
Reducing Attack Vulnerabilities Through Decentralized
Event-Triggered Control

Paul Griffioen, Raffaele Romagnoli, Bruce H. Krogh, and Bruno Sinopoli

Abstract— Decentralized control systems are widely used in
a number of situations and applications. In order for these
systems to function properly and achieve their desired goals,
information must be propagated between agents, which requires
connecting to a network. To reduce vulnerabilities to attacks
that may be carried out through the network, we design
an event-triggered mechanism for network connection and
communication that minimizes the amount of time agents must
be connected to the network, in turn decreasing communication
costs. This mechanism is a function of only local informa-
tion and ensures stability for the overall system in attack-
free scenarios. Our approach distinguishes itself from current
decentralized event-triggered control strategies by including
measurements in the system model, by not needing to implement
any reachability analysis, and by considering scenarios where
agents are not always connected to the network to receive
critical information from other agents. Algorithms describing
these network connection and communication protocols are
provided, and our approach is illustrated via simulation.

I. INTRODUCTION

Cyber-physical systems, engineered systems which in-
clude sensing, communication, and control in physical
spaces, are essential to secure and protect in today’s society.
Cyber-physical systems are ubiquitous in modern critical in-
frastructures including the smart grid, transportation systems,
health care, sewage/water management, energy delivery, and
manufacturing. These large scale, highly connected systems
may be deployed in insecure public spaces and may con-
tain heterogeneous components and devices, thus creating
numerous attack surfaces. Consequently, these systems are
attractive targets for adversaries, especially safety critical
systems [1]–[4]. Many of these systems are distributed over a
wide area and are comprised of many different agents which
interact with one another in a decentralized manner. It is
important, therefore, to guarantee the safety and security of
these decentralized control systems which rely heavily on
network communication to achieve their goals.

In decentralized control systems, individual agents have
access to differing amounts of information. In order to main-
tain the stability of the overall system and achieve a global
objective, agents must occasionally communicate some sub-
set of their local information with other agents, for instance
in car platoons [5], [6]. However, communicating with other
agents requires connecting to the network, opening up the
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possibility for adversaries to corrupt information that is sent
over the network and corrupt an agent’s control software by
using the network connection to inject malicious code. These
facts, in addition to the desire for minimizing communication
costs, motivate the need for intermittent network connections
as opposed to holding a constant network connection all the
time. Due to the fact that different sets of local information
are available to each agent, the decision about when network
connection and communication are necessary for a particular
agent must be triggered locally. While intermittent network
connections alone will not ensure resiliency against attacks,
they reduce an adversary’s window of opportunity for attack
while also providing a framework in which a resilience
strategy may be implemented.

Existing approaches to decentralized event-triggered con-
trol have mainly been concerned with minimizing communi-
cation costs, not with reducing the overall system’s vulner-
abilities to attacks from the network. Different approaches
to event-triggered control are summarized well in [7]. A
variety of decentralized event-triggered control mechanisms
for linear, nonlinear, continuous time, and discrete time
systems are presented in [8]–[14] and provide conditions
under which global asymptotic stability, global exponential
stability, L∞ gain performance, or Lp gain performance are
achieved. All of these approaches assume that each agent
is always connected to the network and is always available
to receive any information that is sent to it, even though
the agent might not always be broadcasting information to
other agents. However, this assumption does not hold in
contexts where safety and security is important since the
attack window is minimized when each agent disconnects
from the network for as long as possible. While [15] presents
an approach which does not assume that all agents are
always connected to the network, it does not include sensor
measurements in the system model, and consequently it
presents a trigger condition that cannot be applied to systems
where the state cannot be accessed directly. Furthermore,
[15] implements reachability analysis in order to evaluate
the trigger condition, which can be computationally costly.

In contrast to these previous approaches, we present a
decentralized event-triggered network connection and com-
munication protocol that does not assume that all agents
are always connected to the network, that includes sensor
measurements in the system model, and that does not require
any reachability analysis to be implemented. The network
connection and communication protocol ensures the stability
of the overall system in attack-free scenarios when agents
periodically connect and disconnect from the network (as
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opposed to periodically broadcasting information to other
agents). This protocol uses a trigger condition based only on
local information to determine when a particular agent must
connect to the network to send and receive information from
other agents. This trigger condition is designed to guarantee
system stability by having an agent connect to the network
when the magnitude of the state estimation error grows too
large.

The remainder of this paper is organized as follows.
Section II introduces the system model and estimation pro-
cedure that is used by each agent. Section III presents the
triggering mechanism, network connection and communica-
tion protocol, and conditions under which stability of the
overall system is achieved. Simulation results are presented
in Section IV, and Section V concludes the paper.

