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ABSTRACT:	 Hydrogen-atom	 transfer	 mediated	 by	 earth-abundant	 transition-metal	 hydrides	 (M-Hs)	 has	 emerged	 as	 a	
powerful	tool	in	organic	synthesis.	Current	methods	to	generate	M-Hs	most	frequently	rely	on	oxidatively	initiated	hydride	
transfer.	Herein,	we	report	a	reductive	approach	to	generate	Co-H,	which	allows	for	canonical	hydrogen	evolution	reactions	
to	be	intercepted	by	hydrogen-atom	transfer	to	an	alkene.	Electroanalytical	and	spectroscopic	studies	provided	mechanistic	
insights	into	the	formation	and	reactivity	of	Co-H,	which	enabled	the	development	of	two	new	alkene	hydrofunctionalization	
reactions.

Transition-metal	hydrides	(M-Hs)	are	a	class	of	versatile	
organometallic	 intermediates	 that	 have	 found	 broad	
applications	 in	energy	storage,1 materials	chemistry,2	and	
enzymatic	catalysis.3,4	In	recent	years,	M-Hs	have	also	seen	
increasing	use	 in	organic	 synthesis	 and	 catalysis,	 offering	
new	bond	disconnection	 strategies	 for	 accessing	 complex	
targets.5,6 In	particular,	M-Hs	based	on	earth-abundant	first-
row	transition	metals	benefit	from	the	relatively	weak	M-H	
bond	 and	 often	 display	 high	 reactivities	 with	 organic	
functional	groups.7	For	example,	transition	metals	such	as	
Fe,8	 Mn,9	 and	 Co10	 have	 been	 shown	 to	 form	 M-Hs	 with	
predominantly	 acidic	 characters,	 which	 can	 engage	 in	 a	
variety	 of	 hydrogen	 atom	 transfer	 (HAT)	 reactions	 with	
alkenes.	 Importantly,	 the	 radical	 nature	 of	 the	 HAT	
mechanism	renders	such	transformations	compatible	with	
a	 broad	 scope	 of	 functional	 groups,	 further	 augmenting	
their	synthetic	utility.11	
In	contrast	to	the	increasing	volume	of	reactions	enabled	

by	M-Hs,	methods	to	generate	them	remain	limited.	Using	
CoIII-H	as	an	example,	its	formation	generally	relies	on	the	
use	of	a	pair	of	a	stoichiometric	single-electron	oxidant	and	
a	 hydride-donor	 reductant.	 The	 former	 oxidizes	 a	
precatalyst	 (typically	 CoII)	 to	 a	 high	 valent	 CoIII	 species	
whereas	the	latter	delivers	a	H–	(e.g.,	via	transmetallation)	
to	 generate	 the	 active	 CoIII-H	 (Scheme	 1A).	 	 Common	
oxidants	 include	 dioxygen,	 peroxides,	 and	 N-
fluoropyridinium	 salts,12	 and	 common	 hydride	 sources	
include	 hydrosilanes,	 borohydrides,	 and	 isopropanol.13	
Having	 both	 oxidants	 and	 reductants	 could	 potentially	
complicate	the	reaction	systems	and	hamper	their	adoption	
in	 process-scale	 applications.	 As	 a	 complementary	
approach,	Norton	showed	that	Co-H	can	be	generated	from	
cobaloximes	 in	 the	context	of	 radical	 cyclizations	under	a	
high	pressure	of	H2.14	In	the	context	of	overall	redox-neutral	
isomerization	or	polymerization	reactions,	 the	generation	
of	 Co-H	 has	 been	 achieved	 via	 HAT	 from	 an	 in-situ	
generated	alkyl	radical	to	CoII;15	this	mechanism	however	is	

not	 amenable	 to	 alkene	 difunctionalizations	 that	 are	 net-
oxidative	or	net-reductive.	
In	searching	for	an	alternative	means	for	generating	Co-

