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ABSTRACT Deep learning provides a powerful new approach to many computer vision tasks. Height
prediction from aerial images is one of those tasks which benefited greatly from the deployment of deep
learning, thus replacing traditional multi-view geometry techniques. This manuscript proposes a two-stage
approach to solve this task, where the first stage is a multi-task neural network whose main branch is used to
predict the height map resulting from a single RGB aerial input image, while being augmented with semantic
and geometric information from two additional branches. The second stage is a refinement step, where a
denoising autoencoder is used to correct some errors in the first stage prediction results, producing a more
accurate height map. Experiments on two publicly available datasets show that the proposed method is able
to outperform state-of-the-art computer vision based and deep learning-based height prediction methods.
Code is publicly available at: https://github.com/melhousni/DSMNet.

INDEX TERMS UAV, height, DSM, CNN, autoencoders, multi-task.

I. INTRODUCTION
Aerial imagery analysis was known as a very tedious task
owing to the low quality of the acquired images and the lack
of some appropriate automated process that could extract
the relevant information from the data. Fortunately, recent
advances in computer vision have made it possible to directly
extract predefined patterns from the images, by applying
some carefully designed algorithms. Moreover, deep learning
brings in a new revolution to the field of aerial imagery
analysis with more intelligence and better accuracy. As a
result, multiple deep learning challenges related to aerial
imagery processing, such as semantic segmentation [1], [2]
and object detection [3], [4], have been routinely featured
each year by the geoscience and remote sensing (GRSS)
community [5]–[7].

This work focuses on the height prediction task that is
to predict and reconstruct the corresponding height map,
or in other words, predict the height value for every pixel
in the input aerial image. Predicting such height maps can
be very useful in the subsequent task of 3D reconstruction.
By obtaining the accurate height of each building or structure
appearing in the input images, 3D models can be generated
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FIGURE 1. The outputs of our multi-task network. From left to right: The
input RGB image, the output semantic labels, surface normals and height
predictions.

as an accurate representation of the surrounding world. These
3D models are crucial for GPS-denied navigation, or other
fields such as urban planning or telecommunications. Theses
reconstructions are traditionally done using Structure from
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Motion (SfM) [8], [9] technique with stereo camera rigs,
which can be very sensible to noise and changes in lighting
condition.

For the task of height prediction from aerial images,
we propose a multi-task learning framework where additional
branches are introduced to improve height prediction accu-
racy. Previous works have showed that multi-task learning
helps improving the accuracy of height prediction networks
by including semantic labels [10]. We propose to add a third
branch to the multi-task network which will be devoted to
predicting the surface normals, as shown on Fig. 1. In this
configuration, the main height prediction branch will have
access to both semantic and geometric guidance, improving
the results of the height prediction network.

However, since the input is only an aerial image, our
predictions sometimes can be noisy due to artefacts such as
shadows or unexpected changes in color. Therefore, we intro-
duce a refinement network which is a denoising autoencoder
taking the outputs from the prediction network, removing the
noise present in the prediction and producing a higher quality
andmore accurate height map. By combining these two steps,
we are able to produce results that surpass the current state-
of-the-art on multiple datasets. We are also able to produce
reasonable semantic labels and surface normal predictions
without additional optimizations.

In summary, our contributions in this work are the
following:

• We propose a triple-branch multi-task learning network,
including semantic label, surface normal and height pre-
diction.

• We introduce a denoising autoencoder as a refinement
step for the final height prediction results.

• We achieve state-of-the-art performance on two publicly
available datasets, and an extensive ablation study shows
the importance of each step in the 3D reconstruction
pipeline.

• We show through two applications how our height pre-
diction pipeline can be used to reconstruct dense 3D
point clouds with semantic labels.

II. RELATED WORK
A. MULTI-TASK LEARNING
This learning framework aims at optimizing a single neu-
ral network that can predict multiple related outputs, each
represented by a task-specific loss function [11]. Lately, this
approach has become increasingly popular, especially in the
area of autonomous driving cars, where multiple outputs
(such as object detection, semantic segmentation, motion
classification) are derived simultaneously from the input of
camera images [12], [13].

