Computer-Aided Design 148 (2022) 103242

Contents lists available at ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

A Parallel Variational Mesh Quality Improvement Method for
Tetrahedral Meshes Based on the MMPDE Method™**

Check for
updates

Maurin Lopez?, Suzanne M. Shontz ", Weizhang Huang

2 Goodyear Innovation Center, The Goodyear Tire and Rubber Company, Colmar-Berg, Luxembourg
b Department of Electrical Engineering and Computer Science, Bioengineering Program, Information and Telecommunication Technology Center,

University of Kansas, Lawrence, KS, USA

¢ Department of Mathematics, University of Kansas, Lawrence, KS, USA

ARTICLE INFO

Article history:

Received 31 January 2021

Received in revised form 11 December 2021
Accepted 25 February 2022

Keywords:

Parallel mesh quality improvement
Variational method

Tetrahedral mesh

Distributed computing

ABSTRACT

There are numerous large-scale applications requiring mesh adaptivity, e.g., cardiac electrophysiology,
computational fluid dynamics, fracture propagation, and weather prediction. Parallel processing is
needed for simulations involving large-scale adaptive meshes. In this paper, we propose a parallel
variational mesh quality improvement algorithm for use with distributed memory machines. Our
parallel method is based on the sequential method by Huang, Ren, and Russell and the recent
implementation by Huang and Kamenski. Their approach is based on the use of the Moving Mesh PDE
method to adapt the mesh based on the minimization of an energy functional for mesh equidistribution
and alignment. This leads to a system of ordinary differential equations (ODEs) to be solved which
determine where to move the interior mesh nodes. The MMPDE method successfully removes/reduces
the number of extreme dihedral angles, particularly those less than 20° or greater than 150°. An
efficient solution is obtained by solving the ODEs on subregions of the mesh with overlapped
communication and computation. Strong and weak scaling experiments on up to 128 cores for meshes
with up to 160M elements demonstrate excellent results.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

There are numerous large-scale scientific applications requir-
ing adaptive meshes with millions to billions of elements, e.g., [ 1-
6]. Such large computational simulations are possible due to
the availability of massively parallel supercomputers which in-
tegrate central processing units (CPUs) and accelerators, such as
graphics processing units (GPUs), Phi co-processors, and field pro-
grammable gate arrays (FPGAs). New parallel mesh generation,
parallel mesh adaptation, and parallel mesh quality improvement
algorithms have been developed to take advantage of these novel
architectures.

Although there are numerous parallel mesh generation algo-
rithms in existence (e.g., [7] and references therein and [8-12]),
fewer parallel mesh quality improvement algorithms have been
developed [13-20]. The methods presented in [13-15,18-20] are
solely devoted to improving the mesh quality, whereas the ones
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in [16,17] combine mesh untangling and mesh quality improve-
ment procedures. Our method is unique in that is a parallel
variational approach for mesh quality improvement. It is also a
serial-parallel consistent algorithm in that the same mesh quality
results will be obtained independent of the number of cores.
Many parallel mesh adaptation methods have been proposed
in recent years [21-31]; these methods construct a new mesh in
parallel either by performing local modifications of an existing
mesh or by analyzing the discretization error (through a poste-
riori error estimation) and using it to guide the remeshing. In
either case, a metric is used to specify the stretching directions
whenever anisotropic mesh adaptation is desired. The paper by
Digonnet et al. is a new variational approach for mesh adaptation
in parallel based on the use of an edge-based error estimator [30].
We also review the sequential methods developed for mesh
quality improvement and mesh adaptation given the role in lay-
ing the foundations in these areas. The vast majority of such
methods employ optimization techniques to improve the mesh
quality or to adapt the mesh to changes in the geometry or the
physics of the application. Optimization-based mesh quality im-
provement and mesh adaptation algorithms adjust the positions
of the node while preserving the mesh topology [32-48] or alter
the mesh topology while fixing the nodal positions [49,50].
Variational methods for mesh adaptation and mesh qual-
ity improvement have recently received considerable attention
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from the meshing community (e.g., [46,47,51-56]). Whereas most
optimization-based mesh quality improvement algorithms use
gradient-based techniques to minimize an objective function,
Huang and Kamenski [46,47] instead use the Moving Mesh PDE
(MMPDE) method to discretize and find the minimum of an
appropriately constructed meshing functional [57-59]. The min-
imizer of the meshing functional is a bijective mapping which
generates an improved quality mesh as an image of the initial
mesh.

In this paper, we present a novel, efficient parallel variational
mesh quality improvement algorithm and the corresponding im-
plementation for distributed memory machines [20]. Our paral-
lel method is based on the sequential method by Huang, Ren,
and Russell [51] and the recent implementation by Huang and
Kamenski [47]. The method finds the minimizer of a meshing
functional by solving a system of ordinary differential equations
(ODEs) for the nodal velocities. We first review the key concepts
of variational mesh methods and the implementation of the se-
quential MMPDE method in Section 2. In Section 3, we describe
our parallel variational mesh quality improvement method for
distributed memory systems, along with the implementation. Our
method employs a domain decomposition approach in order to
divide the workload among the cores. We reorganize the compu-
tation within each subregion in order to facilitate the overlap of
communication with computation. We analyze the computational
complexity of the method in Section 4. We carry out numerical
experiments on tetrahedral meshes and determine the strong and
weak scaling properties of the proposed method. The numerical
experiments and the associated results pertaining to the mesh
quality, runtimes (wall-clock time), and algorithmic scalability
are discussed in Section 5. We also include results from an indus-
trial example from the tire industry. We present our conclusions
on the work and several potential directions for future work in
Section 6.

2. Variational mesh adaptation methods

In this section, we present an overview of variational mesh
adaptation and the corresponding methods. In the variational ap-
proach, an adaptive mesh is generated as the image of a reference
mesh under a coordinate transformation. The coordinate transfor-
mation is determined as the minimizer of a meshing functional.
The mesh concentration is typically controlled through a scalar or
a matrix-valued function. This is referred to as the metric tensor
or monitor function. Monitor functions are defined based on error
estimates and/or physical considerations.