II. PROBLEM FORMULATION

A. System Model

We model the plant as a discrete time linear time invariant
system composed of N agents. The overall system dynamics
are given by

xk+1 = Axk +Buk + wk, (1)
yk = Cxk + vk, (2)

where xk ∈ Rn represents the state, uk ∈ Rp denotes the
control input, yk ∈ Rm represents the sensor measurements,
and wk ∈ Rn and vk ∈ Rm are bounded disturbances which
lie in the compact sets W and V , respectively, given by

W ,
{
wk
∣∣wTkQwk ≤ 1

}
, (3)

V ,
{
vk
∣∣vTk Rvk ≤ 1

}
. (4)

We let yik ∈ Rmi represent the sensor measurements that are

locally available to agent i so that yk =
[
y1T

k · · · yN
T

k

]T
,

m =
∑N
i=1mi, C ,

[
CT1 · · · CTN

]T
, and Ci ∈ Rmi×n.

Similarly, we let uik ∈ Rpi denote agent i’s control inputs

so that uk =
[
u1T

k · · · uN
T

k

]T
, p =

∑N
i=1 pi, B ,[

B1 · · · BN
]
, and Bi ∈ Rn×pi .

Each agent i is able to directly access its own local
sensor measurements yik and control inputs uik but must rely
on communication from other agents to access yjk and ujk
∀j 6= i, the sensor measurements and control inputs locally
available to other agents. We assume that the communication
graph is a complete graph so that agents are able to directly
send information to one another when connected to the
network.

B. State Estimation

The control input for agent i is given by

uik = Kix̂
i
k|k, (5)

where x̂ik|k ∈ Rn is agent i’s a posteriori estimate of
the overall state. Before agent i decides whether or not to
connect to the network, it uses x̂ik|k and its local sensor

measurements to compute x̂ik+1|k ∈ Rn, agent i’s a priori
estimate of the overall state, according to

x̂ik+1|k = Abkx̂
i
k|k + Li(y

i
k − Cix̂ik|k), (6)

where Abk , A + BK and K ,
[
KT

1 · · · KT
N

]T
. Here

Li is agent i’s observer gain matrix, given by

Li,Ti

[
Loi
0

]
, T−1

i ATi=

[
Aoi 0
A21
i Aōi

]
, CiTi=

[
Coi 0

]
, (7)

where Loi is designed so that Aoi − LoiCoi is Schur stable,
and Ti is a similarity transformation matrix used to carry out
the observability decomposition so that (Aoi , C

o
i ) is observ-

able. The observer presented in (6) is simply a Luenberger
observer that uses only local sensor measurements yik and
approximates ujk ≈ Kj x̂

i
k|k ∀j 6= i since these inputs are not

locally available to agent i. As a result, x̂ik+1|k is computed
without connecting to the network.

If agent i connects to the network, it uses the information
it receives from other agents to compute its a posteriori state
estimate according to

x̂ik+1|k+1 =Ax̂ik|k +
N∑
j=1

Bj(δ
ij
k u

j
k + (1− δijk )Kj x̂

i
k|k)

+
N∑
j=1

Lj(δ
ij
k )(yjk −Cj x̂

i
k|k)

(8)

=

 k∏
`=k′i

Âik+k′i−`

x̂ik′i|k′i+ k∑
`=k′i

 k∏
ζ=`+1

Âik+`+1−ζ

ψi`, (9)

where Âik , (A+
∑N
j=1(1− δijk )BjKj −Lj(δijk )Cj), ψik ,∑N

j=1 δ
ij
k Bju

j
k + Lj(δ

ij
k )yjk,

δijk =

{
1 if agent i possesses {ujk, y

j
k}

0 otherwise,
(10)

and k′i represents the most recent time step where agent i
possesses {ujk, y

j
k} for all agents at all time steps up to k′i,

given by

k′i , max
`
` s.t. δij0:`−1 = 1 ∀j ∈ {1, · · · , N}. (11)

If δijk = 0, then Lj(δ
ij
k ) , 0n×mj . If δijk = 1, then Lj(δ

ij
k ) is

designed in the following manner. Let δik , {δi1k , · · · , δiNk },
and let Ĉ(δik) ∈ R(

∑N
j=1 δ

ij
k mj)×n be a matrix composed of

the rows of C corresponding to the sensor measurements yjk
that agent i possesses. In other words, Ĉ(δik) is composed by
stacking the blocks Cj on top of each other ∀j ∈ {1, · · · , N}
such that δijk = 1. Similarly, let L̂(δik) ∈ Rn×(

∑N
j=1 δ

ij
k mj)

represent agent i’s observer gain matrix for all the sensor
measurements yjk that it possesses. This matrix is designed in
the same manner as Li in (7), where Li and Ci are replaced
with L̂(δik) and Ĉ(δik), respectively. Then the set of matrices
{Lj(δijk ) ∈ Rn×mj |δijk = 1} are defined as the appropriate
blocks of L̂(δik). The design of L̂(δik) can be carried out
offline for all possible values of δik, resulting in a set of
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2N − 1 observer gain matrices that are used by all agents.
Note that since agent i always has access to its own

local control inputs and sensor measurements, δiik = 1
∀i ∈ {1, · · · , N}. Also note that in the case where agent i
does not connect to the network at time step k, Li(δiik ) = Li
and Lj(δ

ij
k ) = 0n×mj

∀j 6= i. This results in (8) reducing to
(6) so that x̂ik+1|k+1 = x̂ik+1|k. When agent i does connect
to the network, it obtains the data {ujk, y

j
k}, j 6= i from other

agents according to the procedure presented in Algorithm 1,
and it uses that data to compute x̂ik+1|k+1 according to (9).
By having agents periodically connect and disconnect from
the network, the data that is sent over the network is sent
in periodic bursts as opposed to being spread out uniformly
over a large period of time. Note that agents do not need to
have the same initial state estimate x̂i0|0.

