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LIKELTIHOOD-BASED DIMENSION FOLDING
ON TENSOR DATA
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Abstract: Sufficient dimension reduction methods are flexible tools for data visual-
ization and exploratory analysis, typically in a regression of a univariate response on
a multivariate predictor. Recently, there has been growing interest in the analysis
of matrix-variate and tensor-variate data. For regressions with tensor predictors,
a general framework of dimension folding and several moment-based estimation
procedures have been proposed in the literature. In this article, we propose two
likelihood-based dimension folding methods motivated by quadratic discriminant
analysis for tensor data: the maximum likelihood estimators are derived under a
general covariance setting and a structured envelope covariance setting. We study
the asymptotic properties of both estimators and show using simulation studies
and a real-data analysis that they are more accurate than existing moment-based
estimators.

Key words and phrases: Dimension folding, quadratic discriminant analysis, suffi-
cient dimension reduction, tensor.

1. Introduction

Tensors, also known as multidimensional arrays, are a direct generalization
of vectors and matrices (Hitchcock (1927); Kolda and Bader (2009)). Tensor
data are observed in various applied fields. For example, in a study using gene
expression time course data (Baranzini et al. (2005)), gene expressions for 53
multiple sclerosis patients were measured over multiple time points. After being
given recombinant human interferon beta (rIFN), which is often used to control
the symptoms of multiple sclerosis, patients were classified as good (Y = 1) or
poor (Y = 0) responders to rIFNJ based on their clinical characteristics. For
each of the 53 subjects, the matrix-variate predictor can be organized as genes x
times = 76 x 7 and is used to predict the binary response Y. Another example
is from neuroimaging studies, where we are interested in predicting whether a
subject has a neurological disorder based on image scans in the form of three-

way or four-way tensors. For such data sets, we may lose important structural
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information if we simply unfold the data from a tensor into a vector. Moreover,
the dimension of the predictor is often much larger than the sample size, for
example, p = p; X pp = 76 X 7 = 532 > n = 53. Therefore, it is important
to develop efficient dimension reduction methods for such data, especially for
problems such as classification and discriminant analysis.

In many previous studies of tensor classification and discriminant analysis,
linear classifiers have been shown to be effective in separating classes. Classi-
cal linear and margin-based classifiers have been extended to high-dimensional
tensor data, including logistic regression (Zhou, Li and Zhu (2013)), linear dis-
criminant analysis (Pan, Mai and Zhang (2019)), and distance-weighted discrim-
ination (Lyu, Lock and Eberly (2017)), among others. However, such linear
methods often ignore the potential covariance structural changes of the tensor
predictor over different classes. Therefore, it is not surprising that more flexible
classifiers, such as a quadratic discriminant analysis, can outperform linear clas-
sifiers in high dimensions when appropriate regularizations are imposed (Li and
Shao (2015); Jiang, Wang and Leng (2018)). Motivated by these considerations,
we propose flexible multi-linear sufficient dimension reduction (SDR) methods
for tensor data, with emphasis on discriminant analysis and classification.

For a univariate response Y, continuous or discrete, and a multivariate pre-
dictor X € RP, SDR methods aim to find a low-dimensional subspace S C RP,
such that

Y 1L X |PsX, (1.1)

where Pg is the projection onto the subspace S. Let I' € RP*? for d < p,
be a basis matrix for the subspace §. Then, (1.1) amounts to saying that the
conditional distribution of ¥ | X is the same as that of Y | I7X. Thus, the
linear reduction I'"'X is sufficient in the sense that there is no loss of information
about Y by reducing X to I'"'X. The central subspace (Cook (1998)), denoted
by Sy|x, is the intersection of all S that satisfy (1.1). By definition, the central
subspace is the smallest dimension reduction subspace and is the target of most
SDR methods. See Li (2018) for additional information on SDR.

When X is tensor-variate, Li, Kim and Altman (2010) proposed a gen-
eral dimension folding framework to achieve SDR, while preserving the tensor
structure of the predictor. For a positive integer M, a multidimensional array
X € RPr**Pm ig called an M-way or M-th order tensor. The “vec” operator
turns a tensor X into a column vector, denoted by vec(X), where X;,...;,, is the
{1+ Z%zl(im -1) H?i;lpl}—th element in vec(X). Analogous to the notion of
a central subspace, the (central) dimension folding subspace is defined as follows
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(Li, Kim and Altman (2010, Definitions 1, 2, and 5)). The subspace S,, C RP~
is called a mode-m dimension folding subspace, for m =1,... M, if

Y 1 X|(Ps, ® - ®Pg,)vec(X). (1.2)

Unless otherwise specified, we let 7, denote the smallest such mode-m dimen-
sion folding subspace. Then, Ty x = Ty @ ---QT1 = ®71n:M T is the central
dimension folding subspace. We denote the projection onto Ty x by Pr, . The
subspace Ty x is also a dimension reduction subspace of Y on vec(X): it con-
tains the central subspace Sy|yec(x), but preserves the tensor structure in X. We
assume the existence and uniqueness of the central dimension folding subspace
proven in Li, Kim and Altman (2010) under mild conditions. Under this frame-
work of dimension folding, Li, Kim and Altman (2010) developed moment-based
estimation procedures by extending classical SDR methods, such as the sliced
inverse regression (Li (1991, SIR)), sliced average variance estimation (Cook and
Weisberg (1991, SAVE)), and directional regression (Li and Wang (2007, DR)),
to tensor data.