Several authors have reported on variational mesh adaptation
methods with various types of meshing functionals. For example,
Winslow [60] developed an equipotential method based on vari-
able diffusion. Brackbill and Saltzman developed a method com-
bining mesh concentration, smoothness, and orthogonality [61].
Dvinsky developed another approach based on the energy of
harmonic mappings [62]. Variational methods based on the con-
ditioning of the Jacobian matrix of the coordinate transformation
were developed by Knupp [32] and Knupp and Robidoux [58].
More recently, equidistribution and alignment conditions were
used by Huang [63] and Huang and Russell [64] to develop mesh
adaptation methods.

The Moving Mesh PDE (i.e., MMPDE) method, which was pro-
posed by Huang, Ren, and Russell in 1994 [51] is the basis upon
which many other variational mesh adaptation methods have
been developed. In 2015, Huang and Kamenski developed a more
efficient implementation of the serial MMPDE method [47].
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2.1. New implementation of the variational mesh adaptation method

In this subsection, we focus on Huang and Kamenski's new
implementation of the MMPDE method [47]. Consider a domain
2 Cc RY(d > 1) and let 7; = {K} be a simplicial mesh containing
N elements and N, vertices on §2. Denote the affine mapping
Fx : K — K and its Jacobian matrix by F;, where K is the master

element. Let the edge matrices for K and K be Ex and E, i.e.,
B =[x —x§,.... E=[&—&.....& — &),

where x ,i=0,...,dand &,i=0, ..., ddenote the coordinates
of the vertices of K and K respectlvely Notice that Fy, Ex, and
E are related by F, = EKE 1. Assume that a metric tensor (or
a monitor function) M = M(x) is given on £2 which provides
directional and magnitude information for the elements.

A key idea of the MMPDE method is to view an adaptive mesh
as a uniform one in the metric M in the sense that the size of all
elements K in the metric My is the same, and all elements K in
the metric My are similar to K.

These two properties give rise to the equidistribution and
alignment conditions:

IK|/det(My) = %

1
St ((F )™M Fy) = det ((F¢) MKF,/() . VK € Th,

K K
X; —Xg1,

VK € T

where |K] is the volume of K, o, = Y |K|+/det(My), and tr(-)
and det(-) denote the trace and determinant of a matrix, respec-
tively. Notice that |K|./det(M ) is the volume of K in the metric
M. Moreover, the first condition, the equidistribution condition,
determines the size of elements through the determinant of M.
The larger det(My) is, the smaller |K| is. On the other hand, the
second condition, the alignment condition, determines the shape
and orientation of K through M. Indeed, it can be shown [64]
from the condition that the principal axes of the circumscribed
ellipsoid of K coincide with the eigendirections of My, and their
semi-lengths are inversely proportional to the square root of the
corresponding eigenvalues of M.

Then an energy function for the equidistribution and align-
ment conditions is given by

1[7h] = Z |1<|
2
+ Z K| gdd,/det(MK)(&“m)) , (1)
% K

det(M

/det(Mi) (tr(Invg "))

where J = (Fp)™! = E‘E,Z]. Minimization of the energy function
will result in a mesh that closely satisfies the equidistribution
and alllgnment conditions. It is worth pomtmg out [65] that
tr(JM, 'J7) is mathematically equivalent to l/aK w Where ag i
denotes the minimum height of K in the metric M. The appear-
ance of this factor in the energy function plays a crucial role in
preventing the mesh from tangling.

The MMPDE moving mesh equation is then defined as the
(modified) gradient system of I[73], i.e.,

dx  det(M)d AI[Tal

= . i=1,....N,,

dt T 0X;

where 7 > 0 is a parameter for adjusting the response time scale
of mesh movement to the change in M.

For mesh quality improvement, we choose M =1 (and t = 1),
which means we want the mesh to be as uniform as possible in
the Euclidean space. In this case, the moving mesh equation reads
as

dxi
E = Z |K|V'1<

Kew;

i=1,...,N,, 2)
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Fig. 1. Example tetrahedral meshes for a cubic domain and two mechanical parts. The meshes contain 2636 nodes and 10,999 elements for (a), 5715 nodes and

22,155 elements for (b), and 3257 nodes and 11,464 elements for (c).

where w; is the element patch associated with x;, ik is the local

index for x; on K, and v;, is the local nodal velocity contributed

by K to the node x;. The analytical formula of the local nodal

velocities is given in [47]. In the case when M =T,

vr

1 -1 -1 dGk ~ -1

| = Ok B o EE

)"
3Gy det(E) _, (3)

d det(J) det(Ex) ¥’
d
Wi ==Y (v
j=1
where

1 1
Gk = 5 (tl‘(JJT))d + gdd det(J)z,

BGK 2d T d—1 T
— = — (t ,
=3 (r@ah)™ 1
3Gy 2
——— = Zd%det(]).
dderq) 37 40

The nodal velocities of the boundary nodes are set to 0. They
can also be modified to let the boundary nodes slide along the
boundary. In our computation, the nodes at corners and on edges
are fixed, while those on domain faces are allowed to slide along
the faces.

To determine the locations of the interior nodes, Eq. (2) is then
solved using the adaptive fourth-order Runge-Kutta-Fehlberg
ODE solver (RKF45); see Section 3. It has been shown analytically
and numerically in [65] that the mesh generated by the MMPDE
moving mesh equation will stay nonsingular (i.e., no crossing nor
tangling will occur) if it is nonsingular initially. In particular, for
the energy function (1) with M = T, it is shown that the minimum
height of elements is bounded below by

ax > C,N~4, VK e T,

where C; is a positive constant depending on the value of the
energy function at the initial mesh.

To perform other types of mesh adaptation, one simply needs
to change M to something other than I. Although this capability
is part of the serial implementation, the parallel implementation
is currently only capable of performing mesh smoothing.

