DFSynthesizer: Dataflow-based Synthesis of Spiking Neural
Networks to Neuromorphic Hardware

SHIHAO SONG, HARRY CHONG, ADARSHA BALAJI, ANUP DAS,
JAMES SHACKLEFORD, and NAGARAJAN KANDASAMY, Drexel University, USA

Spiking Neural Networks (SNNs) are an emerging computation model that uses event-driven activation and
bio-inspired learning algorithms. SNN-based machine learning programs are typically executed on tile-based
neuromorphic hardware platforms, where each tile consists of a computation unit called a crossbar, which
maps neurons and synapses of the program. However, synthesizing such programs on an off-the-shelf neu-
romorphic hardware is challenging. This is because of the inherent resource and latency limitations of the
hardware, which impact both model performance, e.g., accuracy, and hardware performance, e.g., through-
put. We propose DFSynthesizer, an end-to-end framework for synthesizing SNN-based machine learning
programs to neuromorphic hardware. The proposed framework works in four steps. First, it analyzes a ma-
chine learning program and generates SNN workload using representative data. Second, it partitions the SNN
workload and generates clusters that fit on crossbars of the target neuromorphic hardware. Third, it exploits
the rich semantics of the Synchronous Dataflow Graph (SDFG) to represent a clustered SNN program, allow-
ing for performance analysis in terms of key hardware constraints such as number of crossbars, dimension
of each crossbar, buffer space on tiles, and tile communication bandwidth. Finally, it uses a novel schedul-
ing algorithm to execute clusters on crossbars of the hardware, guaranteeing hardware performance. We
evaluate DFSynthesizer with 10 commonly used machine learning programs. Our results demonstrate that
DFSynthesizer provides a much tighter performance guarantee compared to current mapping approaches.

CCS Concepts: « Hardware — Neural systems; Emerging languages and compilers; Emerging tools
and methodologies; - Computer systems organization — Data flow architectures; Neural networks;

Additional Key Words and Phrases: Neuromorphic computing, Synchronous Dataflow Graph (SDFG),
machine learning, Spiking Neural Networks (SNN), compiler, mapping

ACM Reference format:

Shihao Song, Harry Chong, Adarsha Balaji, Anup Das, James Shackleford, and Nagarajan Kandasamy. 2022.
DFSynthesizer: Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware. ACM
Trans. Embedd. Comput. Syst. 21, 3, Article 27 (May 2022), 35 pages.

https://doi.org/10.1145/3479156

This work is supported by (1) the US DOE CAREER Award DE-SC0022014 (Architecting the Hardware-Software Interface
for Neuromorphic Computers), (2) the National Science Foundation Award CCF-1937419 (RTML: Small: Design of System
Software to Facilitate Real-Time Neuromorphic Computing), and (3) the National Science Foundation Faculty Early Career
Development Award CCF-1942697 (CAREER: Facilitating Dependable Neuromorphic Computing: Vision, Architecture, and
Impact on Programmability).

Authors’ address: S. Song, H. Chong, A. Balaji, A. Das, J. Shackleford, and N. Kandasamy, Drexel University, 3141 Chest-
nut Street, Philadelphia, PA, 19104; emails: ss3695@dragons.drexel.edu, hjc39@dragons.drexel.edu, ab3586@drexel.edu,
anup.das@drexel.edu, jas64@drexel.edu, nk78@drexel.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1539-9087/2022/05-ART27 $15.00

https://doi.org/10.1145/3479156

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

https://orcid.org/0000-0002-5673-2636
https://doi.org/10.1145/3479156
mailto:permissions@acm.org
https://doi.org/10.1145/3479156

27:2 S. Song et al.

1 INTRODUCTION

The Spiking Neural Network (SNN) is an emerging computing model that uses spike-based
computations and bio-inspired learning algorithms [71]. In an SNN, pre-synaptic neurons commu-
nicate information encoded in spike trains to post-synaptic neurons, via synapses (see Figure 1).
Performance, e.g., accuracy of an SNN model, is assessed in terms of the inter-spike interval
(ISI), which is defined as the inverse of the mean firing rate of the neurons.

SNNs are typically executed on neuromorphic hardware platforms such as DYNAP-SE [73],
TrueNorth [47], and Loihi [45]. These hardware platforms are designed as a tile-based architecture
with a shared, hierarchical interconnect to facilitate inter-tile communication (see Figure 2) [25].
Each tile consists of a crossbar for mapping neurons and synapses, and input and output buffer
space for communicating spikes over the interconnect. A crossbar is a 2D organization of horizon-
tal and vertical wires, where the horizontal wires are connected to pre-synaptic neurons while the
vertical wires are connected to post-synaptic neurons. Non-Volatile Memory (NVM) cells are
placed at the crosspoints of each crossbar to implement storage of synaptic weights [24, 72].!

Energy consumed by neuromorphic hardware can be several orders of magnitude lower than
a conventional machine learning accelerator such as Eyeriss [26]. This is due to low-power VLSI
implementation of analog neurons [62], low-power and high-density NVM-based synaptic stor-
age [24], and distributed computing and storage architecture using crossbars. Given these advan-
tages, a neuromorphic hardware can implement machine learning tasks for power-constrained
platforms such as embedded systems and edge nodes of the Internet of Things (IoT) [5].

Unlike conventional von Neumann computing systems, where CPUs compute by exchanging
data centrally from the main memory, synthesizing, i.e., compiling and mapping a machine learn-
ing program on a neuromorphic hardware, is challenging. This is because in a neuromorphic hard-
ware, computation units (i.e., the neurons) and storage units (i.e., the synapses) are distributed
within the hardware as crossbars. It is therefore important to properly partition a large SNN model
such that it can be mapped efficiently to the underlying resources. Additionally, each crossbar also
presents limitations on how many pre-synaptic connections are allowed per post-synaptic neuron,
and how much buffer space is available to send and receive spikes over the interconnect. These
hardware limitations impact both model accuracy and hardware performance such as throughput,
latency, and energy consumption.

We develop DFSynthesizer, a systematic and end-to-end framework to analyze and map ma-
chine learning programs to state-of-the-art neuromorphic hardware, while guaranteeing perfor-
mance. Following are our key contributions:?

e Contribution 1. We present an approach to analyze machine learning programs and gen-
erate SNN workload using representative data. Our framework allows workload generation
with only a modest impact on model performance.

e Contribution 2. We present an approach to decompose and partition complex SNN work-
loads and generate clusters of neurons and synapses such that each cluster can fit onto the
resources of a crossbar in the hardware.

e Contribution 3. We exploit the rich semantics of Synchronous Dataflow Graphs (SD-
FGs) [69] to represent clustered SNN programs. This allows for the SNN’s performance,
e.g., throughput, to be estimated on the hardware as a function of key properties such as
number of crossbars, dimension of crossbars, buffer space on tiles, and tile communication

bandwidth.

!Beyond neuromorphic computing, NVMs are also used as main memory for conventional computing using shared-
memory computers [85, 86, 88-90].
2Contributions 2, 3, and 4 appeared in our prior work [83]. This work introduces contributions 1, 5, and 6.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:3

wvoltage

binary events

X1

X2

X3

pre-synaptic
neurons

inter-spike interval
((B)))

post-synaptic

Xqll 11 01
neuron

Fig. 1. Integration of spike trains at the post-synaptic neuron from four pre-synaptic neurons in a Spiking
Neural Network (SNN). Each spike is a voltage waveform of time duration to the order of ms.

| Tile Tile I_I Tile | | Tile Tile I_I Tile | | Tile Tile Tile |
nterconnect nterconnect nterconnect

Buffer | Tile I_l Tile I_l Tile | | Tile I_l Tile I_l Tile | | Tile I_l Tile I_l Tile |

Fig. 2. Atile-based neuromorphic architecture [25], which is representative of many neuromorphic platforms
such as DYNAP-SE [73], TrueNorth [47], and Loihi [45].

1aung

e Contribution 4. We develop a novel scheduling algorithm based on Self-Timed Execution
for executing clusters on crossbars of a neuromorphic hardware, providing performance
guarantee in scenarios with dynamic resource availability.

e Contribution 5. We propose a design-space exploration framework incorporating DFSyn-
thesizer that allows the Pareto space of different SNN mappings to hardware to be explored
while considering other hardware metrics such as energy, latency, and reliability.

e Contribution 6. We evaluate DFSynthesizer using 10 machine learning programs that are
representative of the three most commonly used neural network classes—convolutional
neural network (CNN), multi-layer perceptron (MLP), and recurrent neural network
(RNN).

2 SCOPE AND HIGH-LEVEL OVERVIEW OF DFSYNTHESIZER

DFSynthesizer is developed for supervised machine learning approaches, where a machine learn-
ing model is first trained using representative data from the field. Machine learning inference
refers to generating output from the trained model by feeding live data. To improve energy effi-
ciency, the inference is performed on a neuromorphic hardware. Once deployed on the hardware,
the model is expected to perform inference in real time on a continuous basis from data collected
using sensors.” Therefore, a key performance metric for neuromorphic hardware performing real-
time inference is throughput, defined as the number of frames processed per unit time, where a
frame is defined as an individual image (for image-based models) or a window of time-series data.*

Figure 3 illustrates the proposed end-to-end framework of DFSynthesizer, which synthesizes,
i.e., compiles, and maps a machine learning program to a neuromorphic hardware in four steps.
First, it analyzes a machine learning program written in a high-level language such as Python
and C/C++ to generate SNN workload (Section 3). Second, it compiles SNN workloads to an

3Camera sensors are used for image classification models, e.g., LeNet, AlexNet, and VGG16, while electrocardiogram sen-
sors are used for heart rate classification and estimation models. See our evaluation setup in Section 7.

4By maximizing the throughput, DFSynthesizer minimizes the time to process individual frames using the neuromorphic
inference hardware, which makes DFSynthesizer applicable to both real-time and non-real-time applications.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:4

S. Song et

(Workload \

Generation

HLL

C++
Python

SNN Simulation

Compilation

Intermediate

h5
json

Decomposition

(Resource \

Allocation

Backend
SDF

Load Balancing

r

Scheduling

Backend

hardware
specific

Performance

al.

~\

\) \andClusteringJ \) \ Guarantee)

Fig. 3. High-level overview of DFSynthesizer. A machine learning program is analyzed and mapped to the
hardware using the proposed four-step methodology.

Model Training Model Analysis

5 | SNN i |
[PYCARL Model 5 l |
*json, |
5 hs | _ i
: Ker - ANN i | Model N SNN R ;uncflc:_nal !
cres ~| Model i | Parsing "|conversion > (C!Z‘;Lasli(:) ?SI\TN

Fig. 4. Workflow of the workload generation step of DFSynthesizer.

intermediate representation format (h5 and json), performing spatial decomposition and clustering
to fit onto the resources of a crossbar (Section 4). Third, it uses Synchronous Dataflow Graph
(SDF) to represent clustered SNN (in XML representation), allocating resources to the clusters
considering hardware resource constraints (Section 5). Finally, it schedules the SDF representation
of a clustered SNN to the hardware crossbars, guaranteeing performance (Section 6).

3 PROGRAM ANALYSIS AND WORKLOAD GENERATION

In this step, a machine learning program is analyzed to generate its workload. In the following, we
discuss the steps involved in the workload generation.

3.1 Workflow for Workload Generation

Figure 4 summarizes the workflow of the workload generation step of DFSynthesizer, where a
machine learning program is analyzed to generate its workload, which is then used to map the
application to a neuromorphic hardware.

DFSynthesizer can incorporate both Artificial Neural Networks (ANNs) and SNNs in its
workflow. At a high level, the proposed workflow consists of a model training component followed
by model analysis. In the following, we elaborate on these components.

3.2 Model Training

3.2.1 Training Artificial Neural Networks. DFSynthesizer’s frontend is integrated with Keras
[57], which is used to define a model and train it on a database. Keras utilizes the Tensorflow
backend [1]. DFSynthesizer also supports other frameworks such as PyTorch [76]. To demonstrate

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:5

the capabilities of DFSynthesizer, we evaluate it with three CNN architectures: (1) LeNet [68],
trained on the MNIST handwritten digit dataset [49]; (2) AlexNet [66], trained on the ImageNet
dataset [48]; and (3) VGGNet [82], trained on the ImageNet dataset. These models are derived from
the MLPerf [78] dataset and instantiated in Keras. We use a Lambda workstation with two GPUs
(see our evaluation setup in Section 7) to train these models.

3.2.2 Training Spiking Neural Networks. DFSynthesizer’s frontend supports training SNN mod-
els using PyCARL [7], a Python frontend to CARLsim [28]. CARLsim facilitates SNN simulations
using CPUs and multi-GPUs. PyCARL is designed to integrate with PyNN [46], which provides
a common frontend to different SNN simulators with various degrees of neurobiological details.
We use CARLsim for model training. CARLsim’s support for built-in biologically realistic neuron,
synapse, current, and emerging learning models and continuous integration and testing make it an
easy-to-use and powerful simulator of biologically plausible SNN models. DFSynthesizer can also
utilize other SNN simulators such as Brian [55], NEST [51], and NEURON [59] for model training.

3.3 Model Analysis

3.3.1 Model Parsing and Conversion. Unfortunately, ANN models cannot be executed directly
on event-driven neuromorphic hardware platforms such as DYNAP-SE [73], TrueNorth [47], and
Loihi [45]. Recently, many tools have been proposed to convert ANN operations to SNNs. Examples
include Nengo [19], N2D2 [22], and SNNToolBox [79]. A common limitation of these toolboxes
is that they are open-loop converters, meaning that the conversion is performed considering per-
formance degradation only. In our prior work [8], we have proposed a closed-loop conversion
mechanism, where the conversion of analog operations to spiking equivalent is performed consid-
ering the energy consumption on hardware. These conversion steps are briefly discussed below.’

(1) ReLU Activation Functions: This is implemented as the approximate firing rate of a leaky
integrate and fire (LIF) neuron.

