

Intercepting Hydrogen Evolution with Hydrogen-Atom Transfer: Electron-Initiated Hydrofunctionalization of Alkenes

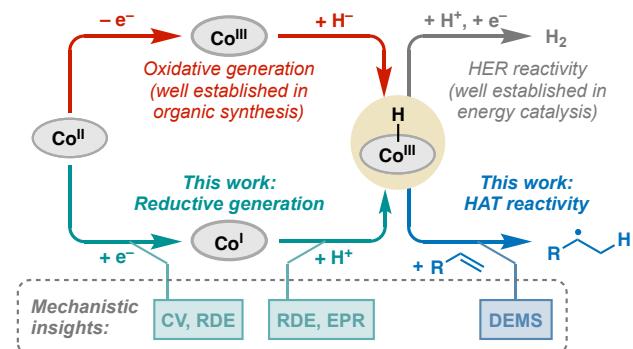
Xiangyu Wu, Cara N. Gannett,[‡] Jinjian Liu,[‡] Rui Zeng,[‡] Luiz F. T. Novaes, Hongsen Wang, Héctor D. Abruña* and Song Lin*

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States

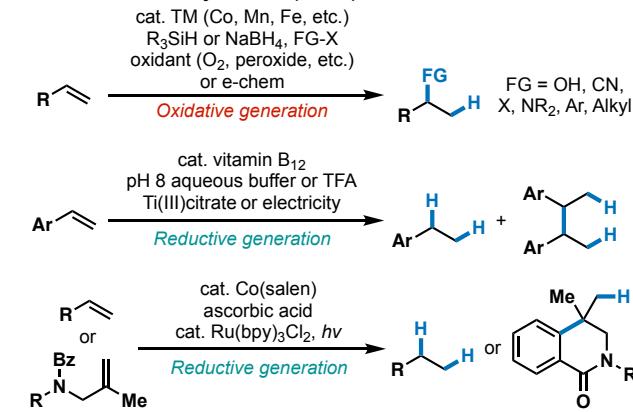
ABSTRACT: Hydrogen-atom transfer mediated by earth-abundant transition-metal hydrides (M-Hs) has emerged as a powerful tool in organic synthesis. Current methods to generate M-Hs most frequently rely on oxidatively initiated hydride transfer. Herein, we report a reductive approach to generate Co-H, which allows for canonical hydrogen evolution reactions to be intercepted by hydrogen-atom transfer to an alkene. Electroanalytical and spectroscopic studies provided mechanistic insights into the formation and reactivity of Co-H, which enabled the development of two new alkene hydrofunctionalization reactions.

Transition-metal hydrides (M-Hs) are a class of versatile organometallic intermediates that have found broad applications in energy storage,¹ materials chemistry,² and enzymatic catalysis.^{3,4} In recent years, M-Hs have also seen increasing use in organic synthesis and catalysis, offering new bond disconnection strategies for accessing complex targets.^{5,6} In particular, M-Hs based on earth-abundant first-row transition metals benefit from the relatively weak M-H bond and often display high reactivities with organic functional groups.⁷ For example, transition metals such as Fe,⁸ Mn,⁹ and Co¹⁰ have been shown to form M-Hs with predominantly acidic characters, which can engage in a variety of hydrogen atom transfer (HAT) reactions with alkenes. Importantly, the radical nature of the HAT mechanism renders such transformations compatible with a broad scope of functional groups, further augmenting their synthetic utility.¹¹

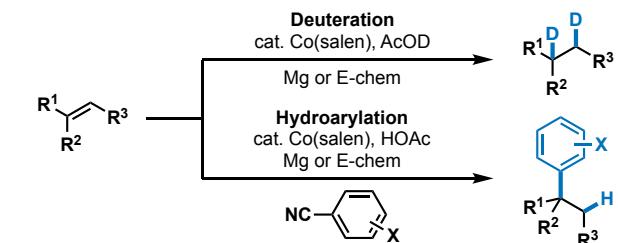
In contrast to the increasing volume of reactions enabled by M-Hs, methods to generate them remain limited. Using Co^{III}-H as an example, its formation generally relies on the use of a pair of a stoichiometric single-electron oxidant and a hydride-donor reductant. The former oxidizes a precatalyst (typically Co^{II}) to a high valent Co^{III} species whereas the latter delivers a H⁻ (e.g., via transmetalation) to generate the active Co^{III}-H (Scheme 1A). Common oxidants include dioxygen, peroxides, and *N*-fluoropyridinium salts,¹² and common hydride sources include hydrosilanes, borohydrides, and isopropanol.¹³ Having both oxidants and reductants could potentially complicate the reaction systems and hamper their adoption in process-scale applications. As a complementary approach, Norton showed that Co-H can be generated from cobaloximes in the context of radical cyclizations under a high pressure of H₂.¹⁴ In the context of overall redox-neutral isomerization or polymerization reactions, the generation of Co-H has been achieved via HAT from an in-situ generated alkyl radical to Co^{II},¹⁵ this mechanism however is


not amenable to alkene difunctionalizations that are net-oxidative or net-reductive.

In searching for an alternative means for generating Co-H intermediates, we were inspired by the large body of work in the field of energy catalysis on hydrogen evolution reactions (HERs).¹⁶ It has been well established that Co^{III}-H intermediates can form via a sequence of cathodic reduction and protonation in an acidic medium.¹⁷ The incipient Co^{III}-H can then undergo either a heterolytic pathway (via sequential reduction and protonation of Co-H) or a homolytic pathway (via dimerization of Co-H) to evolve H₂ (Scheme 2A).¹⁸ We reasoned that this electrochemically generated Co^{III}-H could be intercepted by a HAT pathway, reacting with an alkene to achieve hydrofunctionalization instead of hydrogen evolution. This reaction design would circumvent the use of traditional oxidants and hydride donors, leading to a potentially more practical methodology that employs electrons and protons as the redox equivalent and hydrogen source, respectively. Related to this strategy, Fischli,¹⁹ van der Donk,²⁰ and Hisaeda²¹ independently reported the hydrogenation and hydromerization of electron-deficient alkenes and styrenes using vitamin B₁₂ by means of chemical or electrochemical reduction. Shenvi developed a simplified system for the hydrogenation of monosubstituted alkenes using catalytic Co(OAc)₂ and HCl.²² Recently, Kojima and Matsunaga reported a dual cobalt-photoredox approach for the hydrogenation and intramolecular hydroarylation of alkenes (Scheme 1B).²³ Baran demonstrated electroreductive generation of Co^{III}-H in the context of alkyne hydrogenation, alkene isomerization, and related transformations.²⁴ Nevertheless, the exploration of such strategies in synthetic contexts remains rare beyond these examples.²⁵ In this work, we employed analytical and synthetic tools to study a family of electronically distinct Co(salen) complexes and obtained qualitative and quantitative insights into the electroreductive generation of Co^{III}-H and its reaction with alkenes (Scheme 1A). This


information allowed us to establish reductive M-Hs formation as a general strategy for the hydrofunctionalization of alkenes (Scheme 1C).