2.2. Mesh examples for quality improvement

Numerical examples for mesh quality improvement using the
MMPDE method described in the previous subsection have been
reported in [66,67]. For completeness, we present several exam-
ples in three dimensions here. Fig. 1 shows three example meshes
generated by TetGen [68] for a cubic domain and two mechanical

Table 1

Distributions of dihedral angles for meshes before and after MMPDE

smoothing.
For mesh in Fig. 1(a)
Angle (°) Before After Angle (°) Before After
0-10 43 0 90-100 5,357 5,117
10-20 937 29 100-110 3,460 3,677
20-30 2,246 1,464 110-120 2,211 2,686
30-40 4,862 6,341 120-130 1,369 2,035
40-50 8,277 9,508 130-140 921 1,150
50-60 10,480 10,640 140-150 567 128
60-70 9,974 9,295 150-160 346 1
70-80 8,349 7,750 160-170 123 0
80-90 6,472 6,173 170-180 0 0
For mesh in Fig. 1(b)
Angle (°) Before After Angle (°) Before After
0-10 302 18 90-100 11,334 10,966
10-20 3,994 2,837 100-110 6,731 6,973
20-30 7,987 8,421 110-120 5,299 5,622
30-40 12,090 13,486 120-130 4,333 4,823
40-50 15,341 15,678 130-140 2,784 3,553
50-60 16,903 16,856 140-150 1,712 1,583
60-70 14,946 15,141 150-160 923 364
70-80 15,978 14,485 160-170 337 4
80-90 11,936 12,120 170-180 0 0
For mesh in Fig. 1(c)
Angle (°) Before After Angle (°) Before After
0-10 162 0 90-100 6,584 5,688
10-20 1,944 720 100-110 3,846 4,216
20-30 4,220 4,730 110-120 3,049 3,218
30-40 6,003 6,696 120-130 1,876 2,168
40-50 6,651 7,673 130-140 1,032 1,449
50-60 8,972 8,420 140-150 650 478
60-70 8,349 8,554 150-160 451 26
70-80 8,405 7,796 160-170 139 0
80-90 6,449 6,950 170-180 2 2

parts, respectively. The MMPDE method is used (with the final
time taken as t = 1) to improve the quality of these meshes.
The distributions of the dihedral angles for the meshes before and
after the smoothing are listed in Table 1. From the results, we can
see that the MMPDE method is effective in removing/reducing the
number of extreme angles and, in particular, those less than 20°
or larger than 150°. This is consistent with observations made for
other variational smoothing methods; e.g., see [34,39]. It is worth
pointing out that this effectiveness depends on the geometry of
the domain. For example, the MMPDE method eliminates nearly
all angles less than 20° or larger than 150° for the cubic domain.
On the other hand, the method eliminates nearly all of those
angles less than 10° or larger than 160° for more complicated
domains in Fig. 1(b) and (c). Interestingly, there are two angles
larger than 170° in Fig. 1(c) that cannot be removed by the
smoothing method.
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3. Parallel variational mesh quality improvement algorithm

In this section, we present our novel parallel algorithm and
implementation for distributed memory systems based on the
moving mesh method described in the previous section.

3.1. Sequential algorithm

For the sequential algorithm, the adaptive fourth-order
Runge-Kutta Fehlberg ODE solver (RKF45) with fifth-order error
estimator is employed to solve Eq. (2) (see [69] for details). The
RKF45 method approximates the solution of an ODE system in
the form
dy

i =f(t.y) (4)

using a non-constant, optimal step size dt in each iteration.
The method determines the step size dt in each iteration by
comparing a fourth-order approximation, y;,, and a fifth-order
approximation, zi,1, to the solution. These approximations are
given by

25 1408 2197 1

Yirr =Vit gk 4 oegsks + gggke — ks ()
and

16 6656 28561
Zi =Yi+ gk ogosks + 530k 6)

9 ks + 21
— —ks + —ks,
50 " 55°

respectively. Here
ki = dif (&, yi),

1 1
ko = dtf (fi + Zdtv.yi + Zlﬁ) ,

3 3 9
ks =dtf [ t; + =dt,y; + —k —k
<3 f<1+8 ,y1+321+32 2)7

12 1932, 7200
ke = dif (t; + —dt,yi + ——ky — ———
ka = dif ("+ YT 31979 T 2197
729,
—k s
2197 (7)
439 3680
ks = dtf ( t; +dt,yi + —k; — 8ky + ——k
5 f<z+ Yx+2161 2+513 3

845
———ka |,
4104 )

1 8
ke = dtf <fi + Edf,y,‘ - Ek] + 2k —

L1859, 11,
4104 % a0 )"

The error is given by the co-norm of the difference between the
two solutions, i.e., err = ||ziy1 — Yi+1lloo. If err is smaller than a
given tolerance, tol, then the solution, y;, 1, is accepted. One can
show that the optimal step size is given by q * dt, where

1
tol « dt \ 4
err '

3544

2
2565 °

qg=0.84 ( (8)

In Algorithm 1, (i.e., the algorithm for the method proposed
in [47]), the calculation of the nodal velocities is directly related
to the calculation of the k;, which is the most computationally-
intensive step (i.e., step 5). To calculate the values, k;, in the RKF45
method, the algorithm loops over all elements calculating partial
nodal velocities for each node. This requirement is the basis for
our distributed data approach in the parallel algorithm.
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Algorithm 1 Sequential variational mesh quality improvement
algorithm.
1: Input: nodal coordinates, topology, boundary nodes
2: Define: Initial dt, tgna, tol, t =0,i=0
3: while (t < tgna) do
: for each node in the mesh do

4

5: Compute k; — kg from Eq. (7) and the ODE in Eq. (2)
6: end for

7 Compute y;;1, zir1 (Egs. (5) and (6)) and error (err)

8 Compute dt = q * dt where q is given by Eq. (8)

9 if (err < tol) then

10: Accept y;y1 as a solution

11: else

12: Compute dt = max(q * dt, 0.1 x dt);
13: end if

14: Compute t =t + dt
15: end while
16: Output: new nodal coordinates

3.2. Overview of the parallel algorithm

In this subsection, we highlight three important aspects of our
parallel algorithm (Algorithm 2): the distribution of the work-
load, the communication strategy, and the termination criteria.
Although there exist multiple strategies to distribute the work
among cores, we employ a domain decomposition approach in
which we divide the domain into p regions, where p is the
number of cores (i.e., steps 4 and 5 in Algorithm 2). Each region is
(ideally) composed of one connected component; see Fig. 2. Fig. 2
illustrates an example of a domain decomposed into four regions
where no edges are cut at the boundary between regions. We use
this approach because according to Eq. (3) the nodal velocity of a
particular node x;,, such as the one in Fig. 3, is calculated based
on the edge matrices of elements E1, E,, E3, E4, and Es. Therefore,
a decomposition of the elements of the domain into regions is
the strategy that yields the best performance. To accomplish this,
we use METIS [70], which is a library for partitioning meshes and
graphs. We employed the mpmetis scheme to partition the mesh
into regions so that each region has roughly the same number of
elements and the number of interfaces between adjacent regions
is minimized.