(2) Bias: A bias is represented as a constant input current to a neuron, the value of which is
proportional to the bias of the neuron in the corresponding analog model.

(3) Weight Normalization: This is achieved by setting a factor A to control the firing rate of
spiking neurons.

(4) Softmax: To implement softmax, an external Poisson spike generator is used to generate
spikes proportional to the weighted sum accumulated at each neuron.

(5) Max and Average Pooling: To implement max pooling, the neuron that fires first is considered
to be the winning neuron, and therefore, its responses are forwarded to the next layer, sup-
pressing the responses from other neurons in the pooling function. To implement average
pooling, the average firing rate (obtained from total spike count) of the pooling neurons is
forwarded to the next layer.

We have extended our framework with the following new functionalities to allow for the con-
version of CNN architectures such as LeNet, AlexNet, and VGGNet to their spiking counterparts.

(1) 1-D Convolution: The 1-D convolution is implemented to extract patterns from inputs in a
single spatial dimension. A 1 X n filter, called a kernel, slides over the input while computing
the element-wise dot-product between the input and the kernel at each step.

The conversion framework was introduced in [8] for converting the CNN-based HeartClass application to its equivalent
SNN representation. We used this application to evaluate DFSynthesizer. Additionally, we have extended the conversion
framework to add other key functionalities such as Layer Flattening, Concatenation, Binary Weight Activation, and Non-
Zero Biases. These new functionalities allowed the conversion framework to convert state-of-the-art CNN architectures
such as LeNet, AlexNet, and VGG16, which are used to evaluate DFSynthesizer.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:6 S. Song et al.

Table 1. Accuracy Impact Due to Conversion of Three State-of-the-art CNN Models
to Their SNN Equivalent

Top-1 Accuracy (% Top-1 Accuracy (% Top-1 Accuracy (%

Application P y (%) Application P y Application P y (%)
Original SNN Original SNN Original SNN

LeNet 94.98% 94.08% AlexNet 74.1% 71.7% VGG16 93.56% 91.62%

The original accuracy numbers are obtained by simulating these architectures in Keras [57] with Tensorflow
backend [1]. The converted accuracy numbers reported in the columns marked “SNN” are obtained from
CARLsim [28]. We use a multi-GPU machine to simulate these architectures using both Keras and CARLsim.
See our evaluation framework in Section 7.

(2) Residual Connections: Residual connections are implemented to convert the residual block
used in CNN models such as ResNet. Typically, the residual connection connects the input
of the residual block directly to the output neurons of the block, with a synaptic weight of 1.
This allows for the input to be directly propagated to the output of the residual block while
skipping the operations performed within the block.

(3) Flattening: The flatten operation converts the 2-D output of the final pooling operation into a
1-D array. This allows for the output of the pooling operation to be fed as individual features
into the decision-making regarding fully connected layers of the CNN model.

(4) Concatenation: The concatenation operation, also known as a merging operation, is used as
a channel-wise integration of the features extracted from two or more layers into a single
output.

Table 1 reports the accuracy impact due to the SNN conversion of three state-of-the-art su-
pervised CNN models. These accuracy numbers are obtained from CARLsim [28], which allows
functional simulation and performance estimation of SNN-based applications. We use these three
converted CNN models to evaluate DFSynthesizer (see Section 7).

3.3.2 Workload Generation. The SNN model (or the converted ANN model) is analyzed in
CARLsim to generate the following information:

e Spike Data: the exact spike times of all neurons in the SNN model. We let spk(i) represent a
list of spike times of the i neuron in the model.

e Weight Data: the synaptic strength of all synapses in the SNN model. We let w(i, j) represent
the synaptic weight of the connection between the i and ;" neurons in the SNN model.

The spike and weight data of a trained SNN form the SNN workload. Formally, an SNN work-
load is defined as follows.

Definition 1 (SNN Workload). An SNN Workload Gsnn = (N, S, W) is a directed graph consisting
of a finite set N of neurons, a set s of spikes, and a set W of synapses between the neurons.

4 PROGRAM COMPILATION AND PERFORMANCE ESTIMATION

In this step, DFSynthesizer clusters a given machine learning model to map onto the crossbars of
a neuromorphic hardware. To do so, we first introduce the system architecture and then discuss
the clustering step needed to map applications to this architecture.

4.1 System Architecture

Figure 5 illustrates our system architecture. DFSynthesizer is designed for crossbar-based neuro-
morphic hardware designs as shown in Figure 2. This is representative of many recent neuromor-
phic designs [3, 25, 56, 61]. A machine learning model (ANN or SNN) is first analyzed to generate

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:7

ser1 ANN/SNN] Workload | Data_1 Data_2 Data_N
Model Generation
I P: _1 | Parameters_2 Parameters_N
Cluster 1 Cluster 2 Cluster N
\ J

Host Memory

Fvossbaa

rossbar

lcrossbar crossb;

Data_1

ML 3 data + Kemel
parameters

ML 1 data +
parameters

ML 2 data +
parameters

Parameter_1

Data_N

PCle
Parameter_N

Neuromorphic Hardware

PCle

Fig. 5. Our system architecture, integrating a neuromorphic hardware. DFSynthesizer is designed for
crossbar-based neuromorphic hardware [3, 25, 56, 61]. This is representative of many recent neuromorphic
designs. To evaluate DFSynthesizer, we have configured our evaluation setup to model the DYNAP-SE hard-
ware [73].

its workload (Section 3). This workload is then partitioned to generate clusters, where each cluster
consists of a fraction of the neurons and synapses of the original machine learning model. The
cluster workload is stored in a disk along with other machine learning workloads. To execute a
specific workload on the neuromorphic hardware, it is first loaded into the host memory and then
the clusters are programmed on to the crossbars of the hardware via the PCle interface.®

In the remainder of this section, we describe the workload compilation step of DFSynthesizer,
which consists of the following two design components: Workload Decomposition and Workload
Clustering. We conclude this section by providing a dataflow modeling approach for clustered
workloads and performance estimation using such model.

4.2 Workload Decomposition

We note that each N X N crossbar in a neuromorphic hardware can accommodate up to N pre-
synaptic connections per post-synaptic neuron, with typical value of N set between 128 (in DYNAP-
SE) and 256 (in TrueNorth). Figure 6 illustrates an example of mapping (a) one 4-input, (b) one
3-input, and (c) two 2-input neurons on a 4x4 crossbar. Unfortunately, neurons with more than four
pre-synaptic connections per post-synaptic neuron cannot be mapped to the crossbar. In fact, in
many complex machine learning models such as AlexNet and VGG16, the number of pre-synaptic
connections per post-synaptic neuron is much higher than 128. Therefore, these neurons cannot
be mapped to a 128 x 128 crossbar in DYNAP-SE.

To address the above limitation, we have previously proposed a spatial decomposition technique
that exploits the firing principle of LIF neurons, decomposing each neuron with many pre-synaptic
connections into a sequence of homogeneous fanin-of-two (FIT) neural units [14].

Figure 7 illustrates the spatial decomposition using a small example of a three-input neuron
shown in Figure 7(a). We consider the mapping of this neuron to 2 X 2 crossbars. Since each
crossbar can accommodate a maximum of two pre-synaptic connections per neuron, the example

% Although we illustrate the crossbars to be interconnected in a mesh-based architecture such as Networks-on-Chip
(NoC) [20], DFSynthesizer can work with other interconnect types such as Segmented Bus [17].

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:8 S. Song et al.

i . PR
) 1 ip F
: L 02

S I N D W
I3 i3 i3
Wy—9 : ig
01 : 0
: 1 01 02
() : (b) : (c)

Fig. 6. Example mapping of (a) one 4-input, (b) one 3-input, and (c) two 2-input neurons on a 4 X 4 crossbar.

a a | |
\ Fr |2
b —— b FIT - -
o (o]
c c / Spike A Spike
Encoder d Encoder
[.......... o]
(a) Original Neuron (b) Decomposed Neuron (c) Mapping the decomposed neuron to

two crossbars

Fig. 7. Illustrating the decomposition of a three-input neuron (a) to a sequence of FIT neural units (b). The
mapping of the FIT units to two 2 X 2 crossbars is shown in (c).

three-input neuron cannot be mapped to the crossbar directly. The most common solution is to
eliminate a synaptic connection, which may lead to accuracy loss. Figure 7(b) illustrates the decom-
position mechanism, where the three-input neuron is implemented using two FIT neural units
connected in sequence as shown in Figure 7(b). Each FIT unit is similar to a two-input neuron
and it exploits the leaky integrated behavior in hardware to maintain the functional equivalence
between Figures 7(a) and 7(b).

For the sake of completeness, Figure 7(c) illustrates the mapping of the decomposed neuron
utilizing two 2 X 2 crossbars. The functionality of the FIT neural units is implemented using the
NVM cells of the two crossbars.

To describe the decomposition algorithm, we introduce the following notations. Let
nl,n% ...,n" be the m; pre-synaptic connections of the neuron N;. Let F., F2 ..., F/"""' be the
(m;—1) FIT neural units that are generated by spatially decomposing this neuron. The input of unit
F/ denoted as In(F]) can be represented as

{n},n?} forj=1

A . Vie {1,2,...,m; — 1}, 1
{né“,Out(F{_l)} otherwise jel 1 .

In(F)) = {

where Out(F/) is the output of the unit F/. When decomposing a neuron, we note that the first FIT
unit uses two of the original inputs of the original neuron. Subsequently, all other FIT units use
one of the original inputs and the output of the preceding FIT units as shown in Figure 7(b).

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:9

Formally, a decomposed SNN graph is defined as follows.

Definition 2 (Decomposed SNN Graph). A decomposed SNN graph Gpsnn = (F, L) is a directed
graph consisting of a finite set F of FIT neural units and a finite set L of links between these units.

Algorithm 1 shows the pseudo-code of the spatial decomposition technique, which performs the
graph transformation Gsyn — Gpsnn- For each neuron N; (line 1), a set of inputs to this neuron is
obtained (line 2). The first FIT unit is formed using two inputs (line 3). This is in accordance with
Equation (1) and Figure 7(b). The FIT unit is inserted into the decomposed graph Gpsnn (line 4).
The algorithm then creates the other FIT units iteratively (lines 5-8) using Equation (1) and stores
those units in Gpsy. Finally, the graph Gpsn is returned (line 10).

The overall complexity of this algorithm is calculated as follows. The outer for loop (lines 1-9)
is executed for the neurons in the original graph Gsnw, i.e., for |N| times. Within each iteration,
the algorithm creates a total of (|In(N;)| - 1) FIT units, where In(N;) is the set of inputs of neuron
N;. Therefore, the algorithmic complexity is

IN|
Complexity = O Z (lIn(N,-| - 1) ~ O (|W]). (2)

i=1

In deriving the final expression, we note that the input connections of all the neurons in the graph
Gsnn are the edges w in the graph.

ALGORITHM 1: Spatial Decomposition of SNN Graph Gsnn
Input: GsyN = (N, W)
Output: GpsyN = (F, L)

1 for N; € Ndo /* for each node of GsynN */
) {nhn2 ...) = In(Ny) ; /% input links of N; %/
3 Create node Fi1 with In(Fil) ={ny, na}; /* first FIT unit */
4 GDSNN‘insert(Fil); /* insert the FIT neural unit uli in GpsNN */
5 forj=2;j < my;j++do /* remaining FIT units x/
6 Create node FlJ with 1n(Fl’) = [n{“, Fii_l};

7 GDSNN.insert(F{);

8 end

9 end

=
)

Return GpsN N

4.3 Workload Clustering

The decomposed SNN graph is clustered such that each cluster is able to fit onto a crossbar.
Figure 8 illustrates the concept using an example of a decomposed SNN graph shown in (®). The
nodes are the FIT neural units and the links are the synaptic connections. The number on a link
represents the average number of spikes communicated between the source and destination FIT
units for the representative training data. We consider the mapping of this decomposed SNN
graph to a hardware with 2 X 2 crossbars. Since a crossbar in this hardware can only accommodate
a maximum of two pre-synaptic connections, we partition the graph of (@) into two partitions
(shown in two different colors) in (@). These partitions can then be mapped to the two crossbars
as shown in (@), with an average of eight spikes communicated between the crossbars due to the
mapping of the link between neuron d and e on the shared interconnect of the hardware. Finally,
the two clusters generated from the SNN graph are shown in (@) along with the inter-cluster
communication.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:10 S. Song et al.

1ayng

',.-""-Cluster 2

Fig. 8. Illustration of SNN graph clustering. (@) is the original decomposed SNN graph with FIT neural units
shown as the nodes and average spikes communicated between them shown on the links. (@) shows the
partitioning of this graph. (®) shows the mapping of the partitions to the two crossbars. (@) shows the two
clusters generated from the SNN graph of (@) considering the constraints of the crossbar.

Formally, a clustered SNN graph is defined as follows.

Definition 3 (Clustered SNN Graph). A clustered SNN graph Gesnw = (A, €) is a directed graph
consisting of a finite set A of clusters and a finite set C of connections between these clusters.

Recently, different approaches have been proposed for clustering SNNs. Examples include
SpiNeMap [11] for energy minimization and NEUTRAMS [63] for performance. See Section 9 for
a comprehensive overview of other state-of-the-art SNN clustering approaches.

We formulate SNN clustering as a graph transformation problem and introduce an efficient
algorithm to improve resource utilization. This objective is essential to provide a tighter guarantee
on performance of SNNs in hardware as we demonstrate in Section 8.

The graph transformation Gpsyn — Gesnn is a classical graph partitioning problem [65]
and has been applied in many contexts, including task mapping on multiprocessor systems [38].
We propose a greedy approach to pack the FIT neural units and synapses of the decomposed
SNN graph Gpsnn into clusters, improving cluster resource utilization. Algorithm 2 provides the
pseudo-code of the clustering algorithm. For each node of the unrolled graph, the algorithm tries
to see if the node can be merged into one of the existing clusters (line 3), before creating a new
one (lines 4-8). In this algorithm, clusters in Gesnn are sorted in descending order of neuron and
synapse utilization (line 12), so that the heavily utilized clusters are first considered for packing
neurons and synapses, further improving their utilization.

