation methods, we represent solutions of a linear
partial differential equation as layer potentials. It is well-known that the approximation of layer
potentials using quadrature rules suffer from poor resolution when evaluated closed to (but not
on) the boundary. To address this challenge, we provide modified representations of the problem’s
solution. Similar to Gauss’s law used to modify Laplace’s double-layer potential, we use modified
representations of Laplace’s single-layer potential and Helmholtz layer potentials that avoid the
close evaluation problem. Some techniques have been developed in the context of the representation
formula or using interpolation techniques. We provide alternative modified representations of the
layer potentials directly (or when only one density is at stake). Several numerical examples illustrate
the efficiency of the technique in two and three dimensions.

Keywords: boundary integral equations; layer potential identities; density subtractions; quadrature
rules

1. Introduction

One can represent the solution of partial differential boundary-value problems using
boundary integral equation methods, which involves integral operators defined on the
domain’s boundary called layer potentials. Using layer potentials, the solution can be
evaluated anywhere in the domain without restriction to a particular mesh. For that reason
boundary integral equations have found broad applications, including in fluid mechanics,
electromagnetics, and plasmonics [1-8].

The close evaluation problem refers to the nonuniform error produced by high-order
quadrature rules used to discretize layer potentials. This phenomenon arises when comput-
ing the solution close to the boundary (i.e., at close evaluation points). It is well understood
that this growth in error is due to the fact that the integrands of the layer potentials become
increasingly peaked as the evaluation point approaches the boundary (nearly singular
behavior), leading in limited cases to an O(1) error [9].

There exists a plethora of manners to address the close evaluation problem: using
extraction methods based on Taylor series expansions [10], regularizing the nearly sin-
gular behavior of the integrand and adding corrections [11,12], compensating quadra-
ture rules via interpolation [13], using Quadrature By Expansion related techniques
(QBX) [9,14-19], using adaptive methods [20], using singularity subtraction techniques and
interpolation [21-23], or using asymptotic approximations [24-26], to name a few. Most
techniques rely on either providing corrections to the kernel (related to the fundamental
solution of the PDE at stake), or to the density (solution of the boundary integral equation).

In the latter category, it is well-known that Laplace’s double-layer potential can
be straightforwardly modified via a density subtraction technique based on Gauss’ law
(e.g., [27]). This modification alleviates the close evaluation problem, and provides a better
approximation for any given numerical method. However this identity technique is specific
to Laplace’s double-potential. Other identities have been derived for other problems, such
as for the elastostatic problem [28].
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In this paper, we provide modified representations of layer potentials, and we give
guidance to address the close evaluation problem in two and three dimensions. In particu-
lar, we modify Laplace’s single-layer potential (representing the solution of the exterior
Neumann Laplace problem) and Helmholtz layer potentials (in the context of a sound-soft
scattering problem). With some given quadrature rule, the resulted modified representa-
tions allow us to obtain better approximations compared to standard representations. The
proposed modifications are based on subtracting specific solutions (or auxiliary functions)
of the PDE at stake. The use of auxiliary functions have been developed in the context
of Boundary Regularized Integral Equation Formulation (BRIEF) [29-31] to regularize
the representation formula on the boundary, or in the context of density interpolation
techniques [21,23,32] to regularize layer potentials (generalization of density subtractions).
Those techniques commonly consider multiple auxiliary functions, and may require to
solve additional problems to find such functions. The proposed work concentrates on regu-
larizing nearly singular integrals using explicitly one analytic auxiliary function, and when
representing the solution with layer potentials involving only one density (no representa-
tion formula). We provide several examples of auxiliary functions (and compare them),
and provide guidelines to find them. The proposed modified representations are simple
and easy to implement, and allow one to straightforwardly gain accuracy in evaluating
the solution, especially when computational resources are limited. This work provides
valuable insights into Laplace and Helmholtz layer potentials. Additionally this can also
be applied to modify boundary integral equations to avoid weakly singular integrals.

The paper is organized as follows: Section 2 presents some context and motivation for
the proposed modified representations. Section 3 establishes the modified representations
and general guidelines to find appropriate auxiliary functions. Sections 4 and 5 illustrate
the efficiency of the modified representations for Laplace and Helmholtz in two and three
dimensions, off and on boundary. Finally, Section 6 presents our concluding remarks,
Appendices A and B provide a brief summary of the Nystrom methods used in two and
three dimensions, and Appendix C details some proofs for Section 3.

2. Motivation for Modified Representations

Consider a domain D C RY, d = 2,3, that is a bounded simply connected open set
with smooth boundary (of class C2), and a linear elliptic partial differential equation of
the form Lu = 0. It is common to represent the solution v of that PDE using the so-called
representation formula (e.g., Theorem 6.5 in [33], Theorem 3.1 in [34]). In particular for v
satisfying Lv = 0in D, we have the following identities:

—v(x) x€D,

1
|| oGl yvdey, — [ Glx,y)u,v(y)oy = ~v(x) x €D, M)
0 x € E:=RI\D,

where G denotes the fundamental solution of considered PDE, ny is the unit outward
normal of D at y, and doy, is the integration surface element. For instance, (1) holds true for
L := Aand L := A + k?, the Laplace and the Helmholtz equation, respectively. The goal
of this paper is to use (1) with well-chosen v to modify the representation of the solution
of boundary value problems associated with L. Let us illustrate the strategy with, for
example, the Exterior Neumann Laplace problem:

Find u € C?(E) NCY(E := R¥\ D) such that:
Au=0 inE, d,u=g¢ ondD, lim u(x)=o0(1), 2)

[x|—00

with some smooth data g (with null average). The solution of Problem (2) can be repre-
sented using Green’s formula [34,35]:
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= / I, G(x,y)u(y) doy — /BD G(x,y)0n,u(y)doy, x€E,
. 3)
= / I, G(x, y)u(y) doy — / G(x,v)g(y)doy, x€E,
where .
—2—10g|x—y| ford =2,
Gy =< 1771 “)

S — f p—
iy ord =3,

and the trace on the boundary satisfies the boundary integral equation of the second kind:

9= [ onG mude, = [ GG yew)de, x €D @)

