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Abstract—Accelerating DNN execution on resource-limited
computing platforms has been a long-standing problem. Prior
works utilize /;-based group lasso or dynamic regularization
such as ADMM to perform structured pruning on DNN models
to leverage the parallel computing architectures. However, both
of the pruning schemes and pruning methods lack universality,
which leads to degraded performance and limited applicability.
Considering mobile devices are becoming an important carrier
for deep learning tasks, current approaches are not ideal for
fully exploiting mobile parallelism while achieving high inference
accuracy. To solve the problem, we propose BLCR, a novel
block-based pruning framework that comprises a general and
flexible structured pruning scheme that enjoys higher flexibility
while exploiting full on-device parallelism, as well as a powerful
and efficient reweighted regularization method to achieve the
proposed sparsity scheme. Our framework is universal, which
can be applied to both CNNs and RNNs, implying complete
support for the two major kinds of computation-intensive layers
(i.e, CONV and FC layers). To complete all aspects of the
pruning-for-acceleration task, we also integrate compiler-based
code optimization into our framework that can perform DNN
inference on mobile devices in real-time. To the best of our
knowledge, it is the first time that the weight pruning framework
achieves universal coverage for both CNNs and RNNs with real-
time mobile acceleration and no accuracy compromise.

I. INTRODUCTION

Deep Neural Networks (DNNs) such as Convolutional Neu-
ral Networks (CNNs) [1]-[3] and Recurrent Neural Networks
(RNNs) [4] [5] have been extensively adopted in various
artificial intelligence (AI) systems. However, accelerating the
computational intensive DNN inference is very challenging
for many Al applications, especially those with critical time
constraints, such as self-driving cars [6] and real-time transla-
tion [7].

Weight Pruning [8]-[12] has gained its popularity due to
the effectiveness in reducing model size and computation cost.
In order to remove redundant weights while maintaining accu-
racy, many studies have been proposed regarding both pruning
schemes (DNN structure level) and pruning method (algorithm
level). According to the structure of pruned models, there are
mainly two DNN pruning approaches: non-structured pruning
and structured pruning. However, non-structured pruning [9]
[13] has been proven by many recent studies [8] [14] that
it is not compatible with the parallelism in hardware accel-

erations due to the imbalanced computation and significant
overhead. Structured pruning [8], [10]-[12] has been proposed
to conquer the challenge. A structured pruned model maintains
the regularity of the weight matrix, which eliminates the
overhead and facilitates on-device acceleration. However, the
aggressive pruning strategy causes severe information loss,
making accuracy degradation non-negligible. Achieving both
high accuracy and fast inference with DNN pruning is an ideal
but very challenging goal.

Efforts have been made to achieve this goal. At algo-
rithm level, many pruning techniques have been proposed
to find the uncritical weights. For non-structured pruning,
prior works leverage a magnitude-based pruning method that
prunes weights with small magnitudes or use ¢ regularization
to explore sparsity in DNN models. For structured pruning,
the static ¢;-based group lasso regularization is used to find
the regular sparse pattern in DNN models. However, the
above approaches fail to find a satisfactory solution for the
pruning problem due to the poor solution quality for the non-
convex (o problem. With a significant improvement in the
solution quality, ADMM [15] pruning supersedes (almost)
every pruning framework and becomes the state-of-the-art
method. Nevertheless, ADMM still suffers from sub-optimal
solution quality and long convergence time, especially for the
long-standing problem of finding structured sparsity solution
for the Fully Connected (FC) layer. This will certainly limit
the usage of ADMM solutions on many CNNs and almost all
RNNS since they are majorly composed of FC layers.

In this paper, we present a unified pruning framework —
block-based structured pruning with reweighted regularization
(BLCR), and the design of the associated compiler-aided
acceleration, for off-the-shelf mobile devices. We focus on two
aspects: pruning scheme and pruning method.