4.4 Dataflow Modeling of Clustered Workload

We model a clustered SNN as an SDFG for predictable performance analysis [69]. SDFGs are com-
monly used to model streaming applications that are implemented on a multi-processor system-on-
chip [94]. These graphs are used to analyze a system in terms of key performance properties such
as throughput, execution time, communication bandwidth, and buffer requirements [97]. Nodes of
an SDFG are called actors. Each node is a cluster of the clustered SNN graph Gesan = (A, C). Actors
are computed by reading tokens, i.e., spikes from their input ports, and writing the results of the
computation as tokens on the output ports. The number of tokens produced or consumed in one
execution of an actor is called the port rate. They represent the number of spikes per unit time at
the input and output of different clusters in the SNN. Port rates are visualized as annotations on
edges. Actor execution is also called firing, and it requires a fixed amount of time to execute on a

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:11

ALGORITHM 2: Utilization-aware SNN Clustering

Input: Gpsnyn = (F, L)

Output: Gesnn = (A, C)
1 Gesnn = {yand cluster_list = {};
2 foreach F; € Fdo

3 find C; € cluster_list such that F; can be packed in C; while improving neuron and synapse utilization of Cj;
4 if C; = 0 then

5 Create new cluster Cpey;

6 Assign F; and its synaptic connections to Cpeyw;

7 GesNN-push(Chew);

8 end

9 else

10 ‘ Assign F; and its synaptic connections to Cj;

11 end

12 sort Gesn N in descending order of neuron and synapse utilizations;
13 end

crossbar. Edges in the graph are called channels, and they represent dependencies among actors.
An actor is said to be ready when it has sufficient input tokens on all its input channels and suf-
ficient buffer space on all its output channels; an actor can only fire when it is ready. A set Ports
of ports is assumed, and with each port p € Ports, a finite rate Rate(p) € N \ {0} is associated.
Formally, an actor is defined as follows.

Definition 4 (Actor). An actor a; is a tuple (I;, O;, 7;, ;) consisting of a set I; (C Ports) of input
ports and a set O; (C Ports) of output ports with I; N O; = 0, 7; is the execution time of a;, and y;
is its state space, i.e., buffer space needed for communicating spikes on all of its channels.

The source of channel ch{: € C is an output port of actor a;; the destination is an input port
of actor a;. All ports of all actors are connected to precisely one channel, and all channels are

connected to ports of some actors. The source and the destination port of channel ch{: are denoted

by SrcP(ch]l:) and DstP(ch{:), respectively. Channels connected to the input and output ports of an
actor a; are denoted by InC(a;) and OutC(a;), respectively.

Before an actor a; starts its firing, it requires Rate(q;) tokens from all (p, g;) € InC(a;). When the
actor completes execution, it produces Rate(p;) tokens on every (p;, q) € OutC(a;). One important
property of an SDFG is throughput, which is defined as the inverse of its long-term period. A period
is the average time needed for one iteration of the SDFG. An iteration is defined as the minimum
non-zero execution such that the original state of the SDFG is obtained. This is the performance
parameter used in this article. The following definitions are introduced to formulate throughput.

Definition 5 (Repetition Vector). The Repetition Vector RptV of an SDFG is defined as the vector
specifying the number of times actors in the SDFG are executed in one iteration.

For the SDFG representation of a clustered SNN, all spikes generated on a channel are consumed
by the destination actor. This means that all actors are fired exactly once during one iteration of
the application. So, RptV = [1111111].

4.5 Cyclic Dependency and Deadlock Avoidance

The clustering approach may lead to cyclic dependency among actors. Figure 9(a) illustrates a sim-
ple feedforward network of three neurons (A, B, and C). Figure 9(b) illustrates a scenario where
neurons A and C are placed in cluster 1 (actor 1) and neuron B in cluster 2 (actor 2) during partition-
ing. Due to the connectivity of the neurons in Figure 9(a), there is a cyclic dependency between the
two actors: actor_1—actor_2—actor_1. SDF graphs allow representing such cyclic dependency
among actors, justifying our choice of using them for modeling clustered SNNs.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:12 S. Song et al.

Cluster 1
(actor 1)

@ (b)

Cluster 2
(actor 2)

Fig. 9. An example cycle generated during clustering of SNNs.

Ready to

& Schedule
Generated
Cyclic SDF Strongly Subgraphs’
Graph Connected presentt?
Subgraphs

N*o VE l—Ve

Schedule
Deadlock-free Inter-lteration
subgraphs Edges

Remove

Fig. 10. Cycle breaking for deadlock avoidance of cyclic SDF graphs [18].

However, the presence of cycles complicates the scheduling problem because cyclic dependen-
cies can lead to deadlocks. To address this, a cyclic SDF graph is decomposed into hierarchies of
acyclic subgraphs. To describe this, we introduce the following definition.

Definition 6 (Strongly Connected Subgraph). A subgraph Z of a directed (cyclic or acyclic) graph
is called a strongly connected subgraph, iff for every pair of vertices a and » of z, there is a path
from a to b and a path from & to a.

Figure 10 shows the flowchart for cycle breaking, also known as sub-independence partition-
ing, which is the process of decomposition of strongly connected SDF graphs into hierarchies of
acyclic graphs. This is roughly based on the Loose Interdependence Algorithms Framework
(LIAF) [18]. A cyclic SDF graph is first decomposed into a series of strongly connected subgraphs
Z4, Za. . . ., Zn. For each strongly connected subgraph z;, the LIAF algorithm tries to break cycles
by properly removing edges that have sufficient delays. Let Z;(V;, E;) be the strongly connected
subgraph of the SDF Graph. An edge ¢; € E; can be removed if it has enough initial tokens to sat-
isfy the consumption requirements of its sink actor for a complete iteration of z; and scheduling z;
without e; does not lead to deadlock. The edge e; is called inter-iteration edge. The inter-iteration
edge removal is performed iteratively until the new subgraph with the inter-iteration edges re-
moved is no longer a strongly connected subgraph (i.e., it becomes a loosely connected subgraph).
The subgraph is pushed into a ready list for scheduling purposes. The algorithm is repeated for all
the strongly connected subgraphs. At the end, all deadlock-free subgraphs are scheduled.

4.6 Performance Estimation

We present an approach to compute the application period of an SDFG by analyzing its maximum
cycle mean (MCM) and assuming infinite hardware resources. For this, we use Max-Plus Algebra
[29, 58, 107]. The Max-Plus semiring R,y is the set R U {—oo} defined with two basic operations
® and ®, which are related to linear algebra as

a®b=max(a,b)anda® b =a+b. 3)

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:13

tile 0

tile 1

tile 2

Fig. 11. (a) An example of SDFG obtained from clustering of the EdgeDet application [28]. (b) Mapping of
the SDFG to a neuromorphic hardware with four tiles.

The identity element 0 for the addition @ is -eo in linear algebra, i.e., a ® 0 = a. The identity
element 1 for the multiplication ® is 0 in linear algebra, i.e., a ® 1 = a.

To use Max-Plus Algebra to analyze an SDFG, it is customary to express the time at which an
actor fires in terms of preceding firings in linear algebra and then use standard analysis techniques
for Max-Plus Algebra to estimate timing performance. We use the running example of the SDFG
in Figure 11(a), which is obtained by clustering EdgeDet [28], an application used to evaluate
DFSynthesizer (see Section 7). The clustering is performed considering 1024 X 1024 crossbars.’
The firing end times of all nine actors in the k' iteration (in linear algebra) are

to(k) > tolk — 1) + 70 ts(k) > max] ty(k). 11 k), t4(k)] t s

f(k) > to(k) + 71 to(k) > max :tz(k), to(k)] + 75

t(k) = 1 (k) + 7 b (6) = max| (8. to(k)] r o (4)
(k) > max[tz(k), t;,(k)] t o ts(k) > max itz(k), (k). t6(k)] o

t(k) > max[t1<k>, to<k>] o

Observe that the firing end time of actor 4, in the k'™ iteration is after its firing end time in
the (k — 1) iteration. Furthermore, the production and consumption rates are the same for every
channel in the SDFG. Using previously introduced Max-Plus semantics, firing end times for every
actor in the SDFG can be expressed as

tx = BT ® ty_q, (5)

where T is a matrix in RE® that captures the actor execution times 7, and ty = {t,(k), t1(k), . . ., ts(k)}.

max

The following definitions are introduced to estimate latency.

Definition 7 (Digraph). The digraph I'(T) of an n X n matrix T with entries defined in R,y is
the tuple (A, E), where A is the set of vertices, i.e., A = {1,2,...n}, and E is the set of connected
ordered arcs between vertices, i.e., E = {(i,) | Tj,; # —o0}.

"We evaluate DFSynthesizer primarily for DYNAP-SE neuromorphic hardware with 128 x 128 crossbars [73]. Here we
configure 1024 x 1024 crossbars to generate fewer clusters from EdgeDet for illustration purposes.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:14 S. Song et al.

i

—00

Fig. 12. An example digraph of T = [§].

To give an example, the matrix T = [*1“ g] corresponds to the digraph shown in Figure 12.

Definition 8 (Walk). A walk w in digraph T'(T) is the sequence of arcs (x1,x2)
(x2,x3) ... (xk-1,xr); the head of an arc in the sequence is either the start vertex of the
walk or tail vertex of a preceding arc; and the tail vertex of an arc in the sequence is either the
end vertex of the walk or head vertex of a succeeding arc. Weight of the walk is given by

[wlr = Tx1x2 +oee Txk_lxk- (6)

Definition 9 (Cycle). A cycle c¢ in digraph I'(T) is the walk (x1, x2) (2, X3) . . . (xg—1, Xk), such that
Xk = X1.

Definition 10 (Maximum Cycle Mean). The maximum cycle mean, pmax(T), is the maximum of
the weight-to-length ratio of all cycles ¢ in I'(T), i.e.,

¢ Ton, + - Tep.
lelr o ey et T @)

T) = max
Pmax(T) VeinT(T) le| k>1 %1mps k-1

In this article, performance of an SNN is defined in terms of throughput of the equivalent
SDFG, measured as the inverse of its maximum cycle mean (Equation (7)), i.e.,

®)

Performance (throughput) = ———.
Pmax (T)
In Equation (8), the performance is computed using the worst-case execution time of an actor on a
crossbar. This is obtained from the propagation delay of current through the synaptic elements in
the crossbar. As shown in many recent works [99, 100, 102], the current propagation delay within
a crossbar depends on the specific synaptic elements that are being activated in the crossbar. This
is due to the difference in the amount of parasitic components on the bitlines and wordlines of a
crossbar along the different current paths. For performance guarantee purposes, we assume the
worst-case propagation delay in the crossbar and use the same to represent the execution time of
actors on the crossbars of a neuromorphic hardware.

The performance metric defined in Equation (8) provides the maximum throughput, consider-
ing only the worst-case execution time of actors. However, a neuromorphic hardware introduces
constraints such as limited buffer space on the crossbars and non-zero latency on the interconnect,
which can lower the throughput significantly. Therefore,

1
Throughput < Throughputy = ——. 9)
& & Pmax(T)

SNN max

In this work, we show that performance is impacted by

(1) how hardware resources are allocated to actors of a clustered SNN (Section 5) and
(2) how actors mapped to the same crossbar are time-multiplexed and scheduled (Section 6).

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:15

We seek to find the lower bound on performance (Throughput,) such that

bound

< Throughput| < Throughput

SNN

Throughput (10)

bound max

By making Throughput close to Throughput; , we provide a tighter bound on performance.

max

bound

5 RESOURCE ALLOCATION AND HARDWARE MAPPING

The performance obtained using Equation (7) defines the maximum throughput obtained when
the clustered SNN is mapped to a hardware with infinite resources, i.e., a hardware with as many
crossbars as the number of actors (clusters) in the clustered SNN graph. Additionally, each crossbar
is assumed to have sufficient buffer space to send and receive spikes over the shared interconnect.
However, state-of-the-art neuromorphic hardware platforms present the following three critical
limitations. First, the number of crossbars in a neuromorphic hardware is limited. Therefore, the
available crossbars need to be time-multiplexed among the clusters of an SNN. Second, the input
and output buffer space on each crossbar are limited. Therefore, no more than one cluster can be
executed on a crossbar concurrently. Third, the communication bandwidth of each tile is limited.
Therefore, only a few spikes can be sent or received from the interconnect at once. Formally, a
neuromorphic hardware is defined as follows.

Definition 11 (Neuromorphic Hardware Graph). A neuromorphic hardware graph Gyg = (T, 1) is
a directed graph consisting of a finite set T of tiles and a finite set I of interconnect links.

Each tile consists of a crossbar to map neurons and synapses, and input and output buffers
to receive and send tokens (spikes) over the interconnect, respectively. A tile 7; is a tuple
(N, inB;, outB;), where N; is the dimension of the crossbar on the tile—i.e., the tile T; can accom-
modate N; pre-synaptic neurons, N; post-synaptic neurons, and N? synaptic connections; inB; is
the input buffer size on the tile; and outB; is its output buffer size. Each interconnect link is bidi-
rectional, representing two-way communication between the source and destination tiles with a
fixed bandwidth Bw.

The mapping M : Gesnn — Gy is specified by matrix (m;;) e {0, 1}/AXT where m;; is defined as

(11)

_J1 ifactor A; € Ais mapped totile T; € T
Y lo otherwise.