Algorithm 1 Data Communication Procedure for Agent i
1: Initialize θik = θ̄ik = ∅
2: parfor j ∈ {1, · · · , N}, j 6= i
3: Send κi`k ∀` ∈ {1, · · · , N}, ` 6= i to agent j and listen for

information from agent j
4: if Information is received
5: θik = {θik, j}
6: Send {ui

κ
ji
k

+1:k
, yi
κ
ji
k

+1:k
} to agent j

7: else
8: θ̄ik = {θ̄ik, j}
9: end if

10: end parfor
11: for j ∈ θ̄ik
12: if κijk ≥ κ

`j
k ∀` ∈ θ

i
k

13: parfor ` ∈ θik
14: Send {uj

κ
`j
k

+1:κ
ij
k

, yj
κ
`j
k

+1:κ
ij
k

} to agent `

15: end parfor
16: end if
17: end for

In Algorithm 1, θik and θ̄ik represent the sets of agents
connected and disconnected from the network at time step k,
respectively, not including agent i in either set. κijk represents
the most recent time step agent i possesses information about
agent j’s inputs and outputs, given by

κijk , max
`
` s.t. δij` = 1, ` ∈ {0, · · · , k}. (12)

If agent i connects to the network, it first sends κijk to every
agent (line 3), letting every agent know the most recent time
step agent i possesses information about each agent’s inputs
and outputs. Agent i also receives this information from
each agent connected to the network and proceeds to send
each of these agents all of its own local data {uik, yik} that
these agents do not currently possess (line 6). Of the agents
currently connected to the network, if agent i possesses
the most recent information about an agent j not currently
connected to the network, it sends that data {ujk, y

j
k} to all

the other agents currently connected to the network (line 14).
This results in a maximum of 3 messages sent to each agent
connected to the network (lines 3, 6, and 14) and 1 message
sent to each agent disconnected from the network (line 3).

In this way, Algorithm 1 ensures that all agents currently

connected to the network possess the exact same set of data
{ujk, y

j
k} about all agents. By possessing this exact same set

of data, each agent i is able to use the maximum amount
of information available to compute its a posteriori state
estimate x̂ik+1|k+1 according to (9). Note that when δij0:k = 1

∀j ∈ {1, · · · , N}, L , L̂(δik) is the Luenberger observer
gain matrix and (8) reduces to

x̂ik+1|k+1 = Ax̂ik|k +Buk + L(yk − Cx̂ik|k), (13)

implying that x̂k′i|k′i is equivalent to the state estimate ob-
tained by a centralized Luenberger observer with access to
all the inputs and the outputs of the system. As a result, each
agent i only needs to store the data {ujk, y

j
k} from agents for

all time steps at and after k̄ , minj k
′
j s.t. j ∈ {1, · · · , N}.

Remark 1: Note that cases may exist where agent i’s
local memory capacity places a non-negligible limit on the
amount of data {ujk, y

j
k} it can store, which may occur in

circumstances where agents do not connect to the network
very often. In these cases, agent i can simply connect to the
network whenever its local memory has been filled, allowing
it to share its data with other agents. If all agents know every
agent’s local memory capacity, then each agent can compute
the minimum number of time steps it will take before another
agent’s local memory is filled. With this information, each
agent can make sure that it always connects to the network
when another agent’s local memory is filled, allowing agents
to share data with one another, in turn increasing the value
of k̄, the most distant time step from which agents need to
store data.

C. Problem Formulation

Given the controller in (5), the system dynamics in (1) can
be written as

xk+1 = Abkxk − Eek|k + wk, (14)

where E ,
[
B1K1 · · · BNKN

]
, ek|k ,[

e1T

k|k · · · eN
T

k|k

]T
, and eik|k , xk − x̂ik|k so that

ek|k ∈ RNn and eik|k ∈ Rn. Here eik|k represents the error
between the overall state and agent i’s a posteriori estimate
of the overall state. We next introduce a network connection
protocol which decides when it is necessary for each agent
to connect to the network and communicate with other
agents to ensure the stability of the overall system.

III. NETWORK CONNECTION PROTOCOL

A. Quadratic Boundedness

In order to maintain the stability and safety of the overall
system, each agent i must occasionally share {uik, yik} with
other agents. We would like to design a network connection
protocol that ensures the stability of the overall system
by properly coordinating communication between different
agents while also minimizing the number of times each agent
connects to the network. The mechanism that triggers this
network connection is only able to use locally available
information. The stability which we design the network
connection protocol to achieve is quadratic γ-boundedness
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which is described in Definition 1, Definition 2, and Lemma
1. These definitions and lemmas have been uniquely modified
and adapted from [16] by adding the parameter γ to not only
specify when the Lyapunov function decreases or increases
but also how fast it does so.