Aspect 1: From the pruning scheme aspect, we propose
block-based structured pruning which divides DNN layers into
multiple blocks and applies structured pruning independently
to each block. Our design takes a unique perspective on
structured pruning, which greatly enlarges the design space
by introducing a higher degree of flexibility with a change-
able block shape. More importantly, the proposed pruning
scheme is applicable to both CNNs and RNNs without obvious
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accuracy degradation, and outperforms the existing pruning
schemes. It achieves similar or even higher accuracy compared
with non-structured pruning, and preserves the hardware com-
patibility advantage of structured pruning, with the compiler-
based code optimization embedded in our pruning-acceleration
framework.

Aspect 2: From the pruning method aspect, we propose to
use reweighted group lasso regularization method to generate
structured sparsity (we will use reweighted method in the rest
of the paper for concision). By introducing a reweighted term
into regularization, our method can perform group regulariza-
tion at a more precise location in DNN with an appropriate
degree. Compared to the traditional ¢;-based group lasso and
the recently developed ADMM regularization method, the
reweighted method exhibits a significant improvement in the
regularization effect (i.e., facilitating better pruning results)
with a desirable short convergence time (i.e., efficient training
process), which makes it a favorable approach that naturally
fit for the DNN pruning problems.

We show the performance improvements of BLCR frame-
work in three ways. L. the proposed reweighted method can
efficiently find uncritical weights. Compared to other methods,
the reweighted method achieves better weight regularization
effect using significantly shorter training time. IL. the proposed
block-based pruning scheme is more general and achieves
extremely high compression rates in both CNN and RNN.
III. the proposed BLCR pruning naturally fits for the compiler
optimization. Our designed compiler-aided acceleration frame-
work achieves real-time inference on the resource-limited
mobile devices.

II. BACKGROUND AND MOTIVATION

A. Structured Pruning Scheme

Recent works [8], [10], [12], [14], [16], [17] considered to
incorporate regularity (i.e., filter-wise, channel-wise, etc.) in
weight pruning, which generates regular and smaller weight
matrices for faster executions on CPUs/GPUs. For convolution
computations, weight matrices are usually transformed into
general matrix multiplication (GEMM) form. As a result,
filter pruning can also be termed as row pruning since it
corresponds to removing one row of the weight matrix, and
channel pruning corresponds to reducing multiple consecu-
tive columns (column pruning). Current structured pruning
approaches suffer from notable accuracy loss when the com-
pression rate is high because the entire information of the
pruned filter(s)/channel(s) is lost. As a result, it usually has
limited compression rates and low accuracy, as well as limited
applicability as most works focus on CONV layers only. For
FC layers (applied partially in CNN and majorly in RNN),
structured pruning is applicable but not desirable due to the
same reason above. The drawback is obvious, especially for
time-based RNNs since one pruned row/column in an RNN
will not be utilized for all timestamps, causing server accuracy
degradation.

B. Regularization-based Pruning Methods

Finding structured sparsity in a DNN model is intrinsically
solving an ¢y optimization problem with structured constraints.
The following two mainstream methods have been proposed
to solve this problem:

Static regularization is firstly utilized in solving non-
structured pruning problems by incorporating ¢; regularization
into DNN training. By extending ¢; regularization into group
lasso [8], [14], [18] form, structured pruning on DNN models
can also be achieved. With specified regularization dimensions
(groups), it can perform different types of structured pruning
(i.e., filter pruning, channel pruning and the combination of
them). However, this method yields limited compression rates
and non-negligible accuracy degradation due to the intrinsi-
cally heuristic and non-optimized approach.

Dynamic regularization method such as ADMM prun-
ing [19], [20] usually reforms pruning problems into opti-
mization problems with dynamically updated regularization
terms bounded by the designated constraint (i.e., pruning
with specific dimensions or with any desired weight matrix
shapes) sets. During training, ADMM can separately and
iteratively solve the pruning problem. Although this method is
revolutionary in its functionality and outperforms the former
ones in terms of pruning rate/accuracy, a satisfactory solution
cannot always be guaranteed for the non-convex (i.e., DNN
loss function) problem, not to mention that this method suffers
from a time-consuming training process. Another approach
prunes DNN with dynamic regularization via Generative Ad-
versarial Learning (GAL) technique [16]. Specifically, GAL
uses adversarial regularization to learn a soft mask to find
the sparse structure, and FISTA [21] [22] is introduced to
solve the adversarial regularization problem via two alternating
steps. However, GAL suffers from convergence quality since
the FISTA framework is not focused on the non-convexity of
the loss function, thus the method is still heuristic and can not
guarantee solution quality.

