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Fast and Separable Estimation in High-Dimensional
Tensor Gaussian Graphical Models

Keqian Min, Qing Mai, and Xin Zhang

Department of Statistics, Florida State University, Tallahassee, FL

ABSTRACT
In the tensor data analysis, the Kronecker covariance structure plays a vital role in unsupervised learning and
regression. Under the Kronecker covariancemodel assumption, the covariance of anM-way tensor is param-
eterized as the Kronecker product of M individual covariance matrices. With normally distributed tensors,
the key tohigh-dimensional tensor graphicalmodels becomes the sparse estimationof theM inverse covari-
ance matrices. Unable to maximize the tensor normal likelihood analytically, existing approaches often
require cyclic updates of the M sparse matrices. For the high-dimensional tensor graphical models, each
update step solves a regularized inverse covariance estimation problem that is computationally nontrivial.
This computational challenge motivates our study of whether a noncyclic approach can be as good as the
cyclic algorithms in theory and practice. To handle the potentially very high-dimensional and high-order
tensors, we propose a separable and parallel estimation scheme. We show that the new estimator achieves
the same minimax optimal convergence rate as the cyclic estimation approaches. Numerically, the new
estimator is much faster and often more accurate than the cyclic approach. Moreover, another advantage
of the separable estimation scheme is its flexibility in modeling, where we can easily incorporate user-
specified or specially structured covariances on any modes of the tensor. We demonstrate the efficiency of
the proposedmethod through both simulations and a neuroimaging application. Supplementarymaterials
for this article are available online.
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1. Introduction

Modeling high-dimensional tensor data, that is, multi-way
array-valued variable Xi ∈ R

p1×···×pM for each sample i =
1, . . . , n, are frequently involved in many areas of research
such as neuroimaging, computational biology, and signal
processing. Statistical methods for tensor data analysis are
becoming increasingly popular in the recent years (see Chi and
Kolda 2012; Zhou, Li and Zhu 2013; Hoff 2015; Lock 2018;
Pan, Mai and Zhang 2019; Bi et al. 2021; Pfeiffer, Kapla and
Bura 2021, among others). In this article, we study the tensor
Gaussian graphical models, which are valuable tools to reveal
the dependence structure among the large number of random
variables in a tensor. The tensor Gaussian graphical models are
generalizations of theGaussian graphicalmodel formultivariate
data. For background on graphical models and the conditional
independence interpretation of the Gaussian graphical models,
see, for example, Lauritzen (1996).

A straightforward way to study the dependence of variables
in tensor is to vectorize the tensor into a vector and then estimate
the inverse of the covariance matrix (i.e., the precision matrix).
Under the sparsity assumption, many penalized methods have
been proposed to obtain a sparse precision matrix (e.g., Yuan
and Lin 2007; Friedman, Hastie and Tibshirani 2008; Witten,
Friedman and Simon 2011; Danaher, Wang and Witten 2014;
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Zhang and Zou 2014; Cai, Liu and Zhou 2016; Molstad and
Rothman 2018). However, the high dimensionality of the vec-
torized data is a great challenge to the existing methods. For
example, a typical 3D MRI scan of the brain has dimension
p1×p2×p3 = 256×256×256. The vectorized data has over 16
million variables, making it unrealistic to estimate the precision
matrix. Therefore, to exploit the tensor structural information,
the parsimonious and interpretableKronecker covariance struc-
ture is widely used in modeling tensor data. Under this assump-
tion, the problem is then simplified to the estimation of three
much smaller precision matrices of size pm × pm,m = 1, 2, 3, in
the MRI example.