Scheme 1. Background and introduction


A. Mechanistic underpinning: oxidative vs. reductive Co-H generation

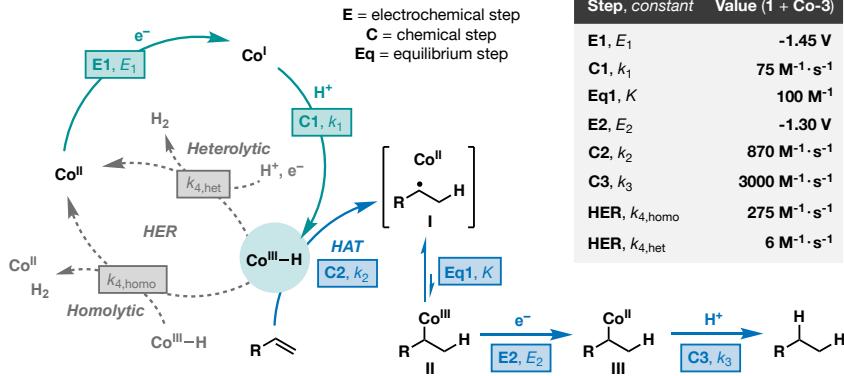
B. Prior art: M-H-catalyzed HAT (MHAT) with alkenes

C. Reaction discovery: e- initiated hydrofunctionalization of alkenes

- Simplified conditions for Co-H generation with improved atom economy
- Hydro- and deuterofunctionalization with readily available reagents
- Coupling with reductive radical reactivities for new reaction discovery
- Voltammetry provides kinetic info of Co-H generation and reactivity
- DEMS analysis provides relative rate info of HAT vs HER

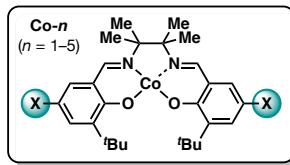
We began our study by characterizing five Co(salen) complexes using cyclic voltammetry (CV) and rotating disk electrode (RDE) voltammetry techniques,²⁶ which revealed a strong dependence of the HER reactivity on the electronic properties of the ligand (Scheme 2B-F). Cobalt complexes bearing electron-withdrawing groups (CF₃, CN) displayed sluggish HER in the presence of HOAc, whereas substantially faster rates were observed for catalysts with electron-donating groups (tBu, OMe), showing pronounced catalytic currents upon addition of HOAc. However, an electron-deficient nitro complex, **Co-5**, broke the trend, displaying the largest current enhancement. CV suggested that, in this case, the nitro group was preferentially reduced to an electron-rich substituent (likely hydroxylamino). Indeed, upon electrolysis of **Co-5** with HOAc, a new

reduction feature appeared at -1.47 V (vs Ag/AgCl) while the original peak disappeared (see SI).


Quantitative kinetic data were obtained by simulation of the RDE data with DigiElch, taking into consideration both homolytic and heterolytic mechanisms for the generation of H₂ from Co-H (Scheme 2A).¹⁹ Excellent fits were obtained, which yielded rate constants of Co^{III}-H formation of $k_1 = 5 \text{ M}^{-1} \cdot \text{s}^{-1}$ and $7 \text{ M}^{-1} \cdot \text{s}^{-1}$ for **Co-1** and **Co-2**. In contrast, their electron-rich counterparts **Co-3** and **Co-4** yielded values of $k_1 = 75 \text{ M}^{-1} \cdot \text{s}^{-1}$ and $400 \text{ M}^{-1} \cdot \text{s}^{-1}$, respectively. In general, catalysts bearing electron-donating substituents (tBu, OMe) preferred the homolytic pathway for HER, whereas those bearing electron-withdrawing substituents (CN, CF₃) predominantly underwent heterolytic protonation. Curiously, fitting the data from **Co-5** to the general HER mechanisms proved challenging, which is consistent with the proposed -NO₂ reduction.

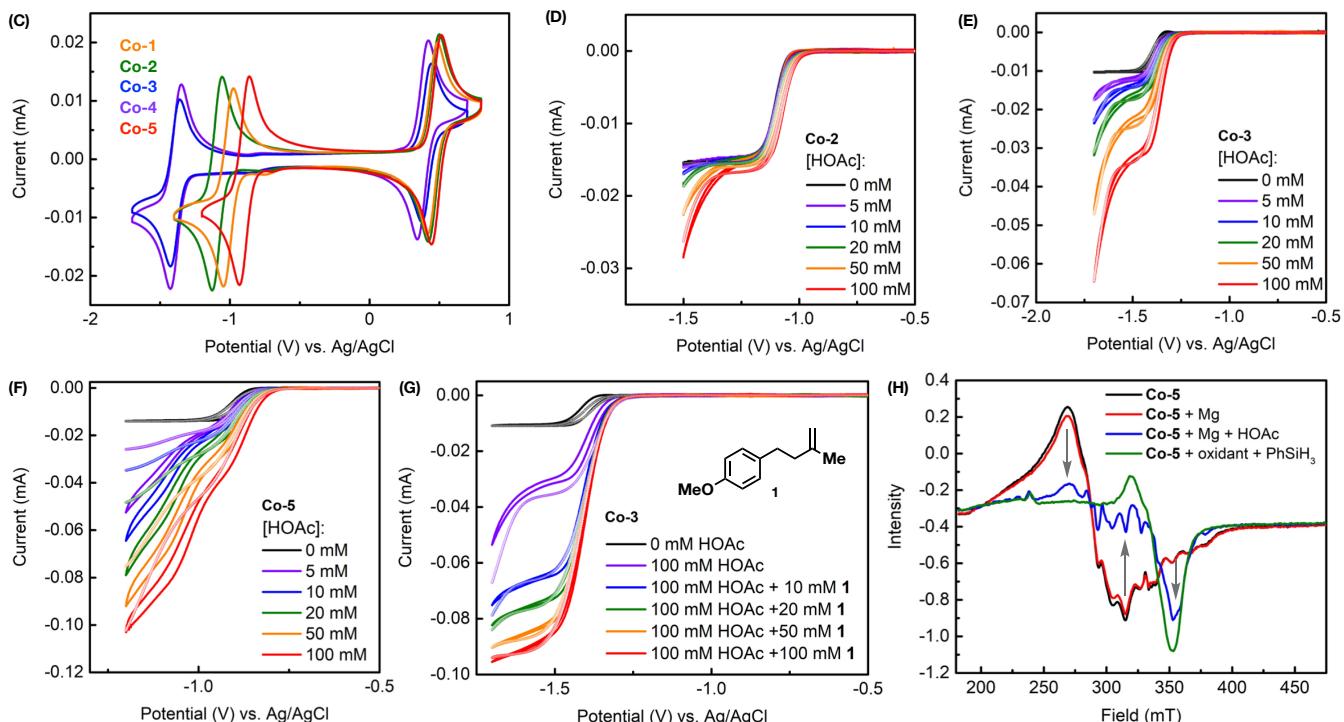
To compare Co-H generation via reductive and oxidative pathways, we conducted electron paramagnetic resonance (EPR) studies. The addition of Mg as a chemical reductant²⁷ to **Co-5** did not lead to any noticeable change to the characteristic EPR signals (Scheme 2H). Subsequent introduction of HOAc resulted in disappearance of Co^{II} signals²⁸ and formation of new features over a 15-minute period. A similar set of features were also observed when **Co-5** was treated with 1-fluoro-2,4,6-trimethylpyridinium triflate as the oxidant along with PhSiH₃; conditions that are frequently employed to generate Co^{III}-H complexes for alkene hydrofunctionalization. While we cannot unambiguously assign these new features to specific intermediates, these results showed that similar Co species are generated from the reductive and oxidative pathways.