To fully utilize the regularization-based method to find spar-
sity, neural architectures search (NAS) is also becoming pop-
ular. Prevailing NAS methods [23]-[25] optimize the network
topology, which greatly improves the performance of neural
networks. Regularized by minimization of the computation
cost, NAS aims to search for the best topology, or search
for the best size of a network directly [10]. However, the
search space of these methods is extremely large, which causes
significant computational overhead to search and select the
best model from hundreds of models.

C. Motivation

From the pruning scheme aspect, the current structured
pruning schemes suffer from major information loss. The
accuracy drop is especially significant in RNN pruning. The
motivation of our study is to seek an approach to maintain
the regularity in the pruned model (for facilitating hardware
acceleration), while restoring the flexibility of the spatial
distribution of the weights (to re-gain high accuracy). In our
proposed block-based pruning which is applicable to both
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Fig. 1: Proposed flexible, block-based structured pruning.

CNNs and RNNs, we take a unique step towards this goal by
introducing a new pruning perspective, and avoid the pitfall
of making this approach “a mere trade-off” between model
accuracy and regularity. We also take a further step of compiler
optimization to establish the connection between the general,
block-based sparsity and the on-device speedups.

From the regularization aspect, we emphasize that both
current static and dynamic regularization methods are limited
by their intrinsic shortcomings. For static regularization, the
{1 or group lasso regularization penalizes all weights in its
dimension scope through the entire network, which means
some important weights are penalized to near-zero values,
thereby resulting in highly impaired solutions. On the other
hand, the dynamic regularization method reforms pruning
problem as an optimization problem with hard constraints
on /3 norm, and then use ADMM to solve it. However,
this method suffers from long convergence time due to the
strong non-convexity of £y norm, especially with structured
hard constraints. ADMM involves a large amount of hyper-
parameters that need to be tuned manually for each layer,
which is very inefficient. It is imperative to find an effective
method to solve the ¢ optimization problem with self-adaptive
regularization and soft constraints.

III. UNIFIED AND FLEXIBLE FRAMEWORK OF DNN
PRUNING - ACCELERATION

In this section, we propose a unified framework of DNN
weight pruning, supporting (i) the flexible, block-based struc-
tured pruning that applies to both CNN and RNN architec-
tures, and (ii) highly effective weight pruning algorithm with
reweighted method. Our framework also includes a general
method to accelerate DNN execution by utilizing compiler-
based code optimization, achieving holistic supports for the
DNN pruning-acceleration studies.

A. Block-based Structured Pruning — A Unique Perspective on
Structured Weight Pruning

Conventional, structured pruning treats the DNN weight
matrix in each layer as a whole, and selects to prune a whole
row or column of the entire weight matrix. However, the
accuracy performance is hindered by this limited, inflexible
view of structured pruning.

In our perspective, we consider the weight matrix in each
layer (e.g., GEMM or FC that represent different types of
layer-wise computation) to be composed of multiple weight
blocks with the same size m x n as Figure 1 shows. We
apply independent row and column pruning on each block,
with potentially different pruning rates (number of pruned
rows/columns) in each block, to ensure high flexibility. The
remaining weights in each block still form a full matrix with a
smaller size. Within our perspectives, the aforementioned non-
structured pruning and the state-of-the-art structured pruning
are two extremes in our design with the block size 1 x 1 (i.e.,
non-structured pruning) and the size of the whole matrix (i.e.,
structured pruning).

B. Effective Regularization-based Pruning Algorithm with
Reweighted Method

For an N-layer DNN of interest, let W denote the collection
of weights for i-th layer, i.e., W = {W,;}¥ . According to
our design of the flexible, block-based sparsity, we propose
the following ¢ constraints on the pruning of W;.