B. HEIGHT PREDICTION FROM AERIAL IMAGES
This task has received a considerable amount of attention by
the deep learning and remote sensing communities, especially
after the use of UAVs to collect aerial images has become

widely accessible. The goal here is to generate a height value
for each pixel in an input aerial image. In works such as
[14]–[16], deep learning methods such as residual networks,
skip connections and generative adversarial networks are
leveraged in order to predict the expected height maps.

Other works such as [10], [17] proposed to reformulate
the task as a multi-learning problem, by introducing neural
networks capable of predicting both the height maps and
the semantic labels simultaneously. These works showed
that both outputs can benefit from each other, during the
simultaneous optimization process of the multi-task network.
We choose to extend that formulation by including a third
branch in our network tasked for predicting surface normals,
which was inspired by previous works [18], [19] in the depth
prediction task for autonomous driving cars. Surface normals
are also known to be extremely useful during 3D reconstruc-
tion tasks and are required for surface and mesh reconstruc-
tion algorithms such as the Poisson surface reconstruction
algorithm [20] or the Ball pivoting algorithm [21].

C. DENOISING AUTOENCODERS
Removing noise from images is a traditional task in com-
puter vision. Over the years, many techniques were pre-
sented in the literature which can be broadly divided into
two categories [22]: spatial filtering methods and variational
denoising methods. The spatial filtering methods can either
be linear, such as mean filtering [23] or Wiener filtering
[24], [25], or nonlinear such as median filtering [26] or bilat-
eral filtering [27]. These filtering methods work reasonably
well but are limited. If the noise level becomes too high,
these methods tend to lead to over-smoothing of the edges
that are present in the image. On the other hand, in varia-
tional denoising methods, an energy function is defined and
minimized to remove the noise, based on image priors or
the noise-free images. Some popular variational denoising
methods include total variation regularization [28], non-local
regularization [29] and low-rank minimization [30].

Lately, a new trend based on deep learning autoencoders
has shown great potential on image denoising. Autoencoder
is a class of popular neural networks that has shown to be
very powerful across multiple tasks such as segmentation
of medical imagery [31], decoding the semantic meaning of
words [32] or solving facial recognition challenges [33]. For
our task, the most useful type of autoencoders available in
the literature is the denoising autoencoder. As shown in [34],
autoencoders can be trained to remove noise from an arbitrary
input signal such as an image. We propose to use denoising
autoencoder to refine the height predictions from the multi-
task learning network.

III. METHOD
A. PROBLEM SETUP
Our main objective is to predict an accurate height map using
only a monocular aerial image as input. We attempt to do
so by constructing a two-stage pipeline, where two different
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networks are cascaded in serial. The first stage of our pipeline
is a multi-task learning network, where the main branch is
tasked with predicting preliminary height images, aided by
semantic and surface normal information that was extracted
by two additional branches of the neural network. The sec-
ond stage can be seen as a denoising autoencoder: All the
predictions from the multi-task network are concatenated and
fed into the autoencoder, in order to deal with noisy areas
remaining in the height results from the first stage. This
effectively produces sharper images that are closer to the
ground truth. An overview of the full pipeline can be seen
in Fig. 3.

Fundamentally, the height prediction task is a non-linear
regression problem that can be formulated as:

min
ψ∈9

∑
i

`(yi, ψ(xi)) (1)

where ψ : X → Y denotes the height prediction mapping
function from the feasible space 9, ` : Y × Y → R denotes
a loss function such as the least-square, xi is the input aerial
image and yi is the output height map.

Predicting height only using a single branch neural net-
work is possible. However, previous works such as [10], [17]
showed that including additional branches to predict other
related information such as segmentation labels can be ben-
eficial for both tasks. In our case, in addition to predicting
the height maps, we also predict semantic labels and surface
normals, which provide semantic and geometric guidance by
augmenting the main height prediction branch with informa-
tion from the semantics and surface normal branches. More
details can be found in the height prediction section below.
Hence, our ψ function can now be defined as:

ψ(xi) = {Ph,Ps,Pn} (2)

where Ph, Ps and Pn are the height, semantic and surface nor-
mal predictions respectively, that are trying to approximate
yi = {P∗h,P

∗
s ,P
∗
n}where P

∗
h,P
∗
s and P

∗
n are the height, seman-

tic and surface normal ground truth respectively. Finding a
good approximation of the ψ function can be seen as the first
stage in our proposed method.

