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ABSTRACT: Hydrogen-atom transfer mediated by earth-abundant transition-metal hydrides (M-Hs) has emerged as a
powerful tool in organic synthesis. Current methods to generate M-Hs most frequently rely on oxidatively initiated hydride
transfer. Herein, we report a reductive approach to generate Co-H, which allows for canonical hydrogen evolution reactions
to be intercepted by hydrogen-atom transfer to an alkene. Electroanalytical and spectroscopic studies provided mechanistic
insights into the formation and reactivity of Co-H, which enabled the development of two new alkene hydrofunctionalization

reactions.

Transition-metal hydrides (M-Hs) are a class of versatile
organometallic intermediates that have found broad
applications in energy storage,! materials chemistry,? and
enzymatic catalysis.>* In recent years, M-Hs have also seen
increasing use in organic synthesis and catalysis, offering
new bond disconnection strategies for accessing complex
targets.>6 In particular, M-Hs based on earth-abundant first-
row transition metals benefit from the relatively weak M-H
bond and often display high reactivities with organic
functional groups.” For example, transition metals such as
Fe,2 Mn,° and Co!® have been shown to form M-Hs with
predominantly acidic characters, which can engage in a
variety of hydrogen atom transfer (HAT) reactions with
alkenes. Importantly, the radical nature of the HAT
mechanism renders such transformations compatible with
a broad scope of functional groups, further augmenting
their synthetic utility.!!

In contrast to the increasing volume of reactions enabled
by M-Hs, methods to generate them remain limited. Using
Co'"-H as an example, its formation generally relies on the
use of a pair of a stoichiometric single-electron oxidant and
a hydride-donor reductant. The former oxidizes a
precatalyst (typically Co!) to a high valent Co!' species
whereas the latter delivers a H- (e.g., via transmetallation)
to generate the active Co-H (Scheme 1A). Common
oxidants include dioxygen, peroxides, and N-
fluoropyridinium salts,’? and common hydride sources
include hydrosilanes, borohydrides, and isopropanol.13
Having both oxidants and reductants could potentially
complicate the reaction systems and hamper their adoption
in process-scale applications. As a complementary
approach, Norton showed that Co-H can be generated from
cobaloximes in the context of radical cyclizations under a
high pressure of Hz2.1 In the context of overall redox-neutral
isomerization or polymerization reactions, the generation
of Co-H has been achieved via HAT from an in-situ
generated alkyl radical to Co'’;!5 this mechanism however is

not amenable to alkene difunctionalizations that are net-
oxidative or net-reductive.

In searching for an alternative means for generating Co-
H intermediates, we were inspired by the large body of
work in the field of energy catalysis on hydrogen evolution
reactions (HERs).1¢ It has been well established that Co!'-H
intermediates can form via a sequence of cathodic
reduction and protonation in an acidic medium.'? The
incipient Co-H can then undergo either a heterolytic
pathway (via sequential reduction and protonation of Co-
H) or a homolytic pathway (via dimerization of Co-H) to
evolve Hz (Scheme 2A).18 We reasoned that this
electrochemically generated Co-H could be intercepted by
a HAT pathway, reacting with an alkene to achieve
hydrofunctionalization instead of hydrogen evolution. This
reaction design would circumvent the use of traditional
oxidants and hydride donors, leading to a potentially more
practical methodology that employs electrons and protons
as the redox equivalent and hydrogen source, respectively.
Related to this strategy, Fischli,'® van der Donk,2? and
Hisaeda?! independently reported the hydrogenation and
hydrodimerization of electron-deficient alkenes and
styrenes using vitamin Biz by means of chemical or
electrochemical reduction. Shenvi developed a simplified
system for the hydrogenation of monosubstituted alkenes
using catalytic Co(OAc)2 and HCl.22 Recently, Kojima and
Matsunaga reported a dual cobalt-photoredox approach for
the hydrogenation and intramolecular hydroarylation of
alkenes (Scheme  1B).22  Baran  demonstrated
electroreductive generation of Co-H in the context of
alkyne hydrogenation, alkene isomerization, and related
transformations.2* Nevertheless, the exploration of such
strategies in synthetic contexts remains rare beyond these
examples.2s In this work, we employed analytical and
synthetic tools to study a family of electronically distinct
Co(salen) complexes and obtained qualitative and
quantitative insights into the electroreductive generation of
Co'-H and its reaction with alkenes (Scheme 1A). This



information allowed us to establish reductive M-Hs
formation as a  general strategy for the
hydrofunctionalization of alkenes (Scheme 1C).