As alternatives to the moment-based dimension folding methods, we propose
two likelihood-based dimension folding methods that are easy to interpret and
flexible. First, we propose a general method called FLAD (folded-LAD), which
extends the likelihood acquired directions Cook and Forzani (LAD, 2009) from
vector to tensor data. The FLAD estimator is asymptotically efficient for esti-
mating the dimension folding subspace Ty x under the normal assumption, and
remains /n-consistent for the central subspace Ty |x under the weaker linearity
and constant covariance conditions required by the SAVE and DR. To model the
unequal covariance structures across classes, we further incorporate the envelope
covariance (Cook, Li and Chiaromonte (2010)) into the FLAD, resulting in a
new method called the FELAD (folded envelope LAD). The envelope covariance
used in the FELAD is a direct generalization of the envelope structure used in
quadratic discriminant analysis (Zhang and Mai (2019)) and in brain network
analysis (Wang, Zhang and Li (2019)). Our new covariance modeling for tensor
data is also related to the recent tensor latent factor model (Lock and Li (2018)),
and includes the covariance structure therein as a special case. Comparing with
that of the FLAD, the covariance structure of the FELAD is parsimonious and
further reduces the total number of free parameters. Because of the additional
covariance assumption, the FELAD can be more efficient than the FLAD when
the model assumptions hold. In addition, because the FLAD and FELAD objec-
tive functions differ from the general dimension folding objective function used in
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the literature (Li, Kim and Altman (2010); Xue and Yin (2014); Sheng and Yuan
(2020); Xue and Yin (2015); Xue, Yin and Jiang (2016)), the computational tech-
niques presented here are also new to the dimension folding literature. In fact,
the proposed methods are computationally much faster and more scalable than
all other second-order dimension folding methods. Furthermore, whereas exist-
ing dimension folding methods such as the Folded-SIR, Folded-DR proposed by
Li, Kim and Altman (2010), Folded-MAVE (Xue and Yin (2014)), Folded-PFC
(Ding and Cook (2014)), and DCOV (Sheng and Yuan (2020)), focus only on
matrix data, our methods also work for tensor data.

1.1. Notation and organization

For a subspace S C RP, let Ps be the projection matrix onto S, and let
Qs = I, — Ps be the projection onto S+, the orthogonal complement of S .
For a matrix A € RP*? let span(A) denote the subspace of RP spanned by the
columns of A. If A is a matrix of full column rank such that span(A) = S, then
A is called a basis matrix of S, and Ps = A(ATA)71AT = Py.

We next introduce some basic tensor notation and operations from Kolda
and Bader (2009). For a tensor A € RP***PM_ the mode-m matricization,
A(my, 18 a (Pm X [Lpm Pmr) matrix, with A;,..;,, being its (im,j)-th element,
where j =143, (im — 1) [[jcp 12m 21 If we fix every index of the tensor
except the mth index, then we have a mode-m fiber. The mode-m product of a
tensor A and a matrix B € R®Pn_ denoted by A x,, B, is an M-way tensor of
dimension p; X + -+ X ppy—1 X d X pm+1 X -+ - X par, with each element being the
product of a mode-m fiber of A and a row vector of B. The Tucker decomposition
of a tensor is defined as A = C x1 G Xa--- X Gas, where C € R4 X Xdu ig the
core tensor, and G, € RP»¥dm for m = 1,..., M, are the factor matrices. We
write the Tucker decomposition as [C; Gy,..., G| in short. In particular, we
frequently use the fact that vec([C; G1,...,Gy]) = (Gy @ -+ ® G1)vec(C) =
(®71n=M G )vec(C).

The rest of the article is organized as follows. Section 2 introduces the FLAD
and FELAD models. Section 3 develops the estimation procedures for the FLAD
and FELAD, including the selection of subspace dimensions. Section 4 studies
the asymptotic properties. Section 5 contains simulation studies and a real-data
example. Section 6 contains a short discussion. The proofs of the propositions,
some implementation details, and an additional real-data analysis are provided
in the Supplementary Material.
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2. Likelihood-based Dimension Folding Methods
2.1. FLAD model

Using the Tucker decomposition, the definition of the dimension folding re-
lation in (1.2) is equivalent to Y | X ~ Y | [X;Pgs,,...,Ps,,]. It means that,
after projecting the predictor onto the subspace S, for each mode, the projected
predictor [X; Pgs,, ..., Ps,,] still contains all the information about the response.
Equivalently, Y | X ~ Y | [X;T'y,...,Ta], where Ty, is a basis matrix for S,
for m = 1,...,M. The reduced predictor, [X;T'1,...,Tp] € ROXxdm  then
has the dimension d = H%zl dy, which is smaller than the sample size n.

One advantage of the dimension folding method is that it uses the tensor
structure of the data and projects the data onto smaller subspaces. Instead of
estimating a large basis matrix T' € RP*¢ (p = Hi\le P, d = H%:l dp,), we only
need to estimate M smaller basis matrices I',,, € RPm*%m form =1,..., M. The
number of free parameters in the basis matrices of the dimension folding method
is >0 1 dm(pm — di,), which is much smaller than the dimension d(p — d) for the
conventional SDR, methods.

Here, we assume that Y is discrete, because we focus on discriminant analysis.

We further assume that
vee(X) | (¥ = k) ~ N(pi, ), k=1,..., K, (2.1)

where p, € RP and ¥, € RP*P. This assumption is the same as that imposed
on the LAD (Cook and Forzani (2009)). If (X,Y") satisfies both (1.2) and (2.1),
then we say that (X,Y) satisfies the FLAD model.

Similarly to the LAD, our method is also applicable to continuous Y. For a
continuous Y, we modify the assumption to vec(X) | (Y =y) ~ N(vec(py), 3y).
In practice, we partition the support of Y into several slices, thus turning the
problem into a discrete one.

Let iy = Pr(Y = k), p = Zle Tk, 2 = Zszl Tk, and M =
span{vec(p1 — p), ..., vec(prx — p)}. We have the following results.

Proposition 1. Under model (2.1), Sy, is a mode-m dimension folding subspace,
form=1,....M, if and only if 2" M C ®71n:M Sm and Qg . szizl does
not change with k.

Proposition 1 builds the connection between the dimension folding method
in (1.2) and model assumption (2.1), which leads to parameterization and estima-
tion. By Proposition 1, we have the following result, which shows the existence
and uniqueness of the dimension folding subspace.



2410 WANG, ZHANG AND LI

Proposition 2. Under model assumption (2.1), if S, and Sm, form=1,...,M,
are mode-m dimension folding subspaces, then Sp, N Sy, is a mode-m dimension

folding subspace.

As a consequence of Proposition 2, the smallest mode-m dimension folding
subspace 7y, and the dimension folding subspace Tyx = ®71n: a Tm exist and
are uniquely defined. Propositions 1 and 2 are based on the normal assumption
(2.1). In Section 4, we show the robustness of the FLAD against non-normality.