Sparse precision matrix estimation under the Kronecker
covariance structure has been gaining increasing attention
in the recent years: From matrix data (Leng and Tang 2012;
Yin and Li 2012; Zhou 2014; Zhu and Li 2018) to higher
order tensors (Tsiligkaridis, Hero III and Zhou 2013; He et al.
2014; Xu, Zhang, and Gu 2017; Lyu et al. 2019). Assuming
the precision matrices are sparse, the standard way is to use a
penalized negative log-likelihood function. Then the estimators
are obtained through iterative algorithms to cyclic update
one precision matrix while fixing the other M − 1 precision
matrices at the estimated value from the previous iteration.
Such cyclic update algorithms can be computationally costly,
especially when the tensor dimensions or the tensor order
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are not small. Even for matrix Gaussian graphical models,
as the dimensions increase, the computational cost increases
drastically, especially when cross-validation is used for tuning
parameter selection. In addition, when using the cyclic iterative
methods, all precision matrices are assumed to be sparse and
estimated in a nested sequence. If we are only interested in
the dependence of one particular mode, then the estimation
accuracy would be a concern when other irrelevant precision
matrices violate the sparsity assumption. Because all precision
matrices are estimated through regularized optimization, the
inaccurate estimates of nonsparse precision matrices can affect
the estimation of the sparse precision matrices.

To tackle this challenge, we propose a noncyclic and parallel
approach for estimating the sparse tensor Gaussian graphical
model with a relaxed assumption. Specifically, only the precision
matrices of interest are assumed to be sparse. Each precision
matrix is estimated by solving an independent �1 constrained
minimization problem. For example, in some cases, such as
modeling spatio-temporal data, someparticular non-sparse cor-
relation patterns can be adapted into our framework. The pro-
posed method can also be incorporated into jointly estimat-
ing regression coefficients and covariances in tensor response
regression. The proposed method improves the computation
efficiency and the estimation accuracy in numerical studies. In
theory, the proposed estimator enjoys the same optimal conver-
gence rate in the graphical model literature.

The rest of the paper is organized as follows. In Section 2, we
present some preliminaries on tensor algebra and introduce the
tensor graphical model. In Section 3, we develop our separable
non-iterative method and its theoretical properties. Simulation
studies and a real data illustration are presented in Sections 4
and 5, respectively. Online supplementary materials contains
proofs, R code, and applications to partially sparse models and
tensor regression.

2. Background and Problem Set-up

2.1. Notation

We review some basic tensor notation and operations that are
commonly used (e.g., Kolda and Bader 2009).Multidimensional
array A ∈ R

p1×···×pM is called a tensor of order M. The
vectorization of a tensor A is denoted by vec(A) ∈ R

(
∏

m pm)×1,
with Ai1,...,iM being its jth element, where j = 1 + ∑M

m=1(im −
1)

∏m−1
m′=1 pm′ . The Frobenius norm of A is defined as ‖A‖F =

(
∑

i1,...,iM A2
i1,...,iM )1/2. We define p = ∏M

m=1 pm and p−m =∏M
m′=1,m′ �=m pm′ . The mode-m matricization of A is denoted

by A(m) ∈ R
pm×p−m , which is obtained by combining the

(M − 1) modes of the tensor similar to vectorization. The
mode-m product of tensor A with a matrix α ∈ R

d×pm is
defined as A ×m α and it yields a tensor of size p1 × · · · ×
pm−1 × d × pm+1 × · · · × pM . Elementwise, we have (A ×m
α)i1,...,im−1,j,im+1,...,iM = ∑pm

im=1 Ai1,...,iMαj,im . For a list ofmatrices
{α} = {α1, . . . ,αM} with αm ∈ R

dm×pm , we define A × {α} =
A×1α1 · · ·×MαM . LetY = A×{α}, thenY(m) = αmA(m)(αM⊗
· · · ⊗ αm+1 ⊗ αm−1 ⊗ · · · ⊗ α1)� where ⊗ is the Kronecker
product. Let {α}−m be the subset of {α} without the m-th
matrix.