With mechanistic insights into the electroreductive Co-H generation, we began to test the hypothesis that the HER can be intercepted by an HAT toward alkene hydrofunctionalization. Thus, a series of RDE and differential electrochemical mass spectrometry (DEMS) experiments were carried out. The addition of alkene **1** to a solution of catalyst **Co-3** and HOAc led to a current enhancement, the magnitude of which increased with higher concentrations of **1** (Scheme 2G). Simulations of the voltammetry data showed excellent agreement with the proposed reaction mechanism (Scheme 2A) wherein the reductively generated Co^{III}-H (via **E1**, **C1** steps) reacts with the alkene via HAT to afford radical **I** and Co^{II} (**C2** step). This radical cage pair is in equilibrium with cage-collapsed species **II** favoring the former (**Eq1** step).²⁹ In the absence of a radical trapping agent, **I** is further reduced to generate putative intermediate **III** (**E2** step),³⁰ and this latent carbanion undergoes final protonolysis to give the hydrogenated product (**C3** step). The rate constant of the HAT step ($k_2 = 870 \text{ M}^{-1} \cdot \text{s}^{-1}$) is 3 times that of the homolytic HER ($k_{4,\text{homo}} = 275 \text{ M}^{-1} \cdot \text{s}^{-1}$). We also simulated an alternative mechanism wherein radical **I** undergoes HAT with another equivalent of Co^{III}-H to complete hydrogenation but this scenario exhibited poor consistency with the RDE data (see SI). The kinetic preference of Co^{III}-H for HAT over HER provides a foundation for developing a silane-free alkene hydrofunctionalization.

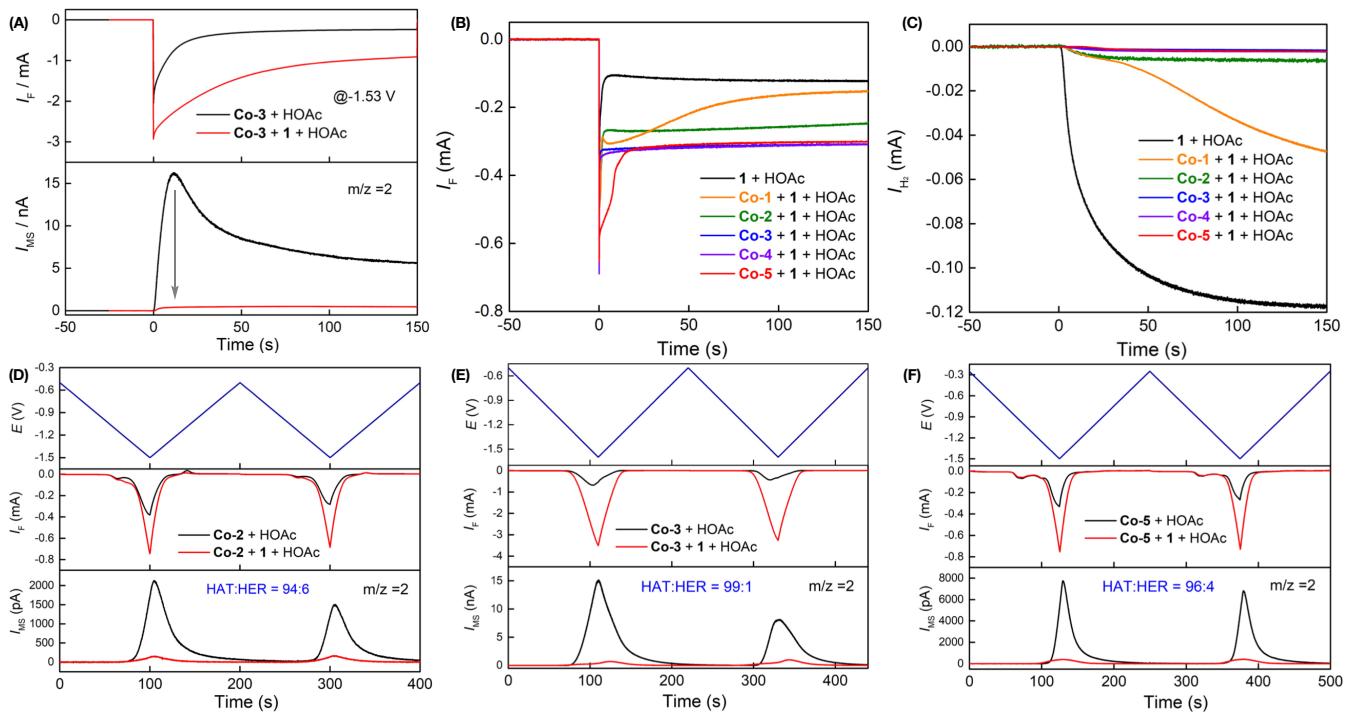

Scheme 2. (A) Mechanism for HAT vs. HER and simulated reaction constants. (B) Key properties of Co catalysts. (C) CVs of Co catalysts. (D-F) RDE studies of **Co-2**, **Co-3**, and **Co-5** with HOAc. (G) RDE studies of **Co-3** with HOAc and alkene **1**. (H) EPR analysis of **Co-5**.

(A) Mechanism for HAT vs. HER

Step, constant	Value (1 + Co-3)
E1, E_1	-1.45 V
C1, k_1	75 M ⁻¹ ·s ⁻¹
Eq1, K	100 M ⁻¹
E2, E_2	-1.30 V
C2, k_2	870 M ⁻¹ ·s ⁻¹
C3, k_3	3000 M ⁻¹ ·s ⁻¹
HER, k_4,homo	275 M ⁻¹ ·s ⁻¹
HER, k_4,het	6 M ⁻¹ ·s ⁻¹


(B)

[Co]	X	\square	E_1 (V)	k_1 (M ⁻¹ ·s ⁻¹)
Co-1	CN	+0.66	-1.05	5
Co-2	CF ₃	+0.54	-1.10	7
Co-3	^t Bu	-0.20	-1.45	75
Co-4	OMe	-0.27	-1.46	400
Co-5	NO ₂	+0.78 (-0.34)*	-0.95 (-1.47)†	N/D


*Value in parenthesis is the \square value for -NOH group.

†Value after reduction of the catalyst.

The HAT activity of reductively generated Co-H was further studied using DEMS, which provides operando measurements of electrogenerated volatile products.³¹ We measured the Faradaic current while monitoring H₂ formation in real time during electrolysis. When a solution of HOAc in DMA was electrolyzed, H₂ production was observed, and as expected, the rate of HER was further augmented when **Co-3** was present. Interestingly, when alkene **1** was added, the Faradaic current increased but the HER was nearly completely suppressed (Figure 1A). This result again shows that electrochemically generated Co^{III}-H preferentially reacts with the alkene.³² Notably, alkanes were detected by mass spectrometer when volatile alkenes were used, providing direct evidence for alkene hydrogenation. We observed a dependence of the HAT vs. HER selectivity on the degree of substitution of the alkene (see SI), which is consistent with reported sensitivity of Co^{III}-H to steric profile of the substrate.^{14c, 12b}

We employed DEMS to further evaluate the suitability of various Co catalysts in hydrofunctionalization reactions (Figure 1B-C). At a constant cell voltage of 1.0 V, **Co-3**, **Co-4**, and **Co-5** showed the highest steady state Faradaic current (i.e., HAT + HER current) and minimal HER current, and are thus predicted to be efficient catalysts. Notably, we observed a spike of high current in the first 10 s of electrolysis of **Co-5**, which likely corresponds to initial nitro reduction before reaching a steady current. In contrast, electron-deficient **Co-1** and **Co-2** displayed lower Faradaic current and poorer HAT vs. HER selectivity. We carried out additional DEMS experiments by sweeping the working electrode potential at 10 mV/s and obtained consistent results (Figure 1D-F).