2.2. Envelope covariance structure

Proposition 1 shows that the requirement for the covariance matrices to guar-
antee that S, is a mode-m dimension folding subspace. In this section, we intro-
duce a more explicit parametric covariance structure from the envelope models
Cook, Li and Chiaromonte (2010). First, we consider tensor quadratic discrim-
inant analysis and its Bayes rule as the motivation for our envelope covariance
structure.

The Bayes rule is the classification rule with the lowest possible classification
error; that is,

Y = argmax Pr(Y = k| X = x) = argmax 7, f(x),
k=1,...K k=1,..K

=1,..., geeey

where f is the probability density function of X.
Under model (2.1), which can be viewed as the tensor quadratic discriminant
analysis model, the Bayes rule can be written as

¢PS(X) =argmax [Cy, — vec” (X){ Sy 'vee(py,) — E ' vee(p)}

k:llK (2.2)
+ gvee! (X)(B " = By Hvee(X)],

where Cy = logmy + (1/2) log |Z| + (1/2)vecT (pi)E; 'vec(py) is the constant
term that does not depend on X. The Bayes rule (2.2) involves a large number
of parameters and contains both linear and quadratic terms of X. Moreover, the
inversion of matrix 3y is challenging to estimate. It is thus desirable to reduce
the dimension of X and the number of free parameters in both the linear and the
quadratic terms.

Zhang and Mai (2019) proposed the envelope QDA model, assuming that
3 = Ps¥iPs 4+ QsXQgs, for some subspace §. Their model is designed for a
vector predictor X. Suppose that T' € RP*4im(S) ig o basis matrix for S, and T'g
is the orthogonal complement of I'. Then, we can write X = I'Q, I + T'gQ,
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and 2;1 = I‘Q,;lI‘ + I‘OQSII‘O. As a result, the Bayes rule simplifies to

¢PS (DT X) = argmax [C), — vec (T X){€; tvee(TT py,) — 2y Hvee(T )}

k=1,...,K
1
+§VecT(I‘TX)(Q];1 — Q7 Hvee(TTX)). (2.3)

Compared with the Bayes rule in (2.2) for the full data X, instead of estimating
2,;1, we need only estimate Q;l, which is of low dimensionality and is much
easier to estimate. However, the dimension of T" is still large for tensor data.

To solve this problem, we apply the dimension folding method to X, while
assuming a special structure for its covariance matrix. For the subspaces S,,, for
m=1,..., M, we consider the following more explicit parametric form of 3,;

1 1
m=M m=M

Let S = ®:n: v Sm, and Sy be the complement of S. Then equation (2.4) can
be written as

3k =PsEpPs + QsXQs. (2.5)

We assume the separability of S through the structure ®71n: a Sm, but do not
require ST to be separable. This covariance structure satisfies the condition in
Proposition 1 because QSE,;I = QsX7'Qs is invariant with respect to k.

In (2.5), the term QsX Qs represents the part of the covariance that does not
change across class k, and Ps3Pgs is the part that carries the covariance char-
acteristics of class k, which is useful for classification. Because d is small relative
to p, we have removed the large matrix Qs3Qs, which is useless in classification.
By introducing the envelope covariance structure, we gain great efficiency in es-
timation. Although we still call (2.4) the “envelope covariance,” it is new and
different to existing envelope models, because it focuses on discriminant analysis
for tensor data.

2.3. FELAD model

In this section, we combine the FLAD with the envelope covariance assump-
tion to construct the FELAD model. We first formally define a dimension folding
envelope subspace.

Definition 1. If the subspaces S,, C RP=, for m =1,..., M, satisfy assumption
(1.2) and (2.4), then S, is called a mode-m dimension folding envelope subspace.
Let &, be the smallest mode-m dimension folding envelope subspace. The sub-
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space &y x = ®71n: ar Em is called the dimension folding envelope subspace.

By definition, we know that &y x is unique and that the dimension folding
subspace Ty|x C £y |x. As a consequence of Proposition 2 and 7y x C &y x, &y x
always exists under model (2.1). Let T'), be a basis matrix for &,,, I = ®71n:M T,
be a basis matrix for &y x, and I'g be a basis matrix of the orthogonal complement
of &y|x. Then, the envelope covariance structure (2.4) is equivalent to

1 1
3 = ( & rm> Qk< & rg) + T,
m=M m=M
for some symmetric and positive definite matrices € € R%*4 and Qg € R~
(p=d) " The following proposition builds the connection between model (2.1) and

the dimension folding envelope subspace. Recall that M = span{vec(p1—p), ...,
vec(pa — p)}

Proposition 3. Under model (2.1), Sy, is a mode-m dimension folding envelope
subspace if IM C ®:n:M S and Xy, = (®Tln:M PSm)Ek(®11n:M Ps. )
+Qg:_, 5. 2Qg),

m=M g Sm”
In the following proposition, we show the existence and uniqueness of the

smallest mode-m dimension folding envelope subspace.

Proposition 4. The intersection of two mode-m dimension folding envelope sub-

spaces is a mode-m dimension folding envelope subspace.

Proposition 4 guarantees the existence and uniqueness of &y x, because
1
Eyix = Qum=ns Em-

2.4. A toy example and a comparison with other covariance structures

We now use a toy example to illustrate how the envelope covariance structure
(2.4) works. Consider a matrix random variable