The fundamental solution G is singular when y = x*. For x € R \ 9D, assume we can
write x = x* £ /ny+ with n,+ the unit outward normal at x*, and ¢ > 0 the distance from
the boundary. Then G is nearly singular at y = x* when |x — y| = £ < 1 (i.e., when x is close
to the boundary). A layer potential is said to be a weakly singular integral (resp. a nearly
singular integral) when its kernel (G or 0,,G in the cases above) is singular at y = x* (resp.
nearly singular at y = x*). There exist high-order quadrature rules to approximate weakly
singular integrals with very high accuracy (e.g., [36-39]). However, high accuracy is lost for
nearly singular integrals: this is the so-called close evaluation problem. Assuming we have
solved (5), we can modify (3) using (1) to address the close evaluation problem. Taking the
difference we obtain

x) = /aD Iy G(x,y) [u(y) — v(y)] doy — /aD G(x,y)[8(y) — dn,v(y)|doy, x€E.  (6)

If one finds v such that v(x*) = u(x*) and 9,, . v(x*) = g(x*), where x* € 9D denotes
the closest boundary point of the evaluation point x (x = x* 4 {n,+), then (6) does not
suffer from the close evaluation problem.

Similarly, one can represent the solution of Problem (2) using a single-density represen-
tation given by the single-layer potential:

u(x)= [ Glxypew)de, xeD, @)

with p a continuous density solution of the boundary integral equation of the second-kind:

1 * *
- QP +/ 0,:G(x*,y)p(y) doy = g(x*), x* €dD. (8)

Assuming we have solved (8) for p, subtracting (1) from (7) we obtain

u(x) = |G ylp(y) —an,v)doy+ [ 3,,Glxy)vly)dey, xeE O

If one finds v such that v(x*) = 0 and 9, , v(x*) = p(x*), then (9) does not suffer from
the close evaluation problem.

Representations (6) and (9) are attractive representations, and several works have
provided guidelines on how to build appropriate solutions v. For (6) one can use Taylor-
like functions v(x) = u(x*)§(x) + 9. u(x*) f(x), with § and f solutions of some Laplace
boundary value problems [29-31]. This technique has been first developed in the con-
text of Boundary Regularized Integral Equation Formulation (BRIEF) (namely to solve
(5) using the same subtraction technique on boundary) and applied to evaluate the so-
lution near the boundary. For (9) one can use density interpolation methods [21,23,32]:
v=v(x*y) = Z]]':o cj(y)Hj(x* — y) where (H;); satisfy the PDE (in the above case (Hj);
are harmonic functions). In both methods the chosen auxiliary functions v necessarily
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depend on the trace u (and/or normal trace 9, u), or the density p at the closest evaluation
point. Furthermore they require to satisfy at least two conditions (two boundary value
problems or two boundary conditions).

In this paper, we provide another construction of modified representations for single-
density representations of Laplace and Helmholtz boundary value problems. The con-
struction relies on auxiliary functions v that are independent of the density (solution of
the boundary integral equation), and requires fewer constraints in the context of (7). As a
consequence, our approach provides more freedom in choosing v. The proposed modified
representations are also simple to implement and do not add significant computational
costs. In what follows we provide modified representations for Laplace and Helmholtz in
2D and 3D, and provide several examples to illustrate the efficiency of the method.

3. Modified Representations

We present modified representations for single-density representations of Laplace
and Helmholtz boundary value problems. In particular, we consider the interior Dirichlet
Laplace problem (where one can represent the solution using the double-layer potential),
the exterior Neuman Laplace problem (2) (using the single-layer potential (7)), and the
sound-soft scattering problem.

3.1. Modified Representation for the Laplace Double-Layer Potential

The interior Dirichlet problem for Laplace consists of finding u € C?(D) N C!(D)
such that
|Au=0 inD, u=f ondD, (10)

with some smooth data f. The solution of Problem (10) can be represented as a double-layer
potential [34,35]:

u(x)= [ an,Glxyu(y)de, xeD, (11)

with G defined in (4), and y a continuous density solution of the boundary integral equation:

— %y(x*) + /BD On, G(x*, y)u(y) doy = f(x*), x* €aD. (12)

We now make use of (1) to modify (11). One can show the following (see Appendix C.1
for details):

Proposition 1. Given x = x* — {ny+ € D with x* € 9D, let v be a solution of Laplace’s equation
inD c R, d=2,3, such that

v(x*) =1, . v(x") =0. (13)

The solution of the exterior Dirichlet Laplace problem (11) admits the modified representation:

u(x) = [0, Glr ()1 = v@))dey + [ a0, Gl y)lp(y)— p(x")Iv(y) doy

(14)

—u(x®)v(x*) + p(x*) /E)D G(x,y) [8nyv(y) - anx*v(x*)} doy — u(x*)on.v(x*), x€D.

The modified representation (14) has smoother integrands than (11), and it addresses the close
evaluation problem, in the sense that nearly singular terms vanish as y — x*.

From Proposition 1 we can now build auxiliary functions v independent of y, and
there exist plenty of candidates: constant, linear, based on Green's function (v(y) = G(y, xo)

with xg € E), quadratic (v(y1,y2) = 1+ (y1 — x})(y2 — x3), v(y1, ¥2) = 1+ (y1 — x})* —
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(y2 — x3)%), v(y1,y2,¥3) = e¥3(siny; + siny,), etc. The solution v = 1 naturally satisfies
the conditions (13), and the modified representation (14) boils down to

u(x) = [ 9n,Glx,y)u(y) — n(x"))dey — p(x'), x € D. (15)

The modified representation (15) is well-known and widely used (e.g., [9,25,27]), it is the
simplest representation that naturally addresses the close evaluation problem. Thus, we do
not provide numerical results for this case. Rather, we concentrate on other layer potentials.

3.2. Modified Representation for the Laplace Single-Layer Potential
Going back to Problem (2), one can show the following (see Appendix C.2 for details):

Proposition 2. Given x = x* + {ny+ € E with x* € dD, let v be a solution of Laplace’s equation
inD C R d=2,3, such that
O v(x*) =1 (16)

The solution of the exterior Neumann Laplace problem (2) admits the modified representation:

u(x) = [ Glyp) 1=y doy + [ Gxw)lev) = p(x")]on,v(y) doy

(17)
+0() [ 91,Gxy)p()v(y) —v(x"))dey, Vx € E.

