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HIGHLIGHTS

e Larval mysid shrimp and silversides had
significantly altered swimming behav-
iors in all exposure concentrations.

e Growth was reduced in both species
exposed to uTP in a concentration
dependent manner, nTP in silversides.

o TP internalization was dependent on the
exposure salinity in both taxa.

e Leachate affected behavior in both spe-
cies, but not growth.
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ABSTRACT

Synthetic rubber emissions from automobile tires are common in aquatic ecosystems. To assess potential impacts
on exposed organisms, early life stages of the estuarine indicator species Inland Silverside (Menidia beryllina) and
mysid shrimp (Americamysis bahia) were exposed to three tire particle (TP) concentrations at micro and nano size
fractions (0.0038, 0.0378 and 3.778 mg/L in mass concentrations for micro size particles), and separately to
leachate, across a 5-25 PSU salinity gradient. Following exposure, M. beryllina and A. bahia had significantly
altered swimming behaviors, such as increased freezing, changes in positioning, and total distance moved, which
could lead to an increased risk of predation and foraging challenges in the wild. Growth for both A. bahia and
M. beryllina was reduced in a concentration-dependent manner when exposed to micro-TP, whereas M. beryllina
also demonstrated reduced growth when exposed to nano-TP (except lowest concentration). TP internalization
was dependent on the exposure salinity in both taxa. The presence of adverse effects in M. beryllina and A. bahia
indicate that even at current environmental levels of tire-related pollution, which are expected to continue to
increase, aquatic ecosystems may be experiencing negative impacts.
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1. Introduction

An estimated 4.4-12.7 million metric tons of marine debris enter the
ocean annually, presenting a threat to pelagic, benthic, and coastal en-
vironments (Granek et al., 2020; Jambeck et al., 2015; Rochman et al.,
2016). Through photodegradation and weathering processes, these
synthetic polymers fragment are dispersed throughout the ocean, often
concentrating in coastal areas (Barnes et al., 2009). Synthetic rubber
emissions from automobile tires, now broadly considered a common
type of microplastic (CA Waterboard, 2020), are a likely threat to the
health of marine ecosystems, especially in estuaries, rivers, and streams
located near metropolitan areas and busy roadways (Brahney et al.,
2021; Gray et al., 2018; Klockner et al., 2019; Rochman et al., 2019;
Tian et al., 2021; Wagner et al., 2018). Another potential pathway of tire
particles (TP going forward) is stormwater runoff, as reported by a
recent study at 12 sites within the San Francisco Bay estuary, where
fibers and TP (black rubbery fragments) contributed ~85% of total
particles sampled (Werbowski et al., 2021). Modern tire materials,
products of fossil fuels, are composed of complex mixtures of synthetic
polymers, natural rubbers, carbon black, polyester and nylon fiber,
chemical additives, petroleum, and pigments (Baumann and Ismeier,
1998). These mixtures are shed as TP, characterized as airborne and
road wear particles, generated by the rolling shear of tread against a
surface (Kovochich et al., 2021; Rogge et al., 1993). Once produced, TP
can aggregate with other auto-related particles from brake dust, pave-
ment, and atmospheric deposition (Charters et al., 2015). The presence
of these particles in aquatic environments may result in impacts to
wildlife and humans. For example, changes in cell morphology and DNA
damage due to inhalation of tire particles are known to occur in humans
(Gualtieri et al., 2008). Additionally, tires can leach constituents known
to be toxic to aquatic organisms across different taxonomic orders
(Hartwell et al., 2000; Nelson et al., 1994; Tian et al., 2021). For
example, TP has been recently documented to cause acute toxicity to
Coho salmon due to the presence of 6PPD-quinone, a chemical
commonly used as an antiozonant and antioxidant in tires. (Tian et al.,
2021).

Coastal estuaries are susceptible to micro and nano plastic pollution
from terrestrial sources, including automobile tires. These water bodies
receive freshwater from inland rivers, which deliver nutrients and runoff
that may harbor agricultural chemicals and microplastics (Le Roux,
2005). An automobile tire is designed to last for 40,000 km until it is
worn down, and throughout its lifetime, about 30% of its tread erodes
and enters the environment (Dannis, 1974; Piotrowska et al., 2019). It is
estimated that coastal rivers in Europe transport an annual load of 1.2 kt
of TP to the Atlantic Ocean (Siegfried et al., 2017). Knowledge on the
distribution and concentration (mass or particle count) of TP in coastal
areas is limited (Unice et al., 2019). In Charleston Harbor, TP was found
in all layers (intertidal sediment, subtidal sediment, and sea surface
micro layer) with a maximum concentration identified in the intertidal
sediments of the Ashley River (203 mg/kg ww) (Gray et al., 2018).
Another study reported predicted average coastal European surface
water concentrations to contain 0.03-17.9 mg/L and measured
0.09-6.4 mg/L of TP (Wik and Dave, 2009), which is within the of range
the mass concentration used in this study (0.0038-3.778 mg/L ww).