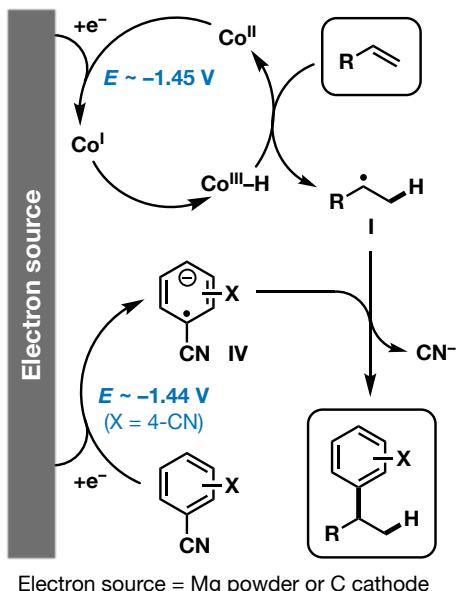
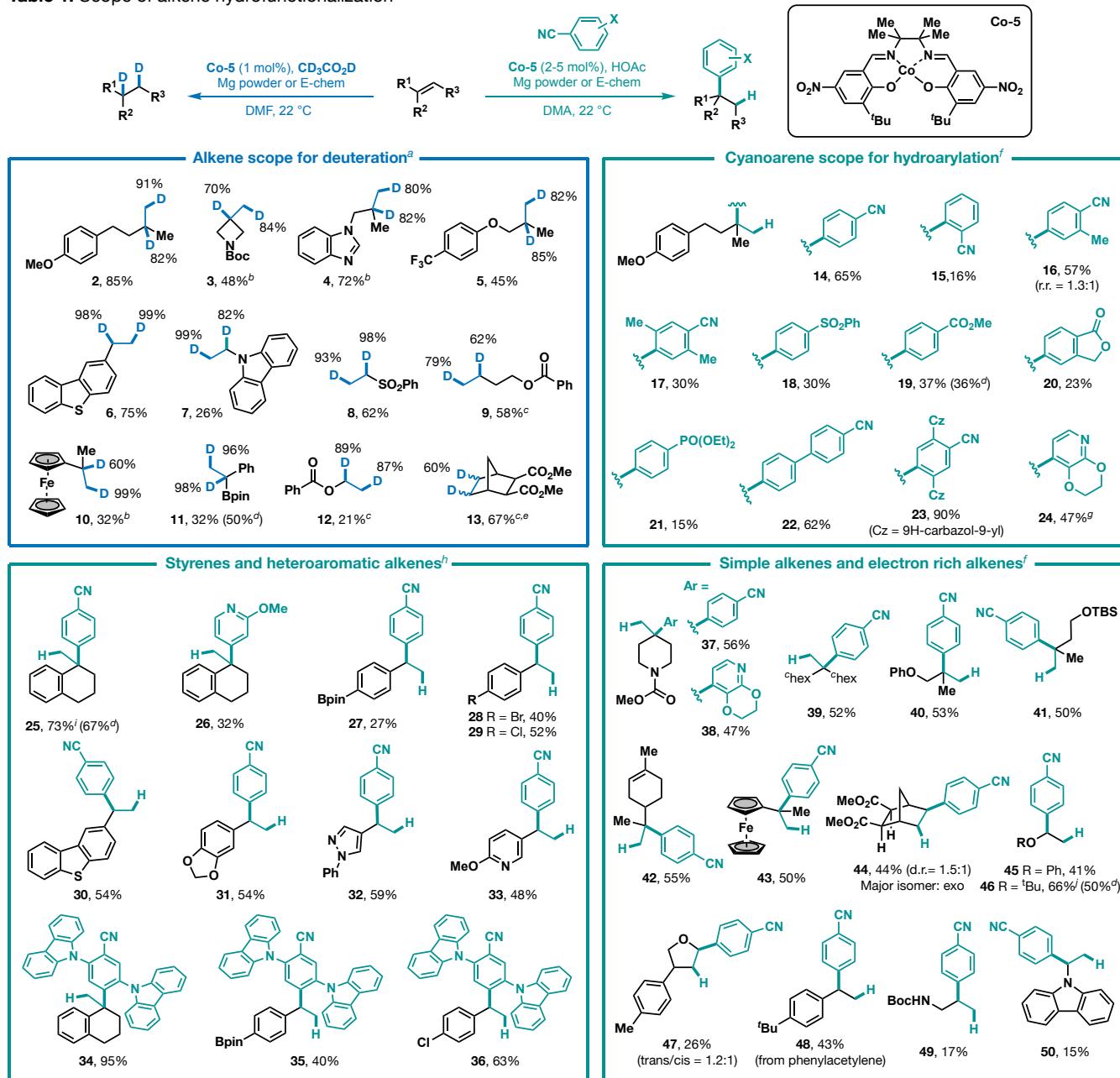


Figure 1. (A) DEMS studies of **Co-3** under controlled potential of -1.53 V vs Ag/AgCl. Comparison of Faradaic current (B) and hydrogen current (C) for various Co catalysts under constant cell voltage = 1.0 V. Comparison of HER and HAT selectivity for **Co-2** (D), **Co-3** (E) and **Co-5** (F) under sweeping potential.

The suite of analytical data provided the foundation for the development of alkene hydrofunctionalization via the reductive generation of Co-H. We first developed the deuteration of alkenes with readily available acetic acid- d_4 as the deuterium source and Mg as the terminal reductant (Table 1). Consistent with RDE and DEMS data, electron-rich catalysts gave superior efficiency with **Co-5** (presumably its reduced form) being the optimal. A series of unactivated and electronically activated alkenes were converted to corresponding products in generally good yields with high deuterium incorporation. As predicted by DEMS analysis, internal olefins are challenging substrates due to steric congestion. This procedure is more practical than canonical oxidatively initiated methods that would require elusive deuteriosilanes or other deuterides.

This initial success prompted us to develop a new reaction with higher complexity. The ability to reductively generate Co^{III}-H in a synthetic context allows us to couple it with radical reactivities that are either unique to reductive chemistry or incompatible with previous hydride-based methods, thereby further expanding the scope of Co HAT chemistry. For example, we hypothesized that C-centered radical (**I**) formed upon HAT can be intercepted by a persistent radical such as reductively generated dicyanobenzene (DCB) radical anion (**IV**, X = CN; Scheme 3). The resultant anionic intermediate will undergo cyanide elimination to give an overall hydroarylation product. We note that alkene hydroarylation has previously been achieved using a dual Co-H/Ni catalytic strategy,³³ but that our reaction provides a distinct bond disconnection using cyanoarenes as coupling partners without needing a second catalyst.

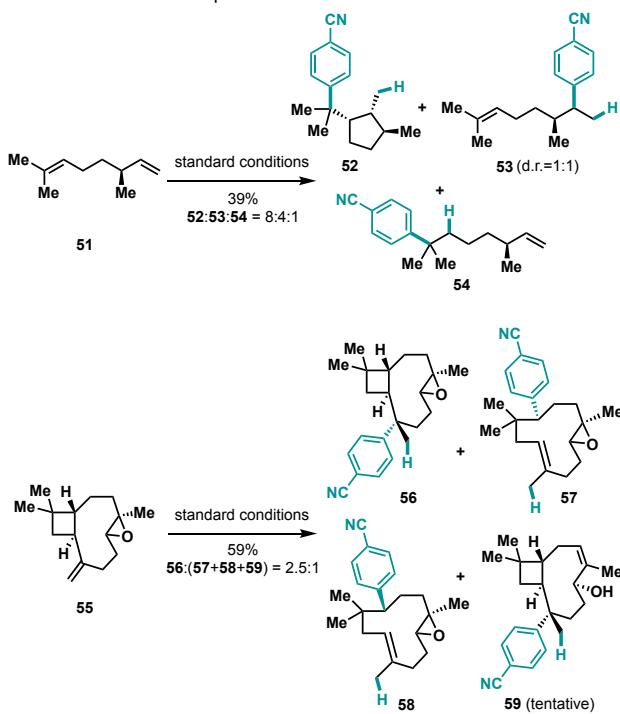

Scheme 3. Reaction design for hydroarylation of alkenes

Electron source = Mg powder or C cathode

Various cyanoarenes bearing sulfone, ester, lactone, and phosphonate groups were transformed into the corresponding products in moderate to good yields. Carbazole-substituted dicyanobenzene afforded desired products (**23**, **34**–**36**) in excellent yield, which provides a new way to functionalize this class of photoactive molecules.³⁴ Importantly, cyanopyridines can also participate in the hydroarylation with different types of alkenes (**24**, **26**, **38**).³⁵