The modified representation (17) has smoother integrands than (7).

Contrary to auxiliary functions provided in Taylor-like methods and density interpo-
lation methods (discussed in Section 2), auxiliary functions v do not depend on p and rely
on only one constraint (16). Therefore, there is a lot of freedom in choosing v: given u a
solution of Laplace’s equation, then one chooses v := m (as long as 9,:u(x*) # 0).
Candidates may then include: '

*  The linear function v(y) = ny - y;
e The function v(y) = 24" 1wG(y, x* 4 ny+ ) based on Green’s function;

(1 — X01) (y2 — X02)
nx%l(x;_'xQ2)+;nxﬂ2(xT_'ng)
e The quadratic difference function v(y) = 1 (= xo1)” = (y2 = %) , X0 € D.

2 e 1 (X — X0,1) — s 2(X5 — X0,2)

Note that the above candidates are valid in R?, one can also consider any of the
quadratic functions above in R3 as a function of (vi, yj), i,j=1,2,3,j #i. In Section 4, we
will test (17) using several candidates v and make comparisons. The modified representa-
tion (17) adds two terms to compute compared to (7), it is the price to pay to gain accuracy
at close evaluation points. We will make comparative tests to quantify this aspect.

e The quadratic product function v(y) =

,XOGD;

3.3. Modified Representation for the Helmholtz Double- and Single-Layer Potentials
We consider in this case the sound-soft scattering problem:

Find u € C?(E) UCY(E) such that:
18
Ai+kKu=0 inE, u= f onoD, lim |0y — iku|2day =0, (18)
R=re0 Jly|=R
with some smooth data f associated with the wavenumber k. Above, the last condition
represents the Sommerfeld radiation condition. The solution of Problem (18) can be
represented as a combination of double- and single-layer potentials [40]:

u(x) = /aD [anyGH(x,y) - ikGH(x,y)}y(y) doy, x€E, (19)
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with GH defined by

Y 2H81>(k|x—y|), ford =2,
G (x,y) = 1 etklx—yl (20)

S — f p—
=gl ord =3,

with H(gl) (+) the Hankel function of the first kind, and u a continuous density satisfying:

1 * * . *
Ey(x )+/BD [any GH(x ,y)—lkGH(x*,y)}y(y) doy = f(x*), x*€aD. (21)
One obtain the following;:

Proposition 3. Given x = x* + {ny« € E with x* € 9D, let v be a solution of Helmholtz equation
inD C R, d=2,3, such that

v(x*) =1, . v(x*) = ik. (22)

Xk

Then the solution of the sound-soft scattering problem (18) admits the modified representation:

_ H _ H _ *
u(x) = [ 00, GH (ry) = 00, v (1) GF (x,9) | [1(y) — (") doy
H .
+ [ GH ) [P, v(v) = ik () oy @)
* H
+ox )/aD 35, GH (x,y)[1 = v(y)] doy, Vx € E.
The modified representation (23) has smoother integrands than (19).

The proof can be found in Appendix C.3. One can check in particular that plane waves
v(y) = ek (¥=x") do satisfy (22), whereas Green-based functions like v(y) = G (i, x, + 11,+)
(up to some constant) cannot. We will use (23) with plane waves for the numerical examples.

4. Numerical Examples

The accuracy in approximating (11)—(15), (7)—(17), (19)—(23), respectively, relies on
the resolution of the boundary integral Equations (12), (8) and (21), respectively. In what
follows we assume that the boundary integral equations are sufficiently resolved. Given
the density’s resolution, we compare the representations and their modified ones through
several examples. All the codes can be found in [41].

4.1. Exterior Neumann Laplace Problem
4.1.1. Example 1: Exterior Laplace in Two Dimensions

Since dD is a closed smooth boundary, we use the Periodic Trapezoid Rule (PTR)
to approximate (7) and (17), where we will use several v according to Proposition 2. We
consider an exact solution of Problem (2):

X1 — X0,

uexact(x) = uexact(xlz xZ) = |x % 5, X0 = (xo,l, x0,2) €D,

which consists of choosing g(x*) = 9y, iexact(x*), for any x* € oD.
All simulations are done outside of a kite-shaped domain using the Periodic Trapezoid
Rule with N = 128 quadrature points for the following representations:

e  VO0: standard representation (7);
e  V1: modified representation (17) with the linear function v (y) = ny- - y;
e  V2: modified representation (17) with the Green’s function vy (y) = 271G (y, x* + n*);



Math. Comput. Appl. 2021, 26, 69

7 of 21

Error VO

2.2
1 vi—y
2 My 1 X5 — My o5

e  V3:modified representation (17) with the quadratic function v3(y) =

e  V4: modified representation (17) with the quadratic function

(y1 —5)(y2—5) .
le*,l (x;‘ — 5) + Tlx*,z(XT — 5)

va(y) =

We solved (8) using the Nystrom method based on the Periodic Trapezoid Rule
(using Matlab classic backslash). The accuracy of all methods is limited by the accuracy of
the resolution for p (in particular when considering moderate N). This can be assessed
by looking the density’s Fourier coefficients decay: in this case the coefficients decay is
bounded by 10~ for N = 128. The results in Figures 1 and 2 show that given p resolved,
the approximation of the modified representations provide better results overall. Far from
the boundary, all methods approximate well the solution. As the evaluation point gets
closer to the boundary (¢ — 0), VO approximated by PTR suffers from the close evaluation
problem and the error increases (see [9]). Note that the single-layer potential commonly
suffers less from this phenomenon than the double-layer potential (e.g., [24]). Using
the modified representations (V1-V4) allows to reduce the error by a couple of orders
of magnitude for the close evaluation problem. All modified representations provide a
satisfactory correction overall. We use a naive (straightforward) implementation of (7) and
(17) in Matlab, computed on a Mac mini SSD 512Go. We provide run times in Table 1 for
various number of quadrature points. Run times do not count the time to compute the
boundary integral equation for p (being the same for all methods).

Representation V0 is obviously cheaper (less terms to compute) than V1-V4, and V1 is
cheaper than V2-V4 due to simpler terms: there are less operations to conduct to compute
v1(y) than the other provided auxiliary functions.