Definition 1 ( [16]): Let zk represent a state vector, let d1
k

and d2
k represent disturbance vectors, and let D1 and D2 be

compact sets. A system of the form

zk+1 = Azk + B1d
1
k + B2d

2
k, d1

k ∈ D1, d
2
k ∈ D2 (15)

is quadratically γ-bounded with γ ≥ 0 and symmetric
positive definite Lyapunov matrix P if and only if ∀d1

k ∈ D1

and ∀d2
k ∈ D2,

zTk Pzk ≥ 1 =⇒ zTk+1Pzk+1 < γzTk Pzk. (16)

Note that when γ ∈ [0, 1], γ specifies how quickly the
Lyapunov function decreases over time, and when γ > 1, γ
sets an upper bound on how quickly the Lyapunov function
can increase over time.

Definition 2 ( [16]): The set Z is a robustly positively
invariant set for (15) if and only if z0 ∈ Z implies that
zk ∈ Z ∀k ≥ 0, ∀d1

k ∈ D1, and ∀d2
k ∈ D2.

Lemma 1 ( [16]): The following two statements are
equivalent:

1) System (15) is quadratically γ-bounded with γ ∈ [0, 1]
and symmetric positive definite Lyapunov matrix P .

2) The set Z , {zTk Pzk ≤ 1, P � 0} is a robustly
positively invariant set for (15).

Given these definitions, Lemma 2 provides a sufficient
condition for evaluating the quadratic γ-boundedness of (15).

Lemma 2: Let D1 , {d1
k|d1T

k D1d
1
k ≤ 1, D1 � 0} and

D2 , {d2
k|d2T

k D2d
2
k ≤ 1, D2 � 0} for the system in (15).

If ∃α ≥ 0 such that(γ−2α)P−ATPA −ATPB1 −ATPB2

−BT1 PA αD1−BT1 PB1 −BT1 PB2

−BT2 PA −BT2 PB1 αD2−BT2 PB2

�0,

(17)
then the system in (15) is quadratically γ-bounded with γ ≥
0 and symmetric positive definite Lyapunov matrix P .

Proof: By using the S-procedure [17], (17) is equivalent
tozkd1

k

d2
k

T−2P 0 0
0 D1 0
0 0 D2

zkd1
k

d2
k

≤0 =⇒

zkd1
k

d2
k

TATPA−γP ATPB1 ATPB2

BT1 PA BT1 PB1 BT1 PB2

BT2 PA BT2 PB1 BT2 PB2

zkd1
k

d2
k

<0,

(18)

which in turn is equivalent to

−2zTk Pzk + d1T

k D1d
1
k + d2T

k D2d
2
k ≤ 0

=⇒ zTk+1Pzk+1 < γzTk Pzk.
(19)

Note that
zTk Pzk≥1

d1T

k D1d
1
k≤1

d2T

k D2d
2
k≤1

 =⇒−2zTk Pzk+d1T

k D1d
1
k+d2T

k D2d
2
k≤0.

(20)
Taking (19) and (20) in conjunction with one another yields
that ∀d1

k ∈ D1 and ∀d2
k ∈ D2,

zTk Pzk ≥ 1 =⇒ zTk+1Pzk+1 < γzTk Pzk, (21)

implying that the system in (15) is quadratically γ-bounded
with γ ≥ 0 and symmetric positive definite Lyapunov matrix
P .

According to (14) and (8), the error dynamics for the
overall system are given by

ek+1|k+1 = Ā(δk)ek|k + Iwk + L̄(δk)vk, (22)

where δk , {δ1
k, · · · , δNk }, I ,

[
In · · · In

]T
,

Ā(δk) ,

 Abk − F (δ1
k) · · · (δ1N

k − 1)BNKN

...
. . .

...
(δN1
k − 1)B1K1 · · · Abk − F (δNk )

 ,
L̄(δk) ,

−L1(δ11
k ) · · · −LN (δ1N

k )
...

. . .
...

−L1(δN1
k ) · · · −LN (δNNk )

 ,
and F (δik) ,

∑N
j=1 δ

ij
k BjKj + Lj(δ

ij
k )Cj . Lemma 3 pro-

vides a sufficient condition under which the error is quadrat-
ically 1-bounded and remains in the robust positive invariant
set Ee given by

Ee ,
{
ek|k

∣∣∣eTk|kP̄ ek|k ≤ 1, P̄ � 0
}

(23)

when all agents are connected to the network. In other words,
when δijk = 1 ∀i, j ∈ {1, · · · , N}.