Constraints: Each W; will be uniformly divided into
K blocks with the size of m x n in each of the GEMM or FC
matrix, namely, W; = [W,;, Wy, ..., W;k], where W;; €
R™*™ Let [W;]p,. and [W;;]. , denote the p-th row and the
g-th column of W, respectively.

Towards training of the DNN, we minimize the loss function
of the network to increase accuracy. In order to achieve
structured sparsity, the common method is to add group lasso
regularization [18] to the loss function. In fact, achieving
block-based row and column sparsity is also a special group
lasso problem. Let f(W) denote the training loss. The classic
optimization with group lasso regularization on the block-
based sparsity can be formulated as

+/\ZZ||

=1 j=1

mlnlmlze f(W iilllg (1

where A is the penalty parameter to adjust the relative im-
portance of accuracy and sparsity degree, and || - ||, denotes
group lasso computation. It is difficult to find high quality
solution using this fixed regularization method (please refer to
the explanation in Section II-C). Instead, an effective dynamic
regularization method dealing with such soft constraints is
in need. To achieve this goal, we propose to use reweighted
method [26] to solve group lasso regularization, thereby elimi-
nating the previous shortcoming of applying the same penalty
on important and less significant weights. We formulate the
following two optimization problems for block-based row
pruning and column pruning.
For block-based row pruning, we solve

mlnumzef )+ )\Z Z <P(t) o||[[Wijlp ||2> ()
=1 j=1
where o denotes element-wise multiplication, ||-||2 denotes the

Frobenius norm and Pft) is the collection of penalty weights!,

I'P is initialized by the original weights in the pre-trained model.
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which is updated in every iteration ¢ to help increase the degree
of sparsity beyond group lasso regularization. In each iteration,
the solution of W is given by W,f-t) and we update P; by
setting
D) _ 1
ITCWij)Ip, 115 + €

where € is a parameter with small value to prevent the division
by zero denominator.
For block-based column pruning, we solve

HZZ((“on Wilals) @

=1 j=1

m1n1mlze f(W

and update P; by

1
,P(f+1)
’ I[(Wi)]EglI5 + €

Please note that (2) and (3) can be solved separately or
simultaneously using the standard solver.

Algorithm 1 describes the general steps that are used in the
proposed reweighte method. We first initialize P; using the
pretrained model, and pre-define the block size for the pruned
model. During DNN training, we incorporate the reweighted
group lasso regularization in (2) and (3), and update the
penalty parameter P; iteratively. By updating the penalty, we
“reweight” the regularization term(s) that is (are) bounded in
the optimization problems. After reweighted steps, we remove
the weights (or group of weights) which are close to zeros and
fine-tune the DNN using the non-zero weights.

Reweighted regularization analysis: Consider that two
weights w; and w; (w; < w;) are penalized by certain
regularization. The larger w; is inevitably being penalized
more heavily than the smaller w;. Although it is easier for w;
to become zero, the fact that w; is penalized still violates the
original intention of weight pruning, which is to remove the
“uncritical” weights. Larger weights typically serve a critical
role in generating stronger activation for a more confident
decision. In the reweighted method, w; remains un-penalized
or even being rewarded while w;’s penalty is amplified.
Interestingly, our experimental results in Section IV-A show

Fig. 2: Matrix reorder and optimizations for efficient execution
code generation.

that the importance of a (group of) weight is also related
to its location, and the reweighted method can effectively
separate those locations. We claim that this characteristic is
attributed to the globally and iteratively updating the potential
sparse pattern by reweighted method, such that the algorithm
converges to a better sparse solution, while other methods
(static regularization or ADMM, etc.) only target at a fixed
Sparse pattern.

Reweighted training: Compared with ADMM training
which also uses an iteratively updating scheme for the regular-
ization term, reweighted method uses fewer training epochs for
the loss to converge. For example, when pruning VGG-16 on
CIFAR-10, the ADMM method usually requires 1,000 - 1,200
epochs to converge when the compression rate is around 20x.
Additionally, the retraining step also requires the same amount
of epochs to restore accuracy. In reweighted training, we only
need 150 - 200 epochs for reweighted step and 200 epochs for
retraining. In the meantime, ADMM requires setting pruning
ratio and other hyper-parameters (e.g., layer-wise penalty) for
each layer manually, while reweighted method only requires
one penalty parameter for all layers. Also, the soft constraints
in reweighted method determine pruning ratio for the whole
network automatically, which eliminates a lot of parameters
that need to be set empirically.