Error V1 Error V2
0 15 5 0
2 ] 2
-4 -4
0.5¢ .
-6 -6
s O -8
10 -0.5 -10
12 4| > -12
-14 -14
151 |
-16 N -16
-1 0 1
Error V3

-1 0 1

Figure 1. Laplace 2D single-layer. Plots of log;, of the error for the evaluation of the solution of (2) out of the kite domain
defined by the boundary y(t) = (cost + 0.65cos(2t) — 0.65,1.5sint), t € [0,27], for the Neumann data, § = 0, tlexact With
xo = (0.1,0.4), for representations V0, V1, V2, V3, V4 computed using PTR with N = 128. Computations are made on a
boddy-fitted grid with N x 200 grid points.
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Error at point A

e
o
=)

Absolute error
N
S
&

-

o
L
o

0-1 5

--Vo
-»= V1

V2
--V3
-+ V4

10710

Absolute error

Error at point B

--Vo
-~ e V1

-+ V4

V2

0»15

10710

10°® 10°

14

Absolute error

Error at point C

-- V0
- V1

V2
--V3
-+ V4

-15
0
10710

Figure 2. Laplace 2D single-layer. Log-log plots of the errors with respect to £ made in computing the solution (as described
in Figure 1) along the normal of the three points A, B, C, plotted as black x’s in Figure 1.

Error at point A, ¢ = 0.001

Table 1. Laplace 2D single-layer. CPU times (in seconds) for various number of quadrature points
and representations. Times account for computing the solution at N x 12 grid points (¢ = 107¥,
k = [0,11]) on a body-fitted grid.

Method Vo Vi V2 V3 V4
N =128 0.014 0.044 0.055 0.045 0.05
N =256 0.056 0.07 0.112 0.08 0.081
N =512 0.12 0.192 0.263 0.2 0.19

To better compare the methods, Figure 3 represents log plots of the maximum error
with respect to the number of quadrature points N and for various distances ¢ from point
A (indicated in Figure 1). The results show that modified representations allow to gain
a couple of order of magnitude even for moderate N (N < 100). Additionally, the error
using VO decreases linearly with the number of quadrature points whereas it is cubic using
modified representations. While there is no significant difference between the considered
modified representations V1-V4, one may consider run times (and simplicity of auxiliary
function v) to discuss competitiveness. Based on the above results, overall representation
V1 seems to be the best choice for the best computational cost-accuracy trade-off. Let
us emphasize that the focus of this paper is to highlight the efficacy and simplicity of
the proposed modified representations, given a quadrature rule. Our results show that
modified representations allow to naturally gain a couple of orders of magnitude in the
error, addressing the close evaluation problem even for moderate computational resources.
Additionally, the proposed auxiliary functions are independent of the density p. In the next
section we investigate the efficacy of (17) in three dimensions.

107®

Absolute error

-=-Vo
-» V1

V2
--V3
“H|-+ V4

10-10

Absolute error

Error at point A, £ = 1e-05

10°

107°

N P

-=-Vo
-= V1
V2

1|--vs

—e V4

10710

N

Absolute error

Error at point A, £ = 1e-08

10°

107° Yo,

) V2

-=-Vo
-= V1

- V3
- V4

10710

Figure 3. Laplace 2D single-layer. Log-log plots of the errors with respect to N made in computing the solution at some

distance ¢ along the normal from point A plotted as black x’s in Figure 1.

4.1.2. Example 2: Exterior Laplace in Three Dimensions

Given a domain D C R® with smooth boundary, we assume 9D to be an analytic,
closed, and oriented surface that can be parameterized by y = y(s,t) for s € [0, 1] and
t € [—t, 7t]. Then one can write (7) as
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/ / (x,y(s,t))](s, t)p(y(s,t)) sin(s)dsdt, (24)

with J(s,t) = |ys(s,t) X y¢(s, t)|/ sin(s) the Jacobian. We now work with a surface integral
defined on a sphere, and we use a three-step method (see [26] for details) to approximate (7)
and (17). This method corresponds to a modification of the product Gaussian quadrature
rule (PGQ) [42], and it has been shown to be very effective for computing layer potentials
in three dimensions at close evaluation points compared to other quadrature methods for
nearly singular integrals [26]. It relies on (i) rotating the local coordinate system so that x*
corresponds to the north pole, (ii) use Periodic Trapezoid Rule with 2N quadrature points
to approximate the integral with respect to ¢, (iii) use Gauss-Legendre with N quadrature
points mapped to (0, 77) (and not (—1,1)) to approximate the integral with respect to s.
This leads to the approximation:

72 N 2N
u( Zwl sin(s;) F(si, ),
1 1j=1
with F(si,t]-) = G(x,y(sl-,tj))](si,tj)p(y(sl,t ), ti = —m+ n(j—1)/N,j=1,---,2N,

s;=m(z;+1)/2,i=1,--- ,Nwithz; € (-1,1) the N- point Gauss-Legendre quadrature
rule abscissas with corresponding weights w; fori =1, --- , N. One proceeds similarly for
(17). We consider an exact solution of Problem (2):

”exact(x) = |/ xo €D,

[x —x0
which consists of choosing g(x*) = On . Uexact(X*), for any x* € dD. The efficacy of the
three-step method for various geometries (including effects of curvature) is presented in
[26]. Naively implementing this method has the same computational cost as the PGQ
method. We do not focus in this paper on fast implementations but do believe that it
is possible to speed up this method using ideas that have been previously developed
including the fast multipole method [20]. Then for simplicity, results will be computed on a
sphere where the resolution of p does not require a lot of quadrature points. One can apply
the technique for arbitrary closed smooth surfaces, but might be limited by the resolution
of (8). All simulations are done outside of a sphere of radius 2 using the three-step method
with N = 16 for the following representations:

VO0: standard representation (7);

V1: modified representation (17) with the linear function vq (y) = ny - y;