The mapping constraint is that a cluster can be mapped to only one tile, i.e.,
Zmij = 1Vi. (12)
J

The throughput of the clustered SNN graph Gesnyn on the neuromorphic hardware Gy for
mapping M is computed as

ta = DFSynthesizer(Gesnn, Gng, M), (13)

where DFSynthesizer is the extended Max-Plus formulation of Equation (7) incorporating plat-
form constraints. The following three steps describe DFSynthesizer. Without loss of generality,
we use Equation (14) as a running mapping example, where the nine actors of Figure 11 are mapped
to four tiles:
tile_0: A3 Ag, tile_2: Aj, Ay, Ay (14)
tile_1: A5, Ag tile_3: Ay, A;.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:16 S. Song et al.

The mapping corresponding to Equation (14) is therefore =M =

o o0 0 1 0 0 0 0 1
o 0 0 0 0 1 1 0 O
o 1 1 0 1 0 0 0 O
i 0 0 0 O O O 1 O

5.1 Step 1: Modeling Limited Buffer Sizes of Crossbars

Limited input and output buffer sizes of a tile are modeled as back-edges with initial tokens indi-
cating the buffer size available on the tile. This is illustrated in Figure 11(b) with the back-edge
from As to As, both of which are mapped to tile 0. When an actor generates spikes on a channel,
the available size reduces; when the receiving actor consumes the spike, the available buffer is
released. In the example, before A; can be executed, it has to check if enough buffer space is avail-
able. This is modeled by requiring tokens from the back-edge to be consumed. Since it produces
5,068 spikes per firing, 5,068 tokens from the back-edge are consumed, indicating reservation of
the buffer spaces. On the consumption side, when A; is executed, it frees 5,068 buffer spaces, indi-
cated by a release of these tokens on the back-edge. We assume atomic execution of actors on a
crossbar; i.e., a crossbar reads input tokens and produces output tokens in the output buffer for no
more than one actor at any given instance of time. To prevent other actors mapped to the same
tile from firing simultaneously, the output buffer space is claimed at the start of execution and
released only at the end of firing.

5.2 Step 2: Actor Ordering on Crossbars

The number of crossbars in a neuromorphic hardware is limited. Therefore, they may have to be
shared between actors of an SNN. However, on a tile, only one instance of an actor can be exe-
cuting at the same moment in time. We use time-division multiple-access (TDMA) to allocate
time slices to actors mapped to the same tile. During its allocated time slice, an actor is executed
on the crossbar of the tile and generates spikes, which are stored in the output buffer for commu-
nication on the interconnect. Next, we generate the order in which the actors bound to a tile are
fired to provide performance guarantee, i.e., throughput. For this, we apply our Max-Plus Algebra
formulation (Equation (7)) on the SDFG of Figure 11(b). This is our static-order schedule and is
constructed at design time.

5.3 Step 3: Actor Execution on Crossbars

Once the static-order schedule is constructed for all tiles of the hardware, we use a self-timed
execution strategy [74] to execute these actors at runtime. Here, the exact firing times of actors
are discarded, retaining only the assignment and ordering of actors on each tile as obtained from
the design-time analysis (step 2). At runtime, ready actors are inserted into a list and fired in the
same order previously determined during design time.

5.4 Mapping Exploration

Sections 5.1 through 5.3 extend the Max-Plus formulation to incorporate platform constraints. Us-
ing these constraints and the new formulation, one can estimate the throughput of a clustered SNN
on a neuromorphic hardware for a specific actor-to-tile mapping. In the following, we explain the
mapping scenario where the number of tiles in the hardware is less than the number of actors in
the clustered SNN. Therefore, each tile needs to be time-multiplexed between multiple actors.
Figure 13 conceptually illustrates the mapping exploration using DFSynthesizer compared to
state-of-the-art solutions and the selection of lower bound on throughput. @ represents the
throughput obtained using SpiNeMap [11], which optimizes energy consumption for a hardware
platform where the number of tiles is higher than the number of actors. When SpiNeMap is applied

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:17

Choice of lower bound of throughput Max
p A \ throughput
00 0000
Throughpu=t

o.Random Allocation + Random Schedule (SpiNeMap) °:Proposed Allocation + Proposed Schedule

e.Load Balance + Random Schedule (PyCARL) o:Pareto Mapping + Proposed Schedule (DFSynthesizer)

e'Load Balance + Proposed Schedule (SDFSNN) o:Highest Throughput

Fig. 13. Different mapping explorations and choices for the lower bound of throughput (see Equation (10)).

to the case where the tiles need to be time-multiplexed, it randomly distributes the actors to the
tiles and schedules them arbitrarily, without considering throughput. Therefore, the throughput
represented by @ (SpiNeMap) is significantly lower than the maximum throughput (i.e., the upper
bound) represented using ®. Therefore, the throughput variation is Tg - Tg.

In Figure 13, @ represents the throughput obtained using a solution such as PyCARL [7], which
balances the load on each tile for a scenario where actors need to be time-multiplexed on the
tiles. However, the actors mapped to a tile are scheduled in an arbitrary order without considering
throughput. By balancing the tile load, PyCARL reduces the number of clusters mapped per tile,
which improves throughput. Therefore, the throughput represented by @ is higher than @, but
lower than the maximum throughput ®. Therefore, the throughput variation is Tg - Tg.

In Figure 13, ® represents the throughput obtained using our previous work SDFSNN [83],
which first balances the load of each tile by distributing the actors evenly, and then uses a dataflow
approach to schedule the actors on each tile, improving throughput. The throughput represented
by @ is therefore higher than both @ and @, but lower than the maximum throughput ®. Therefore,
the throughput variation is Tg - Tg.

In Figure 13, @ represents the throughput obtained using a mapping exploration framework,
which explores a combination of actor-to-tile mapping and dataflow-based scheduling of actors
on each tile to maximize the throughput. This throughput is higher than @-@®, and is closer to
the maximum throughput @®. Finally, ® represents the throughput obtained using an actor-to-
tile mapping that jointly optimizes energy and throughput and uses dataflow-based scheduling
of actors on each tile to further improve the throughput. Since this solution takes energy into
consideration in the mapping step, the throughput can be somewhat lower than @ as illustrated
in the figure. In Section 8, we evaluate all these approaches and show that @ is still higher than
0-6.

To conclude, the design-space exploration of DFSynthesizer can generate mappings represent-
ing two minimum throughput solutions: @ and ®. Although the maximum throughput remains
the same for DFSynthesizer and other state-of-the-art approaches, the minimum throughput of
DFSynthesizer (i.e, ®) is higher than the minimum throughput obtained using all state-of-the-
art mapping solutions (i.e., @-®). Therefore, the difference between maximum and minimum
throughput is the least in DFSynthesizer compared to all state-of-the-art solutions, meaning that
DFSynthesizer provides a stricter performance guarantee, which is critical for real-time systems.
We now describe DFSynthesizer.

We integrate the extended Max-Plus formulation inside a design-space exploration framework
to obtain cluster mappings that are Pareto optimal in terms of hardware metrics such as through-
put, latency, energy, and reliability. In the following, we describe our mapping explorations

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:18 S. Song et al.

considering energy and throughput. Such formulations can be trivially extended to consider other
metrics.

The energy consumption E, of the mapping M is measured considering the number of
spikes that are generated inside each tile and the number of spikes that are routed on the
interconnect [101]. The energy parameters are reported in Table 3. Using these parameters, the
energy consumption is

Em = Espk + Ecomm, (15)

where E,,, is the energy consumed in generating the spikes and propagating the spike current
via the synapses, and Ecomm is the energy consumed in communicating spikes via the shared
interconnect, where S(7;) is the number of spikes generated inside tile 7; € T and S(I; ;) is the
number of spikes communicated on the link I; ; between tiles T; and T; in the hardware.

Our objective is to maximize throughput of a given machine learning model on hardware (Equa-
tion (7)) and minimize the hardware energy consumption (Equation (15)). We formulate a joint met-
ric A = E/7 and minimize it during our mapping explorations. To this end, we propose an iterative
approach, which explores different mapping alternatives, satisfying the cluster mapping constraint
(Equation (12)). For each mapping alternative, we evaluate throughput and energy consumption.
Finally, Pareto-optimal mappings are retained and returned.

Algorithm 3 provides the pseudo-code of our proposed mapping exploration. We start by ran-
domly distributing clusters to the tiles (line 3). We evaluate throughput and energy consumption of
this mapping and compute the joint metric A (lines 4-5). For each cluster, we do the following. We
move the cluster from its current tile to every other tile and recalculate A (lines 6-10). If A reduces,
the new mapping is retained (lines 11-13), and the algorithm proceeds to analyze the next cluster.
In this way, a local minimum is reached, starting from the initial random allocation of clusters. We
re-execute the algorithm 5 times, starting with a different random allocation of the clusters each
time. In this way, many mappings are explored. Finally, mappings that are Pareto optimal in terms
of throughput and energy consumption are retained.

ALGORITHM 3: Mapping of the Clustered Graph G,
Input: G¢; = (C, A), Gpp = (T, 1)
Output: Moy

1 M={} /* This set holds all the mappings */

2 forr =0;r < p;r++do /* Run for n times x/

3 Allocate clusters randomly to tiles. Call this mapping M;

4 Calculate 7 using (7) and energy consumption E(using (15);

5 Calculate the joint metric A = 7p - Epq;

6 for C; € C do /* For each cluster in the graph G.; */

7 Tc; = GetTileOfCluster(M, C)); /x Get the tile to which the cluster C; is mapped in the mapping M
*/

8 for T; € T\TC,- do /* Move the cluster to every other tile =*/

9 M; =MoveClusterToTile(M, C;, T;) ; /* Update the mapping to reflect the movement of cluster C;

to tile T; */

10 Calculate ™ EMj, and A;;

11 if A; < A then /% If the joint metric improves x/

12 \ M= M;; /* Retain the new mapping */

13 end

14 end

15 M.insert(M)

16 end

17 Mpo = ParetoOptimization(M); /* Retain only the Pareto-Optimal Mappings */

18 Return My, the mapping with minimum execution time.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:19

A] Az A] Al—’A4—>A]

|

Ay Ay Ay
Fig. 14. Self-timed execution consisting of transient phase followed by periodic phase.

The complexity of this algorithm is as follows. The unit function GetTileofCluster is essentially an
argmax function with a complexity of O(|T|). The unit function MoveClusterToTile is an update of
matrix and can be performed in O(1). Therefore, the complexity of the algorithm is x|C|x|T|. Here,
n is a user-defined parameter and controls the compilation time with a tradeoff on the solution
quality, i.e., execution time and energy consumption of the application on hardware.

6 SCHEDULING AND PERFORMANCE GUARANTEE

Self-timed execution is widely used to schedule SDFGs [54]. Static schedules are constructed using
worst-case actor execution times determined during design time. Actor ordering on each tile is
retained while discarding the timing information. At runtime, actors are fired while maintaining
the same order as determined during design time. In this regard, the following lemmas are
stated [35, 38, 54].

LEmMMA 1. For a consistent and strongly connected SDFG, the self-timed execution consists of a
transient phase followed by a periodic phase.

LEMMA 2. For a consistent and strongly connected SDFG, the throughput of an actor is given by the
average firing of the actor per unit time in the periodic phase of the self-timed execution.

Figure 14 shows an example self-timed execution of three actors, A;, A, and A4, of Figure 11(b)
on tile 2.

A modern neuromorphic hardware is expected to execute many SNN applications simultane-
ously. When a new application is to be admitted to a hardware, which is currently running other
applications, the incoming application needs to be compiled and mapped to the hardware within
a short time window, based on resources currently available on the hardware. Furthermore, when
an existing application finishes execution, its hardware resources are freed, meaning that such
resources can now be allocated to other running applications to improve their performance. For
such dynamic scenarios, SDFG schedules must be constructed for every allocation scenario. If the
runtime schedule is different from that used for analysis at design time, the throughput obtained
will be significantly different than what is guaranteed at design time. There are therefore two
approaches to generating runtime schedules.

e Store the actor mapping and scheduling for all resource allocation scenarios and for all ap-
plications from design time (storage-based solution).

e Construct the schedule at runtime based on the mappings stored from the design time
(construction-based solution).

The former is associated with high storage overhead and the latter with longer execution time.
Both storage and schedule construction time are crucial for machine learning systems deployed in
resource- and power-constrained environments. Therefore, we propose a modification of the self-
timed execution scheduling as follows. First, we construct the static-order schedule for all actors of
an SNN on a single tile at design time. This is achieved using the Max-Plus Algebra formulation of
Equation (7). Next, we discard the exact timing information, retaining only the actor firing orders
for runtime use. At runtime, we first construct the cluster mapping to tiles (Section 5.4), considering
the available tiles. Next, we use the single-tile static-order schedule to derive the actor schedules
on each tile, without having to construct them from scratch.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:20 S. Song et al.

Single-tile Static Order Schedule

A Ag AJAJA|[A|[A A5 A A| A7 As

tile_0 | Ao Ag A4JA1‘A1 AglA| tile_0 | Ap| Ay Al‘Al‘Al‘Al‘
tile_1 | A A3A5‘A7@ tie_1 |Ag| A3| A7
-1 tie_2 [Ag| A As\ As

Mappin
pping 0T AT AT

Mapping tile_1: Az, Ag, A7
tile_2 : Ag, As, Ag iL

tile_0: Ag, A1, Ay, Ag, Ag
tile_1 : Az, As, Ag, A7

coor
coor
coor
coro
coor
coro
coro
coro
coor
oroo
coor
coor
coro
coor
oroo
coro
coro
or oo

Fig. 15. Schedules constructed from the same single-tile static order schedule using two and three tiles,
respectively.

Figure 15 illustrates the construction of per-tile schedules for an SNN application with nine
actors, and with two different mappings of actors to tiles from the same single-tile static-order
schedule. We illustrate two scenarios in this example. In the first scenario (left), the application
uses two tiles of the hardware. In the second scenario (right), the application uses three tiles of
the hardware. In both scenarios, actor orders on each tile are the same as those on the single
tile. Since tile schedules are not constructed from scratch, the schedule construction time is much
lower.

