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Abstract— Recovering dense depth maps from sparse depth
sensors, such as LiDAR, is a recently proposed task with many
computer vision and robotics applications. Previous works have
identified input sparsity as the key challenge of this task. To solve
the sparsity challenge, we propose a recurrent distance transform
pooling (DTP) module that aggregates multi-level nearby infor-
mation prior to the backbone neural network. The intuition of
this module is originated from the observation that most pixels
within the receptive field of the network are zero. This indicates
a deep and heavy network structure has to be used to enlarge the
receptive field aiming at capturing enough useful information as
most processed signals are uninformative zeros. Our recurrent
DTP module can fill in empty pixels with the nearest value in a
local patch and recurrently transform distance to reach farther
nearest points. The output of the proposed DTP module is a col-
lection of multi-level semi-dense depth maps from original sparse
to almost full. Processing this collection of semi-dense depth maps
alleviates the network from the input sparsity, which helps a light-
weight simplified ResNet-18 with 1M parameters achieve state-of-
the-art performance on the Karlsruhe Institute of Technology and
Toyota Technological Institute (KITTI) depth completion bench-
mark with LiDAR only. Besides the sparsity, the input LiDAR
map also contains some incorrect values due to the sensor error.
Thus, we further enhance the DTP with an error correction (EC)
module to avoid the spreading of the incorrect input values.
At last, we discuss the benefit of only using LiDAR for nighttime
driving and the potential extension of the proposed method for
sensor fusion and the indoor scenario. The code has been released
online at https://github.com/placeforyiming/DistanceTransform-
DepthCompletion.

Index Terms— Depth completion, distance transform (DT),
neural networks, sensor fusion.

I. INTRODUCTION

MAPPING LiDAR points on the image plane will create a
sparse depth map with values for only about 5% pixels.

The LiDAR-based depth completion is a task to complete this
sparse depth map to dense [1], [2]. The initial challenge of
this task is claimed as input sparsity, which creates unique
difficulty for regular convolution layers [3]. Most early-stage
works were focusing on this sparsity challenge by designing
special convolution kernels [3], [4] or structures [5]. How-
ever, it was demonstrated in [2] that directly sending sparse
input into a large encoder-decoder structure with ResNet-34
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as the backbone network can solve the problem with good
performance. This stimulates us to think—Is sparsity really a
challenge for regular convolution neural networks? Although
depth completion attracts many successive research works [6],
[7], few of them are still focusing on this sparse property.
In this article, we first investigate the initially claimed spar-
sity challenge by conducting statistical analysis. We find the
long-tail distributed sparse pattern that some empty pixels are
extremely far away from input points. This explains why spar-
sity is a challenge for early-stage small networks but seems
not a problem when the network is large enough to cover
a long distance. Inspired by the sparsity pattern, we further
design a distance transform (DT) module with error correction
(EC). The proposed module significantly improves the ability
of small networks on depth completion task and helps a
lightweight ResNet-18 with only 1M parameters achieve state-
of-the-art performance.

A. Input Sparsity and Outliers

LiDAR and camera have different sensing mechanisms to
perceive the world. This difference makes those mapped depth
values unevenly distribute on the image plane. As shown
in Fig. 1(a), some points cluster together and create large
empty regions in the orange dash box. The displacement of
sensor position will also map some points from the occluded
background on the foreground object. Those wrongly mapped
values should be identified and corrected. We give an example
of those incorrect values in the green dash box of Fig. 1(a).
Directly filling empty pixels with those values will spread the
error to the nearby region.

B. Statistical Analysis

To understand more about the sparsity and outliers, we con-
duct statistical analysis on the Karlsruhe Institute of Tech-
nology and Toyota Technological Institute (KITTI) validation
set [8] by analyzing the nearest value of each empty pixel.
We first calculate the cumulative percentage of the city-block
distance between each empty pixel and its nearest value on the
image plane. As shown in Fig. 1(b), the green line depicts the
long-tail effect that some empty pixels have a large distance
to even the nearest value. We further use the nearest value
to predict each empty pixel and calculate the average RMSE
with the ground truth shown as the blue bar in Fig. 1(b).
In general, the nearest value prediction will have a smaller
error if the city-block or l1 distance is smaller. The exception
happens when the city-block distance is close to zero. This
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Fig. 1. (a) Pattern of input sparsity and outliers. The sparse pattern is unevenly distributed on the image plane. Simply using the nearest value to fill in
the empty pixels will spread the error in the nearby region as shown in the green dash box. (b) Statistical analysis of the KITTI validation set. The Green
line is the accumulative percentage of empty pixels which have smaller l1 distances to their nearest point. The Blue bar is the average root mean square
error (RMSE) error by filling in the empty pixel with the nearest value. Due to the sensor error on the KITTI dataset, some points of the sparse input have
large errors compared with ground truth. To show this as the Orange bar, we replace those input values with the ground truth, then calculate the average error
of the nearest filling.