(XY = k) = X1k X12 7
Xo1 Xoo

where only X7i1; changes with class k. We assume that k£ = 2, X1 ~ N(O,az)
with 02 = 1 and 03 = 02, (X12, Xo1, X22) ~ N(0,I3), and Xi1 is independent
with (X129, Xo1, X22). Then, we have cov(X | Y = k) = (T2 ® I')o2(T] ®
T + I‘OI;),I"‘OF, where T'y ® T’y = e and T’y = (eg, e3,¢e4). The basis e; is a four-
dimensional vector with the ith element equal to one, and the other elements
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equal to 0. In the covariance cov(X | Y = k), cov(Xj1x) = o} carries the
characteristic of the class k, whereas cov{ (X2, X21, X22)} = I3 is class invariant.
Assumption (2.4) divides the covariance into two parts, one varying with class
k, and the other invariant with k. Only the information of the first part is
useful for subspace estimation and discriminant analysis. Figure 1 shows the
accuracy of the subspace estimation for different methods including the SIR,
SAVE, and LAD for vec(X), and our two methods, with the LAD serving as a
baseline for the comparison between these methods. As indicated by Figure 1, the
LAD, as a likelihood-based method, performs better than SIR and SAVE. The
FLAD and FELAD further improve the performance of the LAD because they
take advantage of the dimension folding structure and the envelope covariance
structure. The SIR, which uses only the information of the class mean differences,
fails to capture the difference in the covariance matrix due to o?. The SAVE,
which is based on the covariance difference, fails to capture the mean difference.
When o2 is close to one, the SAVE performs poorly because it is based on the
covariance difference between two classes. The FLAD performs slightly better
than the LAD using the dimension folding subspace. However, the improvement
is not significant because the dimension of this example is small. The FELAD
gives the best subspace estimation, especially when o2 is large. The results show
the substantial advantages offered by the envelope covariance structure, even
when the predictor’s dimension is small. In this example, only the first element
of X is useful for discriminant analysis. The envelope covariance structure helps
us to identify the useful information in the predictor. Therefore, the FELAD
gains in efficiency by modeling the conditional covariance and using the tensor
structure.

Next, we show the connection between the covariance structure (2.4) and
another covariance structure in the recent literature. Lock and Li (2018) proposed
a latent variable model that assumes X; = [U;I'y,...,Ty] + E; and U; =
Y;B+F;, where U; € R4 % Xdw ig 5 Jatent score matrix, X; € RP1*Pu Y, € RY,
T, € RP»Xdn for m = 1,..., M, are semi-orthogonal matrices, E; is an error
matrix with independent normal entries N (0, 0?), and E; are independent of each
other. The random variables F; are assumed to follow N(0,€) independently.
Then, the covariance matrix x = (®. _y; D) Q. _,, TL) 4 021, which is
similar to our covariance assumption in that it introduces a low-rank structure
(®71n: M I‘m)Q(®71n: 1 TL). However, in their assumption, €2 is a constant with
respect to class k. Thus for classification, their covariance structure will fail to
capture the covariance difference for different classes. In addition, our assumption
is more general for €2y, which can be chosen as an arbitrary symmetric and
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Figure 1. Subspace estimation accuracy of different methods. The x-axis is cov(X1; |
Y =2) = 0?, and the y-axis is |Ps — Pr||p, which is the Frobenius norm between the
true projection matrix and the estimated projection matrix of the dimension reduction
subspace. The sample size for each class k, for £k = 1,2, is 30.

positive-definite matrix.

3. Estimation
3.1. Estimation and algorithm for the FLAD

In this section, we derive the estimation procedure for the basis matrix of
the FLAD. For i = 1,...,n, suppose that we have independent and identically
distributed (i.i.d.) data of class label Y; € {1,..., K}, K > 2, and tensor predictor
X; € Rpxpa M > 2. Recall that Ty x is the dimension folding subspace with
basis matrix I'" = ®71n: u I'm, and T'g is the orthogonal complement of I'. We

have the following properties:
Proposition 5. Under the FLAD model assumption (2.1), we have
1. TTvec(X) | (Y = k) ~ N(T'Tvec(u) +TTETw,, TTE,T), for some vy, € RE.
2. Tovec(X) | (TTvec(X),Y = k) ~ N(HI vec(X) + (T — HT T )vec(p), D),
where D = (TFE71Tg)7Y, and H = (T{2~10)(I7xr) L

Let X;; be the ith sample of class k, X, be the sample mean of class k, and
X be the overall sample mean. By Proposition 5, we can obtain the log-likelihood
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function for T as follows.

Proposition 6. Under the FLAD model assumption (2.1), the MLE for T is the
mazimizer of the following function:

K
1 - 1S g .
F(T) = -log T"SxT| — = ) —log |T"%,T 1
(T) = 5 log| x2;nog| eI, (3.1)
where B, = (1/ny) Sk vee (X — X ) vee(Xgi—Xk), >x = (1/n) > vee (X
— X)vec(X; — X) are the sample counterparts of ¥, and Xx = cov{vec(X)}, re-
spectively.

The objective function (3.1) is maximized over the set of Kronecker prod-

ucts of semi-orthogonal matrices, {I' = ®71n:M T,,: Ty, € RemXdm TTT - —

I;,, m=1,...,M}. Let G = {f‘j,j #m}, form=1,..., M. With Gm fixed,
we partially maximize F(I') over I';,;; that is, we maximize the following objective
function:

m(T | i)
:10g|(IdM ®®I‘£L®®Id1)ix’@m(1d1\/[ ®®I‘m®®1d1)’
n ~
—Z;ylogKIdM @0, ® - ®1)% s (4, ® T, ® - 01

(3.2)
where By = =Th @01, @ - oINExTy@---®1I, ® --@T), and
Ek G.. (l"ﬂ,@ -®I,, ®-- ®l"1 )Ek(FM(X) I, ®-- ®F1) are the marginal
and conditional covariances of the reduced predictor vec([X; ry,....The L1,

fm+1a ce ,FM]]) S Rpmxl_[m/#md ™,

The optimization of (3.2) is over a Grassmann manifold, because F,, (T, |
Gpm) = Fin(T1O | @m) for any orthogonal matrix O € R%*%n It can be solved
using standard Stiefel or Grassmann manifold optimization packages, such as R
package “ManifoldOptim” (Martin et al. (2016)) and R packages “TRES” (Zeng,
Wang and Zhang (2021)). We can plug in the closed-form derivatives to speed up
the computation. See the Supplementary Material for the closed-form derivatives.

We now give an outline of the algorlthm In each alternating update step,
form=1,...,M, we fix I‘l, .. I‘m 1,I‘m+1, .. I‘M The projected data are
obtained as [X, 1"1, ° l"m_l, I, f‘m_H, e f‘M]], the dimension of which is much
smaller than that of X. Then, we estimate the mode-m dimension folding sub-
space by maximizing the objective function (3.2). We update iteratively until
convergence.
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3.2. Estimation and algorithm for FELAD

Under the FELAD model assumption, we re-used I' = ®:n: u I as the basis
matrix for &y x. The MLE for I' is derived in the following proposition.