Multiple objective functions: The original objective func-
tion in the proposed reweighted method is targeting at DNN
weight reduction. However, our objective function can also
be formulated for operation (FLOPS) reduction, storage re-
duction, etc., and solved using the same reweighted method.
We will not discuss those formulations since they are not the
focuses of this paper.

C. Compiler-aided Mobile Acceleration Framework for Block-
based DNN Sparsity

To fully leverage the block-based sparsity, we design a
compiler-aided acceleration framework to deploy DNN models
on the computing platform. We adopt code generation to
convert a DNN model into computational graph embodied by
static C++ (for CPU execution) or OpenCL (for GPU execu-
tion) code, and with the optimization techniques to guarantee
end-to-end execution efficiency. We use mobile devices as the
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Fig. 3: Critical weights distribution (logarithmic scale) found by reweighted method in the first FC layer of a VGG-16 model.
The comparison includes (a) a pretrained model, (b) an ¢;-based group lasso regularized model and (c) an ADMM regularized

model.

computing platform. However, the concept and principle of
using compiler to execute DNN is universal and can be utilized
in (almost) every computing device.

The compiler optimization aims to address the following
performance challenges in pruned DNN executions: thread
divergence and load imbalance caused by the well-known
challenges of the sparse matrix multiplications. The core of
our solution is the matrix reorder technique.

Matrix reorder: At first glance, the block-based sparsity
has a disordered weight distribution, which incurs significant
thread divergence and load imbalance if rows are processed
by different threads. Figure 2 illustrates our proposed matrix
reorder technique. As the remaining weights that appear in
certain rows and columns in each block have a certain degree
of regularity, we first reorder the rows (e.g., filters in CNN) by
arranging the ones with the same or similar patterns together.
Next, we compact the weights in the column direction (e.g.,
kernels in CNN). At last, the rows with the same or similar
computations are grouped together. As a result, each group
is processed by all threads in parallel, and each thread is in
charge of multiple consecutive rows. Thus, the computation
divergence among these threads is significantly reduced. On
the other hand, since the weight distribution pattern in each
block is regular and known after grouping, the input matrix
that corresponds to each weight group will be loaded only
once. The load imbalance can be relieved thanks to the register
level loading operation reduction. Based on matrix reordering
result, other standard optimizations (e.g., loop permutation,
unrolling, tiling, vectorization, etc.) effects can be maximized,
and our compiler-aided framework generates more efficient
codes comparing to other DNN acceleration frameworks.

IV. EXPERIMENTAL RESULTS

Methodology: In our experiment, the proposed BLCR prun-
ing framework is utilized on two different machine learning
tasks — image classification and natural language processing
(NLP). In image classification tasks, our experiments are
based on four widely used CNNs, VGG-16 [2], ResNet-
18/20/50/56 [1] and MobileNet-V2 (MBNT) [27] on CIFAR-
10 and ImageNet [28] datasets; and for NLP task, we test

our proposed pruning framework for GRU [5] on TIMIT
dataset. We train the networks on an eight NVIDIA Titan RTX
GPUs server using PyTorch [29]. We train CIFAR-10 for 160
epochs and train ImageNet for 100 epochs with standard data
preprocessing.

In order to show the acceleration of block-based sparsity
on mobile devices, we compare it with three state-of-the-art
DNN acceleration frameworks, TensorFlow-lite (TF-Lite) [30],
TVM [31], and MNN [32]. Our evaluations are conducted
on a Samsung Galaxy S10 phone with the latest Qualcomm
Snapdragon 855 that consists of a Qualcomm Kryo 485 Octa-
core CPU and a Qualcomm Adreno 640 GPU.