Once in an estuary, low-density microplastics, including TP, remain
buoyant for a period of time and become available to planktonic or-
ganisms which may ingest these fragmented particles (Barnes et al.,
2009). As predators consume prey organisms, those particles are sus-
ceptible to trophic transfer in estuarine food webs (Au et al., 2017; Athey
et al., 2020; Stienbarger et al., 2021). Several recent studies have indi-
cated that estuarine species such as shore crabs, oysters, shrimp, fish,
and clams will internalize microplastics through ingestion and uptake
through gill tissue and soft tissues (Bessa et al., 2018; Davidson and
Dudas, 2016; Gray and Weinstein, 2017; Van Cauwenberghe and Jans-
sen, 2014; Watts et al., 2014). At the same time, organisms inhabiting
estuaries are exposed to a wide range of salinities, which may alter the
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impacts of pollutants as freshwater transitions to saltwater, and in terms
of micro and nanoplastics may influence agglomeration and hence
bioavailability (Shupe et al., 2021). Testing across salinities is important
because as global ocean temperatures warm, salinity is evidenced to
increase (Durack et al., 2012; Helm et al., 2010). This increase in salinity
may alter or potentiate the effects of pollutants, including micro and
nanoplastics (MNPs), on estuarine organisms (Hutton et al., 2021; Shupe
et al., 2021).

Americamysis bahia and Menidia beryllina are model estuarine or-
ganisms used across a range of salinities following guidelines developed
by the EPA for whole effluent toxicity testing (Brander et al., 2012;
Pillard et al., 1999; Vlaming et al., 2000). Changes in organism behavior
result from various cellular, biochemical, and neural processes (Dgving,
1991; Little, 1990) that are critical to organism survival as well as
fitness, thus are sensitive endpoint for use in toxicity testing (USEPA,
1994). Numerous studies have drawn links between the biogeochemical
and ecological consequences of environmental contamination by
demonstrating that subtle changes in fish behavior indicate stress (Bei-
tinger, 1990; Little, 1990; Sprague, 1971). Swimming and feeding
behavior, frequency of activity, and velocity have been established as
reliable responses to measure sublethal toxicity stress in fish (Grillitsch
et al., 1999; Little and Finger, 1990; Newman and Jagoe, 1996) and that
also has implications for organism fitness (Weis et al., 2001). The cur-
rent experiment synthesizes methods of early and recent studies to
measure several of these historically documented stress responses as
well as growth in M. beryllina and A. bahia using periodic light and dark
cycles as introduced stimuli (Pannetier et al., 2020; Romney et al.,
2019). The purposes of the light/dark cycles are to provide a general
overview of organismal behavior in the environment during these con-
ditions, as well as a stimulus effect for fish to act on, as in the natural
environment.

This study investigated the sublethal effects (behavior and growth)
of micro (1-20 pm) and nano (<1 pm) TP exposure across a salinity
gradient similar to that found in estuaries. Subtle changes in behavior
and growth are essential to document because they may increase pre-
dation risk and population-level effects (Beitinger, 1990; Little and
Finger, 1990; Mundy et al., 2020). We used a range of concentrations
based on environmentally relevant mass concentrations of TP and their
leachate on behavior in the early life stages of indicator species A. bahia
and M. beryllina. We hypothesize that TP will influence both growth and
behavior, that it will be readily internalized, as has been demonstrated
across other microplastic types in the early life stages of aquatic or-
ganisms, and that some responses may be salinity and size dependent. As
data on TP pollution and sub-lethal effects in aquatic species are
currently rare, this study fills critical knowledge gaps on uptake and
internalization, growth impacts, and stress responses to an emerging
microplastic pollutant by species that may act as proxies for threatened
or endangered species and ecosystems sensitive to anthropogenic
pollution.

2. Methods
2.1. Chemicals

Suwanee River Natural organic matter (NOM) - 2R101 N used to
create suspensions of MNPs in exposure wells was purchased from the
International Humic Substance Society, St. Paul, MN. Tissue-Clearing
Reagent CUBIC-R+ [for Animals] (T3741) and Tissue-Clearing Re-
agent CUBIC-L [for Animals] (T3740) for visualization of particles
within organisms following exposures were purchased from Tokyo
Chemical Industry Co., Ltd.

2.2. Microplastics preparation

A detailed TP preparation protocol has been provided in SI. Briefly,
TP from tire tread was prepared by cryomill process in a ceramic
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chamber (Retsch CryoMill, Haan, Germany). After milling, 3 g tire
particles were combined with 300 ml of solution in a flask containing 50
mg/L Suwanee River NOM prepared in Milli-Q water then filtered
through a 0.2 mm filter. The solution is then run through a coarse
strainer to remove the glass beads and strained through a 20 pm stan-
dard mesh sieve, producing a resulting solution with particles <20 pm in
at least one dimension. Then, using a 47 mm syringe filter holder con-
taining a 1 pm mixed cellulose ester (Advantec) filter the solution is
further filtered to produce a suspension of nanoparticles <1 pm in at
least one dimension. The filter holder is then backflushed with clean
NOM suspension, and the backflushed solution is collected to produce a
suspension of tire particles in the range of 1-20 pm. A portion of the
prepared nano-TP fraction was further filtered using a 30K MWCO
centrifugal filter (Corning Spin-X #431489) ran at 7800 rpm for 5 min to
rinse particles and to produce simulated TP leachate. The solution par-
ticle counts are determined separately for each fraction of the suspen-
sion. The micron (1-20 pm) sample particle count is determined by
triplicate sampling of the suspension and the particle count analysis by
flow cytometry (Acurri C6 Flow Cytometer, BD Biosciences, San Jose,
CA). The nanoscale (<1 pm) sample particle count is also determined in
triplicate by Nanoparticle Tracking Analysis (NTA) on a NanoSight in-
strument (NanoSight NS500, Malvern Instruments, Westborough, MA).

