
Learning to Play Pursuit-Evasion with Visibility Constraints

Selim Engin, Qingyuan Jiang, and Volkan Isler

Abstract— We study the problem of pursuit-evasion for a
single pursuer and an evader in polygonal environments where
the players have visibility constraints. The pursuer is tasked
with catching the evader as quickly as possible while the evader
tries to avoid being captured. We formalize this problem as a
zero-sum game where the players have private observations and
conflicting objectives.

One of the challenging aspects of this game is due to limited
visibility. When a player, for example, the pursuer does not
see the evader, it needs to reason about all possible locations
of the evader. This causes an exponential increase in the size
of the state space as compared to the arena size. To overcome
the challenges associated with large state spaces, we introduce a
new learning-based method that compresses the game state and
uses it to plan actions for the players. The results indicate that
our method outperforms the existing reinforcement learning
methods, and performs competitively against the current state-
of-the-art randomized strategy in complex environments.

I. INTRODUCTION

Recent advancements in Reinforcement Learning (RL)
have led to progress in many different fields, including Atari
games [1] and Go [2]. While these methods are successful in
single-agent scenarios with static environments and perfect
information, they do not readily generalize to settings where
multiple agents interact in an environment with imperfect
observations. Consequently, there is an increasing interest in
developing algorithms for multi-agent problems.

One way to approach this problem is to control the agents
using a central unit that computes actions from the joint state-
action spaces of all the agents [3]. However, in many settings
the partial observations and communication constraints of the
agents limit the usage of this approach. An alternative method
is to use decentralized agents whose policies are conditioned
on only the individual observations.

One of the key challenges when using decentralized
agents is non-stationarity [4]. In a multi-agent game, the
actions taken by an agent affect the global state and the
rewards received by the rest of the agents. However, this
invalidates the Markovian and stationarity assumptions of
most RL algorithms [5]. The paradigm of centralized training
with decentralized execution is designed to tackle the non-
stationarity problem [6]. In this approach, the critics are
trained together with information (observations and actions)
from all agents. On the other hand, the policies are learned
using information only from their corresponding agents,
allowing decentralized execution at test time.

In this paper, we focus on the game of pursuit-evasion
where the pursuer and evader have line-of-sight visibility

This work was supported in part by NSF grants #1617718 and
#2022894. All authors are with the University of Minnesota. {engin003,
jian0345, isler}@umn.edu.

constraints. Due to these constraints, the players obtain partial
observations from their surroundings and may not have access
to information from their opponents. An instance of the game
is shown in Figure 1, displaying the pursuer (red circle) and
its visible area in a polygonal environment. Since the evader
is not visible, the pursuer needs to locate its adversarial
opponent and capture it. To address the challenges associated
with limited visibility, we propose a method where each
agent maintains a belief state for the possible locations of the
other agent and uses it along with the partial observations to
compute its actions.

Fig. 1: Pursuit-evasion with visibility constraints: The
pursuer (red circle) needs to clear the unseen regions of
the environment (shaded areas) to locate and capture the
evader.

The usage of a belief state is crucial for the performance
of our method. Imagine that the pursuer visits and covers one
of the shaded areas, and then returns to its original position
in Figure 1. A naı̈ve state representation might fail to capture
the actual state of the game. For instance, if it includes only
the position of the agent and local observations, then the state
will be unable to indicate that the player has already covered
an area and does not need to visit there again. In contrast,
the belief state provides a means for representing the past
history of the game and satisfies the Markovian property.

A practical application of the pursuit-evasion problem is
automated cinematography. Suppose that a mobile robot is
tasked with capturing images of an animal, whose body
dynamics are to be recorded. The animal might be running
away, or even hiding behind the trees. Pursuit-evasion is
useful to study such scenarios when the movement of the
target is modeled as adversarial. Finding strategies for the
pursuer can enable us generating trajectories for the camera
that ensure maintaining a certain distance with the target and
capturing good-quality images. While we study a different
version of this problem, many of the challenges such as
planning under uncertainty and target tracking are common

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 27 - October 1, 2021. Prague, Czech Republic

978-1-6654-1714-3/21/$31.00 ©2021 IEEE 3858

20
21

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

97
8-

1-
66

54
-1

71
4-

3/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IR

O
S5

11
68

.2
02

1.
96

35
95

9

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2022 at 23:47:50 UTC from IEEE Xplore. Restrictions apply.

in both settings.
To summarize, our contributions in this paper are:
• We introduce novel belief state and action representations

for the players to reason about the unseen parts of the
environment that improve the learning performance.

