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Point clouds measured by 3D scanning devices often have partially missing data due to the view
positioning of the scanner. The missing data can reduce the performance of a point cloud in downstream
tasks such as segmentation, location, and pose estimation. Consequently, 3D point cloud completion aims
to predict the missing regions of incomplete objects for these fundamental 3D vision tasks. However,
predicting the complete object can easily diminish the detail or structure of a measured region, which
usually does not require repair. This study proposes a novel neural network architecture, Cosmos
Propagation Network (CP-Net), for 3D point cloud completion. CP-Net extracts latent features in different
scales from incomplete point clouds used as input. For point cloud generation, we propose a novel point
expand method using a Mirror Expand module. Compared with existing methods, our Mirror Expand
module introduces less information redundancy, which makes the distribution of points more reliable.
CP-Net predicts the details of missing regions and maintains a clear general structure. The performance
of CP-Net on several benchmarks was compared to that of current baseline methods. Compared to the
existing methods, CP-Net showed the best performance for various metrics. Thus, CP-Net is expected
to help address various problems related to 3D point cloud completion. Its source code is available at
https://github.com/ark1234/CP-Net.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Point clouds are one of the most popular tools for 3D
representation and are becoming increasingly easy to obtain with
the increased availability of 3D scanning devices [1–3]. Further,
3D point clouds are widely used in industrial [4] and commercial
[5] application&s. However, occlusions, light reflections, limited
viewing angles, and surface material properties often cause
scanned point clouds to be incomplete [6–8]. Therefore, for further
application, the missing points in incomplete point clouds must be
deduced from raw input such as mesh [9], depth images [10], and
other point clouds [11].

Generally, the solutions for 3D point cloud completion prob-
lems rely heavily on sophisticated mathematical methods [12–
15]. However, such approaches require high-level mathematics
and impose significant restrictions on the application. For example,
these algorithms are often limited to filling holes [12,13]. Mean-
while, researchers are focusing on developing learning-based
methods such as artificial intelligence by deep learning owing to
the effectiveness of such methods. Early learning-based methods
using point clouds first converted the point cloud to some regular
format, such as a depth map [16] or voxels [17]. This allowed con-
ventional 2D or 3D convolutional neural networks (CNNs) to be
applied for these data types, enabling these methods [16–18] to
leverage the effectiveness of CNNs in 2D image understanding
[19]. Varley et al. [18] first segmented and meshed scanned point
clouds, after which a fast mesh completion method was employed.
However, such conversion methods not only incur high computa-
tional costs and high sparsity of volumetric data but also cause
some loss of information, which severely reduces the details of
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the local structure [20,21]. Therefore, researchers have tended to
approach this task using point clouds without prior conversion.

Recently, researchers have begun using generative adversarial
networks (GANs) [22] to repair incomplete point clouds. Two main
reasons have driven this change in approach. First, GAN-based
methods have achieved remarkable performance for 2D image
inpainting [23–26]. Second, the pioneering contribution of Point-
Net [27] has enabled direct processing for point clouds. Several
researchers have proposed full point cloud prediction networks
[20,28–30] to generate the point clouds of an entire object rather
than the missing points alone. However, with the continuous
improvement of device performance, the acquired regions of a
point cloud can be considered accurate, and missing regions of a
point cloud predominantly occur due to camera positioning. Thus,
as shown in Fig. 1, it is generally more reasonable to predict only
the missing regions. With this consideration, Yu et al. [11], Huang
et al. [31], and Alliegro et al. [6] adopted this approach and pre-
dicted only the missing regions of point clouds. However, their
methods are constrained by a limited ability to augment the fea-
ture information of point clouds [31,11]. For example, the extra
T-Net from PointNet [32] used in Point Encoder GAN [11] involves
unnecessary computation, and the simple deconvolution layer in
the generator fails to predict the details of missing regions. PF-
Net [31] generates excessive redundancy in point clouds owing
to the direct expansion operation, which increases the amount of
duplicated information. The point cloud generation procedure also
does not fully release the information obtained from the latent fea-
tures. Therefore, latent feature extraction and point cloud genera-
tion still have significant room for improvement.

To overcome these problems, we propose the Cosmos Propaga-
tion Network (CP-Net), a novel network structure that can not only
extract features on multiple levels but can also effectively propa-
gate point clouds. Unlike existing methods that roughly expand
the feature information through duplicated feature information
[31], our expansion can introduce far less duplicated information
and effectively improves the local and overall point cloud structure
reconstruction results. CP-Net can predict the missing portions of a
point cloud using the incomplete point cloud as input. Our contri-
butions are as follows:

� We developed the Multi-Edge Encoder (MEE), which exploits
raw input point cloud features with a low computational cost
while maintaining performance.

� We propose the Point Expand Decoder (PED) with the Mirror
Expand module, which improves the redundancy of point cloud
generation and predicts fine-grained missing point clouds while
retaining the original input point clouds.

� The results of evaluations conducted on several benchmarks
show both quantitatively and qualitatively that the perfor-
mance of CP-Net is comparable to that of several state-of-art
baselines.

The remainder of this article is organized as follows. Section 2
discusses related work. Section 3 presents the details of the net-
work structure and its related modules. Section 4 provides the
experimental details, related discussion, quantitative evaluation
of the experimental results, and performance evaluations for each
component through ablation studies conducted on the benchmark
ShapeNet-Part [33]. Finally, Section 5 provides concluding remarks
and directions for future work.
2. Related work

The GAN architecture is currently used for popular point cloud
completion methods. It contains a generator and a discriminator
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[22]. Researchers are currently focusing on the generator’s design
because improving its performance is related to improving the per-
formance of solving point cloud completion. The generator for
point cloud completion methods includes encoder and decoder
components.