2.3. Model organisms, their sources, and experimental setup

Americamysis bahia larvae were purchased from Aquatic Biosystems
in Fort Collins, Colorado and reared in three tanks at 15, 20, and 25 PSU
salinities with filtered artificial seawater prepared (AFSW). For each
organism, there were three biological replicates. For silversides, 2
technical replicates were averaged for each of the three biological rep-
licates. For mysids, 3 technical replicates were averaged for each of the
three biological replicates. Following EPA protocol 833-C-09-001
(USEPA, 2009), when adult A. bahia reproduced, larvae were moved
to additional tanks of the same salinity and reared for seven days prior to
exposures beginning. Micro and nano-TP exposures with mysids were
initiated at seven days post fertilization (dpf) (n = 3) under static
renewal conditions for seven days. Menidia beryllina embryos were
harvested from broodstock held at the Hatfield Marine Science Center
into three acclimation aquaria of 5, 15, and 25 PSU salinities with
filtered AFSW following modified methods from Middaugh et al. (1987)
as done in previous studies in the Brander lab (e.g. DeCourten et al.,
2020; Hutton et al., 2021). Larvae were placed into exposure vessels at 6
+ 1 days post fertilization (dpf) (n = 6 technical replicates to maken =3
biological replicates) and maintained under static renewal conditions
for 96 h. All exposure vessels were covered during exposures to prevent
background contamination and a blank filter water was also used.

Each model species was exposed to a total of 26 treatments (n = 3):
each containing a water control, NOM control with four TP concentra-
tion treatments (micro and nano with 60, 6000, and 60000 particles/
mL, which is equivalent to 0.0038, 0.378 and 3.778 mg/L in mass
concentration for micro-size particles; 0.014% TP leachate) across three
salinities per species as described above. Nominal water concentrations
with detailed QA/QC are provided in SI Table 1. Water quality param-
eters were measured daily over the exposure period at the time of 80%
water renewal. Cumulative hatching and mortality were recorded daily.
A. bahia were fed concentrated brine shrimp (Artemia franciscana) ad
libitum, and M. beryllina were fed Gemma Microdiet 0.2 mg/beaker/day
(Skretting, Westbrook, Maine). Both organisms were fed daily and
allowed to feed for at least 2 h before water changed. Table SI 2 and 3
provides water quality parameters maintained throughout the experi-
ment. A control blank filters were setup in a Petri dish to measure
background contamination. No particles resembling TP were observed
on filter blanks.
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Table 1

Behavioral variables from Noldus ethovision software used in this study to
analyze Mysid shrimp (A. bahia) larvae and silverside (M. beryllina) larvae
behavioral response.

Variable Unit Description
Distance cm Total distance moved inside the well throughout the
(Total) video recording time.

Freezing S The mean of the total time fish were moving for less
than 2 s.

Movement S Duration for which the selected body point (head and
tail region) was changing location with respect to the
body center.

In Zone S The total time spent in the zone defined as the central

duration portion of the beaker

In Zone The number of times fish spent time in the zone

Frequency

Meander Deg/ Turning in animals moving at different speed.

cm

Turn Angle degree Difference in heading between two samples.

2.4. Behavioral assays

Following MNP exposures of 7d (A. bahia) and 96 h (M. beryllina),
behavioral assays were performed post-exposure from each treatment
using a DanioVision Observation Chamber (Noldus, Wageningen, the
Netherlands) for the dark: light cycle as described previously (Mundy
etal., 2021; Segarra et al., 2021). Briefly, A. bahia and M. beryllina larvae
were randomized and placed in individual 10 ml glass beakers within a
12-well plates tray designed and 3D-printed in Brander lab (Hutton
et al., 2021), in the Ethovision Observation Chamber (EOB) to observe
natural photo motor response. Larvae were acclimatized for at least 1 h
before placing into the EOB. After acclimatization outside the chamber,
another 5-min acclimatization period was provided inside the dark
chamber, followed by three cycles of alternating 2-min intervals of dark
stimuli and 2-min intervals of light stimuli. Behavior and activity were
recorded and tracked by a Basler Gen 1 Camera using Ethovision XT15
software. Velocity thresholds were determined for swimming parame-
ters between 0.5 cm/s (freezing) — 2.0 cm/s (moving) (Segarra et al.,
2021). A virtual center zone (1.6 cm diameter) was established to
measure the time that larvae spent in the center of the 2.2 cm diameter
in the beaker. All behavioral tests were conducted between 09:00 and
18:00 h. The resolution was set at 1280 x 960, light cycles were pro-
grammed at 10,000 lux and the frame rate was set at 25/s. A total of
seven variables were analyzed in this study which is included in Table 1.
Following behavioral analysis, organisms were euthanized humanely,
silversides per IACUC protocol #0035, and fixed in paraformaldehyde
(PFA) to preserve tissues for examination of MP internalization.