Once we have the mesh partition, core Py reads and distributes
the information concerning the topology and nodal coordinates
to the rest of the cores. In this step, each core creates a list
(SharedNodes_p[]) whose size is equal to the number of nodes
along partition boundaries (i.e., the number of shared nodes).
Each core stores partial nodal velocities to specific locations in
the list and fills-in the rest with zeros.

Whereas each core computes the new nodal positions for
the interior nodes of its corresponding region, the new nodal
positions for nodes along partition boundaries (corresponding to
the shared nodes) require communication and verification steps
(i.e., steps 4 and 6 in Algorithm 3). In our parallel algorithm, all
communication steps are reduction operations. To compute the
new nodal positions for shared nodes, we perform a reduction
operation (summation) over the list SharedNodes_p[] in which
we store the partial nodal velocities of the shared nodes. Fig. 4
illustrates this process; it shows a domain which is partitioned
into four regions. For simplicity, we assume that v, v,, v3, vy
and vs are the only nodes shared among the regions. A reduction
operation (summation) over the list SharedNodes_p [] will pro-
vide to every processor the full nodal velocity for the five nodes in
the boundary. We also need communication steps to calculate the
global error (i.e., step 16 in Algorithm 2) and the average mesh
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Fig. 2. Example of a 2D domain partitioned into four regions. (For interpretation

of the references to color in this figure legend, the reader is referred to the web
version of this article.)

P

%

E;
P;

Fig. 3. Patch of elements with x,, as one of its vertices.

quality (i.e., step 24 in Algorithm 2). To calculate the global error,
we require a reduction operation to calculate the maximum. We
also require a summation reduction for the average mesh quality.

Finally, we employ a tetrahedral mesh quality metric in order
to evaluate the quality of the mesh on each iteration. We utilize
the mesh quality information in the termination criteria. The
mesh quality metric (a version of the aspect ratio) implemented
in our algorithm is given by

CR
1= 5k ©)
where CR is the circumsphere radius, and IR is the inscribed
sphere radius. For this metric, ¢ € [1, 00) where ¢ = 1.0 is

the optimal mesh quality. We terminate the parallel variational
mesh quality improvement algorithm when the difference in
the average mesh quality on two consecutive iterations is small
(i.e., less than a specified tolerance).

3.3. Overlapping communication with computation

As we mentioned before, the most computationally-intensive
step in the parallel variational mesh quality improvement algo-
rithm is the computation of the nodal velocities. For the mesh in
Fig. 3, core P; is unable to compute the nodal velocity for node
X, because the core does not have access to elements E; and Es.
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Algorithm 2 Parallel algorithm for variational mesh quality
improvement.

1: Input: nodal coordinates, topology, boundary nodes, domain
decomposition information

: Define: Initial dt, errtol, tol, and t =0

: /| Mesh partition, and data structure creation

: Partition the mesh using METIS

: Create and distribute data structures among cores

: Compute: local and global mesh quality Qe
MPI_lallreduce

7: Split elements into two sets, Elements_interior[] and

Elements_bndry[]

8: Check that the communication is completed (MPI_Wait)

9: Set Qug = 1.0

10: /| Solve differential equation Eq. (2)

11: for all p cores in parallel do

12: while (|Qgg — Qnew| > errtol) do

DU W N

using

13: Qoid = Qnew

14: Compute k; using Algorithm 3

15: Compute y;1, zi+1 (Eq. (5) and Eq. (6))

16: Compute local error (err) and apply MPI_Allreduce to
obtain global error

17: Compute dt = q * dt, where q is given by Eq. (8)

18: if (err < tol) then

19: Accept y;y1 as a solution

20: else

21: Compute dt = max(q * dt, 0.1 * dt)

22: end if

23: Compute t =t + dt

24: Compute: local and global mesh quality Qye, using

MPIL_lallreduce
25: end while
26: end for
27: Output: New nodal coordinates

Algorithm 3 Subroutine to compute k; in Algorithm 2.

1: for i=1to 6 do

2: Compute k; from Eq. (7) using only nodes
Elements_bndry[]

3: Copy shared nodes (from k;) to a global shared node array
inp

4: Communicate and sum all global shared node arrays
(MPLIallreduce)

from

5: Compute k; from Eq. (7) using only nodes from
Elements_interior[]
6: Check that the communication has been completed

(MPI_Wait)
Update k; with new shared node information
8: end for

~

Therefore, P; calculates only a portion of the nodal velocity at this
node. The same is true for core P;.

According to the previous description, we design the paral-
lel algorithm such that every core P; loops once over its own
elements to calculate the nodal velocities for the interior nodes
within a region. However, for shared nodes, the nodal velocities
are incomplete. Therefore, in this case, e.g., for x,, in Fig. 3,
cores P; and P; store the partial nodal velocities in the
SharedNodes_p[] list. Finally, the nodal velocities for the shared
nodes require a reduction operation (summation) over
SharedNodes_p[] and a verification step (i.e., steps 4 and 6 in
Algorithm 3).
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Fig. 4. Example of a 2D domain with a partition composed of four regions which share only the nodes in red, i.e., vy, v, v3, v4 and vs.