exception is because of the incorrect depth values in the sparse
input. Therefore, we replace the sparse input’s value with the
corresponding ground truth and show the statistical result again
as the orange bar. The trend is clear that the closer nearest
value has a smaller RMSE error as the initial guess of the
empty pixel.

C. Observations and Motivation

The statistical analysis shows several properties of sparsity.
First, some empty pixels are far away from the useful infor-
mation as they have a large distance to even the nearest input
value. Second, if the nearest value is close, it can already
provide a good initial guess for the empty pixel. Third, in some
cases, the sparse input itself is erroneous. The first property
explains why those early-stage models have the sparsity chal-
lenge but a simple encoder–decoder structure can solve the
problem once the backbone network is large enough [2]–[4].
This is because predicting depth values for those pixels far
away from other input values needs many convolution layers
with pooling to reach the far away from useful information.
The second property suggests a straightforward solution to
this sparsity challenge by filling in the empty pixel with close
nearest value. The third one indicates the extra EC needs to
be considered for this real-world challenge.
All those three observations build our motivation. We pro-

pose a distance transform pooling (DTP) module that recur-
rently transforms the distance to locate the nearest value within
various distance masks. To avoid the spreading of the incorrect
input value, we further design an EC module ahead of the DTP
module. The DT with EC can generate multi-level sparsity
depth maps as the input of the network, thus enlarging the
receptive field of the network to ease the sparsity challenge.
The multi-scale input also implicitly encodes the distance
information that informs the network how the nearest initial
can be trusted. One can refer to our previous publication [9]
for more discussions from the geometric perspective.

D. Proposed Approach and Contributions

Based on the discussion above, we propose our final solution
for the task of depth completion or sparse-to-dense. It consists
of three parts: an EC module to correct the sensor error, a DTP

module to utilize the nearest value, and a final refinement net-
work to smooth the dense depth map. Specifically, we define
as follow.

1) We propose a specific DTP operator for LiDAR data
that can be implemented on GPU effectively and
efficiently. We convert each LiDAR scan into a binary
image and apply (truncated) city-block distance to
locate the nearest LiDAR point of each pixel in the
depth image. Recurrently applying this operator will
get depth maps with various density levels. We process
each depth map with a regular convolution layer and
concatenate outputs together. The backbone network
is expected to help each pixel learn the true depth
value from the nearest value within different distance
thresholds. After this operator, the original sparse input
will be replaced with multi-level semi-dense depth
maps, thus there is no more sparsity challenge.

2) We propose an EC module before the DTP module
to correct outlier values in LiDAR data while preserv-
ing its sparsity. The EC module consists of a small
convolutional network working on the modification of
the nonempty pixels from LiDAR data. The input error
is generated by mapping the real point on the wrong sur-
face due to the displacement of two sensors. Therefore,
incorrect values stay with other normal values to create a
denser region. This explains why a small network is suf-
ficient to serve as an EC module as it only needs to per-
ceive a denser local region. The training of parameters
in the EC module relies on our DTP to pass the gradient.

3) State-of-the-art performance with a lightweight
backbone. We simplify a standard ResNet-18 by
reducing the number of filters in each layer to 64 so
that the number of network parameters is ∼1M, leading
to fast inference speed (∼0.04 s per sample in our
experiments). We achieve state-of-the-art performance
by using LiDAR only with this backbone. Since our
DTP overcomes the sparsity challenge, we demonstrate
the resilience of the model performance to smaller
networks. We further discuss the benefit of only using
LiDAR sensor on nighttime driving, and also show
simply adding the RGB branch in our proposed pipeline
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can achieve good performance for sensor fusion and
indoor scenario. All those benefits indicate our proposed
DT with EC is a practical solution to depth completion
that can work for various demands.