• We present a curriculum learning technique to train the
agents by repetitively playing them against each other
in increasingly complex environments.

• We show that training by playing against an expert
strategy significantly improves the player performances.

• We compare our method against baseline approaches in a
series of experiments, including out-of-domain scenarios,
and demonstrate its generalization capability.

II. RELATED WORK

We focus our related work on the fields most relevant to our
method. We first go over the the problem of pursuit-evasion,
and then discuss previous work on multi-agent RL.

A. Pursuit-Evasion

The pursuit-evasion problem has been studied since 1930’s.
In the original formulation, there is a lion and a human in a
circular arena, where the goal of the lion is to catch its prey as
quickly as possible, whereas the human escapes to avoid being
a meal. Pursuit-evasion since then has been studied in many
different settings. Some of these settings include trees [7],
graphs [8], polygons [9], [10] and surface of polyhedrons [11].
The work of [12] introduced a differential game formulation
to the problem, which has led to game-theoretic approaches
for pursuit-evasion [13].

Traditionally pursuit-evasion has been referring to two
related, but different sub-components of the problem: 1)
locating the evader, and 2) capturing the evader. When the
players have constrained observations of their opponents, such
as line-of-sight visibility (e.g. lidar, camera), they need to
search the environment to locate the opponent. The problem
of planning paths to eventually have an unobstructed view
of the evader was first introduced in [14]. The seminal
work of [9] showed that Θ(log n) pursuers are necessary
and sufficient to detect an unpredictable evader in a simply-
connected polygon of n vertices. Since then, many studies
have addressed variations of this problem [15]–[17]. For
example, in [15] the robots have limited field of view, and
in [16] they obtain potentially erroneous measurements.

There are a handful of studies that worked on capturing
the evader while being subject to visibility constraints. A
randomized algorithm was introduced in [10] that can locate
the evader using a single pursuer, and an extension of this
strategy allows two pursuers with line-of-sight visibility to
capture the evader in simple-connected polygons. Later, [18]
showed that a single pursuer can locate and capture the evader
in monotone polygons.

B. Multi-agent Reinforcement Learning

There has been a significant interest for solving problems
involving a group of agents with conflicting or cooperative
objectives, using multi-agent RL [19]. One of the earlier

works advocating the paradigm of centralized training of
decentralized policies, [6] proposed to use a single centralized
critic with all joint actions and state information for training
and use the counterfactual baseline as the advantage function.
Later, [20] improved the overall performance by introducing
a mixing network to represent a monotonic value function.
However, both these methods focus on cooperative tasks such
as the StarCraft II micromanagement problem [21]. In [19],
this setting is extended to competitive modes with continuous
actions and included explicit communication between agents
by learning a centralized critic for each agent.

III. NOTATION AND FORMULATION

In this section we start by defining key concepts used in
our algorithm, then present the game formulation.

We denote the polygonal workspace by W with boundary
∂W . In this paper, we focus on simply-connected polygons,
meaning that there is no hole inside the polygon. We measure
the complexity of a polygon by its number of reflex vertices.
A vertex in a polygon is called reflex if its internal angle
is greater than 180◦. The Euclidean distance between two
points x, y ∈ R2 is denoted by d(x, y). In a polygon W , the
geodesic distance between x and y is denoted by dW (x, y).
We use the top-down images of some of the geometric entities
in our method, and denote the image of a geometry by I(·).

The players are assumed to have an omni-directional
line-of-sight sensor, meaning that they can obtain location
measurements from their 360◦ surrounding at each time step.
A player sees its opponent only if the line segment joining
their locations does not intersect the polygon boundary. The
visible area of a player i, also known as the visibility polygon,
is denoted by V i ⊆W . Thus, the pursuer p sees the evader e
if e ∈ V p and vice versa. Finally, we assume that the players
have holonomic mobility with equal bounded speeds.

A. Game Formulation

We are given a simply-connected polygon W and a capture
radius c. The positions of the players at time t are denoted
by pt and et for the pursuer and evader, respectively. Each
time step, the players make their moves simultaneously. The
pursuer captures the evader if d(pt, et) ≤ c and p sees e. The
pursuer wins the game if it can capture the evader in some
finite time T , and loses otherwise.