Elements_interior[]

A2 E «—Elements_ bndry[]

Fig. 5. The lower-left region of the domain in Fig. 2 is further subdivided into
two data structures to allow the overlap of communication with computations.

It is possible to overlap the communication and computation
and reduce the overall runtime by reorganizing the data in the
data structures and the employment of non-blocking communica-
tion MPI commands. In a non-blocking communication strategy,
the algorithm does not wait for a communication to be completed
once it is initiated. Thus, instead of waiting to complete a send-
receive structure, the algorithm will continue working and it will
check regularly if the communication was completed. To this
end, each core splits the list of local elements Elements_proc[]
into two new lists, i.e, Elements_interior[] and
Elements_bndry[] (i.e. step 7 in Algorithm 2). The algorithm
stores the elements that contain at least one shared node in
the data structure Elements_bndry[], whereas the elements
whose nodes are interior nodes are stored in
Elements_interior[]. To illustrate this internal subdivision
within each region, let us consider the case of the 2D domain
divided into four regions depicted in Fig. 2. The region in red
(i.e., the lower-left region) is further subdivided as shown in
Fig. 5. Thus, we calculate the nodal velocities in two steps (i.e.,
steps 2 and 5 in Algorithm 3). After the first step, the algorithm
will have partial nodal velocities for the shared nodes. Therefore,
we can initiate the communication using the non-blocking collec-
tive command MPI_Ilallreduce and simultaneously we calculate
the nodal velocities for the interior nodes (i.e., steps 4 and 5 in
Algorithm 3). Once the algorithm finishes the calculation of nodal
velocities for the interior nodes, the algorithm checks to see if
the communication has completed using MPI_Wait (i.e., step 6 in
Algorithm 3). Finally, the algorithm updates the nodal velocities
for the shared nodes (i.e., step 7 in Algorithm 3).

4. Parallel runtime analysis

In this section, we discuss the runtime performance of the
parallel algorithm described in the previous section. In particular,
we analyze the average parallel runtime.

First, we assume the partition of the initial mesh is given to the
algorithm as input data. Recall that we use METIS to accomplish
this step. Once the algorithm reads the input data, core Py dis-
tributes the information among cores according to the partition
file. This overhead computation is performed sequentially and
occurs just once throughout the execution of the algorithm. We
assume this step takes ty time.

Since we performed the mesh partitioning step over the ele-
ments of the mesh, assuming that N is the total number of mesh
elements, each core contains (ideally) [N/p] elements. With this
information, the splitting operation performed within each region
to overlap communication with computation takes [N/p](d + 1)
operations, where d is the dimension. This step is also performed
once in the algorithm.

For the next step, we solve the differential Eq. (2) by cal-
culating the values k;. To calculate k;, the algorithm loops over
the mesh elements. If the maximum time to calculate the nodal
velocity for each node is t,,, then the total serial time to calculate
the nodal velocities is N(d 4 1) t,,. Therefore, the parallel time is
[N/p]1(d + 1)t,,. Moreover, we define the number of elements
containing at least one shared node in the region corresponding
to core P; as NS(,':"), and the number of elements containing only

interior nodes as Ni(:t"). Note that [N/p] = NS(E‘) + Ni(,':["). For the
communication process, first, we extract the local shared nodes.
Assuming the time to copy one node from the local to the global
list is t. and the number of shared nodes in the mesh is Vg, then
this step takes Vg, t. time. Similarly, assuming that the time to
send a vector with Vg, nodes is t;, the communication process
takes log,(p) ts + p Vsu t.. Note that this was implemented as a
non-blocking communication process using the computation time
Ni(,’,’[)(d + 1) t,, to overlap communication and computation. Thus,
the time to compute these two processes is Tc;o:q;, Where

Tine, if Tine > Teomm,

. 10
Tine + |Tint — Teomm|, Otherwise. (10)

Tctota = {

Here Tipe = Nl‘(,ft)(d + 1) tun and Teomm = Ing(p) ts +pVan tc.

To copy the information from the global to the local list in each
core costs Vg t.. Assuming that the time to compute the error in
each coordinate of each node is t,, the total serial time is N(d +
1)d t.. In parallel, it is [N/p](d + 1)d t, plus the time to calculate
the maximum error among cores, which is log,(p). Finally, if t; is
the time to calculate the quality of one element, then Nt, is the
time to calculate the quality for the serial algorithm, and [N/p1t,
is the time for the parallel one. The time to calculate the average
quality among cores is log,(p). With this information, the total
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Fig. 6. Schematic representation of Algorithm 3.

parallel time per iteration is

Tp =p Vi tc + 210g,(p) + (d + 1)(TN/DTsh ton
+ [N/pldte) + [N/plty + Tcrotar-

At this point, we should examine Algorithm 3 which is responsi-
ble for the majority of the computations (and possibly the major
source of overhead due to communication) in Algorithm 2. A
schematic representation of Algorithm 3 is shown in Fig. 6. Recall
that the computation of k; is divided in two steps. In the first one,
k; is computed on shared nodes stored in Elements_bndry[].
Although the size of the list Elements_bndry[] is approxi-
mately equal on each core, we still need to synchronize before
starting the communication process and the computation of k;
in Elements_interior[] in the second step. In the latter, we
expect to reduce the overhead due to communication by over-
lapping communication with computations. The major source of
overhead due to communication in Eq. (11) is Tcee and p Vi te
due to the fact that the number of shared nodes always increases
with the number of mesh elements and the number of cores;
therefore, p Vi, t. increases. Hence, excellent timing results are
expected in the cases for which the number of interior nodes in
each partition is large compared with the number of shared nodes
in the mesh.