H	 intermediates,	 we	 were	 inspired	 by	 the	 large	 body	 of	
work	in	the	field	of	energy	catalysis	on	hydrogen	evolution	
reactions	(HERs).16 It	has	been	well	established	that	CoIII-H	
intermediates	 can	 form	 via	 a	 sequence	 of	 cathodic	
reduction	 and	 protonation	 in	 an	 acidic	 medium.17	 The	
incipient	 CoIII-H	 can	 then	 undergo	 either	 a	 heterolytic	
pathway	(via	sequential	reduction	and	protonation	of	Co-
H)	 or	 a	 homolytic	 pathway	 (via	 dimerization	 of	 Co-H)	 to	
evolve	 H2	 (Scheme	 2A).18	 We	 reasoned	 that	 this	
electrochemically	generated	CoIII-H	could	be	intercepted	by	
a	 HAT	 pathway,	 reacting	 with	 an	 alkene	 to	 achieve	
hydrofunctionalization	instead	of	hydrogen	evolution.	This	
reaction	 design	 would	 circumvent	 the	 use	 of	 traditional	
oxidants	and	hydride	donors,	leading	to	a	potentially	more	
practical	methodology	that	employs	electrons	and	protons	
as	the	redox	equivalent	and	hydrogen	source,	respectively.	
Related	 to	 this	 strategy,	 Fischli,19	 van	 der	 Donk,20	 and	
Hisaeda21	 independently	 reported	 the	 hydrogenation	 and	
hydrodimerization	 of	 electron-deficient	 alkenes	 and	
styrenes	 using	 vitamin	 B12	 by	 means	 of	 chemical	 or	
electrochemical	 reduction.	 Shenvi	 developed	 a	 simplified	
system	for	the	hydrogenation	of	monosubstituted	alkenes	
using	 catalytic	 Co(OAc)2	 and	 HCl.22	 Recently,	 Kojima	 and	
Matsunaga	reported	a	dual	cobalt-photoredox	approach	for	
the	 hydrogenation	 and	 intramolecular	 hydroarylation	 of	
alkenes	 (Scheme	 1B).23	 Baran	 demonstrated	
electroreductive	 generation	 of	 CoIII-H	 in	 the	 context	 of	
alkyne	 hydrogenation,	 alkene	 isomerization,	 and	 related	
transformations.24	 Nevertheless,	 the	 exploration	 of	 such	
strategies	in	synthetic	contexts	remains	rare	beyond	these	
examples.25	 In	 this	 work,	 we	 employed	 analytical	 and	
synthetic	 tools	 to	 study	 a	 family	 of	 electronically	 distinct	
Co(salen)	 complexes	 and	 obtained	 qualitative	 and	
quantitative	insights	into	the	electroreductive	generation	of	
CoIII-H	 and	 its	 reaction	 with	 alkenes	 (Scheme	 1A).	 This	



 

information	 allowed	 us	 to	 establish	 reductive	 M-Hs	
formation	 as	 a	 general	 strategy	 for	 the	
hydrofunctionalization	of	alkenes	(Scheme	1C).		

	
We	 began	 our	 study	 by	 characterizing	 five	 Co(salen)	

complexes	using	cyclic	voltammetry	(CV)	and	rotating	disk	
electrode	(RDE)	voltammetry	techniques,26	which	revealed	
a	strong	dependence	of	the	HER	reactivity	on	the	electronic	
properties	of	the	ligand	(Scheme	2B–F).	Cobalt	complexes	
bearing	 electron-withdrawing	 groups	 (CF3,	 CN)	 displayed	
sluggish	 HER	 in	 the	 presence	 of	 HOAc,	 whereas	
substantially	faster	rates	were	observed	for	catalysts	with	
electron-donating	groups	(tBu,	OMe),	showing	pronounced	
catalytic	 currents	 upon	 addition	 of	 HOAc.	 However,	 an	
electron-deficient	 nitro	 complex,	 Co-5,	 broke	 the	 trend,	
displaying	the	largest	current	enhancement.	CV	suggested	
that,	in	this	case,	the	nitro	group	was	preferentially	reduced	
to	 an	 electron-rich	 substituent	 (likely	 hydroxylamino).	
Indeed,	 upon	 electrolysis	 of	 Co-5	 with	 HOAc,	 a	 new	

reduction	feature	appeared	at	–1.47	V	(vs	Ag/AgCl)	while	
the	original	peak	disappeared	(see	SI).	
Quantitative	kinetic	data	were	obtained	by	simulation	of	

the	RDE	data	with	DigiElch,	taking	into	consideration	both	
homolytic	and	heterolytic	mechanisms	for	the	generation	of	
H2	from	Co-H	(Scheme	2A).19 Excellent	fits	were	obtained,	
which	yielded	rate	constants	of	CoIII-H	formation	of	k1	=	5	
M–1·s–1	 and	7	M–1·s–1	 for	Co-1	 and	Co-2.	 In	 contrast,	 their	
electron-rich	counterparts	Co-3	and	Co-4	yielded	values	of	
k1	 =	 75	 M–1·s–1	 and	 400	 M–1·s–1,	 respectively.	 In	 general,	
catalysts	bearing	electron-donating	substituents	(tBu,	OMe)	
preferred	 the	homolytic	pathway	 for	HER,	whereas	 those	
bearing	 electron-withdrawing	 substituents	 (CN,	 CF3)	
predominantly	 underwent	 heterolytic	 protonation.	
Curiously,	 fitting	 the	 data	 from	Co-5	 to	 the	 general	 HER	
mechanisms	proved	challenging,	which	 is	 consistent	with	
the	proposed	-NO2	reduction.	
To	compare	Co-H	generation	via	reductive	and	oxidative	