V2: modified representation (17) with the Green’s function v, (y) = 47G(y, x* + n*);
1 B-4
2 Mys 1 X] — My 2x2
e  V4: modified representation (17) with the quadratic product function

e  V3: modified representation (17) with the quadratic function v3(y) =

(y1 —5)(y2—5) .
iy 1 (x5 —5) 4+ 1y o (x5 —5)

va(y) =

Note that there are other quadratic polynomials v (as a function of 2 variables instead
of 3, see [22] where those polynomials serve as basis for interpolation method). We make
here the choice to test using similar functions as in Section 4.1.1. We solve (8) using a
Galerkin method and the product Gaussian quadrature rule [36,42-45] (see Appendix B for
details).The accuracy in approximating V0-V4 is limited by the accuracy of the resolution
for p. This can be assessed by looking at the coefficients” decay of the density spherical
harmonic expansion. In this case the coefficients’ decay has reached 10~1°. The results in
Figure 4 show that given p resolved, the approximation of the modified representations
provide better results overall, except for V2 where the error plateaus around 10~ for
small ¢ (providing less accurate results compared to standard representation V0). Note
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that the single-layer potential commonly suffers less from the close evaluation than the
double-layer potential, and the chosen method provides already a good approximation.
This is the reason why the error when considering VO decays as ¢ decreases [26]. The
modified representations allow to make it even better. To better assess the efficacy of
the modified representations in three dimensions, Figure 5 represents log plots of the
maximum error with respect to N € {8,16,24,32} (the method uses 2N x N quadrature
points) and for various distances ¢ from point B. The results show that as ¢/ — 0, V1-V4
allow to gain a couple of orders of magnitude in the error, even for a small N. Note
that the error produced by three-step method does not seem to depend on N, and in this
case there are more variations with respect to the choice of auxiliary function v than in
two dimensions. Here, V1 (the linear function) is the best representation, producing the
smallest errors (and the fastest to compute as indicated in Table 2). Again, the three-step
method has been designed to treat nearly-singular integrals. It is the reason why the
method provides already satisfactory results (given the resolution of p). The modified
representations allow to significantly gain even more accuracy in this case, even with
limited computational resources.

Error at point A Error at point B

0 0
10 S 10 -- Vo
-» V1 -» V1
st V2 st V2
. s T TN Vs . s T TN-e Vs
2 10 T PT | g 10 T il
5} e o? b5} - S
o) Sae # I Sae #
= Pie i b= -] P
3 o 1] 3 -7 ]
£10-10 et /, 3510'10 —t /,
= # = ¥
¢ /
,’ -—4—--.—_«‘4/’
Fd 7
P .
_ _ e em =z
1079 o=’ 1077 ‘
10710 10°® 10710 10°®
¢ ¢

Figure 4. Laplace 3D single-layer. Log-log plots of the errors with respect to £ made in comput-
ing the solution of (2) for the Neumann data, g(x*) = —w with xy = (0,0,0), outside

of a sphere a radius 2, along the normal of point A = (—0.0065, —0.0327,1.9997) (left), of point
B = (—0.3526, —1.7728,0.8561) (right).

0 Error at point B, £ = 0.0001 0 Error at point B, ¢ = 1e-06 o Error at point B, ¢ = 1e-08
10 -0 10 - Vo 10 - Vo
-» V1 -» V1 == V1
V2 V2 V2
--V3 --V3 --V3
§ BT Rl e e e e V4 § 10 -+ V4 § 107 - V4
g g s b5}
jo [ )
= = =1
510’10 ZZSZzcszszssszss==g==== ;2_‘10’10\\‘\\ 510710 \\\\\
= < =
h—>—__"‘:‘:\‘1-\q———_—,— ——————— k~‘~~1\‘\ e SN
10715 1015 1015 T ‘\‘\‘we::;_—;;f 2
10 15 20 25 30 10 15 20 25 30 10 15 20 25 30
N N N

Figure 5. Laplace 3D single-layer. Log-log plots of the errors with respect to N made in computing the solution (as described
in Figure 4) at some distance ¢ along the normal from point B = (—0.3526, —1.7728,0.8561).

Table 2. Laplace 3D single-layer. CPU times (in seconds) for various number of quadrature points
and representations for computing the solution (as described in Figure 4) from points A and B, for
¢ =107k k = [o0,11].

Method Vo Vi1 \'% V3 V4
N=8 0.028 0.029 0.032 0.031 0.046
N=16 0.143 0.146 0.148 0.150 0.142

N=24 0.352 0.344 0.346 0.35 0.356
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4.2. Scattering Problem

Using Proposition 3, we compare (19) with the modified representation (23) obtained
with v(y) = ek (y=27).

u(x) = /E)D [anyGH(x,y) — ik(ny . nx*)eik(”x*'(y*x*))GH(x,y)} [y(y) — y(x*)] d(Ty
ik [ (O e )R 0D 116 () ty) de @)

+(x®) /a 0, Gl ()1 = M0 doy, x e RY\D.

4.2.1. Example 3: Scattering in Two Dimensions
We consider an exact solution of Problem (18):
i

Uexact (x) 1

Hél)(k|x —x0|), x0 €D,
which consists of choosing f(x*) = #exact(x*), for any x* € 9D. All simulations are
done outside of a star-shaped domain using the Periodic Trapezoid Rule with N = 256
quadrature points and k = 15 for the following representations:

e  VO0: standard representation (19);
e V1: modified representation (25) (i.e., (23) with the plane wave function

vi(y) = e ),

We solved (21) using Kress product quadrature rule [40] (see Appendix A). The
quadrature rule is well adapted to approximate kernels with a logarithmic singularity. The
accuracy of both methods is limited by the resolution for y (the Fourier coefficients’” decay
of the density is bounded by 107° for N = 256 and k = 15). The results in Figures 6 and 7
show that given y resolved, the approximation of the modified representation provides
better results overall. Similarly to Laplace’s examples, both methods approximate well
the solution far from the boundary. As the evaluation point gets closer to the boundary
(¢ — 0), VO approximated with PTR suffers from the close evaluation problem leading to
large errors (see [9]). Using the modified representation V1 allows to reduce the error by a
couple of order of magnitude for the close evaluation problem.