(11)

5. Numerical experiments

Our algorithm was implemented in C/C++ using the message-
passing interface (OpenMPI version 1.8.7). We ran our experi-
ments on the high performance computing cluster available to
us through the Advanced Computing Facility (ACF) at the Uni-
versity of Kansas. More specifically, we ran the experiments on
twenty-one Dell R730 servers, each of them equipped with 2x
dodeca-core Intel Haswell processors running at 2.5 GHz with
128 GB of RAM, 1TB HDD, and FDR Infiniband. It should be noted
that we employed any subset of cores that were available to us
for our experiments. For example, when running on 32 cores, our
code may have been assigned by the scheduler to run on 20 cores
on node 0 and 12 cores on node 1, on 16 cores on node 0 and 16
cores on node 1, on two cores each for nodes 0 to 15, or another
such arrangement. This has implications for the communication

(a) (b) (c)

Fig. 7. Domains used to test the parallel algorithm: (a) bust, (b) bracket and (c)
double cam tool.

time (and hence the runtime), as the time required for intra-
node communication is less than that required for inter-node
communication. Hence our experiments involve averaging of the
runtimes from several runs of the code.

To test the performance of our parallel algorithm, we con-
structed several tetrahedral meshes based on three geometries
from various applications and with different characteristics. Fig. 7
illustrates the three-dimensional domains used in our experi-
ments. We chose the geometries from different online databases:
Fig. 7(a) is part of the 3dcadbrowser project [71], while Fig. 7(b)
and (c) are part of the French Institute for Research in Com-
puter Science and Automation (INRIA) databases [72]. We used
GHS3D [72] and MeshLab [73] to generate a new surface mesh
and to scale the domain to meet our needs. Based on these
surface meshes, we generated tetrahedral volume meshes using
Tetgen [68] with the numbers of elements specified in Tables 2
and 3. Finally, we randomly perturbed the nodes of each mesh
to reduce their quality. The resulting tetrahedral meshes were
then used to test the performance of our parallel variational mesh
quality improvement (Parallel VMQI) algorithm. We used the
meshes for the bust and the double cam tool domains to test the
algorithm for strong scaling, whereas the meshes for the bracket
domain were employed to test weak scaling.
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Table 2
Size of tetrahedral meshes for the bust and the double cam tool domains.
Mesh # Nodes # Elements
Bust 12,895,493 80,000,012
Double cam tool 7,089,753 41,405,684
Table 3
Various mesh sizes for the bracket domain.
Mesh # Nodes # Elements
450,960 2,500,032
864,028 5,000,025
Bracket 1,716,222 9,999,990
3,269,784 19,999,978
6,497,224 40,000,000
12,957,609 80,000,037
24,177,335 159,745,245

Fig. 8. 80M element tetrahedral mesh of the bust domain.

For our first experiment, we employed a tetrahedral mesh
with approximately 80M elements for the bust domain (see
Fig. 8). We ran the algorithm with various numbers of cores
using dt = 1074, errtol = 107>, and tol = 0.001 as input
parameters (see Algorithm 2). These values guarantee that the
algorithm will run until convergence with an absolute error of
less than errtol = 107>, Fig. 9 shows the average mesh quality
versus the number of iterations. This demonstrates the ability of
the algorithm to improve the average mesh quality as measured
by the aspect ratio beta metric.

Fig. 10(a) and (b) show that for a small number of cores, the
runtime, and speedup achieved by the parallel algorithm are very
close to the ideal ones. A small deviation from the ideal speedup
for a larger number of cores is also observed. The deviation is
more pronounced at sixteen cores, and it does not grow much
for a greater number of cores. It is clear that the pre-processing
step (distribution of nodes, elements, and boundary nodes and
identification of shared nodes) is a major source of overhead
that significantly contributes to the discrepancy between the
calculated and ideal speedup. On the other hand, when the num-
ber of interior nodes on each core is high compared with the
number of shared nodes, it is more likely that the communication
steps (when solving the differential equations) overlaps with the
calculations of the nodal velocities for the interior nodes; there-
fore, the communication steps contribute less to the performance
degradation in such a case. The runtimes reported in Fig. 10
are the average obtained from five runs; the numerical values
are reported in Table 4. Note that the runtime decreased from
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Fig. 9. Average quality versus number of iterations for the 80M element
tetrahedral mesh of the bust domain.
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Fig. 10. (a) Total runtime and (b) speedup for the Parallel VMQI algorithm for
the 80M element tetrahedral mesh of the bust domain.

nearly 28 h on 1 core to approximately 14 min on 128 cores. It
is expected that the runtime would decrease further if more than
128 cores were employed.

Our second experiment is a strong scaling experiment using
the double cam tool domain and a tetrahedral mesh with ap-
proximately 40M elements (see Fig. 11), which is approximately
half the number of elements used for the first experiment. We
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Table 4
Runtime values (average for five runs) for the bust geometry for various numbers
of cores.

# Cores Time (s)
1 100,645
2 54,257
4 28,554
8 14,179
16 7,507
32 3,390
64 1,685
128 839

Fig. 11. 40M element tetrahedral mesh of the double cam tool domain.
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Fig. 12. Average quality versus the number of iterations for the 40M element
tetrahedral mesh of the double cam tool domain.

decided to include this test case so as to measure the performance
of the algorithm when the number of interior nodes per core
is reduced. In this case, it may be more challenging to overlap
communication with computation in an effective manner. The
initial parameters (dt, errtol, tol) are the same as in the first
strong scaling test. Fig. 12 shows the average mesh quality versus
the number of iterations for this tetrahedral mesh.

Fig. 13(a) and (b) show the total runtime and speedup for
the 40M element mesh of the double cam tool. The numer-
ical runtime values are reported in Table 5. The results are,
in general, similar to the ones for the first test case. For this
mesh, the algorithm required approximately 10 h on one core;
the runtime decreased to approximately 5 min on 128 cores.
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Fig. 13. (a) Total runtime and (b) speedup for the Parallel VMQI algorithm for
the 40M element tetrahedral mesh of the double cam tool domain.

Table 5
Runtime values (average for five runs) for the double cam tool geometry for
various numbers of cores.

# Cores Time (s)
1 35,990
2 18,094
4 9,037
8 5,009
16 2,512
32 1,277
64 637
128 312

Again, further decrease in the runtime is expected if additional
cores are employed. These results demonstrate that our parallel
algorithm scales very well with the high-performance computing
resources utilized at the University of Kansas. It is worth noting
that the maximum number of cores reported in our experiments
was limited by cluster size and accessibility at the time of our
experiments.