pathways,	we	conducted	electron	paramagnetic	resonance	
(EPR)	studies.	The	addition	of	Mg	as	a	chemical	reductant27	
to	 Co-5	 did	 not	 lead	 to	 any	 noticeable	 change	 to	 the	
characteristic	 EPR	 signals	 (Scheme	 2H).	 Subsequent	
introduction	 of	 HOAc	 resulted	 in	 disappearance	 of	 CoII	
signals28	and	formation	of	new	features	over	a	15-minute	
period.	A	similar	set	of	features	were	also	observed	when	
Co-5	was	 treated	with	1-fluoro-2,4,6-trimethylpyridinium	
triflate	as	the	oxidant	along	with	PhSiH3;	conditions	that	are	
frequently	 employed	 to	 generate	 CoIII-H	 complexes	 for	
alkene	 hydrofunctionalization.	 While	 we	 cannot	
unambiguously	 assign	 these	 new	 features	 to	 specific	
intermediates,	these	results	showed	that	similar	Co	species	
are	generated	from	the	reductive	and	oxidative	pathways.	
With	mechanistic	insights	into	the	electroreductive	Co-H	

generation,	we	began	 to	 test	 the	hypothesis	 that	 the	HER	
can	 be	 intercepted	 by	 an	 HAT	 toward	 alkene	
hydrofunctionalization.	 Thus,	 a	 series	 of	 RDE	 and	
differential	 electrochemical	 mass	 spectrometry	 (DEMS)	
experiments	were	carried	out.	The	addition	of	alkene	1	to	a	
solution	 of	 catalyst	 Co-3	 and	 HOAc	 led	 to	 a	 current	
enhancement,	 the	 magnitude	 of	 which	 increased	 with	
higher	concentrations	of	1	(Scheme	2G).	Simulations	of	the	
voltammetry	 data	 showed	 excellent	 agreement	 with	 the	
proposed	 reaction	 mechanism	 (Scheme	 2A)	 wherein	 the	
reductively	generated	CoIII-H	(via	E1,	C1	steps)	reacts	with	
the	alkene	via	HAT	to	afford	radical	I	and	CoII	(C2	step).	This	
radical	 cage	 pair	 is	 in	 equilibrium	 with	 cage-collapsed	
species	II	favoring	the	former	(Eq1	step).29	In	the	absence	
of	a	radical	trapping	agent,	I	is	further	reduced	to	generate	
putative	 intermediate	 III	 (E2	 step),30	 and	 this	 latent	
carbanion	 undergoes	 final	 protonolysis	 to	 give	 the	
hydrogenated	product	(C3	 step).	The	rate	constant	of	 the	
HAT	step	(k2	=	870	M–1·s–1)	is	3	times	that	of	the	homolytic	
HER	(k4,homo=	275	M–1·s–1).	We	also	simulated	an	alternative	
mechanism	wherein	radical	I	undergoes	HAT	with	another	
equivalent	 of	 CoIII-H	 to	 complete	 hydrogenation	 but	 this	
scenario	exhibited	poor	consistency	with	the	RDE	data	(see	
SI).	 The	 kinetic	 preference	 of	 CoIII-H	 for	 HAT	 over	 HER	
provides	a	 foundation	 for	developing	a	 silane-free	alkene	
hydrofunctionalization.	
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The	 HAT	 activity	 of	 reductively	 generated	 Co-H	 was	
further	 studied	 using	 DEMS,	 which	 provides	 operando	
measurements	 of	 electrogenerated	 volatile	 products.31	
We	measured	 the	Faradaic	 current	while	monitoring	H2	
formation	in	real	time	during	electrolysis.	When	a	solution	
of	 HOAc	 in	 DMA	 was	 electrolyzed,	 H2	 production	 was	
observed,	 and	 as	 expected,	 the	 rate	 of	HER	was	 further	
augmented	when	Co-3	was	present.	 Interestingly,	when	
alkene	1	was	added,	 the	Faradaic	 current	 increased	but	
the	HER	was	nearly	completely	suppressed	 (Figure	1A).	
This	result	again	shows	that	electrochemically	generated	
CoIII-H	 preferentially	 reacts	 with	 the	 alkene.32	 Notably,	
alkanes	 were	 detected	 by	 mass	 spectrometer	 when	
volatile	alkenes	were	used,	providing	direct	evidence	for	
alkene	hydrogenation.	We	observed	a	dependence	of	the	
HAT	vs.	HER	selectivity	on	the	degree	of	substitution	of	the	
alkene	 (see	 SI),	 which	 is	 consistent	 with	 reported	
sensitivity	of	CoIII-H	to	steric	profile	of	the	substrate.14c,	12b	