However, performance obtained using this single-tile schedule can be lower than the maximum
performance of a multi-tile schedule constructed independently. As long as this performance de-
viation is bounded, the actor schedule for any tile can be easily derived from the binding of
actors to this tile and a given single-tile static-order schedule. See Section 8 for performance
evaluation.

7 EVALUATION METHODOLOGY

We conduct all simulations on a Lambda workstation, which has AMD Threadripper 3960X with
24 cores, 128 MB cache, 128 GB RAM, and 2 RTX3090 GPUs. Keras [57] and CARLsim [28] use the
two GPUs to accelerate model training and SNN function simulation, respectively.

Figure 16 illustrates our evaluation setup using the cycle-accurate NeuroXplorer [15] frame-
work. This framework is validated extensively against the DYNAP-SE neuromorphic hardware (7,
8, 11, 41, 44] and can model the architecture of other neuromorphic hardware platforms such as
Loihi [45] and TrueNorth [47]. NeuroXplorer can simulate multi-compartment neuron models and
nine-parameter Izhikevich and LIF spiking neuron models. Additionally, NeuroXplorer can model
NVM synapses such as Phase Change Memory (PCM) and Oxide-based Resistive Random
Access Memory (OxRRAM). NeuroXplorer also models the spike delay on the shared intercon-
nect as well as the delay in propagating spikes through the synapses of a crossbar [15]. The map-
ping and scheduling results obtained using DFSynthesizer are used in NeuroXplorer to estimate
energy, accuracy, and throughput.

7.1 Evaluated Applications

We evaluate 10 machine learning programs that are representative of the three most com-
monly used neural network classes: CNN, MLP, and RNN. These applications are (1) LeNet-
based handwritten digit recognition with 28 x 28 images of handwritten digits from the MNIST
dataset; (2) AlexNet for ImageNet classification; (3) VGG16, also for ImageNet classification;
(4) ECG-based heart beat classification (HeartClass) [8, 32] using electrocardiogram (ECG) data;
(5) image smoothing (ImgSmooth) [28] on 64 X 64 images; (6) edge detection (EdgeDet) [28]
on 64 X 64 images using difference-of-Gaussian; (7) MLP-based handwritten digit recognition

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:21

DYNAP-SE l l
—————»{Throughput
H . cycle-accurate {]
SNN —_—> Mapping : ysimulator Energy
? CARLSim
Scheduler
DFSynthesizer
Fig. 16. Our evaluation setup based on NeuroXplorer [15].
Table 2. Applications Used to Evaluate DFSynthesizer
Class Applications Dataset | Synapses Neurons Topology Top-1 Accuracy (%)
LeNet MNIST 282,936 20,602 CNN 85.1%
CNN AlexNet ImageNet | 38,730,222 230,443 CNN 69.8%
VGG16 ImageNet | 99,080,704 554,059 CNN 90.7 %
HeartClass [8] Physionet | 1,049,249 153,730 CNN 63.7%
ImgSmooth [28] CARLsim 9,025 4,096 FeedForward (4096, 1024) 100%
MLP EdgeDet [28] CARLsim 114,057 6,120 FeedForward (4096, 1024, 1024, 1024) 100%
DigitRecogMLP MNIST 79,400 884 FeedForward (784, 100, 10) 91.6%
HeartEstm [41] Physionet 66,406 166 Recurrent Reservoir 100%
RNN VisualPursuit [64] [64] 163,880 205 Recurrent Reservoir 47.3%
DigitRecogSTDP [50] MNIST 11,442 567 Recurrent Reservoir 83.6%

(DigitRecogMLP) [50] using the MNIST database; (8) heart rate estimation (HeartEstm) [41] us-
ing ECG data; (9) RNN-based predictive visual pursuit (VisualPursuit) [64]; and (10) recurrent
digit recognition (DigitRecogSTDP) [50]. To demonstrate the potential of DFSynthesizer, we con-
sider a real-time neuromorphic system, where these machine learning programs are executed con-
tinuously in a streaming fashion. Therefore, by optimizing throughput, DFSynthesizer improves
real-time performance.

Table 2 summarizes the topology, the number of neurons and synapses of these applications,
and their baseline accuracy on the DYNAP-SE neuromorphic hardware using the SpiNeMap [11]
mapping framework. As reported in many recent works [7, 11, 44], spike latency on the shared
interconnect of a neuromorphic hardware can lead to ISI distortion and spike disorder. Since the
performance of an SNN is a function of IS, such non-idealities can lead to accuracy loss. Therefore,
the accuracy of the three CNN architectures, LeNet, AlexNet, and VGG16, in Table 2 is somewhat
lower than that reported via functional simulation in Table 1.

7.2 Hardware Parameters

We model the DYNAP-SE neuromorphic hardware [73] with 1,024 tiles organized in a 32 X 32 mesh.
Each tile has one 128 X 128 crossbar. To test the scalability of DFSynthesizer, we also evaluate other
crossbar configurations, e.g., 256 X 256, 512 X 512, and 1024 x 1024. Table 3 reports the relevant
hardware parameters.

The additional overhead in time multiplexing the tiles among multiple crossbars is incorporated
in computing the throughput using NeuroXplorer. Specifically, once the cluster mapping to tiles are
generated using DFSynthesizer, the synaptic weights of all clusters mapped to a tile are pre-loaded
into the tile’s local memory (see our system architecture in Figure 5). In this way, DFSynthesizer
reduces the overhead of transferring synaptic weights at runtime from the shared main memory.
Additionally, since the loading of clusters (context switching) in crossbars happens concurrently
from their respective private memory, the time-multiplexing overhead is minimal.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:22

7.3

S. Song et al.

Table 3. Major Simulation Parameters Extracted from [73]

Neuron technology 28nm FD-SOI

Synapse technology HfO; -based OXRAM

Supply voltage 1.0V

Energy per spike 50p]J at 30Hz spike frequency
Energy per routing 147p]

Switch bandwidth ~ 1.8G. Events/s

Evaluated Metrics

We evaluate the following performance metrics:

7.4

Performance. This is the throughput of each application on the hardware.

Resource Utilization. This is the neuron, synapse, buffer, connection, and input and output
bandwidth utilization on the hardware for each application.

Energy Consumption. This is the energy consumed on the hardware for each application.
This is the total energy consumed to generate spikes on each tile and communicate spikes
between tiles via the shared interconnect.

Cluster Connection. This is the average degree of the SDFG as a percentage of the total
number of nodes, obtained using the clustering technique for each application.

Spike Communication. This is the total number of spikes communicated on the shared
interconnect of the neuromorphic hardware.

Synthesis Time. This is the time to compile and map each application on the hardware.

Evaluated Approaches

We evaluate the following approaches.

SpiNeMap [11]. This approach first partitions an SNN into clusters of neurons and synapses
by incorporating its workload. The objective is to minimize inter-cluster communication.
Clusters are then mapped to tiles while minimizing spike communication on the shared in-
terconnect and reducing energy consumption. When mapping SNNs to neuromorphic hard-
ware with fewer tiles than the number of actors, (1) SpiNeMap allocates actors to tiles ran-
domly and (2) SpiNeMap schedules the actors on each tile arbitrarily. Therefore, SpiNeMap
does not consider throughput.

PyCARL [7]. This approach maps neurons and synapses to tiles of a neuromorphic hard-
ware, balancing the number of neurons and synapses on each tile. PyCARL does not incor-
porate SNN workload, i.e., spikes generated by neurons in the SNN. Therefore, some tiles
may end up communicating more spikes than others; i.e., those tiles become the energy
bottleneck.

SDFSNN [83]. This approach uses the load-balancing mapping of PyCARL to allocate actors
to tiles. It uses dataflow scheduling to improve the throughput.

DFSynthesizer. The proposed approach first clusters an SNN, considering its workload.
The objective is to improve cluster utilization. This is done by first decomposing the SNN
into homogeneous neural units with fanin-of-two. The clusters are then mapped to tiles,
jointly optimizing throughput and energy consumption. DFSynthesizer uses dataflow-based
scheduling of actors to tiles to further improve the throughput.

8 RESULTS AND DISCUSSIONS

8.1

Throughput

Figure 17 reports the throughput on DYNAP-SE for the evaluated approaches, for each application
normalized to SpiNeMap. For reference, we have reported the maximum throughput in frames per

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:23

[SpiNeMap PyCARL SDFSNN DFSynthesizer ~ [Max Throughput

Throughput
Normalized to SpiNeMap

Fig. 17. Throughput on DYNAP-SE for each evaluated application normalized to SpiNeMap. The throughput
in frames per second is reported for the maximum throughput approach for each application assuming
unlimited hardware resources.

second obtained with unlimited hardware resources for each application. For image-based applica-
tions (LeNet, AlexNet, VGGNet, EdgeDet, ImgSmooth, and DigitSTDP), a frame corresponds to an
individual image. For other time-series applications (HeartClass, HeartEstm, and VisualPursuit),
a frame corresponds to a window of 500ms. We make the following four key observations.

First, although the number of neurons and synapses of larger applications such as AlexNet and
VGG16 is significantly higher than LeNet, the throughput of LeNet on a hardware with unlimited
resources,? i.e., without time-multiplexing of crossbars, is only 1.5X higher than AlexNet and 2x
higher than VGG16. This is because with no time-multiplexing of crossbars, computations in a
machine learning program take place concurrently on the crossbars, the basic philosophy of dis-
tributed computing, which is enabled using neuromorphic platforms. Therefore, the overhead due
to time-multiplexing of crossbars is no longer the throughput bottleneck. Rather, the bottleneck
shifts to spike delay between the clusters. Additionally, in our framework we cluster machine learn-
ing programs to minimize inter-cluster spikes. Therefore, even though Alexnet has a significantly
higher number of neurons and synapses than LeNet, its number of inter-cluster spikes is not signif-
icantly higher. The throughput of AlexNet is only 33% lower than LeNet. Similarly, VGG16, which
has higher inter-cluster spikes than AlexNet, has 25% lower throughput.

Second, the throughput obtained using SpiNeMap is the least because SpiNeMap does not guar-
antee throughput during actor-to-tile mapping and actor scheduling on tiles. The throughput of
PyCARL is on average 4% higher than SpiNeMap. This is because PyCARL balances the load on
the tiles, and therefore, the average number of actors mapped to each tile is lower than SpiNeMap,
which results in higher throughput. The throughput of SDFSNN is on average 9.7% higher than
PyCARL. This improvement is because of the use of dataflow-based scheduling, which maximizes
the throughput. DFSynthesizer improves throughput by an average of 17% compared to SDFSNN.
This improvement is because unlike SDFSNN, which maps actors to tiles balancing the tile load
without considering the throughput, DFSynthesizer performs throughput- and energy-aware map-
ping of actors to tiles and then uses dataflow-based scheduling to further improve the throughput.
We have analyzed such throughput differences in Section 5.4.

Third, the throughput using DFSynthesizer is only 16% lower on average than the maximum
throughput obtained with unlimited hardware resources. Finally, the throughput of DigitMLP is a
very small application. All the techniques generate the same number of clusters for this application,
resulting in similar throughput.

8.2 Workload Energy

Figure 18 reports the workload energy estimated on DYNAP-SE of the evaluated approaches for
each application normalized to SpiNeMap. For reference, we have reported the workload energy

81n the context of this work, unlimited resources refer to a neuromorphic hardware that has at least the same number of
crossbars as there are clusters in the machine learning program.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:24 S. Song et al.

o

3 SpiNeMap PyCARL SDFSNN DFSynthesizer ~ [Max Throughput

IS

N

=

\
AN

& & ©
<

Energy
Normalized to SpiNeMap
S

=
%

Fig. 18. Workload energy on DYNAP-SE for each evaluated application normalized to SpiNeMap. The work-
load energy in 1] is reported for the maximum throughput approach for each application assuming
unlimited hardware resources.

)
x
g 41 [PyCARL DFSynthesizer [DFSynthesizer+STS
255
3
83 21
< N
l—TEu 1
2
& & o o] & N N Q &
¥ 85 ¢ ¢ 85§ f & & 8§
~ & 8 % & > » <
X & & > 1% & Q LK &
A i & & & & > & AN
& & < & N <

Fig. 19. Throughput normalized to PyCARL.

in pJ obtained using the maximum throughput approach, which assumes unlimited hardware re-
sources. We make the following observation.

The energy consumption of SpiNeMap is the least because this approach partitions SNNs into
clusters to explicitly minimize the number of inter-cluster spikes. Therefore, when the clusters are
mapped to hardware, the energy consumption on the shared interconnect is reduced.’ Second, the
energy consumption of PyCARL is on average 15% higher than SpiNeMap. This is because PyCARL
balances the tile load without incorporating energy consumption. Therefore, clusters with high
volume of spike communication between them may get placed on different tiles, increasing the
communication energy. SpiNeMap places those tiles on the same tile, lowering the communication
energy. The energy consumption of SDFSNN is the same as PyCARL because the cluster-to-tile
mapping of these two approaches is the same. SDFSNN gains over PyCARL in terms of throughput
due to its dataflow-based cluster scheduling on tiles. We analyzed this in Section 8.1. The energy
consumption of DFSynthesizer is lower than SDFSNN by an average of 8%. This reduction is due
to the cluster-to-tile mapping of DFSynthesizer, which incorporates energy consumption.

8.3 Scheduling

Figure 19 reports the throughput of each of our applications for our proposed approach normalized
to PyCARL. We compare throughput obtained using DFSynthesizer where schedules are indepen-
dently constructed for each tile against the throughput obtained using our proposed single-tile-
based schedule (DFSynthesizer+STS). We make the following three observations.