A. Critical Weights Analysis on Different Regularization
Methods

We state that the proposed reweighted method can achieve
better pruning result. The reason is that our method can
effectively separate the uncritical weights from critical ones.
We use VGG-16 on ImageNet to generate a sparse model
based on the proposed reweighted regularization method, and
compare it with /;-based regularization as well as ADMM
regularization. To ensure absolute fairness, all the models in
the comparison use the same pruning scheme and compression
rate. In this case, we use one block (i.e., prune entire columns
and rows) in each layer for all methods.

Figure 3 illustrates the difference of critical weights distri-

bution between reweighted method and others. We first find the
non-zero value positions in the sparse model generated by our
reweighted method. Through using those positions, we find the
corresponding weights and their distribution in (i) a pretrained
model, (ii) an /;-based group lasso regularized model and (iii)
an ADMM regularized model. The critical weight distribution
is shown in Figure 3, with the orange color denoting original
weights distribution and the blue color indicating the “critical”
weights found and preserved by our method. According to the
figure, we have the following analyses:
(a). In a pretrained DNN model, some weights with small
magnitude are critical to maintain accuracy. Therefore, some
pruning works that only prune small weights are very subjec-
tive and hard to achieve good results.
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Dense Prune Comp. Sparsity Top-1 Top-5 Comp. Sparsity

Method (" %) Acc. (%) Rate  Scheme Method ) C. (%)  Acc. (%) Rate Scheme
AMC 90.5 90.2 2.0x Chl (Lasso) DCP 69.6—64.1 88.9—85.7 3.3x Chl (Heuristic)
= SFP 92.2 90.8 1.7x Chl (Heuristic) ADMM N/A 89.1—-88.4 33x R+C (ADMM)

L TAS 92.8 92.8 1.8x Chl (NAS) % SFP 70.3—67.1 89.6—87.8 1.7x Chl (Heuristic)

> FPGM 92.2 91.9 2.5% Chl (Lasso) < TAS 70.6—69.1 89.8—89.2 1.5x Chl (NAS)

$ BLCR 925 924 2.4x 1-BLK (REW) Z FPGM 70.2—683 89.6—+88.5 3.3x Chl (Lasso)

& BLCR 925 92.3 6.0x BLK (REW) & BLCR 70.1-69.2 89.3—-88.6 4.0x 1-BLK (REW)
BLCR 925 91.1 11.6x BLK (REW) BLCR 70.1—694 89.3—89.0 4.0x BLK (REW)
TAS 045 93.7 2 0% Chl (NAS) BLCR 70.1—66.9 89.3—87.2 7.6x BLK (REW)

o OSFP 93.6 93.4 1.7x Chl (Heuristic) TAS 77.5—76.2 93.5—93.1 1.7x Chl (NAS)

Y GAL 93.3 90.4 2.9% Chl (Adv) SFP 76.2—74.6  92.9—92.1 1.7x Chl (Heuristic)

~ FPGM 93.6 93.5 2.5% Chl (Lasso) & FPGM 76.2—75.6 92.8—92.6 3.3x Chl (Lasso)

£ BLCR 943 94.0 2.5% 1-BLK (REW) < CP N/A 92.2—90.8 2.0x Chl (Lasso)

& BLCR 943 93.6 5.5% BLK (REW) Z GBN 75.8—752 927924 22x Chl (Lasso)
BLCR 943 92.3 11.0x BLK (REW) & BLCR 775-770 93.8—933 34x 1|-BLK (REW)

e BLCR 77.5-76.7 93.8—93.1 4.5x BLK (REW)
DCP 94.5 94.7 1.4x Chl (Heuristic)

; BLCR 945 945 7 1% I-BLK (REW) BLCR 77.5-76.2 93.8—92.8 5.1x BLK (REW)

E BLCR %45 94.5 8.9 BLK (REW) = AMC N/A 71.8—70.8 1.4x Chl (Lasso)
BLCR %45 934 10.3x BLK (REW) % BLCR 70.9—70.5 904—89.8 1.6x 1-BLK (REW)
YPFPCE _ 92.9 9.8 40 Row (Lasso) = BLCR 70.9—70.0 90.4—89.7 2.0x BLK (REW)
ADMM  93.7 92.7 50.0x R+C (ADMM) Decor  73.1-73.2 N/A 39x Row (Lasso)