IV. BACKGROUND

In this section we present background on multi-agent games
which will be useful for describing our method.

We formulate the pursuit-evasion problem as a Partially
Observable Markov Game (POMG) [22], an extension of the
Markov Decision Process (MDP) with partial observations and
multiple players. Each player is an agent that senses and acts
within the environment in discrete time steps. The Markov
game is defined by a tuple {N ,S, {Ai}i∈N , {Ri}i∈N , T , γ}
where N denotes the set of N agents, S is the set of possible
states of all agents, T is the transition probability S×A×S →
[0, 1], and γ ∈ [0, 1] is the discount factor. In this paper, we
have 2 players and denote the set of players by N = {p, e}.

3859

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2022 at 23:47:50 UTC from IEEE Xplore. Restrictions apply.

Since the agents cannot fully observe the state, they have
partial observations of the game state separately Op,Oe,
which are private to the players as long as they do not see
each other. The players take actions using their policies πp, πe,
with parameters θp and θe, respectively. The collection of
actions A : Ap ×Ae and the current game state determines
the next state according to T and provides rewards as a
function of the state and agent’s action ri : S ×Ai×S → R.

The objective of each agent i is to maximize its total
expected return Git =

∑T
k=0 γ

krit+k+1 over time horizon T
by optimizing the policy πθi . We formulate the pursuit-evasion
problem as a competitive zero-sum Markov Game. Players
have opposite rewards at each step t, that is, rp(s, a, s′) +
re(s, a, s′) = 0.

V. LEARNING TO PLAY PURSUIT-EVASION

We present a new method called Pursuit-Evasion with
Belief States (PEBS) in this section. An overview of our
method is shown in Figure 2.

A. State representations

Since the agents have partial access to the global game state,
the selection of the state representation for the players has
high significance. Moreover, it is not straightforward to decide
which representation is ideal for the learning algorithms.

PEBS uses a combination of an observation vector and a
2D spatial map that characterizes the state of the game for
each player. This spatial map is an image of multiple channels
with each channel corresponding to a specific geometry. We
denote this image at time t by It. The observation vector ot,
on the other hand, includes the players own position pt (or
et if the player is the evader), the visibility flag indicating
whether the opponent is visible at time t, and the opponent’s
position if it is visible (otherwise, a vector of zeros is used
for the opponent position).

Environment

Fig. 2: PEBS overview: Each agent receives a partial
observation ot and an image It in each iteration of the game.
The agent employs a belief network F that encodes It to
a belief state bt. The belief state is used together with ot
as input to the policy network πθ to compute actions at. To
supervise the belief states, we decode bt with D for mapping
to a set of 2D points X which is then rendered with R to
generate an estimate image of the contaminated region.

The first channel of It, denoted by I(W), is a top-down
binary image of the polygonal region W that determines the
movable space in the environment. I(W) remains constant
throughout an episode. The second channel corresponds to

the self position of the player, indicating the location of
the player within the environment. We denote this channel
by I(pt) if the player is the pursuer, otherwise by I(et).
Finally, the last channel is what we call the contaminated
region, borrowing the terminology from previous work [9],
[15]. The contaminated region Ct refers to the set of possible
locations of the opponent. Since the players have visibility
constraints, the opponent’s position may not be available to
the player at time t. Therefore, each player maintains an image
corresponding to all possible locations the opponent might
occupy at t. When there is direct visibility the contaminated
region shrinks to a small patch in the image, and the region
grows at each time instant the opponent is occluded. We
denote the image of the contaminated region by I(Ct). Note
that whereas I(W) is the same for both the pursuer and
evader, the image channels I(pt) and I(Ct) are maintained
separately. An instance of an environment configuration and
the image channels the pursuer receives is shown in Figure 3,
and a sequence of images obtained throughout a trajectory is
shown in Figure 5. We use 128× 128 dimensional images
in our experiments.

Polygon

Self position

Contaminated

region

Fig. 3: For a given configuration (left), the pursuer () and
evader (×) both receive a 3-channel image, separately. On
the right, the image received by the pursuer is shown.

B. Belief state generator

Given the environment image It, each agent separately
generates a belief state using an encoding function F , which
is a Convolutional Neural Network (CNN). F embeds the
input images into a latent space that characterizes the belief
state distribution of the agent. Each player uses its encoder
network F to compute a vector corresponding to the belief
state as bt = F(It).