Regression problems such as the one we are facing are
difficult to solve due to the high number of values expected
to be predicted. This makes our height prediction Ph noisy by
definition, so the use of denoising autoencoders is appropriate
in this situation.

First, we can write: Ph = P′h + e where P′h is the clean
height value, and e the noise inherent to our approximation
of the function ψ . By introducing a denoising autoencoder,
we can approximate the noise function γ such as Ph = P′h+
γ (zi), where zi is the concatenation of the outputs of ψ with
the input aerial image xi. This makes it possible to re-write
equations (2) as ψ(xi) = {P′h + γ (zi),Ps,Pn}. We can also
now define the objective of the second stage of our method
such as:

min
γ∈0

∑
i

`(P∗h,Ph − γ (zi)) (3)

In this paper, our goal is to approximate both function ψ
and γ by using two cascaded deep neural networks.

B. HEIGHT PREDICTION NETWORK
We solve the height prediction problem via multi-task learn-
ing where, in addition to the main height prediction, semantic
and surface normals predictions are conducted too. We found
that by re-routing the information in the semantic and sur-
face normal branches to the main height branch, our neural
network can learn to predict more accurate height values,
especially around the edges.

FIGURE 2. Architecture of our multi-task learning network for height,
semantic and surface normals predictions. Note that each tconv block is
followed by the ReLu function and drop out layers are inserted after each
tconv layers in the main height prediction branch.

Fig. 2 shows our multi-task learning network architecture.
We propose a convolutional neural network where we com-
bine a pretrained encoder (tasked with extracting relevant fea-
tures from the input aerial images), with three inter-connected
decoder branches, one for each type of predictions respec-
tively.We chose to use a DenseNet121 network, pretrained on
ImageNet, as our main encoder. We show later in the experi-
mentation section that DenseNet121 yields the best accuracy
when compared to other popular architectures. Our decoders
on the other hand is inspired by [35] and are characterized by
being able to reconstruct the expected predictions efficiently.
We list in Table 1 the different layers that we used.

145640 VOLUME 9, 2021



M. Elhousni et al.: Height Prediction and Refinement From Aerial Images With Semantic and Geometric Guidance

FIGURE 3. Our two stage height prediction and refinement pipeline. We use DenseNet121 to extract a global feature vector from the input aerial
images, which is used to predict the normals map, semantic labels and a first guess at the height map (first stage, in blue). These results are
concatenated with the input aerial image and fed into a denoising autoencoder to generate the refined final height map (second stage, in purple). Red
boxes represent the ground truth, while green ones represent the networks predictions.

This network is optimized by using a multi-objective loss
function defined as:

L = w1Lh + w2Ls + w3Ln (4)

where Lh = 1
n

∑n
i=1(Ph − P∗h)

2, Ls = − 1
n

∑n
i=1 P

∗
s log(Ps),

Ln =
1
n

∑n
i=1(Pn − P

∗
n)

2 and w1, w2 and w3 are weights set
up according to the training dataset and the scale of each loss
function:We found that by using weights that keep all the loss
functions at the same scale, the CNN would converge faster
and achieve higher final accuracy levels.

C. HEIGHT REFINEMENT NETWORK
As mentioned previously, the height prediction map Ph pro-
duced by the multi-task learning network still contains some
noisy areas that must be refined in order to generate the
final height prediction P′h. We introduce an autoencoder to
estimate the noise and produce more accurate height map
predictions.

We choose the popular U-Net architecture [31] as network
structure. The input of the network is the concatenation of
the multi-task network outputs Ph,Ps and Pn with the aerial
image xi, as shown in Fig. 3. Details of the different layers
forming the denoising network are listed in Table 2. The loss
function used to optimize this network is the mean square
error between the refined height map and the ground truth:
Lr =

1
n

∑n
i=1(P

′
h − P

∗
h)

2
=

1
n

∑n
i=1(Ph − γ − P

∗
h)

2, with γ
being the noise function defined in Eq. 3.