2.2. Tensor Gaussian Graphical Model

The tensor random variable Z ∈ R
p1×···×pM follows a standard

tensor normal distribution if all elements of Z are independent
standard normal random variables. Let X = μ + Z × {�1/2},
where {�1/2} = {�1/2

1 , . . . ,�1/2
M } is a list of symmetric pos-

itive definite matrices, then X follows a tensor normal (TN)
distribution with mean μ and Kronecker separable covariance
structure, denoted as X ∼ TN(μ,�1, . . . ,�M). If M = 2, the
tensor normal distribution reduces to the matrix normal (MN)
distribution (Gupta and Nagar 2018). Suppose that a mode-
M tensor X ∈ R

p1×···×pM follows a tensor normal distribu-
tion TN (0;�1, . . . ,�M), then its probability density function
is defined as

p (X | �1, . . . ,�M) = (2π)−p/2
{ M∏
m=1

|�m|−p−m/2

}

× exp
(

−1
2

∥∥X × {�−1/2}∥∥2F) , (1)

where {�−1/2} = {�−1/2
1 , . . . ,�−1/2

M }. For m = 1, . . . ,M, we
call �m ≡ �−1

m the mode-m precision matrix, which is our
target parameter.

To distinguish the population true parameter and the argu-
ment in optimization, we consider the model that X1, . . . ,Xn
are iid samples from TN

(
0;�∗

1, . . . ,�∗
M

)
. We study the prob-

lem of estimating the precision matrices {�∗
1, . . . ,�∗

M}, where
�∗

m = (�∗
m)−1 for m = 1, . . . ,M. In particular, we focus on

high-dimensional settings that �∗
m is sparse form = 1, . . . ,M.

This sparse precision matrix assumption has the conditional
independence interpretation that is analogous to the classical
multivariate (vector) settings (Lauritzen 1996). Let X(m) denote
the mode-m matricization of X and X(m),i denote the i-th row
of X(m). Then [�∗

m]i,j = 0 if and only if X(m),i is independent of
X(m),j given X(m),k, k �= i, j.

The precision matrices {�∗
1, . . . ,�∗

M} are identifiable up to
(M − 1) scaling constants. For example, it is easy to verify
that TN

(
0;�∗

1,�∗
2, . . . ,�∗

M
)
and TN

(
0;�∗

1/c, c�∗
2, . . . ,�∗

M
)

have the same probability density function for any c > 0. To
address the identifiability problem in the tensor normal model,
we assume that ‖�∗

m‖F = 1 for allm = 1, . . . ,M, which can be
easily satisfied by standardization. Alternatively, one can impose
(M − 1) constraints that ‖�∗

m‖F = 1 for allm = 2, . . . ,M, and
absorb the scaling constant into �∗

1. Clearly, the scaling does
not affect the sparsity pattern of the precision matrices and is
a nuisance parameter in graphical model.

A standard approach to the tensor graphical model esti-
mation is based on minimizing the penalized negative log-
likelihood function,

Ln (�1, . . . ,�M) = 1
p
tr {S (�M ⊗ · · · ⊗ �1)}

−
M∑

m=1

1
pm

log |�m| +
M∑

m=1
Pλm (�m) , (2)

where S = n−1 ∑n
i=1 vec (Xi) vec (Xi)

� and Pλm (·) is a
penalized function indexed by the tuning parameter λm > 0,
m = 1, . . . ,M. In this paper, we focus on the �1 penalty on
the off-diagonal elements: Pλm (�m) = λm‖�m‖1,off, where
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‖�m‖1,off = ∑
i�=j |[�m]i,j|. The penalized model in (2) is

referred to as the sparse tensor graphical model.

3. ProposedMethod

3.1. The Separable Estimation Approach

In this section,we propose a scalable andparallelizable approach
for solving the tensor graphical lasso problem that is com-
putationally much more efficient than the widely used cyclic
updating scheme. The idea is to estimate each �∗

m separately so
that the method is robust and flexible in dealing with different
modes of the tensors.