2.1. Encoder: Features Extraction

The encoder is used to extract the latent feature of a whole
object [34]. PointNet [32] is a relatively good feature extraction
encoder and has been implemented in [20,28,11]. In PointNet,
the encoder attaches symmetrical operations, such as max-
pooling and average pooling at the end of multilayer perceptron
(MLP) layers, to aggregate the global features from unordered
and sparse 3D point clouds. However, the local information from
points cannot be obtained because the features are learned individ-
ually among every point through PointNet [35]. Therefore, Huang
et al. [31] proposed a Multi-Resolution Encoder to extract local fea-
tures better.

Meanwhile, some researchers rely on graph-based architectures
to obtain a better point cloud feature. In DGCNN [36], the graph
was built in the feature space and dynamically updated in each
network layer sequentially. However, the memory usage is high
for DGCNN with relatively high computational costs [37]. To over-
come this problem and maintain the performance of the feature
obtainer, we introduce MEE with Dense Edge-Conv (DEC) modules.
MEE can capture the features hierarchically at a relatively low
computational cost.

2.2. Decoder: Point Generation

The decoder uses the latent feature obtained from the encoder
for the point cloud completion. Yang et al. [38] introduced a
folding-based decoder to deform a 2D plane into a 3D surface. This
folding operation essentially constructs a 2D regular domain to 3D
point clouds, which can achieve low reconstruction errors. The
operation repeats obtained latent features into a target point cloud
of the same number, then concatenates the artificially designed 2D
coordinate for each feature. Then, this intermediate 3D coordinate
and the repeated latent feature are concatenated again by folding
into the 3D coordinates, and the folding operation is repeated a
second time to obtain the final reconstructed 3D point clouds.
PCN [20] inherited this folding operation [38] as the last stage of
its network’s decoder, allowing it to generate a smooth and dense
point cloud with fewer parameters than a fully connected decoder.
However, because the latent feature is naively repeated several
times, the information is duplicated for most of the 3D coordinates,
making it difficult for the network to distinguish the expansion of
different 3D point clouds. Subsequently, Wen et al. [39] introduced
a Structure-Preserving Decoder that can progressively refine the
point cloud at different resolutions with hierarchical folding oper-
ations, hierarchically preserving the complete shape structure at
different resolutions.

Apart from the implemented manifold-based folding operations
in the decoder design, TopNet [28] introduced a tree structure to
generate point clouds. Its Rooted Tree Decoder has a rooted tree
structure where the root node embeds and processes global point
cloud embedding representing 3D shapes. Although it can achieve
an excellent qualitative result, the fine details of the local structure
may be lost [29].

Point Fractal Network (PF-Net) [40] has recently focused on pre-
dicting only the missing region and has achieved good completion
results. As previously mentioned, they designed a Multi-Resolution
Encoder to obtain both local and global latent features from incom-
plete raw input. Afterwards, their Point Pyramid Decoder (PPD)
introduced a simple but effective way to generate point clouds in



Fig. 1. Example of why partial point clouds of the object cannot be obtained along with the prediction of missing regions. Here, the gray dots are the partial point clouds
obtained from the 3D scanner, and the yellow dots predict missing regions.
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a fractal order. It first directly generates a coarse, low-resolution
point cloud by using the latent feature and then appends a differ-
ent offset to each point in the point cloud to refine the point cloud
and increase its resolution. However, PF-Net is copied on the orig-
inal coarse point cloud before offset expansion. This operation
leads to the duplication of about half of the point cloud informa-
tion during the expansion process, which affects the prediction of
the final point cloud. As for this reference, CP-Net provides the Mir-
ror Expand module, which generates the corresponding potential
points near each point in the point cloud for expansion. This
increases the differentiation of the coarse point cloud and provides
a more elegant method for missing region point cloud propagation
(expansion).

3. Method

This section introduces CP-Net, which generates the missing
regions of 3D point clouds from partial input. Fig. 2 shows the
architecture of CP-Net, which consists of MEE and PED.
Fig. 2. Architecture of CP-Net. Partial point clouds are used as input to extract feature
predicts missing regions at three scales: two coarse predictions and one final prediction.
and prediction during the training procedure. The operation of Edge-Conv is illustrated
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3.1. Motivation

The 3D point cloud completion task generates/predicts the
missing regions of point clouds to design a good model for point
cloud completion. Understanding input partial point clouds and a
better point cloud generation algorithm are crucial to conquer this
task. However, many existing end-to-end methods either fail to
obtain rich feature information from input partial point clouds or
only predict unsatisfied missing regions [20,38,11]. A literature
survey [20,39,11,31] found that the mainstream methods for gen-
erating point clouds rely on simply duplicating the feature infor-
mation to obtain low-resolution points or directly generating
final prediction results from latent features. These methods intro-
duce much redundant information through duplication, which
could increase the difficulty of follow-up refinement in point
clouds. To address these expansion problems, we first generate
corresponding points in the neighborhood of every point with an
offset. By so doing, new points created through expansion are
related to the previous step’s results without duplicated
s through the MEE (Section 3.2) block. A multi-stage propagating PED (Section 3.3)
Chamfer Distance (CD) is used to evaluate the difference between the ground truth
in detail in the bottom left corner.



F. Lin, Y. Xu, Z. Zhang et al. Neurocomputing 507 (2022) 221–234
information. We expand and refine points several times from low
resolution to high resolution, ensuring the distribution of gener-
ated points is meaningful and reliable.
3.2. Multi-Edge Encoder

The Dense Edge-Conv (DEC) module constitutes the backbone of
MEE. Wang et al. [36] constructed a local graph in the Edge-Conv
layer with the k-nearest neighbors (kNN) algorithm in one Eucli-
dean space and two high-dimensional spaces, which leads to high
computational cost and memory usage. For the Edge-Conv [36], as
illustrated in the bottom-left of Fig. 2, neighborhood points P i;jð Þ
aggregate related edge feature e i;jð Þ through channel-wise symmet-
ric aggregation operation; in the experimental setting, this is
j ¼ 0;1; . . . ;16. Similarly, we apply the Edge-Conv layer to build
the local graph in our DEC module. We only define it in the first
Euclidean space to reduce the computational cost and guarantee
performance. In addition, we connect each layer using shortcuts
so that the feature information of different layers can be fully
released and utilized. The details of the computational cost analy-
sis can be found in Section 4.3.