One way we can use the belief state is directly as an input
to policy network πθ without any regularization of the latent
space. However, we find that this approach is not able to
encode information about the contaminated region effectively
to explore the environment as shown in Section VI. Instead,
we propose to use another network to decode the belief state
into the 2D workspace and supervise it with image losses,
which we explain next.

C. Differentiable renderer

After generating the latent belief state bt, we use a decoder
network D to map bt to the 2D plane, {xi}Ni=1 = D(bt),
xi ∈ R2. The point set X = {xi}Ni=1 coordinates are then
normalized with respect to the size of the image canvas. We

3860

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2022 at 23:47:50 UTC from IEEE Xplore. Restrictions apply.

represent each point xi as an isotropic Gaussian with mean
xi and a fixed variance σ2

x.
The renderer R is a deterministic function that projects the

points X onto the canvas while preserving gradients, similar
to the splatting [23] operation:

R : RN×2 → RH×W ,Xt 7→ R(Xt) = I(Ĉt) (1)

The pixel (u, v) ∈ R2 of the generated image for the
contaminated region I(Ĉt) is computed by,

I(Ĉt)uv =
N∑
i=1

wi · f((u, v)|xi, σ2
x) (2)

where f(·|xi, σ2
x) is a Gaussian radial basis function with

mean xi and variance σ2
x. The scalar weights wi are used

to normalize the image intensities to lie within [0, 1]. In our
experiments, we set N = 32 and σx = 8.

D. Curriculum through competitive games

While there is no weight sharing between the networks
of the agents, they are trained by repetitively playing them
against each other with conflicting objective functions.

PEBS exhibits two forms of curriculum for training the
players. The first form is implicit, and emerges from the
learning dynamics of two competing models. Figure 4 shows
an example plot of the average returns of the players during
training. We can see a learning regime where the pursuer
initially wins most of the games and then evader starts to
become more adversarial and makes the game more difficult
for the pursuer. The oscillatory curves of the average returns
indicate an autocurriculum by playing the pursuer and evader
against each other. This is also demonstrated in the resulting
trajectories of the players at different epochs.

We additionally use a second form of curriculum for the
environment complexity, which is performed explicitly. We
can measure the complexity of a polygonal environment with
the number of reflex vertices, since a reflex vertex induces a
critical boundary which determines regions in the environment
the pursuer has to clear if they are not visible from the
pursuer’s location. Initializing with 5 reflex vertices, during
training we increase the number of reflex vertices in the
environment by 5 every 200 epochs, until it reaches 20. In our
experiments, we find that starting with simple environments
helps the training of the players, and leads to better learning
of navigation and exploration skills.

Fig. 4: Average returns of the players during training.

Time

Fig. 5: The snapshots of the game at various time instants,
along with the obtained images. After clearing the contami-
nated regions and locating the evader (×), the pursuer (colored
circle) captures its opponent. Best viewed digitally.

E. Model architecture

Both the pursuer and evader have their own separate models,
without any weight sharing between the networks of the
players. The encoder network F is a CNN of 4 layers with
instance normalization and ReLU activation between the
layers. The decoder D is a Multi-Layer Perceptron (MLP)
with a single fully connected layer. As our base RL algorithm,
we use the Soft Actor-Critic (SAC) [24] method, where
the policy network πθ is a 3 layer MLP with parameters
θ. The output of the policy network is a 2D coordinate in the
workspace corresponding to the direction the player chooses
to go in the next time step. To compute the next position,
we find the angle ϕ to the 2D coordinate from the current
position and take a step with direction ϕ.

VI. ANALYSIS

In this section, we analyze our method and compare with
earlier works through a series of experiments. We design our
experiments around the following questions: Q1) How do
existing methods (classical and learning methods) for pursuers
perform against different evader types? Q2) How do the
players perform when they are trained by playing against each
other? Q3) Does it help to train the players by playing against
an expert strategy? Q4) Do the learned policies generalize
to out-of-domain and realistic environments?

Before reporting our findings, we present the baseline
methods we compare against and the performance metrics
used in the evaluations. We choose two primary considerations
to solve the pursuit-evasion problem. The first is a classical
algorithm, namely the randomized strategy. The second
category consists of RL methods that use various types of
state representations and training algorithms.