Figure 8 represents log plots of the maximum error with respect to the number of
quadrature points N € [50,3000] and for various distances ¢ from point A (indicated in
Figure 6). The results show that for any number of quadrature points, the error when
considering VO explodes as we approach the boundary (error larger than 10°) while the
error with V1 remains bounded (of the order of 1072 in the case presented above). In this
case standard rerpresentation VO strongly suffers from the close evaluation problem, how-
ever the modified representation V1 significantly reduces the error. Even when standard
quadrature rules fail to compute the standard representation, the proposed modified one
regularizes the solution and provides satisfactory results without significant additional
computational time (as shown in Table 3).

Table 3. Helmholtz 2D. CPU times (in seconds) for various number of quadrature points and
representations. Times account for computing the solution for N x 12 grid points (for £ = 107¥,
k = [0,11]) on a body-fitted grid.

Method N =128 N =256 N =512

Vo 0.18 0.27 0.71
V1 0.21 0.33 0.89
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Figure 6. Helmholtz 2D. Plots of log;, of the error for the evaluation of the solution of (18) out of
the star domain defined by the boundary y(¢t) = (14 0.3 cos5¢) * (cost,sint), t € [0,27], for the
Dirichlet data, f(x*) = ﬁ'Hél) (15]x* — xg|) with xg = (0.2,0.8), for representations V0, V1, computed
using PTR with N = 256.
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Figure 8. Helmholtz 2D. Log-log plots of the errors with respect to N made in computing the solution at some distance ¢

along the normal from point A plotted as black x’s in Figure 6.

4.2.2. Example 4: Scattering in Three Dimensions

We consider an exact solution of (10):

1 etklx—xol

Uexact (x )

T 4m|x — x|’

xg €D,

which consists of choosing f(x*) = Uexact(x*), for any x* € 9D.

All

simulations

are done

outside

of an ellipsoid parameterized by

y(s,t) = (2cos(t)sin(s),sin(t)sin(s),2cos(s)), (s,t) € [0, 7] x [—m, 7], and using the
three-step method with various N. This is in order to investigate the technique in the
context of limited resolution, namely the coefficients’ decay of the density spherical
harmonic expansion does not reach machine precision. We consider k = 5 and the
following representations:
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e  VO0: standard representation (19);
e  VI: modified representation (25).

We solved (21) using Galerkin method and the product Gaussian quadrature rule
(see Appendix B for details). The accuracy of both methods is limited by the accuracy of
the resolution for . This limitation can be checked for instance by looking at the density
spherical harmonics coefficients” decay: for k = 5, the resolution will be capped around
102 for N = 16, 10~* for N = 24, and 107 for N = 32. The results in Figure 9 show that
given y resolved, standard representation incurs bigger errors at close evaluation points
while the modified representation provides better results overall. Here, the resolution of
the boundary integral equation was fairly limited. Figure 10 represents log plots of the
maximum error with respect to N € [8,32] (the method uses 2N x N quadrature points)
and for various distances ¢ from the boundary from point A. While the three-step method
has been designed to treat nearly-singular integrals and provided satisfactory results for
Laplace’s problems, the method here requires more quadrature points to achieve accuracy
due to the wavenumber (see Section 4.2.3 for more details). The standard representation
VO suffers from both the close evaluation problem and the poor density resolution. The
modified representation V1 allows to gain accuracy even with limited resolution (without
significant additional computational time as indicated in Table 4).

Error at point A Error at point A Error at point A
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¢ ¢ ¢
(d)N=16 (e) N =24 (HHN=32

Figure 9. Helmholtz 3D. Log-Log of the error along the normal for the evaluation of the solution of (18) out
of the ellipsoid parameterized by y(s,t) = (2cos(t)sin(s),sin(t)sin(s),2cos(s)), (s,t) € [0,7] x [~7, 7], for the
Dirichlet data f(x*) = %ii::;\‘ with xg = (0.1,0.2,0.3): at point A = (—0.7664,0.0607,1.8433) (top row), at point

B = (—0.0098, —0.0096, 1.9999) (bottom row), for various N.

Table 4. Helmholtz 3D. CPU times (in seconds) for various number of quadrature points and
representations. Times account for computing the solution from points A and B, for ¢ = 107F,

k= [0,11].

Method N=38 N =16 N =20

VO 0.027 0.15 0.313
V1 0.03 0.15 0.314
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Figure 10. Helmholtz 3D. Log-plot of the maximum error for computing the solution as described in Figure 9 with 0D being
the ellipsoid parameterized by y(s, t) = (2cos(t) sin(s), sin(t) sin(s), 2 cos(s)), (s, t) € [0, ] x [—7t, 7], at some distance ¢
along the normal from point A= (—0.7664, 0.0607, 1.8433).

4.2.3. High Frequency Behavior

It is well-known that for a fixed number of quadrature points N, accuracy is lost for
larger wavenumbers k. Figures 11 and 12 represent the high frequency behavior for the
Examples 3 and 4, for various k and N. We consider the same quadrature rules, exact
solution Uexact, boundary shapes, as in Sections 4.2.1 and 4.2.2, but we vary k and/or N.
The modified representation annihilates some oscillatory behavior by subtracting plane
waves along the normal of the evaluation points. It then allows a better approximation
for a wider range of wavenumbers (until the number of quadrature points is not enough),
and results in a greater wavenumber stability. The results in Figures 11 and 12 confirm
this phenomenon.

100 — 100 — 10'° —
e V1 e V1 e V1
P 5_\\ . 5\\\ o 5\\—\
% 10 % 10 % 10
g g g
g E E
g et R St s o B8 E B e N 5 10° mcnmm—— s
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(a) N =128 (b) N =256 (c) N =512

Figure 11. Helmholtz 2D. Log-Log of the maximum error in computing the solution of Problem (18) as described in
Section 4.2.1, with respect to the wavenumber k, for various number of quadrature points N.
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Figure 12. Helmholtz 3D. Log-Log of the maximum error in computing the solution of Problem (18) as described in
Section 4.2.2, with respect to the wavenumber k, for various number of quadrature points N.
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5. Modified Boundary Integral Equations

We have used (1) to modify the representation of solution of boundary value problems
close to (but not on) the boundary. One could also use (1) to avoid weakly singular
integrals in the boundary integral equation as done in BRIEF [31]. In the section we present
a modified representation of (21).