Proposition 7. Under the FELAD model assumption (2.1) and (2.4), the MLE

s the maximizer of the following objective function:

K
F(T) = —% log |[T7 ST - % ; " log [TTS,T (3.3)
The difference between this objective function and that of the FLAD is the
second term (1/2)log \I‘Tflill"\. For the FLAD, it is —(1/2) log [TT ST
Similarly to the FLAD algorithm, given G,, = {fj,j # m}, for m =
1,..., M, we estimate T';,, by maximizing the following objective function over
the Grassmann manifold:

Fon(Ton | Gin)
= log|Th @ oI e  oINELTye - @T,® - T
n ~ A~ ~ ~ ~
_Z;ylog’(r%;[@)...®[‘%®...®F?)2k’@m(I‘M®...®I‘m®...®rl)‘_
Yy

(3.4)

The FELAD algorithm then iterates until convergence.

3.3. A general initialization approach for dimension folding

Both the FLAD and the FELAD require solving nonconvex optimization
problems. For matrix data, when the dimension p; X pg is not large, we can
choose the result of the Folded-SIR or Folded-DR (Li, Kim and Altman (2010))
as the initial value. However, owing to the large H%zl Pm, the Folded-SIR and
Folded-DR may not perform well, we propose the following initialization method
based on a repeated application of the traditional SIR or SAVE to individual
mode-m fibers of X.

This initialization method includes three steps. We first illustrate it with a
matrix-valued X.

1. Select the sth column of X;, for s = 1,...,p2, and ¢ = 1,...,n, resulting
in a vector data set with dimension p; and sample size n, together with
class label Y. We apply the classical SDR method to this vector data to
get an estimation 7y € RP**% Similarly, we select the tth row of X, for
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t=1,...,p1, to form a vector data set with dimension ps and sample size
n, together with class label Y. By applymg the classical SDR method to
this data set, we obtain an estimator Et € RP2*% The pair (ns,&) is a
candidate for the initial value for (I';,I'2). We have p; X ps candidates for
the initial value.

2. Plug candidate (ﬁs,é) into the objective function (3.1) or (3.3), for s =
1,...,p2, and t = 1,...,p;. We then choose the topl0 pairs that give the
largest objective function values.

3. Run the FLAD or FELAD algorithm using these 10 initial values, and choose
the one that gives the largest objective function value after the algorithm
converges.

For tensor-valued data, similarly to matrix-valued data, we select each mode-m
fiber of the data to form a vector-valued sample and use SAVE to get p,, initial
values for Iy, for m = 1,..., M. This leads to H%:l Pm combinations of initial
values for (I'y,...,Tys). We pick the 10 combinations that give the largest 10
objective function values. Then, we run the FLAD algorithm using these 10
combinations as the initial values, and choose the combination that gives the
largest objective function value after the algorithm converges.

3.4. Dimension selection

In this section, we develop ways to choose the dimensions di,...,das. One
possible way is to apply QDA to the projected data, and to use cross-validation
to choose the dimension which gives the smallest misclassification error rate. We
focus on the second approach, which is based on the Bayesian information crite-
rion (BIC). For d,,, € {0,...,pm}, m =1,..., M, the dimension that minimizes
the information criterion BIC(dy,...,dy) = —QEdl,...,dM +log(n)g(di,...,dy) is
selected, where g(dy,...,dys) is the number of free parameters in the model, as
computed below.

For the FLAD, we have vec(puy) = vec(pt) + £ @y _ 1 Tmk, where v € RY,
S nkag/n =0, and Bj, = B 4+ QL _ 1 Tr) Mi(®2 i, TS, with My,
being a symmetric d x d matrix satisfying Zk:l ngMj/n = 0. The number of
free parameters in {p1,...,pux} isp+ (K —1)d,in {3;,..., B} isp(p+1)/2+
(K —1)d(d+1)/2, and in {Ty,...,Tp}is M d(pm — dim). Thus, the total
number of parameters is g(di,...,dy) = p+ (K —=1)d+plp+1)/2+ (K —

) (d+ 1)/2—|—Z A (Pm — dp). The function id v = = F(T) is (3.1), where
T = ® _ym is the estimator of the FLAD algorlthm for fixed dq,...,dy.
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The procedure for the FELAD is the same, except that T is now estimated
using the FELAD algorithm.

4. Asymptotic Efficiency

In this section, we establish the asymptotic distributions and asymptotic effi-
ciencies of the FLAD and FELAD models using the results from Shapiro (1986).
Under the FLAD model, we have vec(puy) = vec(u)—I—E(@}nzM T',,)vg, where
v, € RY and Zszl ngvip/n = 0. We also have ¥} = ¥ + 2(®71n:M )My
(®71n:M I'T )X, where My, is a symmetric d x d matrix with Zszl ngMy/n = 0.
Thus, all the parameters of the FLAD model can be combined into the vector

o7 = (vecT(w),vecT (vy),. .., vecT (vg_1),vec(Ty), ..., vecT (L), vech® (2),
vech? (M), ..., vech! (Mg )T = (¢7,..., @3 i), where vech is the vector

half operator of a symmetric matrix.

For the FELAD, we have vec(uy) = vec(p) + Z®? _ 1y T = vec(p) +
I‘(Zle Q). Let o = (Zle 7 )Vk. Then, we have vec(py) = vec(p) +
®in: u Imag. Thus, all the parameters can be combined into the vector YT =

(vecT (u), veeT (ay), ..., vecT (ag_1),vecT (T'y),. .., vecT (L), vech® (Q)
,vech” (1), ..., vech” ()T = (7, ..., )T
We focus on the asymptotic properties of the estimations of p1,..., g, 21,

..., 3k based on the FLAD and FELAD. Let h = (vec(u1)7,...,vec(ur)?,
vech(21)7, ..., vech(Zxk)T)T be the vector of parameters, and let

ohy ... o Ohy ... __0h

8(}51 8¢2K+M 81/)1 a¢2K+M+1

H= : , and Hy = :
Ohak ., _Ohak Ohare |, _ Ohak
8¢1 6¢2K+]\/1 81/)1 a¢2k+M+1

be the gradient matrices, where h; is the ith component of h.
Let J be the Fisher information matrix for h in the full model, without any
low-rank assumption imposed on them. Then,