Scheme 1. Background and introduction
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We began our study by characterizing five Co(salen)
complexes using cyclic voltammetry (CV) and rotating disk
electrode (RDE) voltammetry techniques,2¢ which revealed
a strong dependence of the HER reactivity on the electronic
properties of the ligand (Scheme 2B-F). Cobalt complexes
bearing electron-withdrawing groups (CFs, CN) displayed
sluggish HER in the presence of HOAc, whereas
substantially faster rates were observed for catalysts with
electron-donating groups (‘Bu, OMe), showing pronounced
catalytic currents upon addition of HOAc. However, an
electron-deficient nitro complex, Co-5, broke the trend,
displaying the largest current enhancement. CV suggested
that, in this case, the nitro group was preferentially reduced
to an electron-rich substituent (likely hydroxylamino).
Indeed, upon electrolysis of Co-5 with HOAc, a new

reduction feature appeared at -1.47 V (vs Ag/AgCl) while
the original peak disappeared (see SI).

Quantitative kinetic data were obtained by simulation of
the RDE data with DigiElch, taking into consideration both
homolytic and heterolytic mechanisms for the generation of
Hz from Co-H (Scheme 2A).1° Excellent fits were obtained,
which yielded rate constants of Co'-H formation of k1 = 5
M-1.s-1 and 7 M-1:s-! for Co-1 and Co-2. In contrast, their
electron-rich counterparts Co-3 and Co-4 yielded values of
ki = 75 M-1.s7t and 400 M-1-s-1, respectively. In general,
catalysts bearing electron-donating substituents (‘Bu, OMe)
preferred the homolytic pathway for HER, whereas those
bearing electron-withdrawing substituents (CN, CF3)
predominantly underwent heterolytic protonation.
Curiously, fitting the data from Co-5 to the general HER
mechanisms proved challenging, which is consistent with
the proposed -NO2 reduction.

To compare Co-H generation via reductive and oxidative
pathways, we conducted electron paramagnetic resonance
(EPR) studies. The addition of Mg as a chemical reductant?’
to Co-5 did not lead to any noticeable change to the
characteristic EPR signals (Scheme 2H). Subsequent
introduction of HOAc resulted in disappearance of Co!
signals?® and formation of new features over a 15-minute
period. A similar set of features were also observed when
Co-5 was treated with 1-fluoro-2,4,6-trimethylpyridinium
triflate as the oxidant along with PhSiHs; conditions that are
frequently employed to generate Co-H complexes for
alkene  hydrofunctionalization. ~While we cannot
unambiguously assign these new features to specific
intermediates, these results showed that similar Co species
are generated from the reductive and oxidative pathways.

With mechanistic insights into the electroreductive Co-H
generation, we began to test the hypothesis that the HER
can be intercepted by an HAT toward alkene
hydrofunctionalization. Thus, a series of RDE and
differential electrochemical mass spectrometry (DEMS)
experiments were carried out. The addition of alkene 1 to a
solution of catalyst Co-3 and HOAc led to a current
enhancement, the magnitude of which increased with
higher concentrations of 1 (Scheme 2G). Simulations of the
voltammetry data showed excellent agreement with the
proposed reaction mechanism (Scheme 2A) wherein the
reductively generated Co'l-H (via E1, C1 steps) reacts with
the alkene via HAT to afford radical I and Co'' (C2 step). This
radical cage pair is in equilibrium with cage-collapsed
species II favoring the former (Eq1 step).?° In the absence
of a radical trapping agent, I is further reduced to generate
putative intermediate III (E2 step),’® and this latent
carbanion undergoes final protonolysis to give the
hydrogenated product (C3 step). The rate constant of the
HAT step (k2 = 870 M-1:s1) is 3 times that of the homolytic
HER (k4homo= 275 M-1:s1). We also simulated an alternative
mechanism wherein radical I undergoes HAT with another
equivalent of Co-H to complete hydrogenation but this
scenario exhibited poor consistency with the RDE data (see
SI). The kinetic preference of Co™-H for HAT over HER
provides a foundation for developing a silane-free alkene
hydrofunctionalization.