IV. EXPERIMENTS
A. DATASETS
2018 DFC [36] dataset was released during the 2018
Data Fusion Contest organized by the Image Analysis
and Data Fusion Technical Committee of the IEEE Geo-
science and Remote Sensing Society. It was collected
over the city of Houston, which contains multiple optical
resources geared toward urban machine learning tasks such

TABLE 1. Height prediction network details.

multispectral LiDAR, hyperspectral imaging, Very High-
Resolution (VHR) imagery and semantic labels. Using the
results of the multispectral LiDAR, it is possible to obtain
Digital Structural Models (DSM) and Digital Elevation Mod-
els (DEM), which, if subtracted from one another, produces
height maps that we can use as ground truth. Four tiles of data
are used for training while ten tiles are used for testing.

ISPRS Vaihingen [37] dataset was released during the
semantic labeling contest of ISPRSWG III/4. It was collected
over the city of Vaihingen, Germany and consists of very
high resolution true ortho photo (TOP) tiles, corresponding
Digital Surface Models (DSM) and semantic labels. As it
is usually done when dealing with this dataset, we use the
normalized DSM (nDSM) produced by [38] as ground truth
for our height prediction. Sixteen tiles were used for training
while seventeen tiles are used for testing.
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TABLE 2. Height refinement network details.

1) SURFACE NORMAL MAPS
The surface normal maps for both dataset are generated using
the given height maps, following practices usually used for
surface normal estimation from dense depth maps based on
the Sobel operator [39]. The details are listed in Alg 1.

Algorithm 1: Surface Normals Generation
Input : Height map Ph
Output: Surface normals map Pn
zx ← Sobel(Ph, 0)
zy← Sobel(Ph, 1)
N ← stack(−zx,−zy, 1)
Pn←

N/‖N‖
2 + 1

return Pn

FIGURE 4. Qualitative comparison of a reconstructed tile from the testing
dataset. From left to right: The input RGB tile, the height prediction and
the height ground truth.

B. NETWORK TRAINING AND RESULTS
1) TRAINING
Our training process is not end-to-end. Instead, we fol-
low a two stages approach: we first remove the denoising

autoencoder and only focus on training the multi-task net-
work. To do so, random 320 × 320 crops are sampled from
the aerial tiles and corresponding semantic, surface normals
and height ground truth are used for training. Once the multi-
task network converges, we freeze its weights and then plug
into the denoising autoencoder to obtain the final height
predictions. We train this second network following the same
random sampling process used to train the first one. We use
Tensorflow [40], a learning rate of 0.0002, a batch size of 64,
the Adam optimizer [41] and a single RTX2080Ti to train
both stages. During training, we saw that altering the net-
work’s hyper parameters can sometimes have a slight effect
of the convergence speed, but no significant effect on the final
accuracy level.

Note that in the case of the DFC2018 dataset, the input
VHR aerial tiles are ten times bigger than their corresponding
DSM, DEM and semantic labels. To deal with that, we first
down sample the aerial tiles ten times before starting to collect
training crops.

2) RESULTS
The aerial tiles were reconstructed using a sliding window of
the same size as of the training samples and with a constant
step size. We use Gaussian smoothing to deal with overlap-
ping areas. This makes it possible to deal with cases where
different crops of the same area produce different height val-
ues, while also protecting the final result from the ‘‘checker-
board effect’’. We report the results of our height prediction
and refinement pipeline on both datasets in Table 3, where
we use the mean square error (MSE), the mean absolute
error (MAE) and root-mean-square error (RMSE) as metrics,
all in meters. We also show a qualitative comparison in Fig. 4.
When comparing with previous proposed methods in the
literature, we can see that by using our multi-task network
combined with the refinement step, we are able to surpass
the state-of-the-art performance across all metrics on both
datasets, with improvement up to 25%.

We credit this increase in accuracy to multiple factors.
Firstly, the choice of our encoder (in this case DenseNet121),
which is capable of extracting features that are relevant to this
task. The second is the context information brought by our
2 additional branches in the multi-task prediction network.
Knowing if a pixel falls on a building rather than the road,
in addition to the orientation of its associated surface normal
vector, helps the network predict height values better. Finally,
the denoising autoencoder helps us deal with certain artefacts
that tend to confuse the prediction network. We provide
numerical analysis of these observations in the ablation study.