We have also computed the distributions of dihedral angles for
meshes in Figs. 8 and 11 before and after smoothing (see Table 6).
Similar to the examples in Section 2, the algorithm is able to
reduce significantly the number of extreme angles, in particular,
those less than 10° or larger than 160°.

We attribute the good results from the previous two examples
to the ability of our parallel algorithm to overlap communica-
tion with computation, thus reducing the runtime. When this is
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Table 6
Distributions of dihedral angles for meshes in Figs. 8 and 11 before and after
parallel MMPDE smoothing.

For mesh in Fig. 8

Angle (°) Before After Angle (°) Before After
0-10 71,830 12,831 90-100 102,330,333 104,250,999
10-20 812,680 258,845 100-110 16,986,746 14,925,345
20-30 7,658,455 7,857,632 110-120 10,205,043 10,583,342
30-40 17,793,713 17,576,532 120-130 7,236,446 7,167,455
40-50 33,470,968 32,721,591 130-140 4,840,265 4,817,223
50-60 62,018,559 61,957,342 140-150 3,036,390 3,084,461
60-70 80,980,238 82,530,926 150-160 1,138,502 984,549
70-80 73,574,498 73,544,091 160-170 75,808 521
80-90 57,761,175 57,726,091 170-180 8,422 295
For mesh in Fig. 11
Angle (°) Before After Angle (°) Before After
0-5 36,836 6,580 80-110 53,502,735 53,462,051
5-10 416,759 132,741 110-120 8,711,152 8,679,664
10-20 3,927,413 4,029,555 120-130 5,694,894 5,632,483
20-30 9,124,981 9,013,606 130-140 3,714,280 3,675,618
30-40 17,164,599 16,803,893 140-150 2,482,187 2,470,371
40-50 31,804,389 31,772,996 150-160 1,557,139 1,581,775
50-60 41,548,840 42,323,552 160-170 583,847 505,404
60-70 37,986,922 38,227,739 170-175 38,876 85
70-80 30,133,936 30,115,944 175-180 4,319 47
4
3.5 ;
Il Computations
. 3f [ /Communication
[72]
.g 25 |
(=]
[$]
D 2
[72]
[}
E 1}
[
0.5 |
]
32 64 128
Number of cores
(a)
1.8 .
1.6 4
ia I Computations
w [ |Communication
T 1.2 ]
c
[=]
o 1 ]
(<]
n
= 08 [ E
=
@ 0.6 4
£
j= 04 4
0.2 I 4
oL 1 Il — | wﬁ
32 64 128

Number of cores

(b)

Fig. 14. Communication and computation times employed for one iteration to
calculate the nodal velocities in one region of (a) 80M element mesh of the bust
domain and a (b) 40M element mesh of the double cam tool domain.

possible, the major source of performance degradation, i.e., TC¢q
from Eq. (10), is reduced. Fig. 14(a) and (b) show the computation
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Fig. 15. 20M element tetrahedral mesh of the bracket domain.
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Fig. 16. Runtime versus number of cores to test the weak scaling efficiency.

and communication time for the bust and double cam tool test
cases. The computation time is the time used by one core to cal-
culate the nodal velocities for the interior nodes in its own region;
the communication time is the time employed to communicate
the shared nodes. Note that, for these two cases, the computation
time is always significantly higher than the communication time,
which guarantees good algorithmic performance. Also, it is ex-
pected that the computation time is reduced by half each time we
double the number of cores. However, the communication time
does not show a clear growth pattern. Theoretically, for the ideal
case, the communication time should exhibit logarithmic growth,
but in practice this is not the case. For our case, the communica-
tion time is related to the architecture of the cluster and with the
distribution and availability of nodes and cores at runtime. More
tests are needed with a greater number of cores and various mesh
sizes to examine the growth in communication time to determine
if complete overlap is still possible. It is important to note (based
on the previous results) that it is very likely that good speedup
results will be obtained when employing up to 128 cores for any
mesh size. This number of cores is often sufficient for simulations
involving practical engineering applications.

We also performed a weak scaling test, which investigates
how the solution time changes with respect to an increasing
number of cores (and assuming a constant workload per core),
using various tetrahedral meshes for the bracket domain (see
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Fig. 17. Quality versus number of iterations for the bracket domain with (a)
2.5M, (b) 10M, and (c) 40M elements.

Table 3 and Fig. 15). For this experiment, we used the same
parameters as in the previous test case, except for the initial dt
value, which was dt = 107 for this case. We made this change
to better control the number of iterations in each computational
simulation. Fig. 16 shows the weak scaling result for the algo-
rithm. We observe a small oscillation in the runtime for low core
counts. This oscillation, or deviation from the mean, is at most six
seconds; this is a deviation of less than 5% from the mean value.
This behavior is typical of a weak scaling result stemming from
unstructured mesh computations, as it is very difficult to double
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Fig. 18. Cured tire geometry from www.yeggi.com.

Table 7
Runtime values (for ten iterations) for the bracket geometry for the weak scaling
test.

# Cores Time (s)
2 146
4 143
8 143
16 142
32 145
64 145
128 144

exactly the problem size as the number of cores is doubled.
Also, since the number of iterations for each simulation might be
different (see Fig. 17), the results shown in Fig. 16 correspond
to the time Algorithm 2 takes to run ten iterations. Numerical
runtime values are reported in Table 7.

5.1. Mesh smoothing for industrial simulations problems: Compres-
sion molding applications

The compression molding method is a manufacturing process
in which a moldable material, usually heated, is placed into a
cavity and then pressed to get into the shape of the cavity. Among
the most common materials used in the compression molding
process are thermoplastics and rubber type compounds.

Materials used in compression molding can be perceived as
solid materials undergoing some type of deformation, but, they
can be better viewed as very high viscous non-Newtonian fluids
flowing due to some forced exerted on then. The fluid will flow
according to the shape of the cavity or mold.

In this subsection, we consider an example of a step commonly
seen in the tire manufacturing process. For this, we will use the
tire geometry in Fig. 18, which is a cured tire, i.e., the end result
of the tire manufacturing process.