Table 1. Scope of alkene hydrofunctionalization

^aAlkene (0.2 mmol, 1 equiv), Mg powder (5 equiv), acetic acid-*d*4 (8.8 equiv), **Co-5** (1 mol%), DMF (0.1 M in respect to alkene). The deuterium incorporation was determined by ¹H NMR and ²H NMR. ^bMg powder (10 equiv), acetic acid-*d*4 (8.8 equiv), **Co-5** (2 mol%). ^cMg powder (10 equiv), acetic acid-*d*4 (8.8 equiv), **Co-5** (5 mol%). ^dUsing electrochemical condition, see SI for details. ^eTwo different types of D were observed, see SI for stereochemistry assignment. ^fAlkene (0.5 mmol, 1 equiv), cyanoarene (2 equiv), Mg powder (5 equiv), HOAc (22.0 equiv), **Co-5** (5 mol%), DMA (0.1 M in respect to alkene). ^gStructurally similar **s39** was used as alkene, see SI. ^hAlkene (0.5 mmol, 1 equiv), 1,4-dicyanoarene (1.5 equiv), Mg powder (5 equiv), HOAc (8.8 equiv), **Co-5** (2 mol%), DMA (0.1 M in respect to alkene). ⁱUsing DMF:MeCN (9:1) instead of DMA. ^j1,4-Dicyanobenzene was used as the limiting reagent.


Various substituted styrenes (**25–29**, **34–36**) and heteroaromatic alkenes (**30–33**) proved to be viable substrates. Notably, functional groups such as aryl halides (**28**, **29**, **36**) and Bpin (**27**, **35**) were compatible in the reaction, which may cause catalyst promiscuity in transition-metal-catalyzed systems. 1,1-disubstituted alkenes (**37–43**) were successfully transformed to hydroarylated products featuring quaternary carbon centers. Limonene (**42**) was exclusively functionalized at the terminal alkene over the internal C=C. A norbornene analogue (**44**), vinyl ether derivatives (**45–47**) and phenylacetylene (**48**) were all converted to

corresponding products, the latter of which underwent hydrogenation-hydroarylation to provide a saturated product. Finally, *N*-Boc allylamine (**49**) and vinylcarbazole (**50**) were also suitable substrates albeit giving diminished yields.

Finally, we demonstrated both deuteration and hydroarylation reactions using electrochemistry, providing comparable and sometimes higher efficiency (e.g., **11**, **19**, **25**, **46**, see SI for details). Further study of this electrochemical system will lead to improved procedures that are amenable to practical synthesis at scale.²⁴ We then surveyed substrates that provided additional mechanistic insights (Scheme 4).

With citronellene (**51**), the overall selectivity between the trisubstituted alkene and terminal alkene is about 1:12, which is consistent with sensitivity of Co-H to the sterics of the alkene. Radical cyclization (**52**) was observed as the major product as a single diastereomer, which indicates that the rate of arylation via radical-radical anion cross-coupling is smaller than but comparable to that of the 5-*exo*-trig radical clock ($k \sim 3 \times 10^4 \text{ s}^{-1}$ to 10^5 s^{-1}).^{36a} In the case of (−)-caryophyllene oxide (**55**), direct hydroarylated product (**56**) and ring-opened products (**57** and **58**)³⁷ were obtained in a ratio of 2.5:1, which shows that the arylation is faster than radical-triggered ring opening of cyclobutane ($k \sim 4 \times 10^3 \text{ s}^{-1}$).^{29c,36a} These results are consistent with a proposed radical mechanism and provide an estimation of the rate constant for C–C bond formation to be $k_{\text{obs}} = k[\text{DCB}^{\cdot}] \sim 10^4 \text{ M}^{-1} \cdot \text{s}^{-1}$.^{36b,c}

Scheme 4. Mechanistic probe substrates

In conclusion, we developed a reductive strategy for the generation of Co-H species from readily available acetic acid and demonstrated its application in the deuteration and hydroarylation of alkenes. The reaction development was guided by systematic spectroscopic and electroanalytical investigations, which provided qualitative and quantitative information about the formation, identity, and reactivity of Co-H. We will continue to explore this catalytic strategy in other synthetically useful reaction systems.

ASSOCIATED CONTENT

Supporting Information. This material is available free of charge via the Internet at <http://pubs.acs.org>.
Experimental procedures and characterization data

AUTHOR INFORMATION

Corresponding Author

Héctor D. Abruña – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0002-3948-356X; Email: hda1@cornell.edu

Song Lin – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States; orcid.org/0000-0002-8880-6476; Email: songlin@cornell.edu

Authors

Xiangyu Wu – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0003-1169-1997

Cara N. Gannett – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States;

Jinjian Liu – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States;

Rui Zeng – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0002-7577-767X

Luiz F. T. Novaes – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States; orcid.org/0000-0003-1209-2865

Hongsen Wang – Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States;

Author Contributions

‡C.N.G., J.L., R.Z. contributed equally to this work and were listed in an alphabetical order by last name.

Notes

Any additional relevant notes should be placed here.

ACKNOWLEDGMENT

This work was supported by the NSF (CHE-2055451 to S.L. and CHE-2002158 to H.D.A.). This study made use of the Cornell University NMR facility supported by the National Science Foundation (CHE-1531632). We thank Dr. Ivan Keresztes for NMR data collection and analysis. We thank Dr. Alex L. Lai for EPR data collection and analysis.