Lemma 3: If ∃α1 ≥ 0 such that(γ−2α1)P̄−Ā(δk)T P̄ Ā(δk) −Ā(δk)T P̄I −Ā(δk)T P̄ L̄(δk)

−IT P̄ Ā(δk) α1Q−IT P̄I −IT P̄ L̄(δk)

−L̄(δk)T P̄ Ā(δk) −L̄(δk)T P̄I α1R−L̄(δk)T P̄ L̄(δk)

�0

(24)
when γ = 1 and δijk = 1 ∀i, j ∈ {1, · · · , N}, then the error
in (22) is quadratically 1-bounded with symmetric positive
definite Lyapunov matrix P̄ . Furthermore, if e0|0 ∈ Ee, then
ek|k ∈ Ee ∀k ≥ 0.

Proof: Applying Lemma 2 to the system in (22) implies
that if (24) is satisfied with γ = 1, then the error in (22) is
quadratically 1-bounded. Lemma 1 and Definition 2 imply
that if e0|0 ∈ Ee, then ek|k ∈ Ee ∀k ≥ 0.

Lemma 4 provides a sufficient condition under which the
overall system is quadratically 1-bounded when all agents
are connected to the network.

Lemma 4: If ∃α2 ≥ 0 such that(1−2α2)P−ATbkPAbk ATbkPE −ATbkP
ETPAbk α2P̄−ETPE ETP
−PAbk PE α2Q−P

�0, (25)

then the system in (14) is quadratically 1-bounded with
symmetric positive definite Lyapunov matrix P when ek|k ∈
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Ee.
Proof: Applying Lemma 2 to the system in (14) implies

that if (25) is satisfied, then the system in (14) is quadratically
1-bounded.

B. Stability Conditions

We want to ensure that the overall system in (14) is
quadratically 1-bounded by creating a network connection
protocol which guarantees that when the Lyapunov function
V (xk) , xTk Pxk is greater than or equal to 1, it decreases at
every time step and converges to the robust positive invariant
set Ex given by

Ex ,
{
xk
∣∣xTk Pxk ≤ 1, P � 0

}
. (26)

The invariance of Ex is shown in Lemma 1 to be equiva-
lent to quadratic 1-boundedness. Consequently, the network
connection protocol should guarantee that when V (xk) ≥ 1,
V (xk+1) < V (xk) ∀k. The following theorem, motivated
by [8] and [9], sets forth sufficient conditions under which
V (xk+1) < V (xk) ∀k.

Theorem 1: If the network connection protocol ensures
that for some i ∈ {1, · · · , N},

−yi
T

k Yiy
i
k + eTk|kP̄ ek|k + wTkQwk + vTk Rvk < 0, (27)

where Yi � 0, and if ∀i ∈ {1, · · · , N},
P−ATbkPAbk−CTi YiCi ATbkPE −ATbkP −CTi YiΓi

ETPAbk P̄−ETPE ETP 0
−PAbk PE Q−P 0
−ΓTi YiCi 0 0 R−ΓTi YiΓi

�0,

(28)
where Γi ,

[
0mi×

∑i−1
j=1mj

Imi 0mi×
∑N

j=i+1mj

]
, then

V (xk+1) < V (xk) ∀k for the system in (14).
Proof: The condition in (28) is equivalent to

xTk Pxk−(Abkxk−Eek|k+wk)TP (Abkxk−Eek|k+wk)

−yi
T

k Yiy
i
k+e

T
k|kP̄ ek|k+w

T
kQwk+v

T
k Rvk ≥ 0,

(29)

which is equivalent to

V (xk+1)−V (xk)≤−yi
T

k Yiy
i
k+e

T
k|kP̄ ek|k+w

T
kQwk+v

T
k Rvk.

(30)
Taking (30) in conjunction with the condition in (27) ensures
that V (xk+1) − V (xk) < 0. Consequently, V (xk+1) <
V (xk) ∀k for the system in (14) when (28) is satisfied ∀i ∈
{1, · · · , N} and (27) is satisfied for some i ∈ {1, · · · , N}.

Note that P̄ determines the size of the invariant set Ee
in which the error lies when all agents are connected to the
network, P determines the size of the invariant set Ex to
which the state converges, and Yi will have a direct impact
on the frequency at which agent i connects to the network as
will be seen in (32). Maximizing log det P̄ is proportional
to minimizing the volume of Ee, compressing the size of the
invariant set in which the error lies when all agents are con-
nected to the network. Maximizing log detP is proportional
to minimizing the volume of Ex, compressing the size of
the invariant set to which the state converges. Maximizing
log detYi is proportional to maximizing yi

T

k Yiy
i
k ∀yik, which

minimizes the number of times agent i connects to the
network as will be seen in (32). Consequently, the desired
values for P̄ , P , and Yi are obtained according to the
following optimization problem

argmax
α1,α2,P̄ ,P,Y1,···,YN

ωelogdetP̄+ωxlogdetP+
N∑
i=1

ωilogdetYi

s.t. γ=1, α1,α2≥0, P̄�0, P�0, Yi�0 ∀i∈{1,···,N},
(24), (25), and (28) are satisfied with δijk =1 ∀i,j∈{1,···,N},

(31)

where ωe, ωx, and ωi, i ∈ {1, · · · , N} are nonnegative
constants chosen by the designer to weight the importance
of minimizing Ee, Ex, and the communication frequency
of agent i, respectively. Because this optimization problem
is not convex, a suboptimal solution may be obtained by
restricting the possible values of α1 and α2 to a finite set
lying within [0, 1

2 ] and carrying out the optimization problem
in (31) over that finite set, since (31) is convex for set values
of α1 and α2.