2.5. Growth and TP internalization

At least three individuals from each species per treatment were
collected for growth measurement. Length and width measurements
were collected via dissecting scope equipped with Moticam visual soft-
ware, and particle uptake was visualized on a Zeiss Axio Observer
inverted microscope (Carl Zeiss, White Plains, NY). Growth data were
assessed by creating a growth index with the following formula:

w

ZX d

where W is the width of the organism, L is the length, and d is the
number of days the organism is exposed to the TP. This relationship
provides the index used to plot the final growth curve. Organisms were
then cleared using a protocol adapted for larval organisms with CUBIC™
clearing reagents (Ohnuma et al., 2017; Susaki et al., 2015). Briefly, to
remove pigmentation and allow visualization of internalized micro-
plastics (1-20 pm), individual organisms fixed in 3% PFA were washed
in 5 ml phosphate-buffered saline (PBS) for 30 min and incubated in 5 ml
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Fig. 1. Mysid shrimp (A. bahia) behavioral responses with selective significant variables, represented after 7 days exposure to micro and nano-TP in combined
average dark and light cycles 3 concentrations (60, 6000, 60000 particles/ml) (Lighter to darker color represents lowest to highest concentration) across a salinity
gradient 15PSU-25PSU. Y-axis represents data normalized to 0-1 scale. Similar alphabets represent statistically significant difference in at least one salinity (*p <
0.05 ANOVA test followed by Dunnet’s test, comparing all concentrations to their respective salinity NOM control within each cycle per salinity (Control = 0)).
Lighter to darker color represents lowest, medium and highest concentration. (For interpretation of the references to color in this figure legend, the reader is referred

to the Web version of this article.)

CUBIC-L at 37 °C for seven days to encourage lipid removal. Following
this step, organisms were washed again in 5 ml PBS for an additional 2 h
and then transferred to CUBIC-R + for an additional seven days to clear
the remaining tissue.

2.6. Statistical analysis

Statistical analysis was performed using RStudio Version 1.0.153.
Dose-response curves were generated to evaluate larval swimming
behavior and growth effects across concentration treatments. The
growth data were analyzed using a maximum likelihood estimate (MLE)
approach to evaluate which of five different curves (linear regression,
quadratic, sigmoidal, 5-parameter unimodal, and 6-parameter unim-
odal) were tested for the best fit to all three concentrations and controls.
A maximum likelihood ratio test was used to examine whether each
curve provided a better fit than an intercept-only null model with a
significance level of o < 0.05. All calculations for the concen-
tration—effect curves were performed using mean behavior variables,
re-scaled between 0 and 1 within each cycle to facilitate comparison
between salinities. R scripts used for data preparation, statistical anal-
ysis, and graphing can be found at https://github.com/branderlab/
TWP-DRC-Curve.git, and examples using the same package are

published in other studies (Brander et al., 2016; Frank et al., 2019;
Mundy et al., 2020) Concentration dependent dose response curves for
behavioral data were prepared by drm function in r using DRC package
by Ritz (2010), which does not include leachate (due to the absence of
particle count). The Shapiro-Wilk test was used to test normality, and
Levene’s test was used for homogeneity testing. After confirming
normality and homogeneity of data, a 3-4 parameter model using a
nonlinear regression approach was used to prepare the model at each
salinity and combined using ggplot2 function in R. Analysis of Variance
(ANOVA) was used to evaluate differences among treatment groups. A
Tukey HSD post-hoc test was used to compare particle concentrations
between treatments, and a Dunnett’s post-hoc test was used to compare
leachate treatments to controls. Differences were considered statistically
significant at p < 0.05.

3. Results and discussion

3.1. Behavioral responses of model species when exposed to TP in a range
of salinities

3.1.1. Behavioral responses for A. bahia
Average A. bahia larvae survival for control and exposure treatments
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was 98 + 2% and 90 + 3%, respectively, with no significant difference
across the treatments (ANOVA (Normal distribution, Tukey HSD post-
hoc, p < 0.05)). Out of all seven behavioral responses analyzed,
~50% of micro- TP exposures and ~33% of nano-TP (except 25 psy;
~57%) exposures were significantly different from the control group in
at least one concentration in both the light and dark cycle at least one
salinity (SI Table 4; Fig. SI Fig. 1C &D). In both the micro and nano-sized
TP treatments, A. bahia turn angle, freezing, movement and in zone
duration (time spent in center of beaker) were most significantly
affected at each salinity (Fig. 1). In leachate-exposed A. bahia, six out of
the seven variables (freezing, movement, In zone duration, frequency,
meander and turn angle) were significantly different from the control
group (SI Fig. 1B).

When compared between dark and light cycles, A. bahia demon-
strated increased distance and meander in the light cycle at the highest
salinity, with increasing freezing frequency and time spent in the zone at
lowest salinity in micro and nano TP exposed group (Figs. 1 and 3).
When compared between TP sizes, nano-TP caused hyperactivity in
A. bahia, reflected by their swimming distances significantly increasing
in a concentration dependent manner. Selected variables (distance, in
zone duration, meander and turn angle) in the dark and light cycle
micro-TP demonstrated about 70% behavioral alterations compared to
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control whereas in nano-TP exposure group about 80% behavioral al-
terations in both dark and light cycles at at least one salinity (SI Table 4;
SI Fig. 1).

In terms of salinity, behavioral alterations in both nano and micro-TP
exposures were significantly higher at the two higher salinities (15 and
25 PSU). This suggests nano-TP affected mysids more at a higher salinity
as reported by other studies (Kogel et al., 2020; Lee et al., 2013; Rist
et al.,, 2017). This may be due to agglomeration at higher salinities
(Shupe et al., 2021). When D. magna were exposed to nano (1-9 pm) and
micro (>10 pm) plastics, nanoplastic was reported to decrease 21%
feeding rates compared to microplastic exposure (Rist et al., 2017).
Other studies reported hyperactive behavior in zebrafish (Danio rerio)
exposed to micro polystyrene (PS) (0.001-20 mg/L, equals to 14.5-2.9
x 105 particles/mL) and sticklebacks (Gasterosteus aculeatus) exposed to
PE (50,000 particles/ml) each, (Bour et al., 2020; Chen et al., 2020).
Moreover, hyperactivity has been reported in the F1 offspring of
zebrafish exposed to polyvinyl chloride (PVC) and high-density poly-
ethylene (HDPE) (Cormier, 2020).