First, throughput obtained from a single-tile static-order schedule is on average 15% lower than
the case when schedules are constructed independently—that is, by using DFSynthesizer. This

9The mapping exploration only impacts the communication energy on the shared interconnect. The spike generation
energy remains the same for all approaches.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:25

Table 4. Resource Utilization on DYNAP-SE

Utilization (%)
Applicati Bandwidth
PPUCANON | 1ile | Buffer | Connections ancwi
Input | Output
LeNet 100 87.8 37.5 20.34 20.34
AlexNet 100 91.8 46.87 17.09 17.09
VGG16 100 94.2 15.62 6.51 6.51
HeartClass 100 79.1 25 9.76 9.76
DigitMLP 81.25| 9.67 46.87 22.78 22.78
EdgeDet 87.5 11.23 68.75 22.78 22.78
ImgSmooth 87.5 8.39 37.5 17.08 17.08
HeartEstm 96.87 9.61 62.5 4.7 4.7
VisualPursuit | 90.12 | 21.2 25.04 12.11 16.6
DigitSTDP 89.33 | 20.13 22.19 11.94 11.7
Z5
c
23 41 III PyCARL
Er{’ A SpiNeMap
58 31 - DFSynthesizer
32 2
i
ol o ! FBI A 7
wv o
=] T
& & N tg’ 75 ¥ &
~ ¢ X & 3 b"o & © < 9 &
< & o 2% g & 3 & S
& Q £ < <& g <

Fig. 20. Average synapse utilization on tiles for each evaluated application normalized to PyCARL.

verifies our Lemma 2. Second, for some applications such as HeartEstm and HeratClass, throughput
obtained using DFSynthesizer+STS is exactly the same as that obtained using DFSynthesizer. Third,
throughput using DFSynthesizer+STS is still higher than PyCARL by an average of 41%.

8.4 Resource Utilization

Table 4 reports the utilization of hardware resources (tile resources, buffer size, connections, and
input and output bandwidth) on the DYNAP-SE neuromorphic hardware for each application. The
average utilization of hardware resources is 92.5% for the crossbar IOs on each tile, 9.0% for buffer
space, 42.6% for connections, and 15% for input and output tile bandwidth. Since we perform
hardware-aware analysis, resource utilization never exceeds 100%.

These results illustrate that DFSynthesizer can be used to design neuromorphic hardware while
considering key hardware parameters such as number of tiles, buffer space, connections, and 10
bandwidth.

To give more insight on the utilization within each tile, Figure 20 reports the average synapse
utilization on tiles of the evaluated approaches for each application normalized to PyCARL. We
make the following two key observations.

First, the synapse utilization on tiles using SpiNeMap is the least of all three evaluated ap-
proaches. This is because SpiNeMap produces the highest number of clusters (Section 8.5) and
therefore, the average number of synapses per cluster is the least. Subsequently, when these clus-
ters are mapped to tiles, the average synapse utilization on tiles reduces. Second, DFSynthesizer
generates fewer clusters than both SpiNeMap and PyCARL due to its dense packing of synapses us-
ing Algorithm 2. Therefore, the average number of synapses per cluster is higher, which increases

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:26 S. Song et al.

2 20

%6 [PyCARL SpiNeMap [DFSynthesizer

L_:\) Q>.’ 1.5

w2

52 10-

2N

E® 0.5

H
= 0.0- f T u T u T Y i T 7

* * © © *~ &
§ & ¢ & & § & & & 8 ¢
9 Y K b%’ & N} (%) oy
N > X &) > (,)S I Q K &
Ay & & < & & >) X
< RS < & Q <
KN
Fig. 21. Number of clusters for each evaluated application normalized to PyCARL.
wiz 10
83 3] PyCARL
s 4 SpiNeMap
c B
52 6 - DFSynthesizer
0g 44
g2
2 oLk , r'r/- :
& & NS é,” S & é{/
~ ¢ AN &) b"o & & Q r &
Ay & S & & & 3> & AN
T S T 5 g <

AN

Fig. 22. Cluster connections for each evaluated application normalized to PyCARL.

synapse utilization on tiles when the clusters are mapped to tiles. On average, the average synapse
utilization of DFSynthesizer is 2x higher than PyCARL and 2.2X higher than SpiNeMap.

8.5 Number of Clusters

Figure 21 reports the total number of clusters of the evaluated approaches for each application
normalized to PyCARL. We make the following two key observations.

First, the number of clusters of SpiNeMap is the highest of all three evaluated approaches. This is
because SpiNeMap minimizes the number of inter-cluster communications during clustering of an
SNN. Therefore, neurons that spike the most are placed within individual clusters along with their
fanins. Since SpiNeMap does not consider cluster utilization, it results in creating more clusters
than PyCARL. Second, DFSynthesizer clusters an SNN to maximize the resource utilization on
each tile. Therefore, the number of clusters generated by DFSynthesizer is the lowest. Overall, the
number of clusters of DFSynthesizer is 41% lower than SpiNeMap and 47% lower than PyCARL.
The lower number of clusters, the lower is the size of hardware needed to achieve the highest
throughput (Section 8.1). Therefore, DFSynthesizer reduces the hardware requirement for machine
learning applications.

8.6 Cluster Connections

Figure 22 reports the cluster connections of the evaluated approaches for each application normal-
ized to PyCARL. We make the following two key observations.

First, the number of inter-cluster connections of SpiNeMap is the least of all three evaluated ap-
proaches. This is because SpiNeMap minimizes the number of inter-cluster communication while
clustering an SNN, which indirectly reduces the cluster connectivity. Second, DFSynthesizer clus-
ters an SNN to maximize the resource utilization on each tile. Therefore, the number of connections

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:27

-
o
5§ [128x128 256x256 I 1024x1024
_g > 1.04
o8
55
gﬁ 0.5 1
EE
=
Z 0.0- f T 1 ¢ t
*y xy ©) Q *
¥ ¥ & & N It
9 & S ' S g
< = 3 & &
£ 3

Fig. 23. Number of clusters generated using DFSynthesizer for 128 X 128, 256 X 256, and 1024 X 1204 cross-
bars, normalized to the configuration of DYNAP-SE with 128 X 128 crossbars.

nanaaaddana

y T
x5
@
s
~

N
(=R

o (=2
L

Throughput
Normalized to PyCARL
S

o ot
f

7 oy /VG[

Fig. 24. Throughput achieved using DFSynthesizer for 128 X 128, 256 X 256, and 1024 X 1204 crossbars,
normalized to throughput on DYNAP-SE with 128 X 128 crossbars.

between the clusters is higher in DFSynthesizer because of the higher number of post-synaptic
neurons mapped to each cluster. Overall, the average cluster connections of DFSynthesizer is 3.1x
higher than SpiNeMap and 3.9x higher than PyCARL.

8.7 Architecture Exploration

Figure 23 reports the number of clusters generated using DFSynthesizer for neuromorphic hard-
ware with 128 X 128, 256 X 256, and 1024 X 1024 crossbars, normalized to a DYNAP-SE con-
figuration with 128 X 128 crossbars. We observe that the number of clusters generated using
DFSynthesizer reduces by 60% and 92% when the size of a crossbar increases to 256 X 256 and
1024 X 1024, respectively.

Fewer number of clusters increases throughput. To illustrate this, Figure 24 reports the through-
put using DFSynthesizer for different crossbar sizes normalized to throughput on DYNAP-SE with
four 128 x 128 crossbars. We make the following two observations.

First, throughput increases by 18% and 30% when using 256 X 256 and 1024 X 1024 crossbars,
respectively. This improvement is because with larger-size crossbars, there are fewer clusters gen-
erated by DFSynthesizer (Figure 23). Therefore, the number of clusters per tile reduces, which
reduces the bottleneck of time-multiplexing clusters on tiles. This increases throughput. Second,
for applications such as DigitMLP, EdgeDet, and HeartEstm, there is no throughput improvement
when the crossbar size increased from 512 X 512 to 1024 X 1024. This is because for these appli-
cations, a 256 X 256 crossbar configuration is sufficient to achieve the highest throughput. For all
other applications, the throughput increases by 11% when going from 256 X 256 to 1024 X 1024
crossbars.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:28 S. Song et al.

10 0 25.5 272.3 . 35.4
<(
qg):;: 75 [PyCARL SpiNeMap [DFSynthesizer
e .
v 3
85 501
E=R
S 2A5
A E ,—ﬁl ,—EI ,—A ,—|7/. ,—EI
g 0.0- :
& ;;' »i,° o‘;’ N % &
5 > & & S & $ 44';'7 & S &
~ R N & & b°0 & I o) Q‘}'
< & & & 9 & 2 & X
T ¢§- S T §, 89 <
> &
Q 5

Fig. 25. Synthesis time for each application normalized to PyCARL.

8.8 Synthesis Time

Figure 25 reports the synthesis time on DYNAP-SE for the evaluated approaches, for each applica-
tion normalized to PyCARL. We make the following three key observations.

First, the synthesis time of SpiNeMap is on average 61.6% higher than PyCARL. The higher
synthesis time of SpiNeMap is due to the analysis it performs with the workload to obtain the min-
imum energy mapping. Second, the synthesis time of DFSynthesizer is the highest. On average,
the synthesis time of DFSynthesizer is 35X higher than PyCARL and 25X higher than SpiNeMap.
This higher synthesis time is due to (1) DFSynthesizer’s mapping explorations using Algorithm 3
and (2) DFSynthesizer’s SDFG analysis mechanism using the proposed Max Plus formulation.
Third, the synthesis time of DFSynthesizer increases with model complexity. The synthesis time of
DFSynthesizer is higher than PyCARL by 3.1x for LeNet, 25.5x for AlexNet, and 272.3% for VGG16.

8.9 Model Quality

DFSynthesizer does not alter synaptic connections. Therefore, the model quality, e.g., accuracy,
is not impacted by the analysis technique of DFSynthesizer. The only impact DFSynthesizer
introduces is in converting CNNs. The accuracy impact is reported in Table 1. For all other
applications, DFSynthesizer’s accuracy is the same as the baseline accuracy reported in Table 2.

9 RELATED WORKS

Recently, many approaches were proposed to map machine learning workloads to neuromorphic
hardware. Corelet [2] is used to map SNNs to TrueNorth [47]. PACMAN [53] is used to map SNNs to
SpiNNaker [52]. PyNN [7] is used to map SNNs on Loihi [45], BrainScaleS [80], and Neurogrid [21]
by balancing the load on each tile. PyCARL (7] is used to map SNNs to DYNAP-SE [73]. The
primary objective of these approaches is to balance the workload on each tile by distributing the
neurons and synapses evenly.

Beyond load balancing, recent techniques have also explored other objectives. PSOPART [44]
is used to map SNNs to neuromorphic hardware, reducing the energy consumption on the shared
interconnect. SpiNeMap [11] performs energy-aware clustering of SNNs and then maps the clus-
ters to tiles, reducing the communication energy. DecomposeSNN [14] decomposes an SNN to
improve the cluster utilization. There are also performance-oriented SNN mapping approaches
such as [10, 12, 16, 83], energy-aware SNN mapping approaches such as [101], circuit aging-aware
SNN mapping approaches such as [13, 67, 84, 87, 91], endurance-aware SNN mapping approaches
such as [93, 99, 102], and thermal-aware SNN mapping approaches such as [100]. These approaches
are evaluated with emerging SNN-based applications [8, 32, 41, 50, 64, 75], which we also use to
evaluate DFSynthesizer.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:29

There are also other mapping approaches such as [4, 70, 77, 103-106]. We compared
DFSynthesizer against PyCARL and SpiNeMap, and found it to perform significantly better.

Similar Concept in Related Domain

SDFGs are widely used for predictable mapping of applications to multiprocessor systems. Numer-
ous approaches to throughput analysis of SDFGs have been previously proposed [30, 43, 81, 81,
96, 98, 108]. Bonfietti et al. evaluated mappings of SDFG to a multiprocessor system, maximizing
the throughput [23]. Stemmer et al. propose to use probabilistic analysis to allocate and schedule
SDFGs on multiprocessor systems [95]. Das et al. evaluated the fault-tolerant mapping of SDFGs to
multiprocessor systems [31, 33, 35-40, 42]. Recently, SDFG-based analysis was also proposed for
analyzing machine learning applications [6, 9, 27, 34, 60, 92]. However, none of these approaches
address application analysis with limited hardware resources, both at design time and at runtime.

10 CONCLUSIONS

We introduce DFSynthesizer for predictable synthesis of SNN-based applications on state-of-the-
art neuromorphic hardware. Prior works have only addressed design-time mapping, considering
unlimited resources in the underlying hardware. These approaches present significant limitations
when used to compile and map machine learning applications to a resource-constrained hardware.
DFSynthesizer makes five key contributions. First, we present an approach to analyze machine
learning programs and generate SNN workload using representative data. Second, we present an
approach to decompose and partition complex SNN workloads to generate clusters of neurons and
synapses such that each cluster can fit onto a crossbar of the hardware. Third, we exploit the rich
semantics of SDFGs to represent clustered SNN programs. This allows for the SNN’s performance,
e.g., throughput, to be estimated on the hardware as a function of key properties such as number
of crossbars, dimension of crossbars, buffer space on tiles, and tile communication bandwidth.
Fourth, we develop a novel scheduling algorithm based on Self-Timed Execution for executing
clusters on crossbars of a neuromorphic hardware, providing performance guarantee in scenarios
with dynamic resource availability. Five, we propose a design-space exploration framework
incorporating DFSynthesizer that allows the Pareto space of different SNN mappings to hardware
to be explored while considering other hardware metrics such as energy, latency, and reliability.
We evaluate DFSynthesizer using 10 machine learning programs that are representative of the
three most commonly used neural network classes: CNN, MLP, and RNN. Our results demonstrate
that DFSynthesizer provides a much tighter performance guarantee compared to current practices.

APPENDIX
A CONVERTING ANALOG OPERATIONS TO SPIKING EQUIVALENT

In this section, we briefly elaborate how an analog operation such as Rectified Linear Unit
(ReLU) is implemented using SNN. The output Y of a ReLU activation function is given by

Y = max0, Z Wi * X, (16)
i

where w; is the weight and x; is the activation on the i synapse of the neuron. To map the ReLU
activation function, we consider a particular type of spiking neuron model known as an Integrate
and Fire (IF) neuron model. The IF spiking neuron’s transfer function can be represented as

Om(t+1) = V(1) + Y wi % xi(8), (17)

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

27:30 S. Song et al.