Proposition 4. Given x* € 9D, let v be a solution of Helmholtz equation in D C R?,d = 2,3, sat-
isfying conditions (22). Then the boundary integral Equation (21) admits the modified representation:

| [01.GH ) = 0, v() GH (") | () — () doy

+ [ GH G ) [on,v(y) = ik () doy + () [ 90, GG L~ v(y)]dey O
= f(x*), Vx" €adD.

The modified representation (26) has smoother integrands than (21).

The proof can be found in Appendix C.3. Using again v(y) = ¢/ (¥=*") Proposition 4
gives us the modified boundary integral equation:

[0 GH ) = k(i - mae) @ 0 GH () | () — () oy
: H/. o ikns - (y—x*) _
+ ik /E)DG (x ,y)[(ny Hyx )€ l}y(y) doy (27)
* H .. ikn - (y—x* _ * *
(x )/aDanyG (x,y){l—el (Y ")} doy = f(x*), x* €aD.

Equation (27) has no singular integrals (in the sense its integrands have vanish-
ing singularities), in particular it could be approximated using standard quadrature
rules such as PTR in two dimensions. Going back to Examples 3 and 4 presented in
Sections 4.2.1 and 4.2.2, we now compare the approximation of the representations (19)—(25)
where the density y has been computed via (21)—(27). We then have four representations:

VO0: standard representation (19) with previous approximation of (21);
V1: modified representation (25) with previous approximation of (21);
V2: standard representation (19), approximation of (27) using PTR as Nystrém method
(2D), using product Gaussian quadrature rule (3D);

e  V3: modified representation (25), approximation of (27) using PTR as Nystrom method
(2D), using product Gaussian quadrature rule (3D).

Figure 13 represents the results in two dimensions and illustrates how the resolution
of u limits the approximation of the solution of (18). Far from the boundary the error
made using V2-V3 cannot be better than order 10°. This limitation is due to the poor
resolution of y using Nystrom method based on PTR to approximate (25). This can be
assessed by looking at the density Fourier coefficients’ decay, which caps at 107° for
N = 256. However, as the evaluation point gets closer to the boundary (¢ — 0), V3 yields
competitive (sometimes better) results. Additionally, the use of Nystrom PTR allows to
reduce CPU times as indicated in Table 5. The modified boundary integral Equation (27)
can be approximated using standard quadrature rules such as Periodic Trapezoid Rule
(note that Nystrom PTR was not possible to use to solve for (21) due to singular integrals).
Its resolution may be limited but it offers interesting corrections for the close evaluation
problem using simple quadrature rules as well as faster solvers.
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Absolute error

Table 5. Helmholtz 2D. CPU times (in seconds) for various number of quadrature points to compute

the solution of the boundary integral equation.

Method N =128 N = 256 N =512
(21) with Kress product rule 0.12 0.45 1.70
(27) with PTR 0.09 0.302 1.16
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Figure 13. Helmholtz 2D. Log-Log plot of the error along the normal for the solution of (18) out of the star domain defined
by the boundary y(t) = (1.55 + 0.4 cos 5t) * (cost,sint), t € [0,27], for the Dirichlet data, f(x*) = %Hél) (15|x* — xq|) with
xg = (0.2,0.8), at the three points A,B, C plotted as black x’s in Figure 6.

The results in Figure 14 show that the resolution of the solution using both methods
yields the same accuracy in three dimensions. The product Gaussian quadrature rule is
an open quadrature at the singular point y = x* (see Appendix B). Thus, the modification
introduced in (25) does not affect the approximation. The product Gaussian quadrature
rule is a well-used, efficient, easy to implement method, but one could consider a closed
quadrature rule to study the effect of (27) more closely.
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Figure 14. Helmholtz 3D. Log-Log plot of the error for the problem described in Figure 9 using N = 32, and for the four
representations (standard or modified, off and on boundary).

6. Conclusions

In this paper, we have provided modified representations for Laplace and Helmholtz
layer potentials to address the close evaluation problem in several boundary value prob-
lems. Similar to Gauss’ law, we take advantage of one auxiliary function, satisfying the
partial differential equation at stake. A similar technique has been used in the context of
BRIEF and density interpolation. Our approach provides guidelines on how to develop
them independently of the density, and valuable insights into the layer potentials inher-
ent nearly singular behavior. Several examples in two and three dimensions have been
presented and demonstrated the efficiency of the modified representations. Given a quadra-
ture rule, the modified representation of the solution provides a better approximation by
several orders of magnitude even with limited computational resources. This assumes that
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the density, solution of the boundary integral equation, is sufficiently well-resolved. The
modified boundary integral equation has no singular behaviors anymore, and allows us to
use standard quadrature rules that do not treat singularities.

We have provided general modified representations, one can use them with any
solution of their choice as long as they follow the provided guidelines to address the close
evaluation. One can use this technique to modify any other wave problems, including
sound-hard, penetrable obstacles. Future work includes applying those techniques to
plasmonic scattering problems [46,47], deriving an asymptotic analysis to quantify the
limit behavior of the error as the evaluation point approaches the boundary, as well as
extensions to other partial differential equations such as Stokes problems and others.
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Appendix A. Kress Product Quadrature

In this section, we provide a brief summary about the Kress product quadrature
rule [40] used to compute the density y, solution of (21), in two dimensions. Denoting
the parameterization of 0D as y(t), t € (0,27), and denoting x* = y(t*), we compactly
rewrite (21)

)+ [T RG) ar= (1), (1)

with the abuse of notation K(t,t*) = (anyGH(x*,y(t)) - ikGH(x*,y(t))) lv' (1),
u(t) = u(y(t)), and f(t) = f(y(t)). The Kress product quadrature rule is well adapted
for weakly singular integrals involving kernel with a logarithmic singularity. To that aim

one rewrites: Pt
K(t, t*) = Kl(t,t*)log<4sin2( > >) + Ky (t, t7),

with smooth functions Kj, K, (the expression of K, K, can be found in [40]). Then one
discretizes the integral using N = 2n quadrature points as follows:

2n—1

/Oan(t, Pt~ Y (R (K B) + S Kt 1) (k)
k=0

with t;, = %k, k=0,...,2n—1,and R](Cn) (t*) the weights

n—1
R,({n)(t*) __27 ) lcos(j(t* — 1)) — ,,Tnz cos(n(t* —t¢)), k=0,...,2n—1.
j=1

Appendix B. Galerkin Approximation

In this section, we provide a brief summary about the Galerkin approximation used to
compute the solutions of (8), (12), (21) and (27) in three dimensions. First, we compactly
write (8), (12), (21) and (27) as

#19)=F, (A2)

with i denoting the density (i.e., y, p), and F denoting the Dirichlet or Neumann data. We
introduce the approximation for ¢

N-1 n

Py0,9)~ Y. Y Yuu(6,¢)Pum, (A3)

n=0 m=—n
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H Y] (0%, ™) =

withy(6, ¢),0 € (0,7), ¢ € (—7m, ) a parameterization of the boundary 0D, { Yy (6, @) }nm
the orthonormal set of spherical harmonics. For x* € 9D, we write x* = y(6*, ¢*). Note
that N in (A3) corresponds also to the same order of the quadrature rule used to approxi-
mate (8), (12), (21) and (27). Substituting (A3) into (A2) and taking the inner product with
Y, (6%, ¢*), we obtain the Galerkin equations

N-1 =n
E Z wts K Yum] P = (Yo, F). (A4)

We construct the N? x N? linear system for the unknown coefficients, i, resulting
from (A4) evaluated forn’ = 0,- - - , N — 1 with corresponding values of m’. To compute the
inner products, (Y, % [Ynm]> and (Yo, F), we use the product Gaussian quadrature
rule for spherical integrals [42]. This corresponds to approximate the integral with respect
to ¢ using N Gauss-Legendre quadrature points, and the integral with respect to 6 using
a 2N Periodic Trapezoid Rule points. One can proceed as in the three-step method (see
Section 4.1.2, and [26] for more details), by adding a rotation of the local coordinate system
so that x* corresponds to the north pole, and by using the N Gauss-Legendre quadrature
points mapped to (0, 77) and not (—1,1).

For (12) we have

1 .
Yo (0%, 97) + / /anyc * ¢%,0,9)](8, ) sin(8) Yium (8, ¢)dod .

For (8) we make use of the adjoint #™* of #. Using Gauss’ law we write
Z Zm—fn<t%/*[ Yot ], Yom ) Prm = (Yo, F) with

A Wi 0,9) = [ [ 005610, 97,0, 9)1 (6%, 9") sin(6%) Yy (67, 9°) — Yo (6,9)}d6" "

For (21) we have

1 T T .
H D)@, 97) = 3Ym (6%, 97) + [ [ [0,,G™(6%, 9%,6,9) ~ kGH (8", 9",0, )

Ko [Ynm| (0%, ¢™)

J(6, @) sin(0) Yy (6, p)dode,
and for (27) we have
/ / any , q)*’ 0, QD) _ ik(ﬂy . nx*) eik(?’lx*~(]/(9,(P)_]/(9*,¢*))GH(9*l q)*’ 0, g0)j|
J (0, @) sin(0) [Yum (6, ¢) — Yum (6%, ¢™)]dOd g

+ik / g / " [(ny - nge )oK OOV _1)GH (6% ¢*,6, 9)](6, ) sin(68) Yum (6, 9)d6dp

+ Yum (0"

" // v(00)=y(®"9")]a, GH (6%¢*,8, )] (6, ¢) sin(8)d6d.

Appendix C. Proof of Modified Representations
Appendix C.1. Modified Double-Layer Potential (14)

Given v solution of Laplace’s equation in D C R? d = 2,3, and for x € D we write
x = x* — Iny, with x* € dD. Then we write (11) as:

¥) = [ 0, G yrl—vldoy + [ 8,,Glxy)u(y)viy) doy
- /a O Gy = v(y) doy + /a 5 O G ) [u(y) — p(x")]vly) doy

() || 9n,Glx,9)v(y) = Gl y)2n,v(v) oy + p(x") [ Gl y)ay, v(y) doy
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Using (1) the third term becomes —p(x*)v(x*). Then
u(x) = [ anGlupnm — v doy + [ 0, Glom)liy) — p(x)vly)doy — plx" ()

+ u(x*) /BD G(x,y)[0n,v(y) — Onv(x™)] doy + p(x")0p . v(x") -/BD G(x,y)doy

which is (14), after using (1) for the last term.

Appendix C.2. Proof of Proposition 2

In this section, we derive (17). Given v solution of Laplace’s equation in D C R,
d =2,3,and for x € E we write x = x* 4 {ny+, with x* € dD. Then we write (7) as:

u(x) = [ Gy)pw) [1=0u,v()] doy + | G, y)o(w)an,v(y) doy
= |6yt = an,v(n)]dey + [ Gxylp(y) —p(x)on,v(y) doy
() [ G, w)n,v(y) = 00, Gx,)v(y) dey +p(x") | 01, Glx,y)v(y) doy

Using (1), the third term vanishes. Then

u(x) = /E)D G(x,y)p(y) {1 — anyv(y)} doy + /aD G(x,y)[p(y) — p(x*)]9n,v(y) doy
+00) |0, Gl y)[v(y) = v(x)doy + (" W(x) [ 30, Glx,y)doy

The last term vanishes using (1) then one obtains (17).

Appendix C.3. Proof of Propositions 3, 4

In this section, we derive (23), (26). Given v solution of the Helmholtz equation
inD c RY, d = 2,3, and for x € E we write x = x* + ny+, with x* € 9D. Then we
write (19) as:

u(x) = [ [00,6"(x,) = 00, v()G™ () | () oy + [ [0, v(0) = iK] GF (x,y)n(y) ey
= | [01,G™ () = 80, v ()G (5,) | (1) = Y dory + ux") [ [0, G (5, 9)v(y) = G ()0, v(y) | oy (A5)
+ [ o) = ] GH Iy doy + n) [ 90,6 (xp)[(1 = v(v) doy

Using (1), the third term vanishes, then one obtains (23). One proceeds similarly
starting with (21): one can show that the layer potentials in (21) correspond to (A5) for
x = x* € 9D. Finally, (1) gives that the third term boils down to —1u(x*)v(x*), which
finishes the proof.
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