3.1.2. Behavioral responses for M. beryllina
Average M. beryllina larvae survival for control and exposure treat-
ments was 97 + 3% and 91 + 2%, respectively, with no significant
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Fig. 2. Silverside (M. beryllina) larvae behavioral responses with selective significant variables, represented after 4 days exposure to micro and nano-TP in combined
average dark and light cycles 3 concentrations (60, 6000, 60000 particles/ml) (Lighter to darker color represents lowest to highest concentration) of across a salinity
gradient 5PSU-25PSU. Y-Axis Data normalized to 0-1 scale. Similar alphabets represent statistically significant difference in at least one salinity (*p < 0.05 ANOVA
test followed by Dunnet’s test, comparing all concentrations to their respective salinity NOM control within each cycle per salinity (Control = 0)). Lighter to darker
color represents lowest, medium and highest concentration. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)
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difference across the treatments (Normal distribution, Tukey HSD post-
hoc, p < 0.05). In M. beryllina, all the behavioral variables measured
were significantly differently from the control group in at least one
salinity (SITable 5; SI Fig. 2C and D). In both dark and light cycles,
M. beryllina spent an increased time in the zone (the center of the beaker)
compared to controls, and also had an increased turn angle (Figs. 2 and
4). Dark and light cycle behavioral observations showed a similar
pattern except M. beryllina meandered more compared to the dark cycle
at all the exposure concentrations, within at least one salinity condition.
Following TP leachate exposure concentration, more than half of the
variables (freezing, movement, In zone duration, frequency, meander
and turn angle) demonstrated a significant change in behavior from the
control in both dark and light cycles in at least one salinity condition (SI
Table 5; SI Fig. 2B). Similar behavior changes were observed in Delta
smelt (Hypomesus transpacificus) following exposure to pesticides
(Mundy et al., 2020, 2021). Concentration dependent dose response
curves for the selective variables demonstrated 79% behavioral

alterations in micro-TP exposed silversides whereas, in nano-TP expo-
sure group, about 75% behavioral alterations at both micro and nano
exposed TP Silversides at both dark and light cycle (Fig. 4). In silversides
salinity dependent behavioral changes were not significant in the
micro-TP exposed group, in contrast to nano-TP where higher salinity
seems to affect behavior more. This may be because of increased
agglomeration of nano-TP at higher salinities (Shupe et al., 2021;
Gousiadou et al., 2021), as this response to nano TP at higher salinities
was also seen in mysids. Altered swimming behavior, reduced velocity
and decreased feeding activity have also been observed in larval
zebrafish (Danio rerio), larval rockfish (Sebastes schlegelii) and sheeps-
head minnow (Cyprinodon variegatus) when exposed to PS and poly-
ethylene (PE) microplastics (Chen et al., 2017; Choi et al., 2018; Noldus
et al., 2001; Yin et al., 2018, 2019).

3.1.3. Comparable Behavioral responses for M. beryllina and A. bahia
When comparing M. beryllina and A. bahia behavioral responses,



S. Siddiqui et al.

Chemosphere 296 (2022) 133934

Distance In Zone Duration Meander Turn Angle
0.75 i
, ;
*P(15)
0.50 . B -
= : r L o)
. *P(25) — ] . = .
025 |- ; 1 | i i i !
i ‘; [ H : . : i H
0.0 ° ° i !
0
1.0 ¢ s . - .
0.75 ’ *plas) e
g . L] o
c I : 118
8. 0.50 1 — .|
{ : : i
8 025 1° . *B(5) : 3 N . Pes) -
hed . n *p(15) i H g /—'—. og_
o t\.\ *P(25) . : H Be—" 1 []
O o000 tt H — - " : i — e o || e+
&
e 10 i
[ : <
2 o715 ]
g . . 1 e : 9
. . *| d L 7 H 13 q
N 0.50 i i ‘P("l‘;" . " “P(S)3 )
f_U ; : i *p(25) i . *p(1s) ¢ : o
E 0.25 - } :»;((12551) [j/ !\! L.i\ é 2
s I ——— S =
O 0.00 . -
2
1.0 . . *§(25) > *S(5) *P(15) 92,
07 |} : . 3
5 | " ) ' ) - =
050 || | : : ‘o
I H ¢ . 1 -
| P Jo . |5
0.2 — ) ] i ~i
s —1 | ! ! 1
0.00 L] . [ ] . . 1 ] s
: 0 60 6000 60,000 0 60 6000 60,000 060 6000 60,000 0 60 6000 60,000 -

Concentration (particles/ml)

Salinity (PSU) e 5 .

15

25

Fig. 4. Silverside (M. beryllina) larvae behavioral concentration response curves after 7 days exposure to micro and nano-TP in combined average dark and light
cycles across a salinity gradient 5SPSU-25PSU. “P” represents particle count and “S” salinity. Data normalized to 0-1 scale. *p < 0.05 ANOVA test followed by
Dunnet’s test, comparing all concentrations to their respective salinity NOM control within each cycle per salinity.

there were some correlations (Pearson) identified between some vari-
ables (SI Table 6). There was a direct correlation observed in M. beryllina
between distance related to movement, freezing (0.32-Dark, 0.16- Light)
(Fig. 2). In contrast to mysid shrimp, there was an inverse relationship
between movement and freezing (—0.54-Dark, —0.59-Light) (Fig. 1).
Freezing demonstrated a weak inverse relationship with velocity for
M. beryllina and A. bahia. Turn angle and freezing mean also showed a
weak inverse relationship with the movement for M. beryllina and
A. bahia. This suggests random movement that can be caused by addi-
tional stress due to the TP.