REFERENCES

1. (a) Tarasov, B. P.; Fursikov, P. V.; Volodin, A. A.; Bocharnikov, M. S.; Shimkus, Y. Y.; Kashin, A. M.; Yartys, V. A.; Chidziva, S.; Pasupathi, S.; Lototskyy, M. V. Metal hydride hydrogen storage and compression systems for energy storage technologies. *Int. J. Hydrogen Energy* **2021**, *46*, 13647–13657. (b) Møller, K. T.; Sheppard, D.; Ravnsbæk, D. B.; Buckley, C. E.; Akiba, E.; Li, H. W.; Jensen, T. R. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage. *Energies* **2017**, *10*, 1645. (c) Sheppard, D. A.; Paskevicius, M.; Humphries, T. D.; Felderhoff, M.; Capurso, G.; Bellosta von Colbe, J.; Dornheim, M.; Klassen, T.; Ward, P. A.; Teprovich, J. A.; Corgnale, C.; Zidan, R.; Grant, D. M.; Buckley, C. E. Metal hydrides for concentrating solar thermal power energy storage. *Appl. Phys. A Mater. Sci. Process.* **2016**, *122*, 1–15.
2. (a) Liu, Y.; Pan, H. Chapter 13-Hydrogen Storage Materials; *New and Future Developments in Catalysis*; Elsevier B.V., **2013**, 377–405. (b) Humphries, T. D.; Sheppard, D. A.; Buckley, C. E. Recent advances in the 18-electron complex transition metal hydrides of Ni, Fe, Co and Ru. *Coord. Chem. Rev.* **2017**, *342*, 19–33.
3. (a) Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides. *Chem. Rev.* **2016**, *116*, 8693–8749. (b) Skander, M.; Humbert, N.; Collot, J.; Gradiaru, J.; Klein, G.; Loosli, A.; Sauser, J.; Zocchi, A.; Gilardoni, F.; Ward, T.R. Artificial Metalloenzymes: (Strept)avidin as Host for Enantioselective Hydrogenation by Achiral Biotinylated Rhodium-Diphosphine Complexes. *J. Am. Chem. Soc.* **2004**, *126*, 14411–14418. (c) Ulloa, O. A.; Huynh, M. T.; Richers, C. P.; Bertke, J. A.; Nilges, M. J.; Hammes-Schiffer, S.; Rauchfuss, T. B. Mechanism of H₂ Production by Models for the [NiFe]-Hydrogenases: Role of Reduced Hydrides. *J. Am. Chem. Soc.* **2016**, *138*, 9234–9245. (d) Ji, P.; Park, J.; Gu, Y.; Clark, D. S.; Hartwig, J. F. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. *Nat. Chem.* **2021**, *13*, 312–318.
4. Norton, J.R.; Sowa, J. Introduction: metal hydrides. *Chem. Rev.* **2016**, *116*, 8315–8317. And other review articles in this special issue.
5. (a) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. *Chem. Rev.* **2016**, *116*, 8912–9000. (b) Maity, A.; Teets, T. S. Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes. *Chem. Rev.* **2016**, *116*, 8873–8911. (c) Larionov, E.; Li, H.; Mazet, C. Well-defined transition metal hydrides in catalytic isomerizations. *Chem. Commun.* **2014**, *50*, 9816–9826. (d) Chen, J.; Guo, J.; Lu, Z. Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis. *Chinese J. Chem.* **2018**, *36*, 1075–1109.
6. (a) Zweig, J. E.; Kim, D. E.; Newhouse, T. R. Methods Utilizing First-Row Transition Metals in Natural Product Total Synthesis. *Chem. Rev.* **2017**, *117*, 11680–11752. (b) Wu, J.; Ma, Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. *Org. Chem. Front.* **2021**, *8*, 7050–7076.
7. (a) Shevick, S. L.; Wilson, C. V.; Kotesova, S.; Kim, D.; Holland, P. L.; Shenvi, R. A. Catalytic hydrogen atom transfer to alkenes: A roadmap for metal hydrides and radicals. *Chem. Sci.* **2020**, *11*, 12401–12422. (b) Green, S. A.; Crossley, S. W. M.; Matos, J. L. M.; Vásquez-Céspedes, S.; Shevick, S. L.; Shenvi, R. A. The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer. *Acc. Chem. Res.* **2018**, *51*, 2628–2640.
8. (a) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C. M.; Baran, P. S. Functionalized olefin cross-coupling to construct carbon–carbon bonds. *Nature* **2014**, *516*, 343–348. (b) Lo, J. C.; Kim, D.; Pan, C. M.; Edwards, J. T.; Yabe, Y.; Gui, J.; Qin, T.; Gutiérrez, S.; Giacoboni, J.; Smith, M. W.; Holland, P. L.; Baran, P. S. Fe-Catalyzed C–C Bond Construction from Olefins via Radicals. *J. Am. Chem. Soc.* **2017**, *139*, 2484–2503. (c) Barker, T. J.; Boger, D. L. Fe(III)/NaBH₄-mediated free radical hydrofluorination of unactivated alkenes. *J. Am. Chem. Soc.* **2012**, *134* (33), 13588–13591. (d) Gui, J.; Pan, C. M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B. J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.; Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Practical olefin hydroamination with nitroarenes. *Science* **2015**, *348*, 886–891.

9. (a) Berndt, M. C.; de Jersey, J.; Zerner, B. Hydrogenation of a-Methylstyrene by Hydridopentacarbonylmanganese(I). Evidence for a Free-Radical Mechanism. *J. Am. Chem. Soc.* **1977**, *99*, 8335–8337. (b) Waser, J.; Carreira, E. M. Catalytic hydrohydrazination of a wide range of alkenes with a simple Mn complex. *Angew. Chem., Int. Ed.* **2004**, *43*, 4099–4102. (c) Obradors, C.; Martinez, R. M.; Shenvi, R. A. Ph(i-PrO)SiH₂: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. *J. Am. Chem. Soc.* **2016**, *138* (14), 4962–4971.

10. (a) Shigehisa, H.; Aoki, T.; Yamaguchi, S.; Shimizu, N.; Hiroya, K. Hydroalkoxylation of unactivated olefins with carbon radicals and carbocation species as key intermediates. *J. Am. Chem. Soc.* **2013**, *135*, 10306–10309. (b) Waser, J.; Carreira, E. M. Convenient Synthesis of Alkylhydrazides by the Cobalt-Catalyzed Hydrohydrazination Reaction of Olefins and Azodicarboxylates. *J. Am. Chem. Soc.* **2004**, *126*, 5676–5677. (c) Gaspar, B.; Carreira, E. M. Catalytic hydrochlorination of unactivated olefins with para-toluenesulfonyl chloride. *Angew. Chem., Int. Ed.* **2008**, *47*, 5758–5760. (d) Shigehisa, H.; Koseki, N.; Shimizu, N.; Fujisawa, M.; Niitsu, M.; Hiroya, K. Catalytic hydroamination of unactivated olefins using a Co catalyst for complex molecule synthesis. *J. Am. Chem. Soc.* **2014**, *136*, 13534–13537. (e) Song, L.; Fu, N.; Ernst, B. G.; Lee, W. H.; Frederick, M. O.; DiStasio, R. A.; Lin, S. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. *Nat. Chem.* **2020**, *12*, 747–754.

11. (a) Cassayre, J.; Winkler, T.; Pitterna, T.; Quaranta, L. Application of Mn(III)-catalysed olefin hydration reaction to the selective functionalisation of avermectin B1. *Tetrahedron Lett.* **2010**, *51*, 1706–1709. (b) Hu, X.; Maimone, T. J. Four-step synthesis of the antimalarial cardamom peroxide via an oxygen stitching strategy. *J. Am. Chem. Soc.* **2014**, *136*, 5287–5290. (c) Song, L.; Zhu, G.; Liu, Y.; Liu, B.; Qin, S. Total Synthesis of Atisane-Type Diterpenoids: Application of Diels-Alder Cycloadditions of Podocarpane-Type Unmasked ortho-Benzooquinones. *J. Am. Chem. Soc.* **2015**, *137*, 13706–13714.

12. It has been proposed that electrophilic radicals generated from stoichiometric reagents (such as Ts[•] from TsN₃) serves as the oxidant to oxidize Co(II) to Co(III). See: Waser, J.; Gaspar, B.; Nambu, H.; Carreira, E. M. Hydrazines and Azides via the Metal-Catalyzed Hydrohydrazination and Hydroazidation of Olefins. *J. Am. Chem. Soc.* **2006**, *128*, 11693–11712.

13. Use alcohol as hydride source: (a) Mukaiyama, T.; Isayama, S.; Inoki, S.; Kato, K.; Yamada, T.; Takai, T. Oxidation-reduction hydration of olefins with molecular oxygen and 2-propanol catalyzed by bis(acetylacetone)cobalt(II). *Chem. Lett.* **1989**, *18*, 449–452. (b) Inoki, S.; Kato, K.; Takai, T.; Isayama, S.; Yamada, T.; Mukaiyama, T. Bis(trifluoroacetylacetone)cobalt(II) Catalyzed Oxidation-Reduction Hydration of Olefins Selective Formation of Alcohols from Olefins. *Chem. Lett.* **1989**, *18*, 515–518.