1) Randomized Lion’s Strategy (RLS): Our first baseline
is the randomized lion’s strategy for the pursuer presented
in [10]. This method is the current state-of-the-art for the
pursuit-evasion problem with visibility constraints.

2) Multi-agent RL: MADDPG [19] is a multi-agent RL
algorithm that uses the centralized learning with decentralized
execution approach. The predator-prey task in [19] is similar
to the game studied in this paper. In the predator-prey
environment, multiple predators are tasked with hitting the
prey by receiving partial observations. The observations
are partial, however, not due to the visibility constraints
but because they are expressed in the agent’s local frame.
Therefore, there is no private information in the setting of [19].

3861

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2022 at 23:47:50 UTC from IEEE Xplore. Restrictions apply.

3) Learning from partial observations: The rest of the
methods we compare against use an RL algorithm with de-
centralized critics and actors to compute actions. Specifically,
we use SAC [24] as the base RL algorithm with the same
set of hyperparameters as in our method.‡

We use two evaluation metrics to compare different
baselines with our method. For a given episode termination
timeout T , the first metric we use measures the Success Rate
(SR) percentage of the pursuer capturing the evader before
the episode terminates. We set T = 150 in all experiments.

The second metric measures the average time for the
pursuer to capture the evader. We normalize the Capture
Times (CT) to range between [0, 1] by dividing them by T .
We report the mean and standard deviation in both metrics.

A. Existing methods against various evader types
In our first set of experiments we investigate the perfor-

mance of a state-of-the-art RL method against traditional
algorithms in five different settings. These settings include
using various types of evaders and information available to
the players: 1) The pursuer has partial visibility and the evader
remains static throughout an episode, 2) The players have
full visibility (can see each other even when out of sight) and
the evader moves away greedily, 3) the players have partial
visibility and the evader uses the rash model [25], 4) The
players have full visibility and use learned strategies, 5) The
players have partial visibility and use learned strategies.

In the rash model, the evader hides and does not move
until it is seen by the pursuer. Upon being visible, it picks a
child node in the dual tree of the polygon and moves there.

Capture time Success rate
Evader Type RLS SAC RLS SAC
1- Static (partial vis.) 0.30 (0.2) 0.48 (0.4) 1.0 (0.0) 0.67 (0.5)
2- Greedy (full vis.) 0.34 (0.2) 0.44 (0.3) 0.99 (0.1) 0.89 (0.3)
3- Rash (partial vis.) 0.51 (0.4) 0.76 (0.4) 0.68 (0.5) 0.33 (0.5)
4- Learned (full vis.) 0.32 (0.2) 0.41 (0.3) 0.99 (0.1) 0.89 (0.3)
5- Learned (partial vis.) 0.42 (0.3) 0.57 (0.3) 0.90 (0.3) 0.67 (0.5)

TABLE I: Capture times (lower is better for the pursuer) and
success rates (higher is better for the pursuer) in previously
unseen polygons with 40 vertices.

For the learned strategy we tested the SAC algorithm using
different state representations and reported the results from
the best performing one (Table I). We trained both agents
against each other with the same state representations. We see
that for the cases with full visibility (2 and 4) the success rates
and performances are relatively close to that of the classical
baseline (RLS). Whereas for partial visibility models (1, 3
and 5) the performances are much worse compared to the
classical method even when the evader is static.

These results indicate that in problems with partial obser-
vations and complex dynamics, using an existing RL method
without any modifications does not yield good performances.
Next, we show how PEBS compares against the classical and
learning-based baselines.

‡Please refer to the appendix for more details on the baselines and
experiments: https://sites.google.com/umn.edu/pebs.

B. Training by playing against each other

We analyze the selection of state representations for
learning strategies to play the game. We compare the methods
that train the pursuer and evader policies by playing against
each other. In the first experiment (Table II), we evaluate the
pursuers by using the evaders they were trained together. In
the second (Table III), we evaluate the pursuer performances
using the rash evader model.

We find that in both experiments, PEBS outperforms the
rest of the learning-based methods. However, the classical
algorithm’s performance is still the best compared to all the
end-to-end trained methods when evaluated with the rash
evader (see Table III). We also see that the performances
against the learned and rash evader do not match perfectly.
One reason for this is, since the pursuer strategies are trained
with the learned evader, they perform better against the learned
behavior at test time. It can also be the case that the learned
evader strategy is stuck at a saddle point which leads to
good performance for the pursuer when evaluated against
the learned evader. We observe this phenomenon in several
cases (e.g. MADDPG and MLP (lidar)), where there is a large
discrepancy between the performances in the two experiments.