The input to MEE is N � 3 unordered 3D point clouds. We
directly feed the partial 3D point clouds into the first Edge-Conv
layer. Starting with the output of the second layer, the output of
each layer is concatenated with the previous layer’s output and
fed into a shared MLP, which is then fed into the next layer. This
arrangement ensures that low-level feature information is prop-
erly retained to strengthen the connection between each feature
at different levels. This is why we called the module DEC, as it uses
extra shortcut operations (skip links) and convolutional operations
to make more dense connections between each layer. As a benefit
of this design, we can obtain multiple dimensional feature tensors
Vi, where size Vi :¼ N � 64;N � 64;N � 128;N � 512, for
i ¼ 0;1;2;3. The Vi are then concatenated, forming the combined
latent tensor C. Size C :¼ N � 768, and it contains different levels
of feature information. We then use MLP followed by max- and
avg-pooling operations to integrate the combined tensors into
latent feature T with size 2;048.
3.3. Point Expand Decoder

The goal of the decoder is to generate partial point clouds from
latent feature T, which represents the shape of the missing region.
PED is based on the point pyramid decoder [31]. A point pyramid
decoder provides a multi-scale generating architecture, leading to
a new perspective to propagate information. Nevertheless, the
decoder implements duplicated expansion in the original points,
creating redundant information that is difficult to refine. Moreover,
a limited number of points requires more ways to expand. To over-
come those limitations, we design our PED with the Mirror Expand
module to make the procedure of point cloud propagation
Fig. 3. Mirror Expand module pipeline. The balls in the left box represent the point clou
(red) finds k (here, k is four) nearest neighborhood points P i;jð Þ (blue). Subsequently, the
light blue are symmetrical about Pi. Here, the right-side box only shows four points’ ex
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smoother and more meaningful. The details of the PED can be
found in the bottom-right of Fig. 2.

As shown in the bottom-right block of Fig. 2, in the first step,
latent feature T is converted into three smaller feature tensors (size
SFi :¼256, 512, 1024, for i ¼ 1;2;3) through fully-connected layers.
SF1 is the seed of feature information expansion, whereas SF2 and
SF3 function as the refined information. Following with the pipe-
line of Fig. 2, in the second step, SF1 is converted to Yroot2 RM1�3

through a fully-connected layer and a convolutional layer sequen-
tially. Meanwhile, Y root feeds into stage one of the Mirror Expand
module to expand once (a ¼ 1) as Yexpand 2 RM2�3. In the third step,
SF2 is converted to Offset1 2 RM2�3, which functions as a deviation
parameter to fine tune the expanded point clouds Yexpand through
the Element-wise Summation operation to become fine-tuned
Yexpand 2 RM2�3. In the last step, Yexpand repeats this procedure again
in the stage two Mirror Expand module to expand thrice (a ¼ 3) as
Y fine 2 RM�3. Meanwhile, SF3 is converted to Offset2 2 RM�3. Simi-
larly, Y fine then fine-tunes again with Offset2 to become the final
prediction Y fine 2 RM�3.

The Mirror Expand module is the core of PED and provides a
valuable tool to aggregate the point clouds with the connection
of neighborhood feature information. In this module, the graph-
based points aggregation algorithm exploits neighborhood points
and feature information to further enhance the performance of
missing point clouds prediction. As shown in Fig. 3, we consider
the blue and red balls as the points obtained from the encoder,
where each ball represents a point cloud. The kNN algorithm is
implemented here for finding the k-nearest nodes in the whole
tensor set. The mirroring operation generates a new centrosym-
metric nodes with each centroid. Eventually, the tensor set is
expanded by a. The points expanded through the Mirror Expand
operation are used to refine the whole point clouds. With the sec-
ond expansion iteration, the point clouds are further refined. We
use two iterations of this operation to aggregate sufficiently rich
feature information. The Mirror Expand operation not only
expands the number of features but also introduces new informa-
tion for point clouds generation. In other words, the new point
clouds generated through the Mirror Expand operation become
the seed for aiming the prediction of point clouds. The network
proceeds through backpropagation in the training procedure to
learn the actual position distribution of the point clouds, which
can generate better point clouds. The Mirror Expand operation
can provide the point clouds with better initial distribution, mak-
ing it easier to obtain further information from deeper layers.
Hence, the PED can predict point clouds with finer details.

3.4. Training Losses

During training, the multi-stage completion loss Lcom and
adversarial loss Ladv are adopted as the optimization losses. Com-
pletion loss tries to match the prediction to the ground truth of
ds in the Euclidean space. With the implementation of kNN, central point cloud Pi

Mirror Expand operation expands the number of points k times. New points P0 i;jð Þ in
pansion, and we implement this operation in the whole point clouds.
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missing point cloud Ygt. Adversarial loss tries to make the
prediction approach the ground truth by optimizing the MEE and
PED.

Similar to PF-Net [31], the total loss for training is the weighted
sum of Lcom and Ladv is defined as follows:

L ¼ kcomLcom þ kadvLadv; ð1Þ
where kcom and kadv are the weight of completion loss and adversar-
ial loss, which satisfy the following condition: kcom þ kadv ¼ 1.

Lcom is combined with different resolutions of the output of PED:
Y root;Yexpand;Y fine. As shown below, they are used to compute the
CD (the details of dCD can be found in Section 4.2) with the
ground- truth of the missing region Ygt and the sampled
ground- truth of Y0gt;Y00gt as dCD1 ; dCD2 , and dCD3 , weighted by hyper-
parameter a:

Lcom ¼ dCD1 Y fine;Ygt
� �þ a dCD2 Y root;Y 0gt

� �
þ 2a dCD3 Yexpand; Y00gt

� �
; ð2Þ

The adversarial loss Ladv is inherited from GAN [22]. We define
FðÞ :¼ PED MEEðÞð Þ. F : X ! Y0 maps the partial input X into the
predicted missing region Y0. Then, the discriminator D tries to dis-
tinguish the predicted missing region Y0 and the real missing
region Y. The discriminator is a classification network with serial
MLP layers.