:j Decor 93.5 93.3 8.5x% Chl (Lasso) !j APoZ 68.4—66.2 88.4—87.6 2.0x Chl (Heuristic)

O GAL 93.9 90.8 5.6 Chl (Adv) O BLCR 745—-740 91.7-91.5 5.5x 1-BLK (REW)

g BLCR 935 93.0 50.0x 1-BLK (REW) g BLCR 745744 91.7—-91.6 3.1x BLK (REW)
BLCR 935 93.5 50.1x BLK (REW) BLCR 745—-73.8 91.7—-91.2 7.8x BLK (REW)
BLCR 935 93.0 69.7x BLK (REW)

TABLE I: BLCR pruning results on CIFAR-10 using VGG-
16, ResNet-20/56 and MobileNet-V2 (MBNT). Comparison
baselines: AMC [33], Decor [34], 2PFPCE [35], SFP [36],
TAS [10], FPGM [12], DCP [11], GAL [16], ADMM [37].

(b). In an ¢;-based group lasso or ADMM regularized model,
part of the weighs are penalized to zero or near-zero val-
ues, and then those close-to-zero values are pruned and the
rest non-zero values are fine-tuned. However, the reweighted
method considers some weights that have been penalized are
critical, thus should not be pruned.

We conclude that reweighted method separates critical
weights in a very different way, in which the importance of
weight(s) is not only based on its value, but also associated
with its position. To prove and reinforce our conclusion,
we need to show a strong accuracy improvement of the
reweighted method compared with others, which is reported
in the following section.

B. Accuracy Analysis on Overall Pruning Results

Terminology description: In Table I, Table II and Table III,
we use BLK to denote block-based pruning scheme, and REW
to represent reweighted method. Since the conventional prun-
ing scheme is performed on the whole weight matrix, we use
1-BLK to denote it. Beyond one block structured pruning, we
also divide weights into several blocks to show BLCR pruning
results. We use m x n BLK in our experiments to denote the
proposed block-based pruning scheme. We use Comp. Rate as
weight reduction criterion which can be obtained by the ratio
of the number of all weighs to the number of the non-zero

TABLE II: BLCR pruning results on ImageNet using VGG-
16 and ResNet-18/50 and MobileNet-V2 (MBNT). The arrow
(—) indicates accuracy before and after pruning. Extra com-
parison baselines: APoZ [38], CP [14], GBN [17].

Method Dense Prune Comp. Sparsity Speed(ms)
PER PER Rate Scheme (CPU/GPU)
ESE 20.40 20.70 8.0x  Irr. (Heuristic) N/A
C-LSTM  24.15 25.48 16.0x Block-circ. N/A
E-RNN 20.02 20.20 8.0x  Block-circ. N/A
BLCR 18.8 18.8 19.1x BLK (REW) 0.97/0.50
BLCR 18.8 23.2 112.9x BLK (REW) 0.35/0.25
BLCR 18.8 24.0 231.3x BLK (REW) 0.21/0.09

TABLE III: BLCR pruning and speed results on GRU with
TIMIT dataset. PER denotes phone error rate (%).

weights. We use Chl for channel pruning and R+C for row
and column pruning.

In our previous analysis, we stress that reweighted regular-
ization can effectively separate critical weights, thus achieving
better pruning solutions. In this part, we demonstrate the over-
all compression results to support our conclusion. To guarantee
fairness, we first use the conventional pruning schemes (i.e.,
prune entire rows and columns) in 1-BLK scheme to show
the proposed pruning algorithm outperforms other methods
such as Lasso, ADMM, NAS, Adversarial (Adv) and other
heuristics. Please note that row pruning is equivalent to chan-
nel pruning since each row in GEMM indicates a convolution
filter which corresponds to a channel in its adjacent layer,
and the consecutively pruned columns are also equivalent to
channel pruning.
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Fig. 4: Mobile CPU/GPU inference time (ms) on different network structures with CIFAR-10 and ImageNet images.