II. RELATED WORK

A. Depth Completion With Classical Methods

Before the wide adoption of outdoor LiDAR for autonomous
driving, depth completion was researched to fill up the depth
map generated from the RGB-D camera. Some classical meth-
ods were proposed to solve the image inpainting or depth qual-
ity improvement problem for RGB-D depth map [10]–[14].
The ratio of missing data from RGB-D depth map is roughly
around 10%–30%, which is different from LiDAR points’
sparsity. Besides completing the generated depth map from
the RGB-D camera, some researchers assumed only a few
points have been matched by the stereo camera and complete
this sparse input to dense by using optimization methods
like compressive sensing [15]–[17]. The natural difference
between LiDAR sensors and those RGB-D sensors urges
researchers to design new outdoor LiDAR depth completion
methods. Recently, Ku et al. [18] proposed a fast method for
LiDAR-based depth completion with simple image processing
operators, including dilation, Gaussian blur, etc. This simple
method even obtained comparable result with some learning-
based methods.

B. Depth Completion With Self-Supervised Learning

Self-supervised learning can train the network without
labels. Self-supervised depth prediction relies on the image
warping and photometric loss to penalize the error [19], [20].
Ma et al. [2] extended the self-supervised depth prediction
framework to depth completion by feeding the sparse points
into the network and treating them as the ground truth for cor-
responding pixels. Moreover, Yang et al. [21] integrated their
conditional prior network to the self-supervised depth comple-
tion pipeline and got a better performance. Wong et al. [22]
further considered pose consistency and geometric compati-
bility for performance improvement. Yao et al. [23] proposed
a binary anisotropic diffusion tensor to eliminate smooth-
ness constraint at intended positions and directions. Those
self-supervised methods do not need labels, which allows them
to update weights online. This convenience is useful for many
advanced situations like federated learning and user privacy
protection.

C. Depth Completion With Supervised Learning for Sparse
LiDAR Only

The recent success of deep neural networks on computer
vision tasks has inspired researchers to solve the depth com-
pletion task using deep learning. Uhrig et al. [3] claimed
sparsity as the main challenge for this task. They also set
up the depth completion task on KITTI, which attracts many
successive studies. Chodosh et al. [24] provided a solution
for depth completion by combining compressed sensing and
deep learning using the alternating direction neural net-
work (ADNN) framework. This method is inspired by how

people handle sparse signals. Eldesokey et al. [4] designed a
normalized convolution layer that only consists of the depth
map and confidence map as two channels. This method is
also extendable with RGB images as extra guidance [25].
Huang et al. [5] proposed a model consisting of both the
specially designed structure and the specially designed ker-
nel that can slightly outperform a standard encoder-decoder
structure [2] where the raw sparse depth images are fed
into a large 34-layer network with a residual module and
multiple transpose convolution layers. This work demonstrates
that regular 2-D convolution can process the sparse LiDAR
input if the network is deep enough. They also provided a
self-supervised solution with photo-consistency loss guided by
images. To overcome the computational issues in large net-
works, Eldesokey et al. [26] proposed a specific lightweight
network. The idea of co-learning with image reconstruction
has also be explored [27].

D. Depth Completion With Supervised Learning for Sensor
Fusion

The simplest way to do sensor fusion is concatenating
RGB images with LiDAR [2], [28]. More advanced solutions
are also proposed recently in different directions. From the
view of geometry, several papers considered surface normal
or the 3-D points into the model design [6], [29], [30].
One paper [21] modeled the depth completion from the view
of probability. By considering the purpose of object detec-
tion, researchers [31] focused on the depth edge’s clearance.
Inspired by spatial propagation, some papers achieved good
performance by designing some post-processing modules [7],
[32]. The idea of graph network is also considered by one
recent paper [33].

E. In Summary of the Depth Completion Task

From the view of input modality and if the label is available,
LiDAR depth completion solution can be summarized as
the non-learning solution, self-supervised learning solution,
supervised learning for LiDAR only and supervised learning
for sensor fusion. Each kind of solution has its own benefits
and limitations. In this article, we mainly focus on supervised
depth completion for LiDAR only. Since solving the sparsity
challenge is our primary goal, we believe working on the
single modality is more persuasive as those sensor fusion
models with RGB often need complicated network structures
and specific fusion strategies, which will distract the effect
of sparsity. As a LiDAR only solution, our model also has
the unique benefit that can work without worrying about the
lighting condition, shown as a nighttime driving example.