Scheme 2. (A) Mechanism for HAT vs. HER and simulated reaction constants. (B) Key properties of Co catalysts. (C) CVs of Co catalysts.
(D-F) RDE studies of Co-2, Co-3, and Co-5 with HOAc. (G) RDE studies of Co-3 with HOAc and alkene 1. (H) EPR analysis of Co-5.
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The HAT activity of reductively generated Co-H was
further studied using DEMS, which provides operando
measurements of electrogenerated volatile products.3!
We measured the Faradaic current while monitoring H>
formation in real time during electrolysis. When a solution
of HOAc in DMA was electrolyzed, H2 production was
observed, and as expected, the rate of HER was further
augmented when Co-3 was present. Interestingly, when
alkene 1 was added, the Faradaic current increased but
the HER was nearly completely suppressed (Figure 1A).
This result again shows that electrochemically generated
Co-H preferentially reacts with the alkene.32 Notably,
alkanes were detected by mass spectrometer when
volatile alkenes were used, providing direct evidence for
alkene hydrogenation. We observed a dependence of the
HAT vs. HER selectivity on the degree of substitution of the
alkene (see SI), which is consistent with reported
sensitivity of Co'l-H to steric profile of the substrate.14c 12b

We employed DEMS to further evaluate the suitability of
various Co catalysts in hydrofunctionalization reactions
(Figure 1B-C). At a constant cell voltage of 1.0 V, Co-3, Co-4,
and Co-5 showed the highest steady state Faradaic current
(i.e., HAT + HER current) and minimal HER current, and are
thus predicted to be efficient catalysts. Notably, we observed
a spike of high current in the first 10 s of electrolysis of Co-5,
which likely corresponds to initial nitro reduction before
reaching a steady current. In contrast, electron-deficient Co-
1 and Co-2 displayed lower Faradaic current and poorer HAT
vs. HER selectivity. We carried out additional DEMS
experiments by sweeping the working electrode potential at
10 mV/s and obtained consistent results (Figure 1D-F).
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Figure 1. (A) DEMS studies of Co-3 under controlled potential of -1.53 V vs Ag/AgCl. Comparison of Faradaic current (B) and hydrogen current
(C) for various Co catalysts under constant cell voltage = 1.0 V. Comparison of HER and HAT selectivity for Co-2 (D), Co-3 (E) and Co-5 (F)
under sweeping potential.

Scheme 3. Reaction design for hydroarylation of alkenes

The suite of analytical data provided the foundation for
the development of alkene hydrofunctionalization via the
reductive generation of Co-H. We first developed the
deuteration of alkenes with readily available acetic acid-ds
as the deuterium source and Mg as the terminal reductant
(Table 1). Consistent with RDE and DEMS data, electron-
rich catalysts gave superior efficiency with Co-5
(presumably its reduced form) being the optimal. A series
of unactivated and electronically activated alkenes were
converted to corresponding products in generally good
yields with high deuterium incorporation. As predicted by
DEMS analysis, internal olefins are challenging substrates
due to steric congestion. This procedure is more practical
than canonical oxidatively initiated methods that would
require elusive deuterosilanes or other deuterides.
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This initial success prompted us to develop a new
reaction with higher complexity. The ability to reductively
generate Co''-H in a synthetic context allows us to couple it
with radical reactivities that are either unique to reductive
chemistry or incompatible with previous hydride-based

methods, thereby further expanding the scope of Co HAT Various cyanoarenes bearing sulfone, ester, lactone, and
chemistry. For example, we hypothesized that C-centered phosphonate groups were transformed into the
radical (I) formed upon HAT can be intercepted by a corresponding products in moderate to good yields.
persistent radical such as reductively generated Carbazole-substituted dicyanobenzene afforded desired
dicyanobenzene (DCB) radical anion (IV, X = CN; Scheme 3). products (23, 34-36) in excellent yield, which provides a
The resultant anionic intermediate will undergo cyanide new way to functionalize this class of photoactive
elimination to give an overall hydroarylation product. We molecules.3* Importantly, cyanopyridines can also
note that alkene hydroarylation has previously been participate in the hydroarylation with different types of

achieved using a dual Co-H/Ni catalytic strategy,?3 but that alkenes (24, 26, 38).35
our reaction provides a distinct bond disconnection using

cyanoarenes as coupling partners without needing a second

catalyst.