14. (a) Li, G.; Han, A.; Pulling, M.E.; Estes, D.P.; Norton, J.R. Evidence for formation of a Co–H bond from (H₂O)₂Co (dmgBF₂)₂ under H₂: application to radical cyclizations. *J. Am. Chem. Soc.* **2012**, *134*, 14662–14665. (b) Estes, D.P.; Grills, D.C.; Norton, J.R. The reaction of cobaloximes with hydrogen: products and thermodynamics. *J. Am. Chem. Soc.* **2014**, *136*, 17362–17365. (c) Li, G.; Kuo, J.L.; Han, A.; Abuyuan, J.M.; Young, L.C.; Norton, J.R.; Palmer, J.H. Radical Isomerization and Cycloisomerization Initiated by H[•] Transfer. *J. Am. Chem. Soc.* **2016**, *138*, 7698–7704.

15. In the context of overall redox neutral transformations (typically isomerization or polymerization), the generation of Co(III)-H may be achieved via HAT of an alkyl radical with Co(II), which thus does not require a stoichiometric oxidant. For examples, see: (a) Crossley, S. W. M.; Barabé, F.; Shenvi, R. A. Simple, Chemoselective, Catalytic Olefin Isomerization. *J. Am. Chem. Soc.* **2014**, *136*, 16788–16791. (b) Gridnev, A. A.; Ittel, S. D.; Wayland, B. B.; Fryd, M. Isotopic Investigation of Hydrogen Transfer Related to Cobalt-Catalyzed Free-Radical Chain Transfer. *Organometallics* **1996**, *15*, 5116–5126. (c) Ye, K.-Y.; McCallum, T.; Lin, S. Bimetallic Radical Redox-Relay Catalysis for the Isomerization of Epoxides to Allylic Alcohols. *J. Am. Chem. Soc.* **2019**, *141*, 9548–9554.

16. (a) Artero, V.; Chavarot-Kerlidou, M.; Fontecave, M. Splitting water with cobalt. *Angew. Chem., Int. Ed.* **2011**, *50*, 7238–7266. (b) McKone, J. R.; Marinescu, S. C.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Earth-abundant hydrogen evolution electrocatalysts. *Chem. Sci.* **2014**, *5* (3), 865–878. (c) Du, P.; Eisenberg, R. Catalysts made of earth-abundant elements (Co, Ni, Fe) for water splitting: Recent progress and future challenges. *Energy Environ. Sci.* **2012**, *5*, 6012–6021. (d) Thoi, S. V.; Sun, Y.; Long, J. R.; Chang, C. J. Complexes of earth-abundant metals for catalytic electrochemical hydrogen generation under aqueous conditions. *Chem. Soc. Rev.* **2013**, *42*, 2388–2400.

17. Dempsey, J. L.; Brunschwig, B. S.; Winkler, J. R.; Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. *Acc. Chem. Res.* **2009**, *42*, 1995–2004.

18. (a) Artero, V.; Fontecave, M. Some general principles for designing electrocatalysts with hydrogenase activity. *Coord. Chem. Rev.* **2005**, *249*, 1518–1535. (b) Hu, X.; Brunschwig, B. S.; Peters, J. C. Electrocatalytic hydrogen evolution at low overpotentials by cobalt macrocyclic glyoxime and tetraimine complexes. *J. Am. Chem. Soc.* **2007**, *129*, 8988–8998. (c) Baffert, C.; Artero, V.; Fontecave, M. Cobaloximes as functional models for hydrogenases.

2. Proton electroreduction catalyzed by difluoroborylbis(dimethylglyoximato)cobalt(II) complexes in organic media. *Inorg. Chem.* **2007**, *46*, 1817–1824.

19. Fischli, von A.; Suss, D. 7. Cob(I)alamin als Katalysator. 3. Mitteilung [1]. Untersuchungen in Richtung einer enantioselektiven Reduktion α,β -ungesättigter Ester. *Helv. Chimica Acta* **1979**, *62*, 48–58.

20. (a) Shey, J.; McGinley, C. M.; McCauley, K. M.; Dearth, A. S.; Young, B. T.; Van der Donk, W. A. Mechanistic investigation of a novel vitamin B₁₂-catalyzed carbon–carbon bond forming reaction, the reductive dimerization of arylalkenes. *J. Org. Chem.* **2002**, *67*, 837–846. (b) McGinley, C. M.; Relyea, H. A.; Van Der Donk, W. A. Vitamin B₁₂ catalyzed radical cyclizations of arylalkenes. *Synlett.* **2006**, *2*, 211–214.

21. Shimakoshi, H.; Luo, Z.; Tomita, K.; Hisaeda, Y. Cathodic reductive couplings and hydrogenations of alkenes and alkynes catalyzed by the B₁₂ model complex. *J. Organomet. Chem.* **2017**, *839*, 71–77.

22. van der Puyl, V.; McCourt, R. O.; Shenvi, R. A. Cobalt-catalyzed alkene hydrogenation by reductive turnover. *Tetrahedron Lett.* **2021**, *72*, 153047.

23. (a) Kamei, Y.; Seino, Y.; Yamaguchi, Y.; Yoshino, T.; Maeda, S.; Kojima, M.; Matsunaga, S. Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. *Nat. Commun.* **2021**, *12*, 966. (b) Yamaguchi, Y.; Seino, Y.; Suzuki, A.; Kamei, Y.; Yoshino, T.; Kojima, M.; Matsunaga, S. Intramolecular Hydrogen Atom Transfer Hydroarylation of Alkenes toward δ -Lactams Using Cobalt-Photoredox Dual Catalysis. *Org. Lett.* **2022**, *24*, 2441–2445.

24. Gnaim, S.; Bauer, A.; Zhang, H.-J.; Chen, L.; Gannett, C.; Malapit, C. A.; Hill, D. E.; Vogt, D.; Tang, T.; Daley, R. A.; Hao, W.; Zeng, R.; Quertenmont, M.; Beck, W. D.; Kandahari, E.; Vantourout, J. C.; Echeverria, P.-G.; Abruna, H. D.; Blackmond, D. G.; Minteer, S. D.; Reisman, S. E.; Sigman, M. S.; Baran, P. S. Cobalt-electrocatalytic HAT for functionalization of unsaturated C–C bonds. *Nature* **2022**, *605*, 687–695.

25. For a review on vitamin B₁₂ catalyzed reactions see: (a) Giedy, M.; Goliszewska, K.; Gryko, D. Vitamin B₁₂ catalysed reactions. *Chem. Soc. Rev.* **2015**, *44*, 3391–3404. (b) Wdowik, T.; Gryko, D. C–C Bond Forming Reactions Enabled by Vitamin B₁₂-Opportunities and Challenges. *ACS Catal.* **2022**, *12*, 6517–6531.

26. For examples of cyclic voltammetry data of analogous Co(salen) complexes used in synthetic contexts, see: (a) Miranda, J.A.; Wade, C.J.; Little, R.D. Indirect electroreductive cyclization and electrohydrocyclization using catalytic reduced nickel(II) salen. *J. Org. Chem.* **2005**, *70*, 8017–8026. (b) Cai, C.Y.; Wu, Z.J.; Liu, J.Y.; Chen, M.; Song, J.; Xu, H.C. Tailored cobalt-salen complexes enable electrocatalytic intramolecular allylic C–H functionalizations. *Nat. Commun.* **2021**, *12*, 3745.

27. Reduction potential of Mg ($E = -2.60$ V vs SCE) is sufficient to reduce **Co-5**. See: Lu, L.; Siu, J. C.; Lai, Y.; Lin, S. An Electroreductive Approach to Radical Silylation via the Activation of Strong Si–Cl Bond. *J. Am. Chem. Soc.* **2020**, *142*, 21272–21278.