The proposed estimator is obtained through a penalized
pseudo-likelihood approach. When estimating �∗

m, suppose
that the other M − 1 precision matrices are fixed at a list of
symmetric and positive definite matrices {�̃}−m. Then we can
obtain the estimator �̂m by minimizing the following pseudo-
log-likelihood function with respect to �m:

Lnm(�m; {�̃}−m) = 1
pm

tr
(̃
Sm�m

)
− 1
pm

log |�m| + λm||�m||1,off, (3)

where S̃m = 1
np−m

∑n
i=1 Ṽm

i (Ṽm
i )T and Ṽm

i = Xi(m)(�̃
1/2
M ⊗

· · ·⊗�̃
1/2
m+1⊗�̃

1/2
m−1 · · ·⊗�̃

1/2
1 ). Recall thatwe use normalization

to achieve ‖�̃m‖F = ‖�̂m‖F = 1 for all m. For our separable
estimation, we use

�̃m =
{ {

1
np−m

∑n
i=1 Xi(m)(Xi(m))

T
}−1

, np−m > pm(pm − 1)/2;
Ipm , np−m ≤ pm(pm − 1)/2.

(4)

Clearly, the key advantage of our separable estimation is that the
optimization problem (3) for�m does not depend on the sparse
estimators for other precision matrices {�̂}−m. Moreover, the
precision matrices {�̃}−m used in optimization (4) are adaptive
to the tensor dimensions and sample size. The number nm =
np−m is the effective sample size for estimating �m, which has
pm(pm − 1)/2 unique parameters.

We present the following results for the Kronecker separa-
ble covariance model and matrix/tensor normal distribution to
gain more insight into our estimator. Similar results have been
obtained in recent studies (Lyu et al. 2019; Pan, Mai and Zhang
2019; Drton, Kuriki and Hoff 2020).

Lemma 1. Suppose that X1, . . . ,Xn are iid from TN (0;
�∗

1, . . . ,�∗
M

)
. When np−j > pj,

∑n
i=1 Xi(j)(Xi(j))

T is positive
definite with probability 1. When {�̃}−m = {α}−m is non-
stochastic, the sample covariance matrix S̃m in Equation
(3) has expected value E(̃Sm | {�̃}−m = {α}−m) =
1

p−m

{∏
j�=m tr

(
�∗

j αj
)}

�∗
m.

By Lemma 1, when nj > pj(pj − 1)/2, the sample
covariance matrix S̃m in Equation (3) is positive-definite with
probability 1. Moreover, it is an unbiased estimator for�∗

m after
scaling when we simply use any fixed {�̃}−m, for example,
the identity matrix in (4). Of course, when the sample size

Algorithm 1 Parallel algorithm for tensor Gaussian graphical
models
1. Input: Tensor samples X1, . . . ,Xn, tuning parameters

λ1, . . . , λM .
2. Initialization: For each m ∈ {1, . . . ,M}, compute �̃m using

(4).
3. Sparse Estimation: For each m ∈ {1, . . . ,M}, solve the

optimization problem (3) for �̂m using the glasso algorithm
(Friedman, Hastie and Tibshirani 2008).

increases, we expect the well-conditioned sample estimator
�̃m =

{
1

np−m

∑n
i=1 Xi(m)(Xi(m))

T
}−1

improves estimation
accuracy over the identity matrix.

After obtaining {�̃}−m from Equation (4), solving the opti-
mization problem in Equation (3) is the same as solving a
classical graphical lasso problem (Friedman, Hastie and Tib-
shirani 2008). When estimating a list of precision matrices,
minimizing Lnm is independent of minimizing Lnm′ . Thus, the
set of optimization problems are separable and can be solved
simultaneously by implementing parallel computing. We sum-
marize our scalable and parallelizable algorithm in Algorithm 1.
Even when comparing it with the one-iteration estimator from
cyclic algorithms, we still see a decrease in computation cost
in the numerical studies. TheM sparse estimation problems in
Algorithm 1 are parallel, making the proposed method differs
from the one-iteration estimator. It has better performance,
especially when some �∗

m is not very sparse and can not be
estimated well by sparse solutions.

3.2. Theoretical Properties

We show that the proposed estimator converges to the true
precision matrix at an optimal rate. Since each optimization
problem is independent of the others and can be solved sepa-
rately or simultaneously by parallel computing, we present the
theoretical results for an arbitrary mode, that is, analysis only
on �̂m.