Ladv is defined as

Ladv ¼
X
i2S

log D yið Þð Þ þ
X
j2S

log 1� D F xið Þð Þð Þ; ð3Þ

where xi 2 X; yi 2 Y; i ¼ 1; . . . ; S. S is the dataset’s size of X;Y.

4. Experimental details

4.1. Datasets

ShapeNet-Part. For the training of our model, we used the
benchmark ShapeNet-Part [33] dataset, which provides part seg-
mentation to a subset of ShapeNetCore [41] models. It contains
16 categories of different models (shapes). The total number of
shapes sums to 17,775. The ground truth point cloud data was cre-
ated by sampling 2,048 points uniformly on each shape. We used
the same setting in PF-Net [31] for a fair comparison. The partial
point cloud data were generated by randomly selecting a view-
point as a center among multiple viewpoints and removing points
within a certain radius from the complete data. The missing num-
ber of points in the point clouds was 512. We called this the known
categories dataset and used a train-test ratio of 15236 : 2539
(roughly 6 : 1).

To further explore the robustness and generality of the network,
we designed a selection of novel categories. For the novel cate-
gories, we also selected 16 categories from the benchmark
ShapeNet-Part [33] but with a different arrangement. Eight cate-
gories were used for training, and the other eight for testing. The
training and testing objects were from different categories, and
the train-test ratio was 15998 : 1777 (roughly 9 : 1).

ShapeNet. PCN [20] introduced the benchmark ShapeNet data-
set [42] for point cloud completion. It consists of 30,974 3D models
from eight categories. The ground truth point clouds containing
16,384 points are uniformly sampled on mesh surfaces. We used
the same partial point cloud generation method as in PF-Net
[31]; with the same ratio of 4,096, it can further validate the per-
formance of our CP-Net in processing dense point clouds. For a fair
comparison, we sampled the input partial point clouds to 2,048,
the same as in PCN, and kept the same train/val/test splits as PCN.

Completion3D. Completion3D benchmark [28,20,41] is an
online benchmark. It comprises 28,974 and 800 samples for
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training and validation, respectively. There are 2,048 points in
the ground truth point clouds. We used their validation set to test
the performance of our CP-Net.

KITTI. The benchmark KITTI dataset [43] is composed of a
sequence of real-world Velodyne LiDAR scans derived from PCN
[20]. For each frame, the car objects are extracted according to
the 3D bounding boxes containing 2,401 objects of partial point
clouds. The partial point clouds in KITTI are highly sparse and do
not have complete point clouds as ground truth.

4.2. Evaluation Metrics

Let T ¼ xi; yi; zið Þf gnTi¼1 be the ground truth and
R ¼ xi; yi; zið Þf gnRi¼1 be a reconstructed point set being evaluated,
where nT and nR are the numbers of points of T and R, respec-
tively. In our experiments, we used CD and F-score as quantitative
evaluation metrics.

Chamfer Distance. Following TopNet [28] and Gridding Resid-
ual Network (GRNet) [44], the distance between T and R is
defined as

dCD ¼ 1
nT

X
t2T

min
r2R

jjt � rjj22 þ
1
nR

X
r2R

min
t2T

jjt � rjj22; ð4Þ

We follow the consideration in PF-Net [31], splitting the CD into
two parts: Pred ! GT (prediction to ground truth) error and GT !
Pred (ground truth to prediction) error.

F-Score. F-Score is actively used in the multi-view 3D commu-
nity [45]. Moreover, Tatarchenko et al. [46] pointed out that the CD
may sometimes be misleading. As suggested in [46], we take F-
Score as an extra metric to evaluate the performance of point com-
pletion results, which can be defined as follows:

F� score dð Þ ¼ 2P dð ÞR dð Þ
P dð Þ þ R dð Þ ; ð5Þ

where P dð Þ and R dð Þ denote the precision and recall for a distance
threshold d, respectively:

P dð Þ ¼ 1
nR

X
r2R

min
t2T

jjt � rjj2 < d
� �

; ð6Þ

R dð Þ ¼ 1
nT

X
t2T

min
r2R

jjt � rjj2 < d
� �

; ð7Þ

Earth Mover’s Distance (EMD) The EMD is a solution. The min-
imum cost to transport one shape’s point cloud to another is an
example of the EMD [47]. It is defined in Eq. (8), where / is a bijec-
tion. The bijection is highly indicative of the uniformity of the gen-
erated shapes. This metric can reflect more reliable results in the
shape completion task, but it has a relatively high computational
cost, so we only implemented it in the testing period. We chose
the approximation algorithm provided by the Morphing and Sam-
pling Network (MSN) [48].

dEMD T;Rð Þ ¼ min
/:T!R

1
jTj

X
t2T

jjt � / tð Þjj2 ð8Þ
4.3. Computational Cost Analysis

We present the results of a computational cost analysis of sev-
eral popular networks’ encoders along with ours in Fig. 4. In the
first three bars, we find that, compared with traditional PointNet’s
encoder, Edge-Conv Slayers increase the computational cost with
more forward time and GPU memory cost. For our CP-Net’s PED,
the number of Edge-Conv layers is set to three with only one iter-
ation of the kNN algorithm in the first Euclidean space to search



Fig. 4. The computational cost of different networks’ feature extractor (encoder).
For a fair comparison, the testing was conducted with the same settings.
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for the edge information. This information is then shared with the
other layers and represents a compromise between the perfor-
mance and convolutional cost. This arrangement decreases the
forward time and GPU memory cost, as shown in the second
and third bars in Fig. 4. Here, DGCNN-3 represents the original
Edge-Conv layers, and DGCNN-1 represents our PEDs. As shown
in the last two bars in Fig. 4, the Edge-Conv layers and the related
kNN algorithm result in an increase with an acceptable computa-
tional cost.
4.4. Implementation Details