F. DT Operator and Our Implementations

DT operator is one of the most classic computer vision
and machine learning techniques [34]. The research around
this useful operator keeps alive nowadays [35], [36]. In many
recent application systems, the DT plays an important role.
For example, it has been used to localize spinal cord from
the MRI data [37] toward fully automated clinical utilization.
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It also has been tried to solve the association problem for dense
semantic information [38] in map-based robot localization. Not
limited to Euclidean distance, the DT also can work with other
distance definitions. The MBD (minimum barrier distance) is
a commonly used distance definition on RGB pixels [39]. The
MBD transform is a crucial part of some salient object detec-
tion models [40], [41]. Most DT algorithms are implemented
on CPU, and some recent works start to explore how to utilize
GPU to make the DT run in parallel [36], [42]. In this article,
instead of focusing on low-level CUDA programming, we are
using modern deep learning frameworks, such as Tensorflow
and Pytorch, to implement DT. Therefore, our design can
easily be integrated with deep learning models to allow both
forward and backward propagation.

III. OUR APPROACH

A. Problem Setup

Fundamentally, LiDAR-based depth completion is a non-
linear regression problem. Let {(xi, yi )} ∈ X × Y be the
training set where xi ,∀i denotes a sparse LiDAR image and
yi ,∀i denotes its semi-dense ground-truth depth image. Then
the depth completion problem can be formulated as

min
ψ∈�

∑
i

�
(
yi , ψ(xi ) � 1yi

)
(1)

where ψ:X → Y denotes the depth completion mapping
function from the feasible space � , �:Y × Y → R denotes a
loss function such as the least-square, 1yi denotes the binary
image of yi consisting 1 for non-zeros in yi and 0 otherwise,
and � denotes the entry-wise multiplication.

B. Error Correction (EC)

We treat the EC as a function x′
i = φ(xi )�1xi , where φ(·) is

modeled using regular convolutional neural networks (CNNs).
The entry-wise multiplication with a binary mask 1xi helps
x′
i share the same sparsity as xi . In this article, we propose

modeling φ(·) using four regular convolutional layers with
kernel sizes 7 × 7, 5 × 5, 3 × 3, 3 × 3 and channel numbers
16, 16, 16, 1. We design such a lightweight network based on
the error analysis of recent papers [6]. The input sensor error of
LiDAR is generated by mapping some occluded points from
the background to the foreground. An example is shown in
Fig. 1(a) that mapping the point cloud on the image plane will
map some points from the background wall on the foreground
tree. This creates a denser region with a mixture of incorrect
values and correct values. The displacement of LiDAR and
camera creates this error mode that suggests the EC module
should focus on identifying outliers from the clue in the local
region, thus inspires us to approximate φ(·) with a small
network. We show our EC module in Fig. 2. A mask is used
to help the small network only focus on existing sparse values.
1) Training of the EC Module: Note, the training of this

EC module does not need any extra settings. The next DTP
operator works like other pooling operators, such as max
pooling, that allow the pass of both the forward and backward
propagation. Parameters in this EC module will be updated
with other parameters along the gradient descent of the final
loss function.

Fig. 2. Proposed error correction (EC) module.

C. Distance Transform Pooling (DTP)

1) Distance Transform (DT): DT [34] is an operator usually
applied to binary images to generate distance maps, which
are grayscale images of the same size of the original images
consisting of the distance as well as the offset to the closest
available signal as each pixel value. In deep learning, DT is
usually used as an off-shelf data pre-processing step. For
instance, in [43] DT with Euclidean distance was applied to
segmentation label masks whose outputs were directly used in
training deep models for better regularization. In this article,
we propose integrating DT with the training of deep models
to locate the nearest neighbors for raw depth estimation.
The city-block distance is used to keep consistency with
our statistical analysis. The implementation also supports the
approximation of Euclidean distance, we show a performance
comparison in ablation study. However, compared with the
Euclidean distance, the city-block distance has the following
nice properties:
Proposition 1 (Recurrent Formula for City-Block Dis-

tance): Given arbitrary pair of pixel locations x, y ∈ I
from an image where I denotes the collection of all pixel
locations, their city-block distance, d�1(x, y), can be computed
recursively using a DT kernel, H, as follows:

d�1(x, y) =
{ ‖x − y‖1, x ∈ Hy

min
z∈I

{d�1(x, z) + d�1(z, y)}, otherwise
(2)

where x ∈ Hy indicates that the pixel at x falls into the kernel
centered at y.
Proposition 2 (Receptive Field With Recurrent Formula):