J= diag{mz;l, RRTES St %Ep(z;leg;z;l)Eg, o ?Ep@;@z;{l)Eg},

where E,, is the linear transformation such that E,vech(3j) = vec(Xj). Let
Vi = J~! be the asymptotic covariance matrix of the MLE under the full model.
By the results of (Shapiro (1986)) for over-parameterized models, we have the
following proposition.
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Proposition 8. Under the FLAD model, we have
~ D
\/ﬁ(hFLAD — h) — N(O, V), (4.1)

where V.= HHTJH) H”.
Under the FELAD model, we have

~ D

vn(hrgLap — h) — N(0,Vy), (4.2)
where Vi = Hl(HlTJHl)TH{. Moreover,
V2V = V)V % = Qe > 0 and Vi 2(Vo = V) Vg V2 = Qguep, > 0.

In the last proposition, we use the Moore-Penrose inverse in V.= H(H?J H)T
H” because H is not a full rank matrix for the over-parameterization in I'y, ..., T'y;.
By equation (5.1) of Shapiro (1986), under the FLAD model assumption, the
FLAD gives the most efficient estimation, and under the FELAD model assump-
tion, the FELAD gives the most efficient estimation.

Actually, if the envelope covariance assumption (2.4) holds, using the chain
rule, we have 0h/dvy = (0h/0¢)(d¢p/0v), which can be rewritten as Hy = HGq,
where G1 = d¢/0v. We show that V0_1/2(V — V1)V0_1/2 =Py ouQyraG, =
Qji21g, Pyizg > 0 in the Supplementary Material. This means that, under
model assumption (2.1) and the envelope covariance assumption (2.4), the FE-
LAD estimator has higher asymptotic efficiency than that of the FLAD.

In the following proposition, we show the robustness of the FLAD against
non-normality. Let Sprap and Spgrap be the subspaces estimated by the FLAD
and FELAD, respectively, in the population.

Proposition 9. Suppose that the fourth moment of X exists, and that SpraDp
and Spgr,AD are equal to Ty|x and SY‘X, respectively. Then, hgppap and hpgpap
are \/n-consistent estimators of h.

The assumption of Proposition 9 is relatively strong by requiring that the
subspaces estimated by the FLAD and FELAD in the population are equal to
Tyx and Eyx, respectively. The following proposition states that, even without
this assumption, the FLAD still gives a y/n-consistent estimation of at least a
portion of the dimension folding subspace Ty |x.

Proposition 10. Let 3 be the basis matriz of Sy |vee(x)- If E(vec(X) | BT vec(X))
is linear in BTvec(X) and var(vec(X) | BTvec(X)) is nonrandom, then the
subspace estimated by maximizing the FLAD objective function (3.1) is a \/n-

consistent estimator for at least a portion of the dimension folding subspace Ty x .
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5. Numerical Results

In our simulation studies, we use various SDR methods as competitors, in-
cluding the Folded-SIR, Folded-DR (Li, Kim and Altman (2010)), and (vector)
LAD (Cook and Forzani (2009)), and a very recently proposed method called
the Folded-DCOV (Sheng and Yuan (2020)), which is a moment-based dimen-
sion folding method using distance covariance. Sheng and Yuan (2020)) showed
that the DCOV outperformed two other dimension folding methods, the Folded-
MAVE (Xue and Yin (2014)) and Folded-PFC (Ding and Cook (2014)). There-
fore, in our simulations, we compare our results with those of the Folded-DCOV
only. We use the acronyms FSIR, FDR, LAD, and DCOV, respectively, for these
methods.

We compare the distance [P — Prl|r, where the matrix norm is the Frobe-
nius norm, and the misclassification error rates for several methods. The misclas-
sification error rate is obtained by classifying a testing data set with sample size
1,000 per class using the QDA. More specifically, after obtaining the dimension
folding subspace, we train the QDA classifier using the projected training data,
and then classify the projected testing data. For the FLAD, we use the proposed
initialization method, and for the FELAD, we use the result of the FLAD as
initial value. We report the average of subspace difference and misclassification
error rates based on 100 replicates. Because the DCOV algorithm runs slowly
unless p is small, we report the results for the DCOV based on 20 replicates.
Tables 1 and 2 report the means of the distances and the misclassification error
rates for all the replicates, as well as the corresponding standard deviations (in
parentheses).

5.1. Simulation studies under FLAD and FELAD model assumptions

In this section, we consider four examples that satisfy the model assumptions
(2.1) and (2.4) for the FLAD and FELAD. In our simulation studies, n represents
the sample size per class and AR(d, p) represents a d x d symmetric matrix, with
the (i, )-th entry equal to pl=7l,

Example 1. This example is also used in Li, Kim and Altman (2010). Let
d1 = dy = 2, and p; = po = 10. The response Y is a Bernoulli random variable.
The conditional distribution of X given Y is multivariate normal with conditional
mean

EX|Y =1) =0p,%p,, EX|Y =2)= ( I O2x (p,—2) ) 7
0(p1—2><2) 0(P1—2)><(p2—2)
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and conditional variances given by
o2, (i,j) €A 2, (i,j) € A
Lo (i,4) ¢ 4, Lo (i,)) ¢ A,

where 02 = 0.1, 72 = 1.5, and A is the index set {(1,2),(2,1)}. We assume that
cov(Xyj, Xij) = 0 whenever (i,7) # (i',7"). The dimension folding subspace is
spanned by {e; ® ej,e; ® ez,€3 ® €1,€2 ® ea}.

V&I‘(Xij|Y = 1) = { V&I"(XZ']'|Y = 2) = {

Example 2. In this example, the data X is correlated. Assume that p; = p2 = 15
and d; = do = 3. The number of classes is two. Let the index set A be the top
left 3x 3 block. Let E(X | Y =1)=0,E(X4|Y =2) =1, EX4 | Y =2) =0,
cov(Xa | Y = 1) = 1.5 x AR(9,0.3), cov(X4 | Y = 2) = 0.5 x AR(9,0.5),
and cov(X 4

Y =k)=1,p,-d,d,, for k = 1,2. Furthermore, we assume that
Xa L Xge. We randomly generate two orthogonal matrices O € RP1*Pr and
Oy € RP2XP2, Tet X = 0;X03 and I'y = T’y = (eg,eq,e3). The dimension

folding subspace is spanned by O2I's @) O T';.