It is also interesting to note that we are able to achieve
similar scores to methods which were trained on the high-
definition aerial tiles directly without any down sampling as
shown in Table 4. For reconstruction of the same sized area,
such networks would take much longer processing time and
significantly more computing resources than our proposed
method.
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TABLE 3. Comparison with other height prediction methods on the ISPRS
Vaihingen and the 2018 DFC datasets in meters.

TABLE 4. Comparison with method trained on VHR aerial images.

Missing values in Table 3 were not reported by the cited
publications. We also exclude the results reported by [16]
because it did not follow the same training/testing split of the
data.

C. SEMANTIC LABEL AND SURFACE
NORMAL PREDICTIONS
Although this work does not focus on the semantic label and
surface normal predictions and only uses them to improve the
height predictions, we share the results of those two branches
and compare them with available methods in the literature
in Table 5. Our results in Table 5 show that our multi-task
network is able to produce semantic label results that are
comparable with the state of the art on the Vaihingen dataset
and acceptable ones on the DFC2018 (which has 20 classes
compared to the 6 of the Vaihingen dataset). We use the
following metrics for the semantic segmentation: The overall
accuracy (OA), defined as the sum of accuracies for each
class predicted, divided by the number of class, the average
accuracy (AA), defined as the number of correctly predicted
pixels, divided by the total of pixels to predict and Cohen’s
coefficient (Kappa), which is defined as Kappa = p0−pe

1−pe
,

such as pe is the probability of the network classifying a pixel
correctly and p0 is the probability of the pixel being correctly
classified by chance. The network is also able to produce
meaningful surface normal maps as seen on Fig. 1. Missing
values in Table 5 were not reported by the cited publications.

TABLE 5. Semantic labels and surface normals results on the ISPRS
Vaihingen and the 2018 DFC datasets.

D. ABLATION STUDY
1) HEIGHT REFINEMENT
To demonstrate the usefulness of the aforementioned refine-
ment network, we test our method with and without the

denoising autoencoder, on both datasets. In Table 6, we com-
pare the results obtained after both experiments and show that
the refinement step always produces more accurate height
maps, resulting in an increase of up to 16% in accuracy.
By combining the information present in the semantic and
surface normal inputs with the initial guess of the height
produced by the previous network, the refinement network is
able to concentrate on noisy areas where the height values are
abnormal and fix them automatically. In addition, we com-
pare our deep learning based denoiser with other popular
non-learning denoising algorithms such as Bilateral Filtering
(BF) [27] and Non-local Means (NIM) regularization [29].

TABLE 6. Comparison of our height prediction methods with and without
refinement, on the ISPRS Vaihingen and the 2018 DFC datasets in meters.

We also show qualitatively on Fig. 5 that the refinement
height maps are much closer to the ground truth and contains
less noise than the direct output of the multi-task network.

FIGURE 5. Qualitative comparison. From left to right: The input RGB
image, the height prediction of our multi-task network, the refined height
map of our denoising autoencoder and the ground truth.

2) CHOOSING THE RIGHT ENCODER
Our network structure for height prediction is generic, since
any off-the-shelf encoder can be used in the first stage to
extract features from the input aerial image.

However, we show in Table 7 that DenseNet121 outper-
forms other popular encoder structures and produces the
most accurate height maps. This is owing to the fact that
DenseNet121 is much deeper than the other two networks and
contains a higher number of skip connections between layers,
making it possible to extract much finer features from the
input image. All the networks are trained for the same number
of epochs and using the same hyper parameters, such that it
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TABLE 7. Encoder comparison on the DFC2018 dataset in meters.

ensures the fairness when comparing both the convergence
speed and accuracy scores.

3) GEOMETRIC AND SEMANTIC GUIDANCE
In this section, we show the effect of the geometric and
semantic guidance in our method in both height prediction
and height refinement stages. First, we show in Table 8
that using a multi-task network instead of a single task one
improves the overall height prediction results. We also show
in Table 9 that by concatenating all the results of the first
stage as the input to the denoising autoencoder, we are able to
generate more accurate and refined results compared to only
using the height image as input. This shows that the semantic
and geometric context information brought by two additional
branches assist in producing more accurate height values.

TABLE 8. Comparison of height prediction results of single and
multi-task networks in meters.