Given the size of the city-block DT kernel as k × k, we can
exactly compute the city-block DT outputs with kernel size
(l(k − 1) + 1) × (l(k − 1) + 1) with l repeats.
Therefore, a city-block DT operator can accurately compute

the outputs in a recurrent way. As one example shown in
Fig. 3, with a 3 × 3 kernel as [2 1 2; 1 0 1; 2 1 2], we can
repeatedly use a small DT kernel to compute the outputs of
larger DT kernels, thanks to the nice recursive properties.
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Fig. 3. Example of city-block distance transform. (Top) 3 × 3 truncated
city-block kernel. (Middle) depth maps with LiDAR input. (Bottom) distance
maps. Equivalently the sequential repeats output the results with kernels 3× 3,
5 × 5, and 7 × 7 accordingly.

Fig. 4. Example of distance transform pooling on the sparse depth input.
There is a 7 × 7 kernel working for the empty pixel marked with a red spot.

2) DTP: With those nice properties, we further illustrate
how to utilize DT to locate the nearest value for each empty
pixel as a pooling operator, named DTP. In DTP Algorithm 1,
p denotes the pixel location in the patch, Ui j(p), Vi j(p)
denote the depth value and distance mask value at p in the
patches, respectively.

Algorithm 1 DTP: Distance Transform Pooling Operator
Input : LiDAR image X, DT kernel H, kernel size k
Output: Depth map Z

Z ← X;
M ← a binary mask to indicate if X > 0;
foreach empty pixel at (i, j) in Z do

Crop the patches Ui j and Vi j from M and Z, respectively, with the same
size as H centered at location (i, j);
Ui j ← (k − H) � Ui j ; // �: Entry-wise product
t ← 0;
foreach index p in matrix Ui j do

if maxp Ui j (p) == Ui j (p) then
Zi j ← Zi j + Vi j (p), t ← t + 1;

end
end
Zi j ← Zi j /t;

end
return Z

One example of how this operator work on sparse depth
input is shown in Fig. 4. For the empty pixel marked with red
color, the 7 × 7 kernel will locate the nearest non-zero value
within it and put the value to the center empty pixel. The same
as the other pooling operators, the DTP is also differentiable

Fig. 5. Structure of our distance transform pooling (DTP) module. The DTP
module takes in the output of the EC and generates a tensor to the final
refinement network.

which makes the whole pipeline end-to-end trainable. Note
that, the index of non-zero minimum value is not a function
supported by all the modern deep learning frameworks, so we
use an inverse kernel H ′ = k − H equivalently to find the
maximum index on distance mask in Algorithm 1, where
the k is the kernel size and the H is the original distance
kernel. This helps the pooling algorithm only rely on basic
mathematical calculations supported by all the modern deep
learning frameworks.
3) DTP Module: The DTP recurrently finds the nearest

value within a distance mask to generate multi-level semi-
dense depth maps. We propose to process each semi-dense
depth map with a convolution layer and concatenate the output
together. From the statistical analysis, we know the error of the
nearest initial guess is proportional to the distance. Therefore,
individually processing all the middle-level depth maps can
inform the distance information to the network. We visualize
the structure of our DTP module in Fig. 5. This module keeps
the original sparse input as well as eases the sparsity challenge.

D. Network Architecture

We illustrate our framework in Fig. 6, where the backbone
network can be any existing convolutional network structure.
To demonstrate our capability of completing depth using

lightweight networks, we use a simplified ResNet-18 encoder-
decoder structure whose number of filters in each layer is
reduced to 64, leading to about 1M parameters. This light-
weight backbone structure, shown in Fig. 7, gives us a favor
to help all the experiments in this article can be conducted on a
single RTX 2080ti GPU with 11 GB memory. Note that many
papers use an encoder-decoder ResNet-34 as the backbone in
the field of depth completion [2], [7], [32]. Compared with it,
the only difference in our structure is the fewer layers and fil-
ters. We use the mean square error (MSE) loss during training.
As a neural network model, many factors will affect the test

performance. In order to better illustrate our proposed DTP
module does solve the sparsity challenge, we use the most
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Fig. 6. Model pipeline.

common MSE loss although other loss functions may achieve
better performance [26], [44]. The backbone network is also
the commonly used ResNet structure. In the ablation study,
we further reduce the number of layers to investigate the model
resilience to a smaller structure with a limited receptive field.
The model with our DTP module is much more robust than
the baseline.