3.1.4. Salinity impacts on Behavioral responses for M. beryllina and
A. bahia

Within different salinities, the lowest salinity (15 PSU) in A.bahia
demonstrated the highest variation from control in combined dark and
light cycles in all concentrations of micro-TP (SI Table 4; Fig. 1). This

was in contrast to nano-TP and leachates, where the highest salinity (25
PSU) demonstrated the most impact on behavioral variation. As
mentioned above, this may be due to agglomeration behavior, and also
due to some soluble chemicals becoming more bioavailable at higher
salinities, and thus potentially more toxic, although this requires further
research (Hutton et al., 2021; Saranjampour et al., 2017). Similar results
were observed in M. beryllina, where in both the dark and light cycle the
lowest salinity (5 PSU) showed most variation from control when
exposed to micro-TP in contrast to nano-TP and leachate exposure
group, where the most behavioral variation from control was seen in
highest salinity (25 PSU) (SI Table 5; Fig. 2). These results align with
recent findings on nanoplastics agglomerating more as salinity increases
(Shupe et al., 2021). M. beryllina exposed to both micro and nano-TP
exhibited increased duration of time spent in central habitat across all
concentrations and salinities, except individuals exposed to nano-TP in
the highest concentration and TP leachate, both at lowest salinity in
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dark cycles. Similarly, A. bahia exhibited increased in zone duration
across all TP concentrations, salinities, and light-dark cycles, including
individuals exposed to TP leachate. Occupancy of the boundaries of a
novel environment is widely documented to indicate a stress response in
fish, rodents, and humans (Kallai et al., 2007; Schnorr et al., 2012;
Sharma et al., 2009; Treit and Fundytus, 1988). An increase in central
habitat occupancy that is significantly different from control organisms
may indicate increased exploration or indiscriminate feeding behavior.
Previous studies observed impaired swimming competence and reduced
exploratory behavior in N. japonica exposed to PS microbeads (Wang
et al., 2020). The uninhibited exploration behavior we observed may
lead to an increased risk of predation in these highly susceptible larval
fish.

Behavioral changes can be an outcome of physiological changes like
respiratory stress (Abdel-Tawwab et al., 2019; Hashemi et al., 2019) that
may be caused by changes in oxygen consumption with altered ion
regulation (Kolandhasamy et al., 2018; Watts et al., 2016) as observed in
this study, where increasing zone duration and freezing are caused at
various TP concentrations (Figs. 1 and 2.; SI Tables 4 and 5). Similarly,
ingestion of irregularly sized TP may also induce irregular behavior
(Wang et al., 2016; Wright et al., 2013) and may be another reason for
irregular behavior patterns in our study (Figs. 1 and 2). These particles
can also come in contact with the skin, gills, fins, and eyes of the or-
ganisms, when present in high concentrations, and may result in
abnormal swimming behavior (Choi et al., 2018), as observed in this
study with altered turn angle and meandering patterns differing from
control (Figs. 1 and 2; SI Tables 4 and 5). Altered turn angle and
meandering patterns describe necessary behavioral patterns required by
an aquatic organism for their survival, supporting actions such as
predator avoidance or foraging. Some of the behaviors documented in
our study (in zone, turning, and velocity) may represent hyperactive
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behavior of an organisms (Mundy et al., 2021). Behaviors exhibited by
organisms exposed to tire particles herein may also be indicative of
exploration avoidance, or an indication of anxiety-like behavior (e.g.,
altered in zone duration, Schnorr et al., 2012)). If an organism can’t
respond quickly to prey or a potential predator and gets confused due to
the presence of external particles it may limit their ability to survive,
causing long term population decline (Weis and Candelmo, 2012).
Several studies have reported that MNPs can cause movement-related
neurotoxicity in organisms (Barboza et al., 2018; Lei et al., 2018; Yin
et al., 2018), as reported in this study, with changing movement and
distance in model species when exposed to various TP concentrations
indicating neurotoxicity as other studies have with other polymer types.
Swimming behavior is crucial for predator defense and avoidance, food
acquisition, and social activity (Colwill and Creton, 2011) that all
require motor as well as sensory systems (Roberts et al., 2011; Wong
et al., 2010) to work in concert. M. beryllina are known to occur in
schools and exhibit diel migrations following zooplankton prey, often
displaying high school densities during the nocturnal period, presum-
ably to reduce predation (Wurtsbaugh and Li, 1985). The presence of
high TP concentrations may alter migration or shoaling patterns and
limit population ranges, although environmentally relevant TP con-
centrations in larger water bodies may not present significant risk at this
time. A. bahia exposed to nano-TP concentrations (60 and 6000 p/ml) at
15 PSU and 25 PSU in dark cycles exhibited further total distance moved
while organisms exposed to TP leachate in light cycles exhibited shorter
total distance moved at 25 PSU salinity. Increased activity from TP
exposure in nocturnal periods may not present high risk to the diurnally
benthic A. bahia, which becomes planktonic at night to forage for food
and engage in reproductive activity (Wortham-Neal and Price, 2002).
However, observations of decreased activity resulting from TP leachate
exposure in A. bahia during diurnal periods may increase susceptibility
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to predation by fish or crustaceans who forage during the day or cause
reduced food intake.