We	employed	DEMS	to	 further	evaluate	 the	suitability	of	
various	 Co	 catalysts	 in	 hydrofunctionalization	 reactions	
(Figure	1B-C).	At	a	constant	cell	voltage	of	1.0	V,	Co-3,	Co-4,	
and	Co-5	showed	the	highest	steady	state	Faradaic	current	
(i.e.,	HAT	+	HER	current)	and	minimal	HER	current,	and	are	
thus	predicted	to	be	efficient	catalysts.	Notably,	we	observed	
a	spike	of	high	current	in	the	first	10	s	of	electrolysis	of	Co-5,	
which	 likely	 corresponds	 to	 initial	 nitro	 reduction	 before	
reaching	a	steady	current.	In	contrast,	electron-deficient	Co-
1	and	Co-2	displayed	lower	Faradaic	current	and	poorer	HAT	
vs.	 HER	 selectivity.	 We	 carried	 out	 additional	 DEMS	
experiments	by	sweeping	the	working	electrode	potential	at	
10	mV/s	and	obtained	consistent	results	(Figure	1D-F).		
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The	suite	of	analytical	data	provided	the	foundation	for	

the	development	of	 alkene	hydrofunctionalization	via	 the	
reductive	 generation	 of	 Co-H.	 We	 first	 developed	 the	
deuteration	of	alkenes	with	readily	available	acetic	acid-d4	
as	the	deuterium	source	and	Mg	as	the	terminal	reductant	
(Table	 1).	 Consistent	with	RDE	 and	DEMS	data,	 electron-
rich	 catalysts	 gave	 superior	 efficiency	 with	 Co-5	
(presumably	its	reduced	form)	being	the	optimal.	A	series	
of	 unactivated	 and	 electronically	 activated	 alkenes	 were	
converted	 to	 corresponding	 products	 in	 generally	 good	
yields	with	high	deuterium	incorporation.	As	predicted	by	
DEMS	analysis,	 internal	olefins	are	challenging	substrates	
due	to	steric	congestion.	This	procedure	is	more	practical	
than	 canonical	 oxidatively	 initiated	 methods	 that	 would	
require	elusive	deuterosilanes	or	other	deuterides.		
This	 initial	 success	 prompted	 us	 to	 develop	 a	 new	

reaction	with	higher	complexity.	The	ability	to	reductively	
generate	CoIII-H	in	a	synthetic	context	allows	us	to	couple	it	
with	radical	reactivities	that	are	either	unique	to	reductive	
chemistry	 or	 incompatible	 with	 previous	 hydride-based	
methods,	 thereby	 further	expanding	 the	 scope	of	Co	HAT	
chemistry.	For	example,	we	hypothesized	 that	C-centered	
radical	 (I)	 formed	 upon	 HAT	 can	 be	 intercepted	 by	 a	
persistent	 radical	 such	 as	 reductively	 generated	
dicyanobenzene	(DCB)	radical	anion	(IV,	X	=	CN;	Scheme	3).	
The	 resultant	 anionic	 intermediate	 will	 undergo	 cyanide	
elimination	to	give	an	overall	hydroarylation	product.	We	
note	 that	 alkene	 hydroarylation	 has	 previously	 been	
achieved	using	a	dual	Co-H/Ni	catalytic	strategy,33	but	that	
our	reaction	provides	a	distinct	bond	disconnection	using	
cyanoarenes	as	coupling	partners	without	needing	a	second	
catalyst.	