(a) MLP in analog domain (b) MLP in spiking domain (b) MLP in spiking domain
(rate coding) (ISI coding)

Fig. 26. Example of converting an analog MLP to its spiking equivalent.

where v, (¢) is the membrane potential of the IF neuron at time ¢, w; is the weight, and x;(¢) is the
activation on the i synapse of the neuron at time ¢. The IF spiking neuron integrates incoming
spikes (X;) and generates an output spike (Yy,i.) when the membrane potential (v,,,) exceeds the
threshold voltage (v,) of the IF neuron. Therefore, by ensuring that the output spiking rate Yy is
proportional to the ReLU activation Y, i.e., Yy « ¥, we accurately convert the ReLU activation to
the spike-based model. To further illustrate this, we consider the MLP of Figure 26(a) and its SNN
conversion using rate-based encoding (Figure 26(b)) and ISI encoding (Figure 26(c)).

In Figure 26(a), neurons 1, 2, and 3 are the input neurons and neurons 4 and 5 are the output
neurons. To keep the model simple, let us consider the case where the activations of the input
neurons 1, 2, and 3 are equal to 1. Using Equation (16), we know that the output of neurons 4 and 5
are 0.6 and 0.3, respectively. Figures 26(b) and 26(c) show the mapped SNN model using rate-based
and inter-spike interval encoding schemes, respectively. In the rate-based model in Figure 26(b),
the rate of spikes generated is expected to be proportional to the output of neurons 4 and 5 in the
MLP. In the case of the ISI-based SNN model, the inter-spike interval of the spikes generated by
neurons 4 and 5 is expected to be proportional to the output generated in the MLP, as shown in
Figure 26(c).

We note that non-linear activation functions such as sigmoid and tanh cannot be accurately
mapped to a spike-based model. This can be attributed to the transfer function of a biological
spiking neuron (neuron response curve) closely resembling a ReLU and not sigmoid and tanh ac-
tivation functions. While approximate implementations of the sigmoid and tanh operators using
spiking neurons can be found in the literature, they induce significant inaccuracies into the con-
version process and require more resources (neurons) to implement. The tanh activation function,
for instance, generates output values ranging between —1.0 and 1.0. In order to represent the tanh
function in a spike-based model, both excitatory and inhibitory spiking neurons will be required
to represent the positive and negative output values, respectively. This will require doubling the
number of spiking neurons needed to represent the tanh activation function.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In USENIX
Symposium on Operating Systems Design and Implementation (OSDI).

[2] Arnon Amir, Pallab Datta, William P. Risk, Andrew S. Cassidy, Jeffrey A. Kusnitz, Steve K. Esser, Alexander
Andreopoulos, Theodore M. Wong, Myron Flickner, Rodrigo Alvarez-Icaza, et al. 2013. Cognitive computing pro-
gramming paradigm: A corelet language for composing networks of neurosynaptic cores. In International Joint Con-
ference on Neural Networks (IJCNN).

[3] Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2017. TraNNsformer: Neural network transformation for mem-
ristive crossbar based neuromorphic system design. In International Conference on Computer-Aided Design (ICCAD).

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:31

(4]
(5]
(6]

[10]
[11]

[12]
[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2018. Neuromorphic computing across the stack: Devices, cir-
cuits and architectures. In International Workshop on Signal Processing Systems (SIPS).

Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Computer Networks. 54,
15 (2010), 2787-2805.

Marco Bacis, Giuseppe Natale, Emanuele Del Sozzo, and Marco Domenico Santambrogio. 2017. A pipelined and
scalable dataflow implementation of convolutional neural networks on FPGA. In International Parallel and Distributed
Processing Symposium (IPDPS) Workshops.

Adarsha Balaji, Prathyusha Adiraju, Hirak J. Kashyap, Anup Das, Jeffrey L. Krichmar, Nikil D. Dutt, and Francky
Catthoor. 2020. PyCARL: A PyNN interface for hardware-software co-simulation of spiking neural network. In In-
ternational Joint Conference on Neural Networks (IJCNN).

Adarsha Balaji, Federico Corradi, Anup Das, Sandeep Pande, Siebren Schaafsma, and Francky Catthoor. 2018. Power-
accuracy trade-offs for heartbeat classification on neural networks hardware. Journal of Low Power Electronics
(JOLPE) 14, 4 (2018), 508-519.

Adarsha Balaji and Anup Das. 2019. A framework for the analysis of throughput-constraints of SNNs on neuromor-
phic hardware. In IEEE Annual Symposium on VLSI (ISVLSI).

Adarsha Balaji and Anup Das. 2020. Compiling spiking neural networks to mitigate neuromorphic hardware con-
straints. In International Green and Sustainable Computing Conference (IGSC) Workshops.

Adarsha Balaji, Anup Das, Yuefeng Wu, Khanh Huynh, Francesco G. Dell’anna, Giacomo Indiveri, Jeffrey L. Krichmar,
Nikil D. Dutt, Siebren Schaafsma, and Francky Catthoor. 2020. Mapping spiking neural networks to neuromorphic
hardware. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 28, 1 (2020), 76—-86.

Adarsha Balaji, Thibaut Marty, Anup Das, and Francky Catthoor. 2020. Run-time mapping of spiking neural networks
to neuromorphic hardware. Journal of Signal Processing Systems 92, 11 (2020), 1293-1302.

Adarsha Balaji, Shihao Song, Anup Das, Nikil Dutt, Jeff Krichmar, Nagarajan Kandasamy, and Francky Catthoor.
2019. A framework to explore workload-specific performance and lifetime trade-offs in neuromorphic computing.
Computer Architecture Letters 18, 2 (2019), 149-152.

Adarsha Balaji, Shihao Song, Anup Das, Jeffrey Krichmar, Nikil Dutt, James Shackleford, Nagarajan Kandasamy, and
Francky Catthoor. 2020. Enabling resource-aware mapping of spiking neural networks via spatial decomposition.
Embedded Systems Letters 13, 3 (2020), 142-145.

Adarsha Balaji, Shihao Song, Twisha Titirsha, Anup Das, Jeffrey Krichmar, Nikil Dutt, James Shackleford, Nagarajan
Kandasamy, and Francky Catthoor. 2021. NeuroXplorer 1.0: An extensible framework for architectural exploration
with spiking neural networks. In International Conference on Neuromorphic Systems (ICONS).

Adarsha Balaji, Salim Ullah, Anup Das, and Akash Kumar. 2019. Design methodology for embedded approximate
artificial neural networks. In Great Lakes Symposium on VLSI (GLSVLSI).

Adarsha Balaji, Yuefeng Wu, Anup Das, Francky Catthoor, and Siebren Schaafsma. 2019. Exploration of segmented
bus as scalable global interconnect for neuromorphic computing. In Great Lakes Symposium on VLSI (GLSVLSI).
Shuvra S. Battacharyya, Praveen K. Murthy, and Edward A. Lee. 1996. Loose interdependence algorithms. In Software
Synthesis from Dataflow Graphs.

Trevor Bekolay, James Bergstra, Eric Hunsberger, Travis DeWolf, Terrence C. Stewart, Daniel Rasmussen, Xuan
Choo, Aaron Voelker, and Chris Eliasmith. 2014. Nengo: A python tool for building large-scale functional brain
models. Frontiers in Neuroinformatics.

Luca Benini and Giovanni De Micheli. 2002. Networks on chip: A new paradigm for systems on chip design. In
Design, Automation & Test in Europe Conference & Exhibition (DATE).

Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R. Chandrasekaran, Jean-Marie
Bussat, Rodrigo Alvarez-Icaza, John V. Arthur, Paul A. Merolla, and Kwabena Boahen. 2014. Neurogrid: A mixed-
analog-digital multichip system for large-scale neural simulations. Proc. IEEE 102, 5 (2014), 699-716.

O. Bichler, D. Briand, V. Gacoin, and B. Bertelone. 2017. N2D2: Neural network design & deployment. https://github.
com/CEA-LIST/N2D2.

Alessio Bonfietti, Michele Lombardi, Michela Milano, and Luca Benini. 2013. Maximum-throughput mapping of
SDFGs on multi-core SoC platforms. J. Parallel and Distrib. Comput. 73, 10 (2013), 1337-1350.

Geoffrey W. Burr, Robert M. Shelby, et al. 2017. Neuromorphic computing using non-volatile memory. Advances in
Physics: X 2,1 (2017), 89-124.

Francky Catthoor, Srinjoy Mitra, Anup Das, and Siebren Schaafsma. 2018. Very large-scale neuromorphic systems
for biological signal processing. In CMOS Circuits for Biological Sensing and Processing.

Yu-Hsin Chen, Tushar Krishna, Joel S. Emer, and Vivienne Sze. 2016. Eyeriss: An energy-efficient reconfigurable
accelerator for deep convolutional neural networks. IEEE Journal of Solid-State Circuits 52, 1 (2016), 127-138.
Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2017. Using dataflow to optimize energy efficiency of deep neural net-
work accelerators. IEEE Micro 37, 3 (2017), 12-21.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

https://github.com/CEA-LIST/N2D2

27:32 S. Song et al.

[28] T-S.Chou, H. J. Kashyap, J. Xing, S. Listopad, Emily L. Rounds, M. Beyeler, N. Dutt, and J. L. Krichmar. 2018. CARLsim
4: An open source library for large scale, biologically detailed spiking neural network simulation using heterogeneous
clusters. In International Joint Conference on Neural Networks (IJCNN).

[29] Jason Cong and Zhiru Zhang. 2006. An efficient and versatile scheduling algorithm based on SDC formulation. In
Design Automation Conference (DAC).

[30] Morteza Damavandpeyma, Sander Stuijk, Twan Basten, Marc Geilen, and Henk Corporaal. 2012. Modeling static-
order schedules in synchronous dataflow graphs. In Design, Automation & Test in Europe Conference & Exhibition
(DATE).

[31] Anup Das, Bashir M. Al-Hashimi, and Geoff V. Merrett. 2016. Adaptive and hierarchical runtime manager for energy-
aware thermal management of embedded systems. ACM Transactions on Embedded Computing Systems 15, 2 (2016),
1-25.

[32] Anup Das, Francky Catthoor, and Siebren Schaafsma. 2018. Heartbeat classification in wearables using multi-layer
perceptron and time-frequency joint distribution of ECG. In International conference on Connected Health: Applica-
tions, Systems and Engineering Technologies (CHASE).

[33] Anup Das and Akash Kumar. 2012. Fault-aware task re-mapping for throughput constrained multimedia applications
on NoC-based MPSoCs. In International Workshop on Rapid System Prototyping (RSP).

[34] Anup Das and Akash Kumar. 2018. Dataflow-based mapping of spiking neural networks on neuromorphic hardware.
In Great Lakes Symposium on VLSI (GLSVLSI).

[35] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2012. Energy-aware communication and remapping of tasks for
reliable multimedia multiprocessor systems. In International Conference on Parallel and Distributed Systems (ICPADS).

[36] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2013. Aging-aware hardware-software task partitioning for
reliable reconfigurable multiprocessor systems. In International Conference on Compilers, Architectures, and Synthesis
for Embedded Systems (CASES).

[37] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2013. Communication and migration energy aware design space
exploration for multicore systems with intermittent faults. In Design, Automation & Test in Europe Conference &
Exhibition (DATE).

[38] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2014. Communication and migration energy aware task mapping
for reliable multiprocessor systems. Future Generation Computer Systems 30 (2014), 216-228.

[39] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2014. Energy-aware task mapping and scheduling for reliable
embedded computing systems. ACM Transactions on Embedded Computing Systems 13, 2s (2014), 1-27.

[40] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2015. Reliability and energy-aware mapping and scheduling
of multimedia applications on multiprocessor systems. IEEE Transactions on Parallel and Distributed Systems 27, 3
(2015), 869-884.

[41] A.Das, P. Pradhapan, W. Groenendaal, P. Adiraju, R. T. Rajan, F. Catthoor, S. Schaafsma, J. L. Krichmar, N. Dutt, and
C. Van Hoof. 2018. Unsupervised heart-rate estimation in wearables with Liquid states and a probabilistic readout.
Neural Networks 99 (2018), 134-147.

[42] Anup Das, Amit Kumar Singh, and Akash Kumar. 2013. Energy-aware dynamic reconfiguration of communication-
centric applications for reliable MPSoCs. In Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC).

[43] Anup Das, Matthew J. Walker, Andreas Hansson, Bashir M. Al-Hashimi, and Geoff V. Merrett. 2015. Hardware-
software interaction for run-time power optimization: A case study of embedded Linux on multicore smartphones.
In International Symposium on Low Power Electronics and Design (ISLPED).

[44] Anup Das, Yuefeng Wu, Khanh Huynh, Francesco Dell’Anna, Francky Catthoor, and Siebren Schaafsma. 2018. Map-
ping of local and global synapses on spiking neuromorphic hardware. In Design, Automation & Test in Europe Con-
ference & Exhibition (DATE).

[45] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yonggiang Cao, Sri Harsha Choday, Georgios
Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. 2018. Loihi: A neuromorphic manycore processor with on-chip
learning. IEEE Micro 38, 1 (2018), 82-99.

[46] Andrew P. Davison, Daniel Briiderle, Jochen M. Eppler, Jens Kremkow, Eilif Muller, Dejan Pecevski, Laurent Perrinet,
and Pierre Yger. 2009. PyNN: A common interface for neuronal network simulators. Frontiers in Neuroinformatics. 2
(2009), 11.

[47] Michael V. DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos, William P. Risk, Jeff Kusnitz,
Carlos Ortega Otero, Tapan K. Nayak, Rathinakumar Appuswamy, et al. 2019. TrueNorth: Accelerating from zero to
64 million neurons in 10 years. Computer 52, 5 (2019), 20-29.