In the tire manufacturing process, before we have the cured
tire (Fig. 18), as we all use in our cars, we have what is called
green tire. In the latter, the rubber compound is in a softer state,
and the tire has no pattern (see Fig. 19(a)). The final pattern of
the tire is given by the metallic mold part (see Fig. 19(b)) which
is placed around the green tire as shown in Fig. 19(c). Finally, the
green tire is inflated from the inside by inflating the bladder, thus
pushing the soft rubber against the metallic mold. A 2D schematic
of this process is shown in Fig. 20.

This process can sometimes be modeled using numerical sim-
ulations. By doing this, we can predict the pattern on the cured
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(c)

Fig. 19. Cure step in the tire manufacturing process (a) green tire, (b) mold with
pattern, and (c) mold around the green tire. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

tire and spot possible anomalies before the tire is manufactured.
One way to perform the simulation is to treat the green tire as
a solid and the simulation as a contact problem. In this way,
the green tire is meshed separate from the mold, and when
the meshes overlap, the green tire mesh deforms to adjust to
the mold mesh. This produces a deformation of the mesh, and
the mesh quality decreases (see Fig. 21). In the majority of the
cases, the quality of the mesh is improved (or the mesh is re-
fined) in between simulation steps to prevent divergence of the
simulation.

We have performed such a simulation and use one interme-
diate step where the quality of the mesh has decreased as the
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Fig. 20. Bladder inflates to push the green tire against the mold to create the
final pattern in the tire. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

starting point to test our parallel algorithm trying to mimic the
same conditions as is done in many companies.

For this experiment, we employed a tetrahedral mesh with
approximately 500K elements. We ran the parallel algorithm on
a workstation-server equipped with 4 Intel Xeon Silver 4210
processors running at 2.2 GHz with 64 GB of RAM and 2TB HDD.
We tested the algorithm using up to 32 cores. We used input pa-
rameters similar to our previous experiments for consistency. The
results in Fig. 22 demonstrate again the ability of our algorithm
to improve the quality of the mesh. Also, it is worth mentioning
that since the parallel algorithm is serial-parallel consistent, the
quality of the resulting mesh is always the same independent of
the number of cores used to run the parallel algorithm.

The speedup plot in Fig. 23 also confirms the good results
of the parallel algorithm, as was already demonstrated by the
previous examples. It is worth mentioning that the timing in
Fig. 23(a) corresponds to the average of 5 runs on each core.
Fig. 24 shows the wall clock time for 2 and 8 cores as an example.
It is important to recall that the excellent results we obtained for
the speedup are a consequence of the algorithm’s ability to over-
lap communication and computation depending on the number of
cores used. We have observed in this paper that overlapping them
is possible when the algorithm is run on up to 128 cores, which
is a greater number of cores than is typically used for industrial
applications.

6. Conclusions and future research

We proposed a parallel variational mesh quality improvement
algorithm and an associated implementation for the method in
[47,51] for distributed memory machines. To distribute the work-
load among cores, we use METIS to partition the mesh into
regions of connected elements. The algorithm identifies the ele-
ments in each region that contain at least one node that is shared
by multiple regions (shared nodes). After distribution of the data
(i.e., nodal coordinates, topology, and boundary nodes), each core
organizes its corresponding elements into two sets, i.e., the ele-
ments composed of only interior nodes and the elements which
have at least one shared node.

We employed the RKF45 method to solve the system of ODEs
associated with the interior nodes. For this process, the paral-
lel algorithm loops over all elements on each core to calculate
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Fig. 21. Simulation results after the green tire is pushed against the mold and is deformed: (a) one section of the deformed tire; (b) deformed mesh. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 22. Average quality versus the number of iterations for the 500K element
tetrahedral mesh of the tire domain.

the nodal velocities for each interior node. Whereas each core
is able to calculate the nodal velocities for the interior nodes
within its region, computing the nodal velocities of the shared
nodes requires communication among cores. To do this effi-
ciently, the algorithm first calculates the nodal velocities for
elements containing at least one shared node. Then we com-
municate the partial nodal velocities of the shared nodes using
a non-blocking collective instruction to overlap communication
with computation of the nodal velocities for the interior nodes.
When the number of interior nodes per core is high, a total
overlap of communication and computation is achieved. Finally,
the algorithm calculates the average quality of the mesh in each
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iteration and uses this information to terminate the computations
when no significant improvement of the average mesh quality is
observed.

We tested our parallel variational mesh quality improvement
algorithm on three different 3D domains which were discretized
using tetrahedral meshes. The results of our numerical experi-
ments show good strong scalability and speedup for the meshes
with 80M and 40M elements on up to 128 cores. The efficiency
observed in the experimental results is the consequence of the
complete overlap of communication and computation when cal-
culating the nodal velocities (see Fig. 14). For the test cases
presented in this paper, the major source of overhead occurs in
the pre-processing step, i.e.,, where Py distributes the data and
identifies the shared nodes. In addition to this, if the number
of interior nodes on each core is relatively small compared with
the total number of shared nodes, then the communication time
among cores increases relative to the runtime. Hence we obtain
a performance degradation, as a complete overlap of communi-
cation and computation is not possible. The weak scaling results
we obtained are typical for unstructured meshes.

There are several possible avenues for future research. First,
a different communication strategy may be used to decrease
the memory consumption and communication time. For exam-
ple, a local-blocking communication strategy might decrease the
performance for a lesser number of cores but should perform
better for a greater number of cores. In addition, a parallel pre-
processing step will reduce the runtime and memory consump-
tion for Py. Another possible avenue for research is the adoption
of a different domain decomposition strategy, such as node
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Fig. 23. (a) Total runtime and (b) speedup for the Parallel VMQI algorithm for
the 500K element tetrahedral mesh of the tire domain.
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Fig. 24. Wall clock time obtained for 5 runs on 2 and 8 cores. The standard
deviations are 0.997 and 0.495 for 2 and 8 cores, respectively.

coloring; this would partition the cores into independent sets. In
regard to applications, one can extend the same ideas presented
in this paper to variational mesh adaptation algorithms such as
the one in [47].
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