C. Triggering Conditions

The following theorem leverages the results of Lemma 3,
Lemma 4, and Theorem 1, providing a network connection
triggering condition for each agent based on (27) to ensure
that the system in (14) is quadratically 1-bounded.

Theorem 2: If ∃α1, α2 ≥ 0 such that (24) and (25) are
satisfied with γ = 1 when δijk = 1 ∀i, j ∈ {1, · · · , N}, if
e0|0 ∈ Ee, if (28) is satisfied ∀i ∈ {1, · · · , N}, and if agent
i connects to the network, communicates with all the other
agents on the network according to Algorithm 1, and updates
its a posteriori state estimate according to (9) when

yi
T

k Yiy
i
k ≤ 2 + max

(
1,
k−1∏
`=0

γ(δ`)

)
, (32)

where

γ(δk) , min
α1,γ

γ s.t. α1, γ ≥ 0, (24) is satisfied, (33)

then the system in (14) is quadratically 1-bounded.
Proof: By applying Lemma 2 and Definition 1 to the

system in (22), the definition of γ(δk) in (33) implies that
∀wk ∈W and ∀vk ∈ V ,

eTk|kP̄ ek|k ≥ 1 =⇒ eTk+1|k+1P̄ ek+1|k+1 < γ(δk)eTk|kP̄ ek|k.
(34)

Consequently,

eTk|kP̄ ek|k < max

(
1,

(
k−1∏
`=0

γ(δ`)

)
eT0|0P̄ e0|0

)
. (35)

If e0|0 ∈ Ee, then maxe0|0 e
T
0|0P̄ e0|0 = 1, implying that

eTk|kP̄ ek|k < max

(
1,

k−1∏
`=0

γ(δ`)

)
. (36)
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The trigger condition in (32) can be written equivalently as

−yi
T

k Yiy
i
k + max

(
1,
k−1∏
`=0

γ(δ`)

)
+ 2 ≥ 0. (37)

Note that ∀wk ∈W and ∀vk ∈ V ,

− yi
T

k Yiy
i
k + max

(
1,
k−1∏
`=0

γ(δ`)

)
+ 2 >

− yi
T

k Yiy
i
k + eTk|kP̄ ek|k + wTkQwk + vTk Rvk

(38)

according to (36). Consequently, (32) functions as an upper
bound on the condition in (27) so that whenever (27) is not
satisfied, the condition in (32) will be triggered.

If (28) is satisfied ∀i ∈ {1, · · · , N}, Theorem 1 states that
V (xk+1) < V (xk) ∀k when (32) is not triggered for at least
one agent, implying that the system in (14) is quadratically 1-
bounded when (32) is not triggered for some i ∈ {1, · · · , N}.
In the case where (32) is triggered ∀i ∈ {1, · · · , N}, all
agents will be connected to the network. In this situation,
Lemma 3 and Lemma 4 state that if ∃α1, α2 ≥ 0 such that
(24) and (25) are satisfied with γ = 1 and if e0|0 ∈ Ee, the
system in (14) will be quadratically 1-bounded.

Theorem 2 ensures that when the magnitude of the error
eTk|kP̄ ek|k grows too large, (32) will be triggered and agent
i will connect to the network to communicate data with
other agents according to Algorithm 1. Note that in (32),
yik is locally available to agent i, but δ0:k−1 contains some
information that is not locally available to agent i. Let δ̄i` and
δ̂i` represent the portions of δ` whose values are known and
unknown by agent i, respectively, so that δ` = {δ̄i`, δ̂i`} ∀i ∈
{1, · · · , N}. For agent i to evaluate this trigger condition, it
first solves for γ(δ`) offline for all possible values of δ` such
that δii` = 1 ∀i ∈ {1, · · · , N}. Agent i then plugs in γ̄i(δ`)
for γ(δ`) in (32) to evaluate it online, where γ̄i(δ`) is given
by

γ̄i(δ`) , max
δ̂i`

γ(δ`) s.t. δ` = {δ̄i`, δ̂i`}. (39)

In this way, agent i always evaluates the trigger condition
with values that result in the right side of the inequality in
(32) being greater than or equal to its actual value. This
then functions as an upper bound on the actual value of
the condition in (32) which is itself an upper bound on
the condition in (27), implying that whenever (27) is not
satisfied, the condition in (32) evaluated with γ̄i(δ`) will be
triggered.