[48] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet: A large-scale hierarchical image
database. In Conference on Computer Vision and Pattern Recognition (CVPR).

[49] Li Deng. 2012. The MNIST database of handwritten digit images for machine learning research [best of the web].
Signal Processing Magazine. 29, 6 (2012), 141-142.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:33

[50]
[51]
[52]

[53]

[54]

[55]
[56]

[57]
[58]
[59]
[60]

[61]

[62]

[63]

[64]

[65]
[66]
[67]
[68]
[69]
[70]
[71]

[72]

[73]

[74]

[75]

Peter U. Diehl and Matthew Cook. 2015. Unsupervised learning of digit recognition using spike-timing-dependent
plasticity. Frontiers in Computational Neuroscience 9 (2015).

Jochen M. Eppler, Moritz Helias, Eilif Muller, Markus Diesmann, and Marc-Oliver Gewaltig. 2009. PyNEST: A con-
venient interface to the NEST simulator. Frontiers in Neuroinformatics 2 (2009), 12.

Steve B. Furber, Francesco Galluppi, Steve Temple, and Luis A. Plana. 2014. The SpiNNaker project. Proc. IEEE 102, 5
(2014), 652-665.

Francesco Galluppi, Xavier Lagorce, Evangelos Stromatias, Michael Pfeiffer, Luis A. Plana, Steve B. Furber, and Ryad B.
Benosman. 2015. A framework for plasticity implementation on the SpiNNaker neural architecture. Frontiers in
Neuroscience 8 (2015), 429.

Amir Hossein Ghamarian, Marc C. W. Geilen, Sander Stuijk, Twan Basten, Bart D. Theelen, Mohammad Reza
Mousavi, Arno J. M. Moonen, and Marco J. G. Bekooij. 2006. Throughput analysis of synchronous data flow graphs.
In International Conference on Application of Concurrency to System Design (ACSD).

Dan F. M. Goodman and Romain Brette. 2009. The brian simulator. Frontiers in Neuroscience 3 (2009), 26.

Roshan Gopalakrishnan, Yansong Chua, Pengfei Sun, Ashish Jith Sreejith Kumar, and Arindam Basu. 2020. HFNet:
A CNN architecture co-designed for neuromorphic hardware with a crossbar array of synapses. Frontiers in
Neuroscience 14 (2020).

Antonio Gulli and Sujit Pal. 2017. Deep Learning with Keras.

Bernd Heidergott, Geert Jan Olsder, and Jacob Van Der Woude. 2014. Max Plus at Work: Modeling and Analysis of
Synchronized Systems: A Course on Max-Plus Algebra and Its Applications. Princeton University Press.

Michael L. Hines and Nicholas T. Carnevale. 1997. The NEURON simulation environment. Neural Computation. 9, 6
(1997), 1179-1209.

Hyesun Hong, Hyunok Oh, and Soonhoi Ha. 2017. Hierarchical dataflow modeling of iterative applications. In Design
Automation Conference (DAC).

Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M. Grafals, Noraica Davila, Catherine Graves, Sity Lam,
Ning Ge, Jianhua Joshua Yang, and R. Stanley Williams. 2016. Dot-product engine for neuromorphic computing:
Programming 1T1M crossbar to accelerate matrix-vector multiplication. In Design Automation Conference (DAC).
Giacomo Indiveri. 2003. A low-power adaptive integrate-and-fire neuron circuit. In IEEE International Symposium on
Circuits and Systems (ISCAS).

Yu Ji, YouHui Zhang, ShuangChen Li, Ping Chi, CiHang Jiang, Peng Qu, Yuan Xie, and WenGuang Chen. 2016. NEU-
TRAMS: Neural network transformation and co-design under neuromorphic hardware constraints. In International
Symposium on Microarchitecture (MICRO).

Hirak J. Kashyap, Georgios Detorakis, Nikil Dutt, Jeffrey L. Krichmar, and Emre Neftci. 2018. A recurrent neural
network based model of predictive smooth pursuit eye movement in primates. In International Joint Conference on
Neural Networks (IJCNN).

Brian W. Kernighan and Shen Lin. 1970. An efficient heuristic procedure for partitioning graphs. Bell System Technical
Journal 49, 2 (1970), 291-307.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural
networks. Neural Information Processing Systems 25 (2012), 1097-1105.

Shamik Kundu, Kanad Basu, Mehdi Sadi, Twisha Titirsha, Shihao Song, Anup Das, and Ujjwal Guin. 2021. Special
session: Reliability analysis for ML/AI hardware. In IEEE VLSI Test Symposium (VTS).

Yann LeCun et al. 2015. LeNet-5, convolutional neural networks. http://yann.lecun.com/exdb/lenet.

E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (1987), 1235-1245.

Matthew Kay Fei Lee, Yingnan Cui, Thannirmalai Somu, Tao Luo, Jun Zhou, Wai Teng Tang, Weng-Fai Wong, and
Rick Siow Mong Goh. 2019. A system-level simulator for RRAM-based neuromorphic computing chips. ACM Trans-
actions on Architecture and Code Optimization (TACO) 15, 4 (2019), 64.

Wolfgang Maass. 1997. Networks of spiking neurons: The third generation of neural network models. Neural Net-
works 10, 9 (1997), 1659-1671.

A. Mallik, D. Garbin, A. Fantini, D. Rodopoulos, R. Degraeve, J. Stuijt, A. K. Das, S. Schaafsma, P. Debacker, G. Donadio,
et al. 2017. Design-technology co-optimization for OXRRAM-based synaptic processing unit. In Symposium on VLSI
Technology.

Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. 2017. A scalable multicore architecture with het-
erogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE Transactions
on Biomedical Circuits and Systems 12, 1 (2017), 106—-122.

Orlando M. Moreira and Marco J. G. Bekooij. 2007. Self-timed scheduling analysis for real-time applications. EURASIP
Journal on Advances in Signal Processing 2007 (2007), 1-14.

Ethan J. Moyer, Anup Das, et al. 2020. Machine learning applications to DNA subsequence and restriction site analysis.
In IEEE Signal Processing in Medicine and Biology Symposium.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

http://yann.lecun.com/exdb/lenet

27:34 S. Song et al.

[76] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. 2019. PyTorch: An imperative style, high-performance deep learning
library. Neural Information Processing Systems 32 (2019).

[77] Shankar Ganesh Ramasubramanian, Rangharajan Venkatesan, Mrigank Sharad, Kaushik Roy, and Anand Raghu-
nathan. 2014. SPINDLE: SPINtronic deep learning engine for large-scale neuromorphic computing. In International
Symposium on Low Power Electronics and Design (ISLPED).

[78] Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian
Anderson, Maximilien Breughe, Mark Charlebois, William Chou, et al. 2020. Mlperf inference benchmark. In Inter-
national Symposium on Computer Architecture (ISCA).

[79] Bodo Rueckauer, Iulia-Alexandra Lungu, Yuhuang Hu, and Michael Pfeiffer. 2016. Theory and tools for the conversion
of analog to spiking convolutional neural networks. arXiv.

[80] Johannes Schemmel, Andreas Griibl, Stephan Hartmann, Alexander Kononov, Christian Mayr, Karlheinz Meier, Se-
bastian Millner, Johannes Partzsch, Stefan Schiefer, Stefan Scholze, et al. 2012. Live demonstration: A scaled-down
version of the brainscales wafer-scale neuromorphic system. In IEEE International Symposium on Circuits and Systems
(ISCAS).

[81] Rishad A. Shafik, Anup Das, Sheng Yang, Geoff Merrett, and Bashir M. Al-Hashimi. 2015. Adaptive energy minimiza-
tion of openMP parallel applications on many-core systems. In Workshop on Parallel Programming and Run-Time
Management Techniques for Many-core Architectures (PARMA)/Workshop on Design Tools and Architectures for Multi-
core Embedded Computing Platforms (DITAM).

[82] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks for large-scale image recognition.
arXiv.

[83

—_

Shihao Song, Adarsha Balaji, Anup Das, Nagarajan Kandasamy, and James Shackleford. 2020. Compiling spiking neu-
ral networks to neuromorphic hardware. In International Conference on Languages, Compilers, and Tools for Embedded
Systems (LCTES).

Shihao Song and Anup Das. 2020. A case for lifetime reliability-aware neuromorphic computing. In IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS).

Shihao Song and Anup Das. 2020. Design methodologies for reliable and energy-efficient PCM systems. In Interna-
tional Green and Sustainable Computing Conference (IGSC) Workshops.

Shihao Song, Anup Das, and Nagarajan Kandasamy. 2020. Exploiting inter- and intra-memory asymmetries for data
mapping in hybrid tiered-memories. In International Symposium on Memory Management (ISMM).

Shihao Song, Anup Das, and Nagarajan Kandasamy. 2020. Improving dependability of neuromorphic computing with
non-volatile memory. In European Dependable Computing Conference.

Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. 2019. Enabling and exploiting partition-level par-
allelism (PALP) in phase change memories. ACM Transactions on Embedded Computing Systems 18, 5s (2019), 1-25.
Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. 2020. Improving phase change memory perfor-
mance with data content aware access. In International Symposium on Memory Management (ISMM).

Shihao Song, Anup Das, Onur Mutlu, and Nagarajan Kandasamy. 2021. Aging-aware request scheduling for non-
volatile main memory. In Asia and South Pacific Design Automation Conference (ASPDAC).

Shihao Song, Jui Hanamshet, Adarsha Balaji, Anup Das, Jeff Krichmar, Nikil Dutt, Nagarajan Kandasamy, and
Francky Catthoor. 2021. Dynamic reliability management in neuromorphic computing. ACM Journal on Emerging
Technologies in Computing Systems (JETC) 17, 4 (2021), 1-27.

Shihao Song, Ankita Paul, Lakshmi Varshika Mirtinti, Anup Das, and Nagarajan Kandasamy. 2021. A design flow for
mapping spiking neural networks to many-core neuromorphic hardware. In International Conference on Computer-
Aided Design (ICCAD).

Shihao Song, Twisha Titirsha, and Anup Das. 2021. Improving inference lifetime of neuromorphic systems via in-
telligent synapse mapping. In International Conference on Application-specific Systems, Architectures, and Processors
(ASAP).

[94] S. Sriram and S. S. Bhattacharyya. 2000. Embedded Multiprocessors; Scheduling and Synchronization. Marcel Dekker.
[95] Ralf Stemmer, Hai-Dang Vu, Kim Griittner, Sébastien Le Nours, Wolfgang Nebel, and Sébastien Pillement. 2020.
Towards probabilistic timing analysis for SDFGs on tile based heterogeneous MPSoCs. In Euromicro Conference on
Real-Time Systems (ECRTS).

Sander Stuijk, Twan Basten, M. C. W. Geilen, and Henk Corporaal. 2007. Multiprocessor resource allocation for
throughput-constrained synchronous dataflow graphs. In Design Automation Conference (DAC).

S. Stuijk, M. Geilen, and T. Basten. 2006. Exploring trade-offs in buffer requirements and throughput constraints for
synchronous dataflow graphs. In Design Automation Conference (DAC).

Sander Stuijk, Marc Geilen, and Twan Basten. 2006. Exploring trade-offs in buffer requirements and throughput
constraints for synchronous dataflow graphs. In Design Automation Conference (DAC).

(84

[l

(85

=

86

=

(87

—

(88

=

(89

[

[90

=

[91

—

[92

—

[93

=

=

[96

—

[97

—

[98

[t

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

Dataflow-based Synthesis of Spiking Neural Networks to Neuromorphic Hardware 27:35

[99]
[100]
[101]

[102]

[103]

[104]

[105]
[106]
[107]

[108]

Twisha Titirsha and Anup Das. 2020. Reliability-performance trade-offs in neuromorphic computing. In International
Green and Sustainable Computing Conference (IGSC) Workshops.
Twisha Titirsha and Anup Das. 2020. Thermal-aware compilation of spiking neural networks to neuromorphic hard-

ware. In Languages and Compilers for Parallel Computing (LCPC) Workshop.

Twisha Titirsha, Shihao Song, Adarsha Balaji, and Anup Das. 2021. On the role of system software in energy man-
agement of neuromorphic computing. In ACM International Conference on Computing Frontiers.

Twisha Titirsha, Shihao Song, Anup Das, Jeffrey Krichmar, Nikil Dutt, Nagarajan Kandasamy, and Francky Catthoor.
2021. Endurance-aware mapping of spiking neural networks to neuromorphic hardware. IEEE Transactions on Parallel
and Distributed Systems 33, 2 (2021), 288-301.

Wei Wen, Chi-Ruo Wu, Xiaofang Hu, Beiye Liu, Tsung-Yi Ho, Xin Li, and Yiran Chen. 2015. An EDA framework for
large scale hybrid neuromorphic computing systems. In Design Automation Conference (DAC).

Parami Wijesinghe, Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2018. An all-memristor deep spiking neural
computing system: A step toward realizing the low-power stochastic brain. IEEE Transactions on Emerging Topics in
Computational Intelligence (TETCI) 2, 5 (2018), 345-358.

Qiangfei Xia and J. Joshua Yang. 2019. Memristive crossbar arrays for brain-inspired computing. Nature Materials
18, 4 (2019), 309.

Xinjiang Zhang, Anping Huang, Qi Hu, Zhisong Xiao, and Paul K. Chu. 2018. Neuromorphic computing with mem-
ristor crossbar. Physica Status Solidi (a) 215, 13 (2018), 1700875.

Zhiru Zhang and Bin Liu. 2013. SDC-based modulo scheduling for pipeline synthesis. In International Conference on
Computer-Aided Design (ICCAD).

Xue-Yang Zhu, Marc Geilen, Twan Basten, and Sander Stuijk. 2012. Static rate-optimal scheduling of multirate DSP
algorithms via retiming and unfolding. In IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS).

Received November 2020; revised June 2021; accepted August 2021

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 3, Article 27. Publication date: May 2022.