The qualitative performance of PEBS can be seen from a
sample game between the players shown in Figure 5. The
colored circles indicate the trajectory of the pursuer while the
blue crosses show the evader’s position. In the bottom row, the
obtained images are displayed. We see that the pursuer tries
to cover the contaminated regions and as soon as it locates
the evader, it moves towards and captures its opponent.

Pursuer Type Capture time Success rate

MADDPG† 0.566 (0.359) 0.62 (0.48)
MLP∗ (lidar) 0.659 (0.350) 0.55 (0.49)
MLP∗ (sampling) 0.575 (0.334) 0.67 (0.47)
CNN∗ 0.697 (0.334) 0.48 (0.50)
CNN+RNN∗ 0.686 (0.359) 0.48 (0.50)
PEBS∗ 0.482 (0.330) 0.76 (0.42)

TABLE II: Mean and std. of CT (↓) and SR (↑) in unseen
polygons with 40 vertices against the learned evader trained
together. Base algorithms: †DDPG [26], ∗SAC [24].

C. Training by playing against an expert

We then investigate the question whether training against
an expert strategy helps the learned policies. To do so, we
employ a two-step training procedure. We first train the evader
against a pursuer using the randomized strategy. Then, we
train a pursuer policy by playing against the pre-trained evader
and continue the training of both agents. We find that this
strategy helps the overall performances of both players. Using
this training procedure, the SR of PEBS improves to 72%
and it slightly outperforms the classical algorithm (RLS), as
shown in the last row of Table III.

D. Generalization to real environments

In our final experiment, we analyze the generalization
performance in out-of-domain environments. To do so, we use
the indoor maps from the Gibson database of 3D spaces [27]

3862

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2022 at 23:47:50 UTC from IEEE Xplore. Restrictions apply.

and evaluate the policies trained on polygonal environments
without any retraining or fine-tuning. For each 3D model, we
first compute its top-down image, then compute the contours
of the image to get the boundary of the floor plan. Finally, we
approximate the boundary of the environment as a polygon
with at most 100 vertices. We discard the environments with
multiple disconnected components from the dataset, since
otherwise they may not be fully navigable. In the end, we
have 78 scenes to test the methods.

Pursuer Type Capture time Success rate

RLS 0.510 (0.37) 0.68 (0.46)
MADDPG† 0.843 (0.31) 0.20 (0.40)
MLP∗ (lidar) 0.886 (0.28) 0.17 (0.37)
MLP∗ (sampling) 0.763 (0.36) 0.33 (0.47)
CNN∗ 0.766 (0.35) 0.33 (0.47)
CNN+RNN∗ 0.797 (0.34) 0.27 (0.44)
PEBS∗ 0.689 (0.37) 0.45 (0.49)

PEBS∗ (two-step) 0.433 (0.39) 0.72 (0.44)

TABLE III: Mean and std. of CT (↓) and SR (↑) in unseen
polygons with 40 vertices against the rash evader model.

We find that most methods are able to generalize to these
real maps well, since they were trained on a wide variety
of environment shapes (see Table IV). Moreover, PEBS still
outperforms other learning-based baselines in this experiment.

Pursuer Type Capture time Success rate

MADDPG† 0.661 (0.44) 0.358 (0.47)
CNN∗ 0.528 (0.44) 0.538 (0.50)
PEBS∗ 0.482 (0.44) 0.589 (0.49)

TABLE IV: Mean and std. of CT (↓) and SR (↑) in realistic
indoor maps against the rash evader model.

VII. DISCUSSION AND LIMITATIONS

In this paper, we introduced a method for learning to play
the pursuit-evasion game where the agents have visibility
constraints. We showed that the existing state-of-the-art RL
algorithms do not perform well when there are partial/private
observations and complex dynamics. To address this problem,
our method uses a compressed belief state for each player
to reason about the possible locations of its opponent. Our
experiments indicate that by maintaining a belief state, the
agents are able to explore the environment better and improve
their game playing performances. We also demonstrate our
method’s generalization capability on a dataset of real maps.