TABLE 9. Comparison of height refinement results of single and
multi-input denoiser in meters.

TABLE 10. Comparison of our reconstruction results (meters) based on
the step size (pixels).

4) FINDING THE RIGHT RECONSTRUCTION STEP
The accuracy of our final tile reconstruction depends also
on the step size of the sliding window that we choose when
collecting the aerial crops. We show in Table 10 the different
results corresponding to different step sizes. We found that a
step size of 60 pixels results the best across both datasets.

5) VISUALIZING THE UNCERTAINTY
In order to investigate the performance of our pipeline more
thoroughly, we generate uncertainty maps according to the
method proposed in [47]. The results are displayed in Fig. 6

FIGURE 6. Uncertainty results. From left to right RGB Image, Height
Prediction, Uncertainty Map. Prediction errors are mostly concentrated
around the edges.

and show that most of the prediction errors can be attributed
to the areas such as the edges of buildings due to the sudden
changes in brightness and color, and trees where shadows
introduce a significant amount of color noise.

V. APPLICATIONS FOR 3D RECONSTRUCTION
In this section, we propose two applications to show how
to take advantage of the results generated by our proposed
pipeline. The first is 3D reconstruction of select buildings
from a single aerial image. In the second application, we sim-
ulate a UAV flight over a certain area and show that we can
reconstruct the entire 3D area by combining odometry and
aerial images. In comparison to the classic SfM algorithm,
our method provides a significant gain in speed, accuracy and
density. More importantly, our proposed method requires sig-
nificantly less number of images since only minimal overlaps
are necessary when taking the aerial shots.

A. SINGLE AERIAL IMAGE 3D RECONSTRUCTION
Usually, in order to reconstruct the 3D shape of a building,
multiple shots from multiple angles with significant overlap
are necessary in order to apply the sequential surface from
motion algorithm. We show in Fig. 7(b) that owing to our
multi-task network, we are able to produce accurate 3D point
clouds of the buildings using a single image only.

The proposed method is also capable of generating seman-
tic point clouds in Fig. 7(c) and 3D meshes of buildings
and their surrounding areas in Fig. 7(d) by leveraging the
semantic labels and surface normals generated by the net-
works. Specifically, semantic point clouds are generated by
projecting the semantic labels onto the point clouds, while
the meshes are generated by combining the surface normals
with the reconstructed point clouds using the ball pivoting
algorithm [21].
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FIGURE 7. 3D reconstructions using a single image. (a) RGB Image, (b) Height Colorized Pointcloud, (c) Semantic Pointcloud, (d) RGB Colorized
Mesh.

FIGURE 8. 3D reconstructions from simulated UAV flight. From left to right: Positions of the UAV images, Reconstructed 3D scene.

B. AREA RECONSTRUCTION WITH SIMULATED
UAV FLIGHT
3D reconstruction of urban areas is a very useful applica-
tion. Similarly to what we mentioned in the first application,
reconstructing an entire area would generally require a series

of captured images with significant overlaps, by flying the
drones in multiple passes over the same area, in order to
generate a semi-dense point cloud.

In our case, we show in Fig. 8 that by using a single pass
with a small number of captured images and minimal overlap
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(only to avoid gaps in the final reconstruction) we are able
to produce accurate and dense 3D reconstructions. We also
note that when we feed the same data to an SfM algorithm,
it typically leads to failures since only a small number of
features can be matched among the single-pass aerial shots.
The data is collected by simulating a constant altitude UAV
flight over a certain neighborhood in one of the tiles available
in the testing datasets. The odometry is assumed to be known
from on-board IMU or GPS sensors.

VI. CONCLUSION
In this work, we propose a deep learning based two-stage
pipeline that can predict and refine height maps from a single
aerial image. We leverage the power of multi-task learning by
designing a three-branch neural network for height, semantic
label and surface normal predictions. We also introduce a
denoising autoencoder to refine the predicted height maps
and largely eliminate the noise remaining in the results of
the first stage height prediction network. Experiments on
two publicly available datasets show that our method is
capable of outperforming state-of-the-art results in height
prediction accuracy. In future work, we plan on exploring
the computational efficiency of the proposed neural networks
for their applications towards real-time processing of aerial
images.
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