IV. EXPERIMENTS

Datasets:We conduct our experiments on KITTI [8] dataset.
KITTI is a well-known public dataset for autonomous driving,
as a benchmark for depth completion [3]. This benchmark
contains a collection of sparse LiDAR scans as well as
corresponding ground-truth semi-dense depth maps. It consists
of 85898 training samples, 1000 validation samples, and 1000
test samples. The test ground truth is unavailable, requiring
researchers to submit the predicted test results to the server to
get the final metric scores.
Training and Evaluation: Without heavy fine-tuning, in all

the experiments we train our method using the MSE loss for 1.
We utilize Adam as our optimizer with a learning rate 0.0001
as initial, decreasing by half after every 2 epochs. For the
experiments on KITTI using LiDAR only, we train 8 epochs,
and for the remaining experiments, we train 20 epochs in total.
We set the batch size to 2 on KITTI and 4 on NYU-Depth-v2.
All the experiments are conducted on a single NVIDIA RTX
2080Ti with 11 GB memory.
Following [5], [25], we report our results in terms of RMSE,

mean absolute error (MAE), RMSE of the inverse depth
(iRMSE), and MAE of the inverse depth (iMAE). By default,
the unit measurement for each metric is mm, mm, 1/km, 1/km,
respectively.
Hyperparameters in DTP Operator: There are two hyper-

parameters, the DT kernel size k and the number of repeats l
which determines the range of truncated city-block distance.
According to the statistical analysis in Fig. 1(b), above 90%
pixels have the nearest value within city-block distance 9
on the KITTI validation set. Thus we choose k = 7 and
l = 3, which can cover a minimum distance as 9. Here the
hyperparameter choosing is heuristic, a small kernel size needs
more repeats with more parameters, and a large kernel size will
lose distance details. Those two hyperparameters are able to
be tuned case-by-case. When it comes to other sensor settings,
like sparser LiDAR or camera with other resolutions, those
two hyperparameters can be changed to meet the new sparsity

TABLE I

STATE-OF-THE-ART PERFORMANCE COMPARISON ON KITTI
TEST DATASET USING LIDAR ONLY

TABLE II

EFFECTIVENESS OF THE ERROR CORRECTION MODULE ON KITTI
VALIDATION SET WITH LIDAR ONLY

scenario. In this article, we demonstrate this heuristic chosen
parameter set can already achieve state-of-the-art performance
on KITTI’s test leaderboard with LiDAR only.

A. Performance Comparison on KITTI

In Table I, we compare our model performance with all
the other LiDAR only methods on KITTI’s leaderboard. Our
method achieves the best MAE with a small number of
parameters. There are some methods of using extra informa-
tion during training. For instance, Glob-guide [45] needs a
pre-trained model with semantic segmentation label, Spade-
sD [44] uses synthetic data, and IR_L2 [27] requires the
auxiliary information from RGB. If we exclude those three
methods, our solution also has the best RMSE. The other two
indicators iRMSE and iMAE of our method are still close
to the state-of-the-art. Since those four indicators evaluate
different aspects of the method (iRMSE and iMAE are more
sensitive to the close depth), we see that the performance of
our method is systematically better than the others without
extra information during training.
In particular, pNCNN [26] is a method with lightweight

networks for depth completion. To demonstrate the robustness
of our method to lightweight networks as well, we reduce the
number of filters in each layer of ResNet-18 from 64 to 32.
This helps us decrease the total number of parameters to 0.3M,
leading to inferior performance that still has a better RMSE
than pNCNN.