An important limitation of our method is not being able to
significantly outperform the classical algorithm, even after the
two-step training procedure with the expert. We believe that
addressing this problem is crucial for solving other related
games with partial observations.

REFERENCES

[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[2] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou,
et al. A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

[3] Lucian Buşoniu, Robert Babuška, and Bart De Schutter. Multi-agent
reinforcement learning: An overview. Innovations in multi-agent
systems and applications-1, pages 183–221, 2010.

[4] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent
reinforcement learning: A selective overview of theories and algorithms.
arXiv preprint arXiv:1911.10635, 2019.

[5] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[6] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas
Nardelli, and Shimon Whiteson. Counterfactual multi-agent policy
gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

[7] Andreas Kolling and Stefano Carpin. Pursuit-evasion on trees by robot
teams. IEEE Transactions on Robotics, 26(1):32–47, 2009.

[8] Torrence D Parsons. Pursuit-evasion in a graph. In Theory and
applications of graphs, pages 426–441. Springer, 1978.

[9] Leonidas J Guibas, Jean-Claude Latombe, Steven M LaValle, David
Lin, and Rajeev Motwani. A visibility-based pursuit-evasion problem.
International Journal of Computational Geometry & Applications,
9(04n05):471–493, 1999.

[10] Volkan Isler, Sampath Kannan, and Sanjeev Khanna. Randomized
pursuit-evasion in a polygonal environment. IEEE Transactions on
Robotics, 21(5):875–884, 2005.

[11] Narges Noori and Volkan Isler. The lion and man game on polyhedral
surfaces with boundary. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1769–1774. IEEE, 2014.

[12] Rufus Isaacs. Differential games. Wiley, 1965.
[13] Sourabh Bhattacharya and Seth Hutchinson. A cell decomposition

approach to visibility-based pursuit evasion among obstacles. The
International Journal of Robotics Research, 30(14):1709–1727, 2011.

[14] Ichiro Suzuki and Masafumi Yamashita. Searching for a mobile intruder
in a polygonal region. Journal on Computing, 21(5):863–888, 1992.

[15] Brian P Gerkey, Sebastian Thrun, and Geoff Gordon. Visibility-based
pursuit-evasion with limited field of view. The International Journal
of Robotics Research, 25(4):299–315, 2006.

[16] Nicholas M Stiffler, Andreas Kolling, and Jason M O’Kane. Persistent
pursuit-evasion: The case of the preoccupied pursuer. In Intl. Conference
on Robotics and Automation (ICRA), pages 5027–5034. IEEE, 2017.

[17] Daigo Shishika and Vijay Kumar. Local-game decomposition for
multiplayer perimeter-defense problem. In Conference on Decision
and Control (CDC). IEEE, 2018.

[18] Narges Noori and Volkan Isler. Lion and man with visibility in
monotone polygons. The International Journal of Robotics Research,
33(1):155–181, 2014.

[19] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor
Mordatch. Multi-agent actor-critic for mixed cooperative-competitive
environments. In Advances in Neural Information Processing Systems,
pages 6379–6390, 2017.

[20] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory
Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic
value function factorisation for deep multi-agent reinforcement learning.
In International Conference on Machine Learning. PMLR, 2018.

[21] Oriol Vinyals, Timo Ewalds, et al. Starcraft ii: A new challenge for
reinforcement learning. arXiv preprint arXiv:1708.04782, 2017.

[22] Michael L Littman. Markov games as a framework for multi-agent
reinforcement learning. In Machine learning proceedings 1994, pages
157–163. Elsevier, 1994.

[23] Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, and Markus H.
Gross. Surface splatting. In Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH. ACM, 2001.

[24] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. arXiv preprint arXiv:1801.01290, 2018.

[25] Alberto Quattrini Li, Raffaele Fioratto, Francesco Amigoni, and Volkan
Isler. A search-based approach to solve pursuit-evasion games with
limited visibility in polygonal environments. In Intl. Conference on
Autonomous Agents and Multiagent Systems, pages 1693–1701, 2018.

[26] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
et al. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[27] Fei Xia, Amir R Zamir, Zhiyang He, Alexander Sax, Jitendra Malik,
and Silvio Savarese. Gibson Env: real-world perception for embodied
agents. In Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2018.

3863

Authorized licensed use limited to: University of Minnesota. Downloaded on September 27,2022 at 23:47:50 UTC from IEEE Xplore. Restrictions apply.