28. EPR for Co (II) salen complex: Chiang, L.; Allan, L. E. N.; Alcantara, J.; Wang, M. C. P.; Storr, T.; Shaver, M. P. Tuning ligand electronics and peripheral substitution on cobalt salen complexes: Structure and polymerization activity. *Dalt. Trans.* **2014**, *43*, 4295–4304.

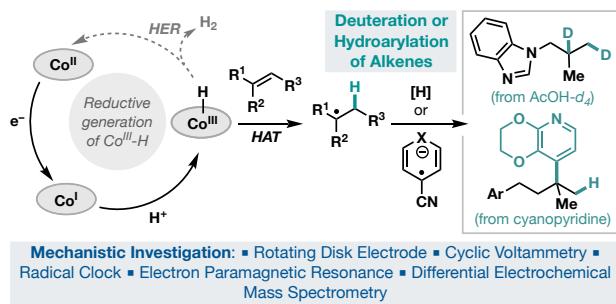
29. The equilibrium constant is estimated to be 100 M^{-1} , giving $[\text{II}]/[\text{I}] = 100^*[\text{Co}^{\text{II}}]$. Given $[\text{Co}^{\text{II}}] \leq 0.001 \text{ M}$ (initial concentration), $[\text{I}]/[\text{II}] \geq 10$. This ratio is likely an underestimation because $[\text{Co}^{\text{II}}]$ should be smaller than its initial concentration at a negative potential. This is consistent with literature that tertiary Co^{III}-alkyl adducts can form but favor dissociation to the radical and Co^{II} when a salen-type ligand is employed. However, the stability of Co-alkyl complexes may vary depending on ligand and alkyl structure. For dissociation of Co^{III}-alkyl adducts see: (a) Feder, H. M.; Halpern, J. Mechanism of the Cobalt Carbonyl-Catalyzed Homogeneous Hydrogenation of Aromatic Hydrocarbons. *J. Am. Chem. Soc.* **1975**, *97*, 7186–7188. And the isoprene example in (b) Halpern, J.; Wong, L.-Y. Kinetics of the Addition of Hydridopentacyanocobaltate(III) to some α,β -Unsaturated Compounds. *J. Am. Chem. Soc.* **1968**, *90*, 6665–6669. (c) Puxeddu, A.; Costa, G.; Marsich, N. Reaction of electrogenerated $[\text{Co}^{\text{I}}(\text{salen})]$ with t-butyl bromide and t-butyl chloride. *J. Chem. Soc. Dalt. Trans.* **1980**, 1489–1493. For examples of stable Co^{III}-alkyl adducts, see: (d) Lexa, D.; Savéant, J. M.; Soufflet, J. P. Chemical catalysis of the electrochemical reduction of alkyl halides: Comparison between cobalt-tetraphenyl porphyrin and vitamin B12 derivatives. *J. Electroanal. Chem.* **1979**, *100*, 159–172. (e) Ram, M. S.; Riordan, C. G.; Yap, G. P. A.; Liable-Sands, L.; Rheingold, A. L.; Marchaj, A.; Norton, J. R. Kinetics and Mechanism of Alkyl Transfer from Organocobalt(III) to Nickel(I): Implications for the Synthesis of Acetyl Coenzyme A by CO Dehydrogenase. *J. Am. Chem. Soc.* **1997**, *119*, 1648–1655.

30. For a study on the electrochemical reduction of 1° Co(III)-alkyl complexes to Co(II)-alkyl complexes, see: (a) Pletcher, D.; Thompson, H. Microelectrode study of the catalysis of alkyl halide reduction by Co(II)(salen). *J. Electroanal. Chem.* **1999**, *464*, 168–175. For studies on the electrochemical reduction of Co(III)-benzyl complexes to Co(II)-benzyl complexes, which serves effectively as a masked benzyl anion, see: (b) Fry, A. J.; Sirisoma, U. N. Electrocatalytic reduction of benzal chloride by cobalt(I)(salen). A mechanistic investigation. *J. Org. Chem.* **1993**, *58*, 4919–4924. (c) Costa, G.; Puxeddu, A.; Reisenhofer, E. Redox properties of cobalt chelates with delocalized electronic structure: organometallic derivatives. *J. Chem. Soc., Dalton Trans.* **1972**, 1519–1523.

31. (a) Zeng, R.; Yang, Y.; Shen, T.; Wang, H.; Xiong, Y.; Zhu, J.; Wang, D.; Abruña, H. D. Methanol Oxidation Using Ternary Ordered Intermetallic Electrocatalysts: A DEMS Study. *ACS Catal.* **2020**, *10*, 770–776.; (b) Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X.; Krumov, M.; Huang, X.; Xu, W.; Wang, H.; DiSalvo, F. J.; Brock, J. D.; Muller, D. A.; Abruña, H. D. Operando Methods in Electrocatalysis. *ACS Catal.* **2021**, *11*, 1136–1178.

32. Simulated kinetic data from the RDE voltammetry data suggest rate constant of HAT is 3 times faster than HER ($870 \text{ M}^{-1} \cdot \text{s}^{-1}$ vs. $275 \text{ M}^{-1} \cdot \text{s}^{-1}$). Considering low concentration of Co^{III}-H species compared to alkene, homolytic generation of H₂ is expected to be much slower than HAT to alkene. For a relevant discussion on competitive HAT vs. HER reactivity, see: Touney, E.; Cooper, R.; Bredenkamp, S.; George, D.; Pronin, S. Catalytic Radical-Polar Crossover Ritter Reaction. 2021-04-20. *ChemRxiv*. DOI:10.26434/chemrxiv.14450580.v1. (accessed 2022-08-31).

33. (a) Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. Branch-Selective Hydroarylation: Iodoarene-Olefin Cross-Coupling. *J. Am. Chem. Soc.* **2016**, *138*, 12779–12782. (b) Shevick, S. L.; Obradors, C.; Shenvi, R. A. Mechanistic Interrogation of Co/Ni-Dual Catalyzed Hydroarylation. *J. Am. Chem. Soc.* **2018**, *140*, 12056–12068.


34. Tlili, A.; Lakhdar, S. Acridinium Salts and Cyanoarenes as Powerful Photocatalysts: Opportunities in Organic Synthesis. *Angew. Chem. Int. Ed.* **2021**, *60*, 19526–19549.

35. (a) Ma, X.; Herzon, S.B. Intermolecular hydropyridylation of unactivated alkenes. *J. Am. Chem. Soc.* **2016**, *138*, 8718–8721. (b) Bordi, S.; Starr, J.T. Hydropyridylation of olefins by intramolecular Minisci reaction. *Org. Lett.* **2017**, *19*, 2290–2293.

36. (a) Newcomb, M. Competition Methods and Scales for Alkyl Radical Reaction Kinetics. *Tetrahedron* **1993**, *49*, 1151–1176. (b) Stevenson, B. G.; Spielvogel, E. H.; Loiaconi, E. A.; Wambua, V. M.; Nakhamiyayev, R. V.; Swierk, J. R. Mechanistic Investigations of an α -Aminoarylation Photoredox Reaction. *J. Am. Chem. Soc.* **2021**, *143*, 8878–8885. (c) Spielvogel, E. H.; Stevenson, B. G.; Stringer, M. J.; Hu, Y.; Fredin, L. A.; Swierk, J. R. Insights into the Mechanism of an Allylic Arylation Reaction via Photoredox-Coupled Hydrogen Atom Transfer. *J. Org. Chem.* **2022**, *87*, 223–230.

37. The relative stereochemistry of **57** and **58** were assigned based on computed conformer of the 11-membered ring and ROESY NMR. Due to low concentration of **59**, the absolute stereochemistry was speculative.

Insert Table of Contents artwork here