3.2. Growth and ingestion

A. bahia growth demonstrated a significant concentration-dependent
decrease in both the highest salinities (Normal distribution, Post-hoc
Tukey’s test, ANOVA, p < 0.05) micro-TP exposure (Fig. 5). There
were no significant differences observed in leachate concentration when
compared to control (Fig. 7A). When compared between the salinities,
A. bahia demonstrated comparatively better growth at the highest
salinity, which was reduced significantly at the highest TP concentration
(Tukey HSD post-hoc, ANOVA, p < 0.05). There was no significant
growth reduction demonstrated in nano-TP-exposed A. bahia over all
concentrations. However, the highest salinity demonstrated better
growth compared to both lower salinities. The appearance of ingested
TP was concentration-dependent in A. bahia, as shown in Figs. 8A and
9A. TP ingestion is also documented in other benthic invertebrates
(Khan et al., 2019; Redondo-Hasselerharm et al., 2018). In the case of
amphipod crustacean (Hyallela azteca), gut retention times of 24-48 h
were observed in ingested TP with a significant impact on net growth
when exposed to 500-2000 p/ml (Khan et al., 2019).

M. beryllina demonstrated significant concentration-dependent
reduced growth in both micro- and nano-TP exposed groups at all sa-
linities, except in nano-TP group at lowest salinity (Tukey HSD post-hoc
ANOVA, p < 0.05; Fig. 6). There were no significant differences
observed in leachate concentration when compared to control (Fig. 7B).
This is true in the case of M. beryllina’s ingestion of micro-TP as well,
where ingested particles were observed at the two highest concentra-
tions with the highest number of ingested TP at middle salinity (Figs. 7B
and 8B). This is consistent with a recent study that traced TP in the gut of
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14% of individuals across five fish species surveyed in urbanized estu-
arine conditions (Parker et al., 2020).

Micro and nanoplastic exposures can cause adverse effects on the
growth and development of larval aquatic organisms, primarily through
ingestion (Athey et al., 2020; Lo and Chan, 2018). Inhibited growth may
reduce the probability of attack because of inconspicuousness, but in the
long term may increase failure to escape as a result of less developed
sensory and locomotion abilities (Fuiman and Magurran, 1994).
Further, reduced growth and stunted development increase the amount
of time a larval organism spends in a specific stage or size class,
impacting cumulative predation mortality rate (Shepherd and Cushing,
1980), and could also result in reduced size at reproductive maturity (e.
g. DeCourten and Brander, 2017). In M. beryllina, optimal growth in
laboratory conditions has been documented at 15 PSU while Mysid
species was 30 PSU (Middaugh et al., 1987). Therefore, measuring
growth in larval individuals following a period of salinity stress may
yield unique insight into the effects of TP across different salinities on
developing organisms. Particularly considering that salinity regimes are
already being altered by global climate change (DeCourten et al., 2019).

Ingestion of 1-20 mm micro-TP was observed in A. bahia and
M. beryllina at 6000 p/ml and 60,000 p/ml. A generalized linear model
(GLM) was run for particle count at all three concentrations (micro-TP)
at different salinities for both the model species (Fig. 9). The GLM for
A. bahia suggested concentration dependent ingestion at all the salinities
(2 = 18.12, df = 3, p < 0.005). Results also suggested concentration
dependent ingestion at the lowest salinities (5 and 15 PSU) (y2 = 2.55,
df = 3, p < 0.005). However, in M. beryllina in 15 PSU demonstrated
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Fig. 9. Images of A) mysid shrimp (A. bahia) at 15 PSU salinity with highest
micro-TP concentrations at 35x and B) larval silverside (M. beryllina) yolk sac
at 10x exposed to highest micro-TP concentration at 5 PSU salinity. Inset im-
ages in each panel are showing control organisms.

increasing ingestion compared to the 5 and 25 PSU salinity group (y2 =
1.04, df = 6, p < 0.005). Results suggest that ingestion is likely the most
common interaction that nondiscriminatory feeding fish larvae and
zooplankton have with TP. Previous studies confirm that M. beryllina
will ingest microplastic at high concentrations when exposed to
zooplankton internalized with TP, although most particles were
observed to be egested within 24 h of internalization (Athey et al.,
2020). However, the gut retention time for TP in A. bahia is unknown
and may be dependent on particle size and shape. The irregularity of TP
shape may contribute to the varying retention times. Egestion of 10 pm
polystyrene microspheres in other mysid species (N. integer) has been
observed to occur within 12 h of ingestion (Setala et al., 2014). Micro-
plastic can also agglomerate with increasing salinity, leading to longer
retention times in estuarine species closer to marine environments
(Ogonowski et al., 2016). In a study comparing the physiological
toxicity of polystyrene and carboxylate polystyrene (PS-COOH) in
mysid shrimp, both plastics were observed to reduce feeding efficiency
in these organisms. Future studies should carefully evaluate changes in
density and sinking rates for TP at different salinities.