We explicitly express the sample-based minimization to
Equation (3) and the proposed estimator �̂m, which requires
normalization, as follows,

M̂m
({�̃}−m

) = argmin
�m

Lnm
(
�m; {�̃}−m

)
,

�̂m = M̂m
({�̃}−m

)∥∥M̂m
({�̃}−m

)∥∥
F
. (5)

To characterize the sparsity of the true precision matrix �∗
m,

we define a sparsity parameter sm = |Sm| − pm, where Sm ={
(i, j) :

[
�∗

m
]
i,j �= 0

}
. Then sm is the number of nonzero off-

diagonal elements in �∗
m. We construct the convergence theory

for the proposed estimator in the following theorem, under two
mild technical conditions.

Condition 1. Bounded Eigenvalues. For any m = 1, . . . ,M,
there is a constant C1 > 0 such that 0 < C1 ≤ λmin

(
�∗

m
) ≤

λmax
(
�∗

m
) ≤ 1/C1 < ∞, where λmin(·) and λmax(·) denote the

minimal and maximal eigenvalues.



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 297

Condition 2. Tuning. There is a constant C2 > 0 such that the
tuning parameter λm satisfies 1/C2

√
log pm/

(
nppm

) ≤ λm ≤
C2

√
log pm/

(
nppm

)
.

Theorem 1. Suppose that Conditions (C1) and (C2) hold.
The proposed estimator �̂m in (5) satisfies

∥∥�̂m − �∗
m
∥∥
F =

OP

(√
(pm+sm) log pm

np−m

)
.

Condition (C1) requires that the eigenvalues of the true
covariance matrices are bounded uniformly. It is a commonly
used assumption to study the estimation consistency in graph-
ical models (He et al. 2014; Xu, Zhang, and Gu 2017; Lyu
et al. 2019). Condition (C2) gives the growth rate of the tuning
parameters in terms of n and p. This type of assumption is also
widely used in penalized methods to control the estimation bias
and sparsity (Zhou 2014; Lyu et al. 2019).

Theorem 1 shows that the proposed estimator �̂m converges
to the true precision matrix �∗

m at a rate of√(
pm + sm

)
log pm/(np−m) in the Frobenius norm. The same

convergence rate is achieved by the Tlasso estimator after
one iteration and it is minimax-optimal (Cai, Liu and Zhou
2016; Lyu et al. 2019). When the true precision matrices are
known and let {�̃}−m = {�∗}−m, the effective sample size
for estimating S̃m is np−m since Ṽm

i has independent columns.
From the analysis in Cai, Liu and Zhou (2016), the best rate one
can obtain is

√(
pm + sm

)
log pm/(np−m) which matches ours.

Therefore, the convergence rate in Theorem 1 is also minimax-
optimal.

We compare the theoretical results with other existing works.
Leng and Tang (2012) showed the existence of a local minimizer
that enjoyed the same convergence rate as ours at M = 2.
However, they did not show that their algorithm could guaran-
tee the local minimizer. Yin and Li (2012) established the con-
vergence rates at

√
p2(p1 + s1)(log p1 + log p2)/n which was

slightly slower. To achieve the optimal estimation error, Xu,
Zhang, and Gu (2017) required the number of iteration to be
no less than C log(np/(pmsm)) where C is a positive constant.
In contrast, our proposed method does not have convergence
concerns and enjoys the same optimal convergence property.

3.3. ConnectionWith Existing Approaches

Clearly when M = 1, our method reduces to the sparse Gaus-
sian graphical model which has been extensively studied (e.g.,
Yuan and Lin 2007; Banerjee, Ghaoui and d’Aspremont 2008;
Friedman, Hastie and Tibshirani 2008; Rothman et al. 2008;
Ravikumar et al. 2011).WhenM = 2, ourmethod is then appli-
cable to the sparse matrix graphical model. Various iterative
algorithm can be viewed as the matrix version of our problem
(Leng and Tang see 2012; Yin and Li see 2012; Tsiligkaridis,
Hero III and Zhou see 2013). The only exception is Zhou
(2014), which proposed a noncyclic algorithm for inverse cor-
relation matrix estimation. Our method extends Zhou (2014)
from matrix to tensor, and from inverse correlation to inverse
covariance (which is easier to interpret in graphical models),

and the plug-in estimator �̃j is not fixed as Ipj for j �= m for
more efficient estimation in larger sample scenarios. Since the
effective sample size of tensor data is generally larger than the
actual sample size, we can get an improved estimation.