Table LII show our pruning results using different CNNs
with CIFAR-10 and ImageNet datasets with 1-BLK and size
4 x 16 BLK. Table III shows RNN pruning results using
GRU on TIMIT dataset with size 2 x 32 BLK. A valuable
observation in Table LII is that by using reweighted method,
the traditional pruning scheme achieves better results com-
pared to other methods, including the state-of-the-art ADMM
pruning. On CIFAR-10 and ImageNet dataset, our pruning
results consistently outperform the recent approaches in all
networks. For GRU pruning on TIMIT, we compare our
method with the SOTAs that are ESE [39], C-LSTM [40] and
E-RNN [41]. Particularly, ESE prunes weight in a irregular
scheme, and C-LSTM and E-RNN compress weight matrix
into block-circulant format and use Fast Fourier Transform
(FFT) operation to perform DNN computation. We achieve
19.1x compression for GRU without accuracy loss, and
the maximum 231.3x with 24% phone error rate (PER),
which still outperforms C-LSTM. To sum up, BLCR pruning
achieves better compression results for both CNNs and RNNS,
leading to lightweight model size and computation.

C. Performance Evaluation on Mobile Devices

Execution time results are shown in Figure 4. We test the
block-based sparse models on mobile CPU/GPU. To ensure
fairness, all frameworks are using the same sparse model,
and we also enable the fully optimized configurations of
TF-Lite, TVM and MNN (e.g., Winograd optimization is
turned on). All test models are the ones with the largest
compression rates in Table I and Table II. We omit ResNet-
50 results because they are similar to VGG-16 results. For
GRU RNN execution, since other frameworks do not support
end-to-end execution on mobile devices, we only report the
execution time of the proposed block-based sparse model with
block size 2 x 32 in Table III. We can see our approach
achieves significant acceleration on mobile devices compared
with other frameworks. On CPU, BLCR model on compiler-
aided framework achieves 1.29 — 4.18x speedup over MNN,
2.12 — 4.19x speedup over TVM, 3.93 — 11.42x speedup
over TF-Lite. On GPU, we achieves 1.53 — 4.26x speedup
over MNN, 2.38 — 7.39x speedup over TVM, 3.66 — 9.51x
speedup over TF-Lite. For image classification tasks, all of
our results on mobile GPU exceed the real-time requirements
(usually 33ms/frame). For NLP tasks, the proposed framework
also achieves real-time speech recognition.

Discussion on the comparison fairness. Our comparisons
on mobile acceleration are fair. Using ImageNet data and

VGG-16 as an example, our method achieves 7.8 x parameter
reduction and 6 — 10x CPU/GPU acceleration compared to
the dense model (both using our compiler). Under the same
accuracy, channel pruning achieves much lower compression
rate compared with our pruning scheme. For example, to
achieve 91.5% top-5 accuracy for VGG-16 on ImageNet,
channel pruning achieves at most 5.5 x compression rate while
we achieve 7.8 x compression rate. On mobile CPU/GPU, this
5.5x compression rate at most translates into 3 — 5x accel-
eration rate using existing (also the SOTAs) frameworks like
TVM or MNN. Furthermore, we have integrated full system-
level optimization to our compiler acceleration framework,
which makes our compiler outperform other frameworks when
executing dense models. For example, when DNN models are
dense, our compiler achieves 2 — 3x acceleration to TF-Lite,
1.5 —2x acceleration to TVM and 1.1 — 1.3% acceleration to
MNN.

To sum up, we can see that (i) our compiler already runs
faster on dense models, compared to the SOTAs, and (ii)
our compression + compiler combination is also better in
performance. So overall we have a very significant speedup.

V. CONCLUSION

This paper presents the block-based DNN structured
pruning framework using reweighted regularization method
(BLCR). The proposed block-based structured sparsity is
flexible and can be used in both CNN and RNN applications.
With the support of the compiler code generation and opti-
mization, our framework can achieve real-time acceleration on
mobile devices. The proposed framework also uses reweighted
method to dynamically update the regularization process,
which improves the pruning performance significantly within
considerably shorter training time. Compared to the state-of-
the-art DNN pruning methods and acceleration frameworks,
the proposed framework is general and achieves higher per-
formance.
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