We implemented our network using PyTorch [49] and CUDA
[50]. All models were optimized using the ADAM optimizer [51]
with an initial learning rate of 0:0001. For the prediction of differ-
ent scales of point clouds, the settings were M1= 64;M2= 128;M=
512 for the ShapeNet-Part, Completion3D, and KITTI datasets,
and M1= 512;M2= 1024, and M= 4;096 for the ShapeNet dataset.
We trained the network with a batch size of 64 on four NVIDIA
Tesla V100 GPUs on the ShapeNet-Part, Completion3D, and KITTI
datasets and a batch size of 8 on one NVIDIA Tesla V100 GPU on
the ShapeNet dataset. The optimization was set to stop after 200
epochs. Notably, we trained the network independently from
scratch for all benchmarks.
Table 1
Point cloud completion results of overall point cloud. The results consist of 16 categories of
by 1000. The mean values across all categories can be found in the final row of the table.

Category SA-Net GRNet

Airplane 0.671/0.895 1.002/0.607
Bag 2.618/2.758 3.005/3.208
Cap 2.223/1.853 1.122/3.294
Car 2.017/1.927 0.825/1.141
Chair 1.201/1.492 0.877/0.998
Earphone 2.836/2.580 3.118/3.916
Guitar 0.450/0.460 4.024/0.209
Knife 0.427/0.497 4.283/0.228
Lamp 1.810/1.593 5.703/1.717
Laptop 1.185/1.074 0.606/0.909
Motorbike 1.657/1.728 0.654/1.181
Mug 2.716/2.875 0.827/2.762
Pistol 1.037/1.066 0.950/0.418
Rocket 0.812/0.648 0.605/0.301
Skateboard 0.981/1.024 0.554/1.039
Table 2.025/1.688 0.618/1.148
Mean 1.480/1.456 2.023/1.055
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4.5. Shape Completion on Known Categories

We compared our method against several current state-of-the-
art point cloud completion methods: Skip-attention Network (SA-
Net) [39], Morphing and Sampling Network (MSN) [48], Gridding
Residual Network (GRNet) [44], and Point Fractal Network (PF-
Net) [31]. For all these baselines, we ran the code provided by
the respective authors to obtain quantitative and qualitative
results. It is worth mentioning that SA-Net, MSN, and GRNet were
designed to predict the whole point clouds, whereas PF-Net and
our method were developed to predict the missing part, as men-
tioned previously. The previously mentioned evaluation metrics
were used to evaluate the performance of each method.

Quantitative Results. Table 1 presents the completion results
with the evaluation metrics of the CD, as introduced previously,
and we show the two parts of the CD. The results demonstrate
the superiority of CP-Net compared with all the baseline methods
implemented.

As mentioned previously, one metric may not be sufficient to
show the difference between each baseline and our method.
Hence, we also present the quantitative results in terms of F-
score@1% and EMD in Tables 2 and 3, respectively. For F-
score@1%, a larger number indicates a better reconstruction result.
The EMD is similar to the CD but is more dependable. The EMD can
measure the completion task more closely to the actual visualiza-
tion results [48]. Our method achieved a competitive score in
terms of EMD.

Moreover, because CP-Net is designed for predicting the miss-
ing regions of point clouds, the quantitative results of missing
regions help evaluate the network’s performance. Table 4 presents
the completion results with the evaluation metrics of the two parts
of the CD. We also present the mean EMD and F-score@1% in
Table 5. Because the results here only count the predicted point
cloud region, we can use the numerical results in the above table
to understand the more direct completion results. These results
also fully reflect the superiority of our CP-Net.

Qualitative Results. Fig. 5 shows the point clouds reconstructed
with different baseline methods and CP-Net. Our network pro-
duces a demonstrably well-reconstructed point cloud in general
outline while maintaining the realistic details of the original
ground truth. For example, on the cap point cloud, most of the
baselines lose the curved structure of the cap. On the guitar point
cloud, CP-Net is the only one that reconstructs the missing smooth
edge of the object. On the lamp point cloud, CP-Net successfully
predicted the general structure of the missing region while other
different objects. The numbers shown are [Pred ! GT error = GT ! Pred error], scaled

MSN CP-Net PF-Net

0.680/1.039 0.248/0.302 0.278/0.305
2.851/5.948 0.974/0.875 1.027/0.894
2.841/3.121 1.061/0.968 1.526/1.077
2.076/2.002 0.655/0.520 0.630/0.488
1.338/3.025 0.480/0.462 0.546/0.512
3.052/4.761 1.350/1.361 1.094/2,219
0.328/0.332 0.105/0.121 0.115/0.127
0.342/0.407 0.114/0.143 0.120/0.169
2.267/5.130 0.999/0.549 1.095/0.739
0.964/0.875 0.313/0.315 0.332/0.307
1.561/1.952 0.527/0.481 0.564/0.444
2.512/5.228 0.825/0.917 0.763/0.939
0.938/0.979 0.269/0.249 0.315/0.304
0.556/0.831 0.246/0.207 0.294/0.185
0.806/1.164 0.288/0.437 0.282/0.339
1.533/3.016 0.511/0.474 0.575/0.479
1.386/2.637 0.477/0.427 0.517/0.463



Table 2
Point cloud completion results of overall point cloud with F-score@1%.

Category SA-Net GRNet MSN CP-Net PF-Net

Airplane 0.798 0.691 0.830 0.936 0.935
Bag 0.409 0.662 0.350 0.819 0.818
Cap 0.344 0.689 0.458 0.824 0.821
Car 0.424 0.672 0.418 0.841 0.848
Chair 0.636 0.771 0.614 0.874 0.873

Earphone 0.471 0.693 0.406 0.836 0.840
Guitar 0.905 0.968 0.950 0.979 0.976
Knife 0.906 0.920 0.938 0.972 0.970
Lamp 0.654 0.673 0.617 0.879 0.870
Laptop 0.656 0.784 0.683 0.885 0.886

Motorbike 0.478 0.676 0.503 0.860 0.857
Mug 0.290 0.799 0.275 0.802 0.803
Pistol 0.696 0.674 0.733 0.923 0.919
Rocket 0.812 0.656 0.845 0.930 0.929

Skateboard 0.686 0.662 0.770 0.917 0.919
Table 0.593 0.570 0.611 0.888 0.891
Mean 0.642 0.684 0.653 0.893 0.890

Table 3
Point cloud completion results of overall point cloud with EMD (scaled by 100).