For the sparse tensor graphical model with a general M ≥
2, He et al. (2014) and Lyu et al. (2019) used a �1 penalty
and provided a coordinate descent-based algorithm; Xu, Zhang,
and Gu (2017) used a l0 penalty and proposed an alternating
gradient descent algorithm. To the best of our knowledge, all
existing methods propose iterative cyclic-updating algorithms.

The proposed separable and parallelizable algorithm cir-
cumvents many limitations in the cyclic algorithms. First, the
efficiency of iterative algorithms is a concern due to the high
dimensionality of tensor data. The new algorithm significantly
reduces the computational cost through parallelism. Even com-
paring with the first iteration in the cyclic algorithms, we still
see a decrease in computation cost in numerical studies. Second,
the choice of initial value and the convergence speed of the
algorithm should be considered for iterative approaches. The
initialization step in Algorithm 1 offers a simple initial value
with theoretical guarantees. Thirdly, with a well-chosen initial
value for �̃m, we can finely tune λm at low computational cost
for each mode. In practice, the more affordable and efficient
tuning process can further improve performance. Finally, the
cyclically iterative methods assume that all the precision matri-
ces are sparse, which can be restrictive if we are only interested
in estimating a subset of the precision matrices. In contrast,
thanks to the independence of the optimization problems in our
algorithm, we can be more flexible at scenarios with different
sparsity levels. In Section B of the supplementary materials, we
will discuss the applications to partially sparse graphicalmodels,
prespecified covariance structured (e.g. longitudinal, spatial–
temporal models), and joint model of mean and covariance in
regression.

4. Simulations

We compare the proposed estimator (Separate) with three alter-
native solutions: (Oracle) The oracle estimator using the true
parameter �∗−m when estimates �∗

m in (3); (Cyclic) The cyclic-
updates algorithm to the penalized MLE problem (2), where
each sparse precision matrix is updated using current estimates
of other sparse precision matrices and and convergence is often
reached after 5–100 iterations; and (“Sequential”) The cyclic
algorithm with only one iteration, which means �̂m is obtained
using the sparse estimators �̂j, j < m.

For fair comparison, we use the same R package glasso to
compute the �1 penalized optimizations for all four estimators.
We expect similar results if different penalties or packages are
used consistently for the four estimators. Additional implemen-
tation details are given in the supplementary materials.

We consider the following three types of covariance/
precision matrices �∗

m,�∗
m ∈ R

pm×pm .

• Triangle (TR) covariance. We set
[
�∗

m
]
i,j =

exp
(− ∣∣hi − hj

∣∣ /2) with h1 < h2 < · · · < hpm . The
difference hi − hi−1, i = 2, . . . , pm, is generated iid from
Unif(0.5, 1). This generated covariance matrix mimics
autoregressive process of order one, that is, AR(1).
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• Autoregressive (AR) precision. We set
[
�∗

m
]
i,j = 0.8|i−j|.

• Compound symmetry (CS) precision. We set
[
�∗

m
]
i,j = 0.6

for i �= j and
[
�∗

m
]
i,i = 1.

Note that the first model (TR) has a sparse precision matrix
while the other two (AR and CS) have a nonsparse precision
matrix.

We consider six models as follows. Models 1–3 are fully
sparse models, and Models 4–6 are partially sparse models. In
Models 3 and 6, we consider the unbalanced setting in dimen-
sion. In all models, we normalize the precision matrices such
that ‖�∗

m‖F = 1 form = 1, . . . ,M. For all the followingmodels,
we setM = 3 and n = 100.