Remark 2: Note that computing γ(δk) in (33) for all
possible values of δk such that δiik = 1 ∀i ∈ {1, · · · , N}
requires evaluating between 2N − N and 2N(N−1) linear
matrix inequalities (LMIs) since these are lower and upper
bounds, respectively, on the number of possible permutations
for the values in δk subject to the data communication
procedure of Algorithm 1. To ensure that every permutation
is covered, all 2N(N−1) LMIs can be evaluated, but this
will include permutations of δk that cannot possibly occur
according to the data communication procedure of Algorithm
1. For instance, if δijk = 1 for some i 6= j, then there

must exist an ` 6= i such that δi`k = δ`ik = 1. This is due
to the fact that in order for agent i to possess information
about agent j where i 6= j, it must receive that information
from some agent ` 6= i. Consequently, δi`k = δ`ik = 1 since
agents i and ` share their own data with each other when
connected to the network. If lines 11-17 were eliminated
from Algorithm 1, then agents would only share data about
themselves and never about other agents, causing δijk = δjik
∀i, j ∈ {1, · · · , N} and decreasing overall performance. This
would result in a total of 2N −N possible permutations for
the values in δk so that exactly 2N −N LMIs would need to
be evaluated. However, all of this computation is completed
offline ahead of time and grows with the number of agents N ,
not the number of control inputs p or sensor measurements
m. Furthermore, (33) does not need to be evaluated at each
time step since the set of possible values for δk is time-
invariant. Future work includes addressing cases where this
offline calculation becomes computationally intractable with
large N .

D. Network Connection Procedure

Algorithm 2 describes a procedure which ensures the
quadratic 1-boundedness of the overall system as guaranteed
by Theorems 1 and 2 when (24), (25), and (28) are satisfied.
The information available to agent i at time step k is given
by

J ik ,
{
A,B,C,Q,R,K, L̂(δik), P̄ , P, Y1, · · · , YN , N, x̂ik′i|k′i
x̂ik|k−1, x̂

i
k|k, δ̄

i
0:k, {u

j

k̄:κij
k

, yj
k̄:κij

k

} ∀j ∈ {1, · · · , N}
}
.

The event-triggered communication procedure presented in
Algorithm 2 uses this local information J ik to indicate when
agent i needs to connect to the network and communicate
with other agents. At each time step, agent i first computes

Algorithm 2 Network Connection Procedure for Agent i
1: Initialize x̂i0|0 ∀i ∈ {1, · · · , N} so that e0|0 ∈ Ee
2: k = 0
3: while k ≥ 0
4: x̂ik+1|k = Abkx̂

i
k|k + Li(y

i
k − Cix̂ik|k)

5: Update δ̄ik with δjjk = 1 ∀j ∈ {1, · · · , N}
6: if (32) is satisfied
7: Open network connection
8: Share data with other agents according to Algorithm 1
9: Update x̂ik+1|k+1 according to (9)

10: Update δ̄i0:k with information from θik, θ̄ik, and δ̄j0:k
∀j ∈ θik

11: Close network connection
12: else
13: x̂ik+1|k+1 = x̂ik+1|k
14: Update δ̄ik with δijk = δjik = 0 ∀j ∈ {1, · · · , N}, j 6= i
15: end if
16: k = k + 1
17: end while

its a priori state estimate according to (6). It then uses its
local sensor measurements yik as well as γ̄i(δ0:k) to evaluate
the trigger condition in (32). If (32) is not satisfied, then
agent i sets its a posteriori state estimate equal to its a
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priori state estimate and updates its local information about
δk according to the fact that it is not connected to the
network. If (32) is satisfied, then agent i connects to the
network, communicates with all the other agents on the
network according to Algorithm 1, updates its a posteriori
state estimate according to (9), and uses information from
other agents to update its local information about δk before
proceeding to disconnect from the network.

Remark 3: Note that because (32) functions as an upper
bound on the condition in (27), agents will connect to the
network more often than is necessary. Consequently, there
may be instances where agent i attempts to send information
to other agents who are not connected to the network to
receive that information. However, as long as (28) is satisfied
∀i ∈ {1, · · · , N}, Theorems 1 and 2 imply that each one of
these instances will only occur when the information being
transmitted is not necessary for maintaining the stability of
the overall system.

Remark 4: Note that Algorithm 2 presents a procedure
where an agent’s sending and receiving capabilities are si-
multaneously triggered by the condition in (32). However, an
attack on an agent is initiated through data that is incoming
to that agent, not outgoing from that agent. Consequently,
data could constantly be broadcast to agents all the time,
while (32) would only be used for deciding when to receive
information from other agents. In this case, agent i would
send {ui

k̄:k
, yi
k̄:k
} to each agent j ∈ {1, · · · , N}, j 6= i at

every time step. By doing so, an agent receiving information
would possess the full set of inputs and outputs for the overall
system, reducing that agent’s state estimation error compared
to the current scenario where only a subset of the inputs and
outputs may be received. This in turn would decrease the
number of times (32) is triggered since (32) is a function of
the estimation error, further reducing an adversary’s window
of opportunity to carry out an attack. However, this approach
would increase communication costs considerably since all
agents would always be broadcasting information at every
time step. The implementation of this approach, along with
an investigation of the tradeoff between overall performance
and communication costs, is left for future work.