Table 1. Scope of alkene hydrofunctionalization
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2Alkene (0.2 mmol,1 equiv), Mg powder (5 equiv), acetic acid-d4 (8.8 equiv), Co-5 (1 mol%), DMF (0.1 M in respect to alkene). The deuterium incorporation was determined by
TH NMR and 2H NMR. ®Mg powder (10 equiv), acetic acid-d4 (8.8 equiv), Co-5 (2 mol%). °Mg powder (10 equiv), acetic acid-d4 (8.8 equiv), Co-5 (5 mol%). YUsing

electrochemical condition, see Sl for details. °Two different types of D were observed,

see Sl for stereochemistry assignment. "Alkene (0.5 mmol, 1 equiv), cyanoarene (2

equiv), Mg powder (5 equiv), HOAc (22.0 equiv), Co-5 (5 mol%), DMA (0.1 M in respect to alkene). 9Structrually similar s39 was used as alkene, see Sl. hAlkene (0.5 mmol, 1
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Dicyanobenzene was used as the limiting reagent.

Various substituted styrenes (25-29, 34-36) and
heteroaromatic alkenes (30-33) proved to be viable
substrates. Notably, functional groups such as aryl halides
(28, 29, 36) and Bpin (27, 35) were compatible in the
reaction, which may cause catalyst promiscuity i
transition-metal-catalyzed systems. 1,1-disubstituted
alkenes (37-43) were successfully transformed to
hydroarylated products featuring quaternary carbon
centers. Limonene (42) was exclusively functionalized at
the terminal alkene over the internal C=C. A norbornene
analogue (44), vinyl ether derivatives (45-47) and
phenylacetylene (48) were all converted to

corresponding products, the latter of which underwent
hydrogenation-hydroarylation to provide a saturated
product. Finally, N-Boc allylamine (49) and vinylcarbazole
(50) were also suitable substrates albeit giving diminished
yields.

Finally, we demonstrated both deuteration and
hydroarylation reactions using electrochemistry, providing
comparable and sometimes higher efficiency (e.g, 11, 19, 25,
46, see SI for details). Further study of this electrochemical
system will lead to improved procedures that are amenable
to practical synthesis at scale.2* We then surveyed substrates
that provided additional mechanistic insights (Scheme 4).



With citronellene (51), the overall selectivity between the Scheme 4. Mechanistic probe substrates
trisubstituted alkene and terminal alkene is about 1:12,
which is consistent with sensitivity of Co-H to the sterics
of the alkene. Radical cyclization (52) was observed as the
major product as a single diastereomer, which indicates
that the rate of arylation via radical-radical anion cross- " N
coupling is smaller than but comparable to that of the 5- IS _Standard conditons 52 53 (dr=1:1)
exo-trig radical clock (k ~ 3 x 10* s to 105 s-1).362 In the Me Me w253 paq NG "
case of (-)-caryophyllene oxide (55), direct hydroarylated 51 N
product (56) and ring-opened products (57 and 58)37 M Me  Me
were obtained in a ratio of 2.5:1, which shows that the
arylation is faster than radical-triggered ring opening of
cyclobutane (k ~ 4 x 103 s-1).29%36a These results are
consistent with a proposed radical mechanism and
provide an estimation of the rate constant for C-C bond
formation to be kobs = k[DCB*-] ~ 10* M-1.5-1,36b.c

CN
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(o] >
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In conclusion, we developed a reductive strategy for the
generation of Co-H species from readily available acetic acid
and demonstrated its application in the deuteration and
hydroarylation of alkenes. The reaction development was
guided by systematic spectroscopic and electroanalytical
investigations, which provided qualitative and quantitative
information about the formation, identity, and reactivity of
Co-H. We will continue to explore this catalytic strategy in
other synthetically useful reaction systems.
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