Category SA-Net GRNet MSN CP-Net PF-Net

Airplane 3.849 3.269 3.361 0.763 0.913
Bag 6.498 5.456 6.650 2.358 2.640
Cap 5.185 4.294 5.914 1.863 1.830
Car 6.173 5.022 5.653 0.897 0.939
Chair 4.974 4.392 4.479 1.018 1.203

Earphone 5.989 5.519 6.212 3.913 5.417
Guitar 2.712 3.201 2.360 0.627 0.615
Knife 2.828 3.180 2.420 0.721 0.831
Lamp 4.858 5.364 4.817 1.750 2.294
Laptop 4.612 4.387 3.957 1.174 1.202

Motorbike 6.142 4.544 5.173 1.464 1.393
Mug 7.268 4.312 6.210 2.764 2.560
Pistol 4.508 4.145 3.901 0.797 0.984
Rocket 3.514 3.331 3.121 0.465 0.461

Skateboard 3.832 3.208 3.657 0.775 0.774
Table 5.115 3.653 4.617 1.310 1.365
Mean 4.805 4.182 4.334 1.116 1.348

Table 4
Point cloud completion results of missing portions of point clouds. The numbers
shown are [Pred ! GT error/GT ! Pred error], scaled by 1000.

Category CP-Net PF-Net

Airplane 1.060/ 1.312 1.148/ 1.339
Bag 4.282/ 4.046 4.278/ 4.349
Cap 4.515/ 4.479 6.092/ 5.370
Car 2.743/ 2.250 2.650/ 2.111
Chair 2.029/ 2.079 2.333/ 2.310

Earphone 7.253/ 6.312 5.227/ 9.692
Guitar 0.437/ 0.579 0.493/ 0.638
Knife 0.493/ 0.726 0.505/ 0.919
Lamp 4.326/ 3.226 4.940/ 4.470
Laptop 1.283/ 1.321 1.410/ 1.361

Motorbike 2.284/ 2.203 2.347/ 2.017
Mug 3.532/ 3.871 3.120/ 4.081
Pistol 1.161/ 1.131 1.361/ 1.432
Rocket 0.864/ 0.880 1.221/ 0.899

Skateboard 1.165/ 1.917 1.187/ 1.550
Table 2.158/ 2.268 2.484/ 2.366
Mean 2.015/ 2.045 2.259/ 2.312

Table 5
Point cloud completion results of missing portions of point clouds. The numbers
shown are the mean values of EMD, scaled by 100, and F-Score@1%.

Category CP-Net PF-Net
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baselines failed. In general, our results highlight the advantage of
predicting only missing regions compared with the baseline of
generating the whole object.
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Moreover, the effectiveness of the Mirror Expand module can be
intuitively found in the qualitative visualization results. The idea of
Mirror Expand is to aggregate the input point cloud information to
predict missing regions. With this arrangement, the mutual con-
tact between the incomplete and predicted point clouds naturally
has similar detailed structures. Thus, we can intuitively evaluate
the prediction performance in the mutual contact parts of PF-Net
and CP-Net’s results. CP-Net successfully predicts the fine details
of the missing regions in the mutual contact parts, especially for
guitar, pistol, and table. The point clouds are smooth and neatly
distributed in their mutual contact parts.
4.6. Shape Completion on Novel Categories

Quantitative Results. To validate the robustness of the pro-
posed method and verify the further generality of CP-Net, we
extended our experiments into novel categories. As mentioned in
Mean 4.603/0.554 5.201/ 0.540



Fig. 5. Comparison of the completion results of other methods and our network on known categories. Here, gray represents the input of partial point clouds, yellow
represents the prediction of other methods, and blue and green are CP-Net and the related ground truth, respectively.
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Section 4.1, the training and testing categories are independent.
Table 6 presents the completion results for the same experiments
with known categories.

Combining these experimental results, we can see that although
the results for the novel categories are slightly worse than the
known categories, our CP-Net still maintains a better result and
remains ahead of the baseline methods.

We also present the quantitative results in F-score@1% and
EMD in Tables 7 and 8, respectively, similar to the known
Table 6
Point cloud completion results of overall point cloud. The numbers shown are [Pred ! GT

Category SA-Net GRNet

Bag 2.150/ 3.530 1.762/ 2.164
Cap 3.767/ 3.574 2.327/ 3.127

Earphone 6.618/ 4.107 4.378/ 2.456
Guitar 0.674/ 0.963 2.444/ 1.590

Motorbike 1.625/ 4.725 1.558/ 3.078
Pistol 1.133/ 3.252 0.614/ 2.054
Rocket 1.024/ 1.045 2.275/ 0.832

Skateboard 1.033/ 1.707 3.675/ 1.023
Mean 1.360/ 2.261 2.407/ 1.123
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categories’ experiments. These experimental results also strongly
support the superiority of our CP-Net.

Similar to the known categories case, the quantitative results
for the missing region are shown in Tables 9 and 10. Table 9 pre-
sents the completion results with the evaluation metrics for the
two parts of the CD. The mean EMD and F-score@1% are shown
in Table 10. These experimental results provide a better
demonstration because predicting the novel categories is more
complicated, and the experimental results of all baseline methods,
error/ GT ! Pred error], scaled by 1000.