		
Various	cyanoarenes	bearing	sulfone,	ester,	lactone,	and	

phosphonate	 groups	 were	 transformed	 into	 the	
corresponding	 products	 in	 moderate	 to	 good	 yields.	
Carbazole-substituted	 dicyanobenzene	 afforded	 desired	
products	(23,	34–36)	 in	excellent	yield,	which	provides	a	
new	 way	 to	 functionalize	 this	 class	 of	 photoactive	
molecules.34	 Importantly,	 cyanopyridines	 can	 also	
participate	 in	 the	 hydroarylation	 with	 different	 types	 of	
alkenes	(24,	26,	38).35		

	

	

(A) (B) (C)

(D) (E) (F)

Figure 1. (A) DEMS studies of Co-3 under controlled potential of -1.53 V vs Ag/AgCl. Comparison of Faradaic current (B) and hydrogen current 
(C) for various Co catalysts under constant cell voltage = 1.0 V. Comparison of HER and HAT selectivity for Co-2 (D), Co-3 (E) and Co-5 (F) 
under sweeping potential.
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Various	 substituted	 styrenes	 (25–29,	 34–36)	 and	

heteroaromatic	 alkenes	 (30–33)	 proved	 to	 be	 viable	
substrates.	Notably,	functional	groups	such	as	aryl	halides	
(28,	29,	36)	 and	 Bpin	 (27,	35)	were	 compatible	 in	 the	
reaction,	 which	 may	 cause	 catalyst	 promiscuity	 in	
transition-metal-catalyzed	 systems.	 1,1-disubstituted	
alkenes	 (37–43)	 were	 successfully	 transformed	 to	
hydroarylated	 products	 featuring	 quaternary	 carbon	
centers.	Limonene	(42)	was	exclusively	functionalized	at	
the	terminal	alkene	over	the	internal	C=C.	A	norbornene	
analogue	 (44),	 vinyl	 ether	 derivatives	 (45–47)	 and	
phenylacetylene	 (48)	 were	 all	 converted	 to	

corresponding	 products,	 the	 latter	 of	 which	 underwent	
hydrogenation-hydroarylation	 to	 provide	 a	 saturated	
product.	 Finally,	N-Boc	 allylamine	 (49)	 and	 vinylcarbazole	
(50)	were	also	suitable	substrates	albeit	giving	diminished	
yields.	
Finally,	 we	 demonstrated	 both	 deuteration	 and	

hydroarylation	 reactions	 using	 electrochemistry,	 providing	
comparable	and	sometimes	higher	efficiency	(e.g.,	11,	19,	25,	
46,	see	SI	for	details).	Further	study	of	this	electrochemical	
system	will	lead	to	improved	procedures	that	are	amenable	
to	practical	synthesis	at	scale.24	We	then	surveyed	substrates	
that	 provided	 additional	 mechanistic	 insights	 (Scheme	 4).	
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equiv), 1,4-dicyanoarene (1.5 equiv), Mg powder (5 equiv), HOAc (8.8 equiv), Co-5 (2 mol%), DMA (0.1 M in respect to alkene). iUsing DMF:MeCN (9:1) instead of DMA. j1,4-
Dicyanobenzene was used as the limiting reagent.
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Table 1. Scope of alkene hydrofunctionalization



 

With	citronellene	(51),	the	overall	selectivity	between	the	
trisubstituted	 alkene	 and	 terminal	 alkene	 is	 about	1:12,	
which	is	consistent	with	sensitivity	of	Co-H	to	the	sterics	
of	the	alkene.	Radical	cyclization	(52)	was	observed	as	the	
major	product	as	a	single	diastereomer,	which	 indicates	
that	 the	rate	of	arylation	via	radical-radical	anion	cross-
coupling	is	smaller	than	but	comparable	to	that	of	the	5-
exo-trig	radical	clock	(k	~	3	x	104	s–1	to	105	s–1).36a	In	the	
case	of	(−)-caryophyllene	oxide	(55),	direct	hydroarylated	
product	 (56)	 and	 ring-opened	 products	 (57	 and	 58)37	
were	 obtained	 in	 a	 ratio	 of	 2.5:1,	which	 shows	 that	 the	
arylation	 is	 faster	 than	radical-triggered	ring	opening	of	
cyclobutane	 (k	 ~	 4	 x	 103	 s–1).29c,36a	 These	 results	 are	
consistent	 with	 a	 proposed	 radical	 mechanism	 and	
provide	an	estimation	of	 the	rate	constant	 for	C–C	bond	
formation	to	be	kobs	=	k[DCB•–]	~	104	M–1·s–1.36b,c	

	
In	 conclusion,	we	developed	 a	 reductive	 strategy	 for	 the	

generation	of	Co-H	species	from	readily	available	acetic	acid	
and	 demonstrated	 its	 application	 in	 the	 deuteration	 and	
hydroarylation	 of	 alkenes.	 The	 reaction	 development	 was	
guided	 by	 systematic	 spectroscopic	 and	 electroanalytical	
investigations,	which	 provided	 qualitative	 and	 quantitative	
information	about	 the	 formation,	 identity,	 and	reactivity	of	
Co-H.	We	will	 continue	 to	 explore	 this	 catalytic	 strategy	 in	
other	synthetically	useful	reaction	systems.
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