B. Ablation Study

1) Effectiveness of EC Module: To verify the effectiveness
of the EC, we conduct experiments on KITTI using LiDAR
only. Table II lists our results, where we can see the improve-
ment. We further visualize the corrected values in Fig. 8.
We use a mask to indicate those input values which have
been corrected larger than 3 meters. It is clear to see all those

Authorized licensed use limited to: Worcester Polytechnic Institute. Downloaded on September 27,2022 at 21:15:55 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHAO et al.: DTP NEURAL NETWORK FOR LiDAR DEPTH COMPLETION 7

Fig. 7. Structure of the backbone network. ◦ represents simple concatenation. The ResNet block is the same as the block used in the standard ResNet-18
with fewer channels.

Fig. 8. Outliers with values which have been corrected larger than 3 m by
our error correction module. Almost all those points are coming from object
boundaries.

identified outliers are distributed on the boundary of objects.
This consolidates the error source that background points are
mapped on the foreground object due to the different views of
LiDAR and camera.
Besides visualization, we also specifically evaluate the

sparse input after correction with some numerical indicators.
Here the correction aims to reduce those large erroneous values
instead of giving accurate predictions, so we choose δi as the
indicator which reflects this goal better. δi is the percentage of
predicted pixels where the relative error is within a threshold.
Specifically

δi =
card

({
ŷ : max

{
ŷi
yi
, yi
ŷi

}
< 1.25i

})
card({yi})

where yi and ŷi are respectively the ground truth and the
prediction, and card is the cardinality of a set. A higher δi
indicates better prediction. This metric is also used in many
related papers, such as [1], [46]. RMSE(mm) is also used
to keep consistency with the previous evaluation. Note, the
evaluation in Table III only considers those pixels with values
in both the input and the ground truth. We can see our EC
module largely improve the accuracy of the sparse input. This
helps the DTP module to avoid the spreading of few errors
from the input.
2) Effectiveness of DTP Module and Robust to Smaller

Networks: As we discussed, input sparsity is a particular
challenge when the network is small. Here we demonstrate
our DTP module will help the small network keep resilient to
the sparse input.

TABLE III

COMPARISON THE ERROR OF SPARSE INPUT WITH/WITHOUT OUR
ERROR CORRECTION MODULE

Fig. 9. Smaller structures with fewer ResNet blocks.

TABLE IV

COMPARISON OF DIFFERENT DT KERNEL ON KITTI VALIDATION

SET WITH LIDAR ONLY

The backbone network showed in Fig. 7 has four repeating
residual blocks which are the same as the block used in
ResNet-18. To further explore the model performance with
a smaller network, we reduce the number of residual blocks
displayed in Fig. 9. Then, we have four network structures with
different repeating numbers from one to four. The comparison
is shown in Fig. 10, where we can see the smaller the network
the larger improvement our method can achieve.
3) Various Distance Kernels: To cope with the statistical

analysis and keep the exact same distance with recurrent
DT, we use city-block distance in this article. Our distance
kernel also supports the recurrent approximation of other
distances, such as Euclidean distance. We list the performance
comparison here in Table IV. The performance difference
between those two distance kernels is small.
4) Comparison With Direct Nearest Filling: Instead of our

DTP, directly filling in all the empty pixels with the nearest
value before the network is a straightforward way to utilize the
nearest neighbor. This idea has been explored by some recent
papers with the corresponding OpenCV operator [47], [48].
Compared with this straightforward idea, our DTP has two
advantages: 1) the recurrent pooling with kernels can serve
as part of the network structure to allow the EC module end-
to-end trainable and 2) as unveiled by our statistical analysis,
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Fig. 10. Performance comparison with different number of residual blocks
on the KITTI validation dataset.

TABLE V

COMPARISON OF OUR PROPOSEDMODULE WITH DIRECT NEAREST FILL-
ING WITH A REFINEMENT NETWORK USED IN OTHER PAPERS

Fig. 11. Examples of model performance on nighttime samples from Waymo
dataset with weights trained on KITTI.

filling in all the pixels with the nearest value will involve
significantly different initial guesses for those empty points
that have a large distance to input values. Here, we further
compare the performance of our DTP module with the baseline
proposed by two recent papers [47], [48] in Table V.