MSN CP-Net PF-Net

3.516/ 4.585 0.882/ 1.179 1.179/ 1.032
10.065/ 6.901 2.938/ 1.123 3.041/ 1.478
10.803/ 6.906 5.450/ 0.936 8.100/ 2.416
0.734/ 0.939 0.244/ 0.174 0.260/ 0.187
3.098/ 6.842 0.869/ 1.218 1.103/ 1.736
1.774/ 5.408 0.521/ 1.111 0.613/ 1.732
1.100/ 1.330 0.347/ 0.383 0.358/ 0.397
1.225/ 2.613 0.471/ 0.545 0.444/ 0.718
2.098/ 3.173 0.770/ 0.614 0.917/ 0.775



Table 7
Point cloud completion results of overall point cloud with F-score@1%.

Category SA-Net GRNet MSN CP-Net PF-Net

Bag 0.391 0.766 0.320 0.822 0.819
Cap 0.309 0.741 0.203 0.799 0.794

Earphone 0.409 0.777 0.298 0.815 0.798
Guitar 0.765 0.859 0.805 0.946 0.943

Motorbike 0.374 0.581 0.342 0.837 0.822
Pistol 0.506 0.676 0.504 0.863 0.865
Rocket 0.745 0.717 0.746 0.917 0.914

Skateboard 0.676 0.684 0.653 0.891 0.890
Mean 0.622 0.661 0.623 0.897 0.894

Table 8
Point cloud completion results of overall point cloud with EMD (scaled by 100).

Category SA-Net GRNet MSN CP-Net PF-Net

Bag 6.790 4.993 6.856 1.982 2.079
Cap 7.495 5.318 9.566 2.603 2.913

Earphone 7.601 6.329 9.549 3.351 4.320
Guitar 4.271 3.322 3.459 1.022 1.059

Motorbike 7.141 5.654 7.126 1.935 2.034
Pistol 5.923 3.034 5.441 1.642 1.719
Rocket 4.522 3.282 3.824 1.215 1.263

Skateboard 4.888 4.127 4.521 1.420 1.473
Mean 5.340 4.429 4.940 1.481 1.581

Table 9
Point cloud completion results of missing portions of point clouds. The numbers
shown are [Pred ! GT error/ GT ! Pred error], scaled by 1000.

Category CP-Net PF-Net

Bag 5.009/ 4.088 4.989/ 4.964
Cap 11.976/ 5.170 14.806/ 8.329

Earphone 22.500/ 5.381 46.369/ 10.800
Guitar 1.146/ 1.093 1.329/ 1.334

Motorbike 3.887/ 5.955 4.117/ 6.210
Pistol 2.149/ 6.408 2.518/7.560
Rocket 1.407/ 1.857 1.512/ 1.957

Skateboard 1.947/ 2.523 2.037/ 3.134
Mean 3.261/ 3.176 4.656/ 4.025

Table 10
Point cloud completion results of missing portions of point clouds. The numbers
shown are the mean values of EMD, scaled by 100, and F-score@1%.

Category CP-Net PF-Net

Mean 5.914/ 0.540 6.273/ 0.521
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including our CP-Net, show a considerable degree of deterioration.
However, our network still maintains a certain degree of superior
performance, especially in the metrics of EMD, where we obtained
sufficiently good results compared with known categories.

Qualitative Results. Fig. 6 shows the point cloud shape comple-
tion results obtained with different baseline methods and CP-Net.
We can see that predicting unseen objects is a great challenge for
each baseline, including our method, compared to the known cat-
egories. Many results show significant distortions. However, CP-
Net’s results still maintain relatively good predictions, especially
in maintaining the objects’ actual shape. For instance, CP-Net is
the only method to predict the missing hole in the bag point cloud
successfully. In the guitar point cloud, CP-Net tries its best to
reconstruct the general structure without noise. CP-Net has the
best overall appearance compared with other baselines. Moreover,
the previously mentioned fine detail prediction of missing regions
in the mutual contact parts for known categories could also be
found in the case of novel categories. These intuitive visualization
results further prove the effectiveness of CP-Net.
4.7. Ablation Study

Table 11 lists the results of the ablation studies for the known
categories, including all our proposed modules: MEE and PED.
We used PF-Net [31] for our baseline model and evaluated the
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completion results on missing region prediction (512 points). The
effectiveness of the proposed module was validated by the fact that
better completion results could be achieved by adding the pro-
posed module.

Moreover, the visualization results with different proposed
modules are presented in Fig. 7, and the effectiveness of each mod-
ule can be determined with the corresponding local zoom. In the
first column, we find a certain level of noise in the shape of the
objects. The distortions also can be captured in the edge of the
shape of the objects with the help of the related local zoom. In
the second column, the significant distortions have been alleviated,
proving the effectiveness of the MEE module, which can extract
more useful information from the partial input to help with the
upcoming point clouds completion procedures. In the third col-
umn, the introduction of the PED module helps to decrease the
noise at the edge of the objects, making the details of their shapes
appear smoothly and compactly. In the final column, the MEE and
PED modules combined effectively predict the fine edge and pre-
cise details of the shape of the objects. Even for relatively compli-
cated objects such as lamps and caps, our proposed two modules
still maintain robustness compared with those without our mod-
ules: the object layout is completed compactly.

4.8. Supplementary Experiments on the ShapeNet Dataset

We experimented with the benchmark ShapeNet [42] dataset to
validate the performance of our CP-Net in processing dense point
clouds. Its ground truth point clouds contain 16,384 points. To pro-
cess and generate dense point clouds and keep the merits of our
CP-Net, we used the settings M1= 512;M2= 1024;M= 4;096, for
which we do not need to change the structure of our CP-Net.

We compared this modified CP-Net against several recent state-
of-the-art point cloud completion methods that generate dense



Fig. 6. Comparison of the completion results of other methods and our network on novel categories. Here, gray represents the input of partial point clouds, yellow
represents the prediction of other methods, and blue and green are CP-Net and the related ground truth, respectively.

Table 11
Ablation studies (512 points) for the proposed network modules, including
Multi-Edge Encoder and Point Expand Decoder.