Example 3. In this example, the covariance matrix after the projection is sep-
arable. The model is the same as that in Example 2, except that here, the
conditional covariance matrix of X4 is 0.8 x AR(3,0.2) ® AR(3,0.8) for class 1,
and 1.2 x AR(3,0.7) ® AR(3,0.3) for class 2.

Example 4. In this example, we consider a three-way tensor data. Assume
p1 =15, po = p3 =5, di = 3, and do = d3 = 2. Let the index set A be the
first 3 x 2 x 2 block tensor. We generate data in the same way as Example 2,
except that we change the conditional covariance matrix of X4 to AR(2,0.2) ®
AR(2,0.8) ® AR(3,0.5) for class 1, and to AR(2,0.7) ® AR(2,0.3) ® AR(3,0.3)
for class 2.

The results are shown in Tables 1 and 2. For Example 1, the elements of
X, are independent, and the covariance matrix is diagonal. The FLAD performs
best among all the methods, with the performance of the FELAD very close to
that of the FLAD. For Examples 2 and 3, the elements of X; are correlated, and
the covariance matrix satisfies the envelope covariance structure. When n = 300,
the FELAD gives the best subspace estimation and the lowest classification error
rate. When we increase the sample size to 600, the results of all five methods
improve, but the FLAD and FELAD remain superior to the other four methods.
In Example 4, we handle a three-way tensor data. Because Li, Kim and Altman
(2010) and Sheng and Yuan (2020) did not give the explicit algorithm for a
three-way tensor case, we use the mode-1 matricization of X for the FSIR, FDR,
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Table 1. The entries are the average subspace distances |Pg —Pr||r over 100 replicates,
and their standard deviations (in parentheses).

Models FSIR FDR LAD DCOV ~ FLAD  FELAD
gy =100 211 (0.27) 0.75 (0.23) 1.75 (0.20) 0.85 (0.23) 0.36 (0.05) 0.3 (0.07)
n=200 1.21 (0.21) 0.39 (0.06) 1.59 (0.04) 0.54 (0.09) 0.24 (0.03) 0.26 (0.04)

gy =300 3.83 (0.12) 1.08 (0.32) 3.70 (0.13) 0.72 (0.13) 0.70 (0.32) 0.67 (0.33)
n=600 3.76 (0.16) 0.60 (0.07) 2.88 (0.06) 0.58 (0.05) 0.44 (0.04) 0.37 (0.03)

gy =300 391 (0.09) 179 (0.47) 3.73 (0.07) 0.85 (0.11) 0.76 (0.20) 0.43 (0.21)
n=600 3.82 (0.13) 0.82 (0.08) 3.21 (0.06) 0.62 (0.11) 0.53 (0.03) 0.30 (0.03)

gy =300 4.59 (0.09) 430 (0.30) 2.84 (0.29) 1.97 (0.81) 0.61 (0.08) 0.40 (0.05)
n=600 4.36 (0.07) 2.32 (0.43) 4.32 (0.05) 1.69 (0.53) 0.41 (0.05) 0.22 (0.03)

Table 2. The entries are the average misclassification error rates over 100 replicates, and
their standard deviations (in parentheses).

Models FSIR FDR LAD DCOV FLAD FELAD
gy B=100 251 (42) 95 (L7) 469 (20) 9.0 (34) 6.5(0.9) 6.7 (L0)
n=200 12.0 (2.4) 5.7 (0.6) 25.2 (49) 6.4 (0.7) 5.2 (0.5) 5.2 (0.5)
gy 0=300 156 (0.7) 158 (0.7) 49.8(0.9) 5.2 (0.8) 52 (0.8) 5.0 (0.7)
n=600 14.9 (0.9) 13.7 (0.8) 32.2 (1.3) 4.5 (0.5) 4.5 (0.5) 4.4 (0.5)
gy D300 223 (12) 105 (13) 442 (14) 98 (0.8) 83(0.7) 7.6 (0.6)
n=600 21.3 (1.3) 7.8 (0.6) 28.4 (1.6) 8.1 (0.7) 7.3 (0.6) 7.1 (0.6)
gy B=300 213 (3.3) 218 (L1) 482 (2.0) 10.1(6.0) 7.3 (0.6) 7.0 (0.6)
n=600 19.6 (1.0) 8.6 (0.7) 39.9 (1.6) 8.8 (0.9) 6.7 (0.6) 6.5 (0.6)

Table 3. The number of correct BIC dimension selections out of 100 replicates.

FLAD FELAD FLAD FELAD
£l n=100 100 100 £2 n=300 100 100
n=200 100 100 n=600 100 100
B3 n=300 19 8 E4 n=300 93 66
n=600 100 100 n=600 100 100

and DCOV. Our methods, especially the FELAD, perform much better than the
FSIR, FDR and DCOV, because they are likelihood-based, which means they
have high asymptotic efficiency, and because FELAD takes advantage of the
envelope structure, which further improves the efficiency. Table 3 shows that the
BIC works well for sufficiently large sample sizes.
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Figure 2. Box plots for the subspace distances of Example 5 based on 100 replicates.

5.2. Simulation studies under violation of model assumption

In this subsection, we aim to show the performance of the proposed methods
when the model assumptions are violated. In Example 5, the envelope covariance
assumption (2.4) is violated; in Example 6, we consider a more general case when
the normal assumption (2.1) is violated. We continue to use the subspace distance
|[Ps — Pr||F as the measure of performance.

Example 5. This example shows the performance of FELAD when the envelope
covariance structure is violated. We set p; = po = 15 and di = do = 3. The
data are generated from a normal distribution. We set E(X | Y = 1) = 0,
E(X4|Y =2) =1, and E(X4 | Y = 2) = 0. The conditional covariance matrix
of X is set to AR(p — d,0.3), except the first 3 x 3 block, which is chosen as
1.5 x AR(9,0.3) for class 1, and as 0.5 x AR(9,0.5) for class 2.