V. DISCUSSION

A. Robust to Lighting Condition

LiDAR sensor provides accurate measurement without
being affected by lighting conditions. This feature compen-
sates for the flaw of the camera that makes LiDAR become an
almost inevitable choice in the setting of modern autonomous
cars. Since the designed DTP module is working on LiDAR
only, it keeps the ability to work on various lighting conditions.
Unfortunately, the current KITTI benchmark does not sup-

port the quantitative evaluation of this feature. To demonstrate
this ability, we quantitatively visualize some nighttime driving
samples in Fig. 11. Those samples are picked from the Waymo
dataset [49] with the model trained on KITTI. We believe
the consistency of generating depth maps in a whole day is
important for fully autonomous driving.

B. Extension With RGB Image

Although our method is built by analyzing properties on
the sparse depth map, we show our module is also able to be
easily fused into the pipeline with RGB images in Fig. 12.
The output tensor from our DTP module is concatenated with
different stages of the network for better fusion. The backbone

Fig. 12. Network structure to fuse the RGB image.

TABLE VI

PERFORMANCE COMPARISONWITH THREE RECENT METHODS THAT CAN
WORK ON BOTH LIDAR ONLY AND SENSOR FUSION

Fig. 13. Trade-off comparison between our method and other sensor fusion
solutions with LiDAR and RGB images. Here, we consider the number
of parameters as the indicator for model complexity and RMSE as model
performance.

structure is still the lightweight ResNet-18 with 1M parameters
in Fig. 7.
The same as reported in other papers [2], [5], [25], adding

RGB information will improve the performance. We compare
performance with these three recent methods which can work
on both LiDAR only and LiDAR plus RGB in Table VI.
To further compare with all sensor fusion solutions on

KITTI, we show our fusion performance with others by
measuring the RMSE error and the number of parameters
in Fig. 13. Two methods have better RMSE with a closer
number of parameters. FuseNet [30] needs KD-tree before
each continuous convolution layer, leading to slow inference
time. MSG-CHN [50] explores how to use different
combinations of hourglass networks to construct a better
encoder-decoder structure, while we just use a standard
ResNet-18 structure. Note that there are some potential
ways to improve the performance, such as better fusion
strategies [25], larger or more complicated networks [6],
[50], other loss functions [45], etc. As the primary goal of
this article is proposing DTP to solve the LiDAR sparsity
challenge, we simply keep all those settings standard.

C. Performance on Indoor Scenario

Most LiDAR sensors are used for outdoor scenarios due
to the high energy and long-range. Compared with outdoor,
indoor scenarios are usually choosing cheaper and short-range
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TABLE VII

RMSE(M) AND REL COMPARISON ON NYU-DEPTH-V2
DATASET WITH 200 SAMPLE POINTS

depth sensors such as stereo cameras or RGBD cameras.
Some recent papers [5], [46], [51] assume there are sparse
depth maps already known, maybe from the matched features
on epipolar line or solid-state LiDAR, then conduct a depth
completion model to fill the sparse depth map to dense for
the indoor scenario. Here we show the model proposed in
this article also works well for the indoor scenario with
NYU-Depth-v2 dataset [14].
Following Mal and Karaman [52] and other prior works [5],

[46], [51], we resize each original image to 320 × 240 and
crop the boundary region with inaccurate labels, leading to a
resolution of 304 × 228. Then, we sample 200 points as the
sparse depth input. Note, some papers sample 500 points to
test the sensor fusion model with RGB images [6], [29], [32],
we only sample 200 points because there are models work on
both sparse depth only and sensor fusion with this setting.
To keep consistency with previous settings, we still use the

7 × 7 DT kernel with three repeats. Though this may lead to
suboptimal performance, we find the result is good enough to
demonstrate the effectiveness of our method on this dataset.
Depth completion on NYU-Depth-v2 is an artificial task that
the sparse depth input is sampled from the ground truth, so the
outlier correction module is disabled as there is no input error.
We list our comparison results with 200 points in Table VII,
where REL refers to mean absolute relative error [52].

VI. CONCLUSION

In this article, we address the problem of LiDAR depth
completion from the perspective of sparsity. By taking the
data knowledge into the network design, we propose a DTP
module that recurrently explores nearest neighbors within
different distance thresholds. A trainable EC module is further
proposed to work with the DTP to avoid the spread of incorrect
values. The proposed approach demonstrates state-of-the-art
performance on KITTI and it also brings some useful features,
such as the robustness to smaller networks, the easy solution
to removing blurred boundary points, and the ability to be
extended with RGB. All those illustrate the practicability of
our proposed depth completion solution.
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