Multi-Edge Encoder Point Expand Decoder CD EMD F1

4.563 5.201 0.548
U 4.252 5.074 0.551

U 4.176 4.908 0.558
U U 4.084 4.603 0.574
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point clouds, specifically, MSN [48] and GRNet [44]. For a relatively
fair comparison, we trained CP-Net on the same number of input
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partial point clouds as the other baselines. The evaluation metrics
CD and F-Score were used to evaluate the performance of each
method. MSN and GRNet aim to predict the whole point clouds
with 16,384 points, whereas our CP-Net predicts only the missing
point cloud portions of 4,096 points. We present the quantitative
results for the whole point clouds and missing portions in Tables
12 and 13. The results indicate that CP-Net outperforms all the
other methods in terms of the CD and F-Score@1% of the whole
point clouds and provides relatively competitive results for the
missing portions. And here, we also provide the visualization
results to intuitively validate the performance of our CP-Net in
Fig. 8. As shown in Fig. 8, our CP-Net can successfully predict the
missing part of point clouds with a relatively good general struc-



Fig. 7. Visualization of ablation studies: Qualitative results represent each proposed module’s contribution. The input partial point clouds are in grey. The network’s
prediction of the missing part of the point clouds is in blue.

Table 12
Point completion results on ShapeNet compared using CD computed for 16,384 points and 4086 points, multiplied by 104. The best results are highlighted in bold.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

MSN 1.543 7.249 4.711 4.539 6.479 5.894 3.797 3.853 4.758
GRNet 1.531 3.620 2.752 2.945 2.649 3.613 2.552 2.122 2.723
CP-Net(whole) 1.482 3.312 2.478 2.031 2.476 2.897 2.091 2.101 2.153
CP-Net(missing) 5.089 12.571 9.173 8.014 9.296 11.651 8.478 8.515 8.153

Table 13
Point completion results on ShapeNet compared using F-Score@1%. Note that the F-Score@1% is computed on 16,384 and 4086 points. The best results are highlighted in bold.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

MSN 0.885 0.644 0.665 0.657 0.699 0.604 0.782 0.708 0.705
GRNet 0.843 0.618 0.682 0.673 0.761 0.605 0.751 0.750 0.708
CP-Net(whole) 0.971 0.983 0.942 0.954 0.981 0.973 0.968 0.964 0.970
CP-Net(missing) 0.872 0.883 0.854 0.884 0.892 0.874 0.891 0.875 0.879
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ture of the objects. However, there is a certain level of noise and
distortions in the detail of our prediction. Considering the numer-
ical results in missing portions and the visualization results, we can
find out that our CP-Net still has improvement room in processing
dense point clouds; the difficulty of predicting dense point clouds
needs to be tackled in the future.
4.9. Supplementary Experiments on the Completion3D Dataset

The Completion 3D benchmark [28,20,41] was designed solely
for predicting the whole 2,048 points of point clouds. However,
to fully demonstrate the power of our proposed method, we pre-
dict the missing part of the point clouds with 512 points.

The other methods’ results are obtained from the online leader-
board 2. As shown in Table 14, the overall CD for the proposed CP-
Net is 12:32 (multiplied by 104), which is close to the results for
the other methods, which all aim to predict the whole point clouds.
There is a dataset design reason that leads to the deterioration of our
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results: The input partial point clouds in our ShapeNet-part dataset
are generated through the camera angle positions, whereas Comple-
tion3D’s input is obtained by random subsampling/oversampling of
the point clouds [28]. This design in Completion3D has a consider-
able difference from ours, which means our designed network is
unsuitable for the prediction task in the Completion3D.
4.10. Supplementary experiments on KITTI dataset

The KITTI [43] dataset comprises real-world LiDAR scans, where
the ground truth is missing for quantitative evaluation. Therefore,
we qualitatively evaluated the performance of our CP-Net by the
visualization results. Because there are no object models in the
KITTI dataset, we pre-trained our model under the car category
on the ShapeNet [42] dataset. Here, we provide our visualization
results to intuitively validate the performance of our CP-Net in
Fig. 9. As shown in Fig. 9’s input, the real-world raw data from
the KITTI dataset is highly sparse, introducing extra difficulty for



Fig. 8. Completion results of our CP-Net’s in ShapeNet dataset. Here, gray represents the input of sampling partial point clouds, blue represents the prediction of CP-Net,
and green is the related unsampled ground truth.

Table 14
Point completion results on Completion3D compared using CD. Note that the CD is computed on 2,048 points and multiplied by 104. The best results are highlighted in bold.

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft Overall

SA-Net 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84 11.22
GRNet 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64
CP-Net 6.16 14.94 8.81 14.02 15.67 15.09 12.12 9.31 12.32

Fig. 9. Visualization of ablation KITTI dataset. Qualitative results representing the performance of our CP-Net in real-world raw data. The input partial point clouds are in
grey. Our prediction of the missing part of point clouds is in blue.
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the point clouds completion task. Nevertheless, our CP-Net tries its
best to predict the shape of missing objects and their related
details. However, we must admit that the result is not good
enough, and we still have room to improve.
5. Conclusion

In this paper, we proposed CP-Net, a novel network structure
for the end-to-end point cloud completion task that takes partial
point clouds as the input to predict their missing part. Our pro-
posed model can generate point clouds smoothly and effectively
with local information and the whole structure of target objects.
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Our model outperformed the existing baseline methods on the
benchmark ShapeNet-Part. Furthermore, experiments proved the
effectiveness of our proposed modules. The Mirror Expand module
expands the feature information with more meaningful content
and less duplicated information. The proposed network structure
captures latent features densely, which is key to the next step of
point cloud generation. Our expansion approach is to find symmet-
rical neighborhood points to generate pair points. However, we
obtained relatively weak results on other benchmarks; therefore,
we must improve our method further. For instance, there are also
many other potential ways of expansion. In the future, we will
exploit the possibility of other means of expansion, such as
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expanding the point clouds in high-dimensional feature space or
introducing a learnable rotation angle to a new point. In this
way, we can further broaden the application of our network in
3D vision.
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