Example 6. This example intends to show the robustness of the FLAD and
FELAD when the normal assumption is violated. We consider a forward re-
gression model, where we first generate n ii.d. samples X; € R!X10  then
generate Y; from a Bernoulli distribution with probability p(X;). The vector-
ization of the first 2 x 2 block of X follows a multivariate t-distribution with
mean zero and scale parameter AR(4,0.5). The other elements of X are gen-
erated from a x2-distribution with four degrees of freedom. The link func-
tion is chosen as p(X) = logit{2sin(Xyi7/4) + 2X2, + 2X3}, + 2X3,}, where
logit(xz) = 1/{1 + exp(—z)}.

Figure 2 shows the results of Example 5. Though the envelope covariance
assumption is violated, the FELAD still performs as well as the FLAD, which
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Figure 3. Box plots for the subspace distances of Example 6 based on 100 replicates.

demonstrates its robustness against the violation of the envelope covariance as-
sumption. Example 6, where the normal assumption (2.1) is violated, is the most
challenging one among all the examples. Figure 3 shows the results for Example
6. Owing to the heavy tail of the data and the violation of the model assumption,
the FLAD and FELAD give some bad estimates, but are still much better than
the other methods, especially when n = 600.

5.3. Gene time course data

This data set concerns clinical responses to treatment for multiple sclero-
sis (MS) patients based on gene expression time course data. The data were
originally described in Baranzini et al. (2005). Fifty-three patients were given
recombinant human interferon beta (rIFNg), which is often used to control the
symptoms of MS. Gene expressions were measured for 76 genes of interest be-
fore treatment (baseline) and at six follow-up time points over the subsequent
two years (3 months, 6 months, 9 months, 12 months, 18 months, 24 months),
yielding matrix data genes x times. Afterward, patients were classified as good
responders or poor responders to rIFNS based on their clinical characteristics.
There were 20 good responders and 33 poor responders in the 53 patients. The
dimension for this data set is 76 x 7. Using the BIC, we select d; = 1 and dy = 1.

We first use different dimension reduction methods, including the FSIR,
FDR, FLAD, and FELAD to estimate the dimension folding subspace. Then,
we apply the LDA and QDA separately to the projected data. For the QDA, the
variance of the projected data of one class is very small, so we add the constant
0.1 to the variances of both classes to make the QDA more stable. This process
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Table 4. Topl5 selected genes based on the FLAD and FELAD for gene time course
data, ordered from top-left to bottom-right.

Selected Genes
P53 RIP STAT4 CD28 Caspase4
FLAD STATG6 FLIP CD44 1L-10 IFNaR1
NFATC2(b) c¢cMAF ITGA RANTES CDS86
pH3 RIP STAT4 STATG6 CD44
FELAD FOS CD28 ITGA  FLIP STAT1
Caspase4 CD44 CD86 IL-4Ra IFN-gRa

Table 5. Misclassification error rates for the gene time course data.

F-SIR F-DR FLAD FELAD DWD
LDA 0.371 (0.077) 0.351 (0.074) 0.131 (0.041) 0.139 (0.043)
QDA 0.406 (0.079) 0.355 (0.075) 0.111 (0.034) 0.127 (0.035)

0.174 (0.037)

can be seen as a regularized discriminant analysis (Friedman (1989)). We use
five-fold cross-validation to get the misclassification error rate. The results are
shown in Table 5. We also report the cross-validation misclassification error rate
of the DWD proposed by Lyu, Lock and Eberly (2017), which is itself a discrim-
inant method. The FLAD and FELAD perform better than the other methods
in terms of the misclassification error rate for this data set.

In Figure 4, we show the coefficients of the basis matrices estimated by the
FLAD and FELAD. The topl5 genes with the largest absolute values of the
coefficients are shown in Table 4. The coefficients across time for the FLAD and
FELAD have little variability and no noticeable patterns. This suggests that the
distinction between good and poor responders is not driven by changes to the
gene expressions in response to IFNS, but by the baseline differences in the gene
expressions. This agrees with the results in Baranzini et al. (2005) and Lyu, Lock
and Eberly (2017).

To see how the envelope covariance structure works for this data set, we
calculate the correlations between the data projected onto the FLAD directions
and the data projected onto the orthogonal directions. If the envelope covariance
structure (2.4) is true, then these two parts are uncorrelated. Figure 5 shows
the histogram of the correlations. We find that most of the correlations are
smaller than 0.2, the peak of the histogram is smaller than 0.2, and the largest
correlation is smaller than 0.5, all of which show weak dependence between the
parts. Therefore the envelope covariance assumption is approximately true for
this data, and we can expect the FELAD to perform well.
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Figure 5. Gene time course data: Histogram for the absolute value of the correlations
between data projected onto the FLAD directions and onto the orthogonal directions.

6. Discussion

We have developed two likelihood-based dimension folding methods for tensor
analysis: the FLAD and the FELAD. The FLAD extends the general dimension
folding method to a likelihood-based method. The FELAD assumes a more ex-
plicit form of covariance that is commonly used in the envelope models. As a
result, the FELAD is able to further reduce the number of free parameters in the
dimension folding model. The encouraging performance of these two methods is
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demonstrated using both theoretical and numerical studies. The large covariance
matrix Xy in the objective function is a computational bottleneck in our meth-
ods for high-dimensional data. As a future research direction, simpler and more
restrictive structures for these covariance matrices, such as a spiked covariance,
can be used for high-dimensional data. We have shown in our theoretical studies
that the normality assumption in the FLAD and FELAD models is not crucial
for consistent estimation of the dimension folding subspace. This illustrates the
robustness of our proposed methods. Future research could further relax the
normality assumption to elliptical contoured, but potentially heavy-tailed distri-
butions. Whereas the LAD was developed in the regression context, our FLAD
and FELAD methods focus more on discriminant analysis. Nonetheless, the
methods are equally applicable to regression problems. In the Supplementary
Material, we included data on primary biliary cirrhosis to illustrate our methods
for a continuous response Y.

Supplementary Material

The online Supplementary Material contains proofs of all theoretical results,
technical details of the algorithm, and additional real data analysis.
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