We observed reduced growth in M. beryllina across all micro-TP and
two nano-TP (6000 and 60,000 p/ml) concentrations with increasing
salinity, except for individuals exposed to nano-TP at 5 PSU. Other
studies have also demonstrated growth inhibition of larval fish due to
ingestion and accumulation of microplastics in the gut (Athey et al.,
2020; Santos et al., 2020). A. bahia appeared to be less sensitive to
growth restriction by TP and exhibited a reduction in growth only in
micro concentrations at 20 PSU and 25 PSU. Nano-TP did not elicit a
significant response in growth reduction in A. bahia. Inhibited growth in
another species, N. japonica, has been observed as a result of chronic
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polystyrene exposure (Lee et al., 2021). Several studies investigated the
effect that microplastics have on the growth of small aquatic organisms.
Though some studies found that microplastic, particularly polyethylene,
exposure did not affect growth (Malinich et al., 2018; Mazurais et al.,
2015), others noted detrimental effects of microplastics on growth
(Athey et al., 2020; Lee et al., 2021). These contrasting reports may be
attributed to the wide variety of microplastic compositions, shapes, and
sizes, as well as the lengths of exposure. While no studies could be found
in the current literature on the effects of TP on mysid or silverside
growth, the findings of this study are in line with toxicity assessments for
other microplastics. For example, exposure of mysids (N. japonica) to
polystyrene (PS) and PS-COOH resulted in growth inhibition in a
dose-dependent manner in which increasing concentrations resulted in
decreasing growth (Wang et al., 2020). Additionally, mysids
(N. awatschensis) showed impaired growth when exposed to melamine
resin microparticles over four weeks (Lee et al., 2021). For amphipod
(H. Azteca), chronic exposure to polyethylene microplastic particles and
acute exposure to polypropylene microplastic fibers significantly
decreased growth (Au et al., 2015). Similarly, growth inhibition in larval
fish has been documented as an effect of exposure to micro polyvinyl
chloride (Xia et al., 2020), low density polyethylene (Athey et al., 2020)
and microplastic mixtures (Naidoo and Glassom, 2019; Pannetier et al.,
2020). Furthermore, a meta-analysis of the literature (Foley et al., 2018)
found that overall, exposure of zooplankton to microplastics decreases
growth, and food dilution is thought to be one of the major mechanisms
of MP toxicity to aquatic organisms in general (de Ruijter et al., 2020;
Koelmans et al., 2020).

In aquatic environments, TPs are influenced by tidal processes,
currents, and waves and may disperse throughout the estuarine system.
At lower salinities closer to the river mouth, TP may remain suspended
or float, which may make them more available to organisms that feed in
the water column. TP and other particulates will agglomerate at higher
salinities and biofouling may occur, increasing the potential for higher
density particles to settle out into benthic environments. As mysids are
indiscriminate feeding epibenthic organisms, this settling out may in-
crease the likelihood that mysid shrimp occurring at higher salinities
will encounter and ingest TP. Additionally, mysid shrimp are confirmed
to ingest MP through their prey (Setala et al., 2014). TP is likely to follow
the same fate of planktonic trophic transfer. Inland silversides typically
feed in the water column on copepods, mysids, and other zooplankton,
although bottom feeding has been observed (Weinstein, 1986). In this
respect, inland silversides may ingest TP in both the demersal and
benthic environments. Future studies should further investigate the
estuarine processes that affect TP circulation and transport and how this
will impact aquatic species.

4. Conclusion

Following exposure, M. beryllina and A. bahia had significantly
altered swimming behaviors, such as increased freezing, changes in
positioning, and total distance moved, which could lead to an increased
risk of predation and foraging challenges in the wild. Growth for both
A. bahia and M. beryllina was reduced in a concentration-dependent
manner when exposed to micro-TP, whereas M. beryllina also demon-
strated reduced growth when exposed to nano-TP (except lowest con-
centration). The specific effects of particles on growth in our study are
notable, in comparison to the insignificant effect of leachate on growth.
TP internalization was dependent on the exposure concentration and to
some extent salinity in both taxa. Recently the role of behavioral eco-
toxicology in environmental conservation has been discussed by various
scholars (Ford et al., 2021). This includes lab-based research that can
help researchs learn more about individual, population, and ecosystem
processes and responses. Our research demonstrated the occurrence of
significant behavioral changes in response to the lowest concentration
(60 particles/ml), as well as to higher potential future concentrations
and leachates under various salinities found in the estuarine
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environment. These behaviors represent ecologically important stimulus
responses in field conditions, including activity (movement, velocity,
freezing), boldness (in zone duration and frequency), and exploration
(meander, turn angle, distance moved). Behavioral responses connect
directly to population fitness and ecosystem-level impacts, therefore
carrying high relevance to be considered by policymakers. Additionally,
growth and TP ingestion data represent the significant impacts of micro
and nano-TP on both of these model species that may have
population-level implications. Specifically, data collected in the pres-
ence of estuarine conditions over different salinity gradients, that can
aid in the assessment of risk over wider environmental ranges. Although
automobiles are here to stay, limiting TP from entering the environment
is paramount if we wish to preserve sensitive aquatic ecosystems and
fisheries. Possible actions to take in order to achieve this goal may
include providing incentives for citizen awareness of and participation
in waste reduction (Eriksen et al., 2014, p. 201; Rochman et al., 2021)
redesigning tire constituents with biopolymers and materials for circu-
larity (Karan et al., 2019) extending tire producer responsibility for the
end of life products (Leal Filho et al., 2019), improving wastewater
treatment technology (Edo et al., 2020; Katyal et al., 2020), and passing
legislation to ban certain synthetic materials, as well as increasing use of
public transportation rather than single vehicle use (Deng et al., 2020).
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