E. Ensuring Resiliency Against Attacks

The network connection procedure presented in Algorithm
2 is sufficient for ensuring that agents connect to the network
when necessary to maintain the stability of the overall system
in attack-free scenarios. However, during those brief periods
of time when various agents are connected to the network, the
safety of the overall system against attacks is not guaranteed.
Since resilience against attacks is the ultimate goal, a variety
of mechanisms and strategies may be used during these
brief periods of network connection to guarantee safety
and security. For example, software rejuvenation [18], [19]
is one mechanism that has been introduced to guarantee
the safety of agents when connecting to the network to
maintain stability or recover from a disturbance. The detailed
implementation of such a mechanism within the context of
the network connection protocol in Algorithm 2 is beyond

the scope of this paper and is left for future work. However,
to guarantee the safety of the overall system in the presence
of attacks, some such resiliency mechanism will need to be
implemented during those brief periods of time when various
agents connect to the network and share critical information.

IV. SIMULATION

To illustrate the effectiveness of the network connection
and communication protocol, we consider a smart water
distribution system used at a four-hectare wine estate in the
south of England [13]. The goal of the water distribution
system is to stabilize the water levels of three district meter
area tanks at predesigned constant reference levels. The
system state is given by the difference between the reference
levels and the current water levels, the control inputs are the
open levels of the valves, and the sensors measure the current
water levels of the tanks. The system model is linearized at
a reference level of 3 m as presented in [13] and is given by

xk+1 =

0.9992 0 0
0 0.9994 0
0 0 0.9995

xk (40)

+

 0.1068 −0.0371 −0.0371
−0.0279 0.0801 −0.0279
−0.0223 −0.0223 0.0641

uk + wk,

yk =

1 0 0
0 1 0
0 0 1

xk + vk, (41)

where the system in [13] is discretized using a zero-order
hold with a sampling time of 1 sec. We let Q = 10000

3 I
and R = 10000

3 I so that the process and measurement
disturbances are less than 1 cm for each tank.

A discrete-time controller K with poles at 0.7, −0.7, and
0.8 is designed to stabilize the system when all agents are
connected to the network, and discrete-time observers L̂(δik)
are designed for all possible values of δik according to (7) so
that the estimation error for the observable states is stabilized.
The water distribution system is comprised of N = 3 agents,
where each agent has access to one local control input and
one local sensor measurement. We solve for P̄ , P , and Yi
∀i ∈ {1, · · · , N} according to (31) with ωe = ωx = 1
and ωi = 100 ∀i ∈ {1, · · · , N}. The network connection
protocol in Algorithm 2 is executed for each agent from the
initial state x0 =

[
10 10 10

]T
.

Figures 1a and 1b depict the Lyapunov function conver-
gence and network connection timeline, respectively, for a
particular simulation. As seen in Figure 1a, the Lyapunov
function continually decreases until it is less than 1, equiv-
alent to the state converging to the invariant set Ex, demon-
strating the quadratic 1-boundedness of the system. Figure
1b depicts the detailed connection timeline for each agent,
showing that agents are able to disconnect from the network
for approximately 42% of the time before converging to Ex.
This provides less time for adversaries to attack different
agents while also ensuring the stability of the overall system
when there is no attack.
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(a) Value of Lyapunov Function (b) Network Connection Timeline

Fig. 1. (a) Convergence of the Lyapunov function to the invariant set Ex
(b) Timeline of agents’ network connections (agents remain disconnected
approximately 42% of the time before converging to Ex)

Note that the network connection times may vary for each
agent since each agent has different sets of local sensors
and since the dynamics of some agents may be more tightly
coupled to one another than the dynamics of other agents,
requiring some agents to connect to the network more than
others to ensure the stability of the overall system. In addi-
tion, no performance is lost in using the decentralized event-
triggered network connection protocol. Over 1000 trials, the
time taken to converge to the invariant set Ex remains the
same regardless of whether communication between agents
occurs all the time (average convergence time of 19.973 sec)
or whether agents disconnect from the network for periods
of time (average convergence time of 19.982 sec).

V. CONCLUSION

This paper has investigated using decentralized event-
triggered control to reduce vulnerabilities to attacks. An
event-triggered mechanism for network connection and com-
munication is designed based on only local information. This
mechanism ensures the stability of the overall system in the
sense of quadratic boundedness for attack-free scenarios. It
also allows agents to disconnect from the network for periods
of time, minimizing an adversary’s window of opportunity
when attacking different agents. A network connection pro-
tocol is designed which uses this event-triggered mechanism,
and its effectiveness is illustrated in the context of a smart
water distribution system. To ensure safety and security
against attacks, future work should introduce resiliency
mechanisms for those times when agents are connected to
the network and are vulnerable to attacks. Future work also
includes considering cases where the communication graph
is not complete so that each agent can only directly send in-
formation to a subset of agents. Lastly, future work includes
considering scenarios where non-negligible communication
delays exist when sending data over the network.
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