• Model 1: �∗
1,�∗

2,�∗
3 are all from the TR covariance model,

(p1, p2, p3) = (30, 36, 30).
• Model 2: �∗

1,�∗
2,�∗

3 are all from the TR covariance model,
(p1, p2, p3) = (100, 100, 100).

• Model 3: �∗
1,�∗

2,�∗
3 are all from the TR covariance model,

(p1, p2, p3) = (5, 5, 500).
• Model 4: Same as Model 1, except for �∗

1 = AR(0.8).
• Model 5: Same as Model 1, except for �∗

1 = �∗
2 = CS(0.6).

• Model 6: Same as Model 3, except for �∗
1 = �∗

2 = CS(0.6).

We also consider the six models but with sample size n = 20
and another two fully sparse models with M = 4 and M = 5.
The results show similar findings and are included in the sup-
plementary materials. To measure the estimation performance,
we report the errors in Frobenius norm ‖�̂m − �∗

m‖F and the

errors in max norm ‖�̂m − �∗
m‖max. We also report the true

positive rate and true negative rate to measure the performance
of support recovery. For fully sparse models, we further report
the averages of these criteria across all modes.

The computation time for Models 1–3 is summarized in
Table 1. The proposed separable estimation approach is much
faster than the cyclic-updating approach, especially as the
dimension increases. The computational costs of Separable,
Oracle and Sequential methods are roughly the same, as we
expected. ForModels 4–6, the computation time is not included
because the sequential and cyclic methods failed in these
partially sparse models.

The results of estimation accuracy are summarized inTable 2.
For both fully sparsemodels and partially sparsemodels, we can
observe that the separable estimator outperforms the sequential
one-iteration estimator and cyclic estimator on every mode and
is comparable to the oracle estimator. In particular, when the
dimension is unbalanced inModels 3 and 6, the cyclic estimator
performs much worse than the proposed method. Moreover,
comparing Models 1 and 2 with Models 4 and 5, we notice that

Table 1. Averaged computation cost (in sec) and standard errors (in parentheses)
for Models 1–3 from 20 replicates.

(p1, p2, p3) Separate Oracle Sequential Cyclic

Model 1 (30,36,30) 1.17 (0.01) 0.84 (0.01) 3.10 (0.01) 13.24 (0.92)
Model 2 (100,100,100) 44.13 (0.07) 34.44 (0.11) 93.22 (0.05) 379.13 (1.88)
Model 3 (5,5,500) 14.21 (0.04) 13.90 (0.03) 13.94 (0.02) 120.91 (0.07)

Table 2. Comparison of means and the maximum standard errors (in parentheses) of different performance measures for Models 1–3 from 100 replicates.

(%) Model 1 Model 2 Model 3

Sep. Ora. Seq. Cyc. Sep. Ora. Seq. Cyc. Sep. Ora. Seq. Cyc. S.E.≤
Frobenius norm loss

AVG. 0.62 0.62 2.34 0.80 0.21 0.21 1.28 0.27 1.97 1.83 3.33 13.74 (0.01)
m = 1 0.59 0.59 3.74 0.73 0.21 0.21 2.29 0.27 0.50 0.30 0.79 1.87 (0.02)
m = 2 0.66 0.65 2.58 0.92 0.21 0.21 1.29 0.27 0.52 0.31 2.43 2.05 (0.02)
m = 3 0.62 0.62 0.71 0.75 0.22 0.21 0.26 0.27 4.88 4.88 6.77 37.29 (0.01)

Max norm loss
AVG. 0.15 0.15 0.29 0.15 0.03 0.03 0.06 0.03 0.27 0.21 0.61 0.78 (0.01)
m = 1 0.15 0.14 0.44 0.15 0.03 0.03 0.10 0.03 0.22 0.14 0.37 0.81 (0.01)
m = 2 0.16 0.15 0.27 0.16 0.03 0.03 0.06 0.03 0.23 0.14 1.08 0.89 (0.01)
m = 3 0.16 0.16 0.17 0.16 0.04 0.03 0.04 0.04 0.37 0.36 0.38 0.64 (0.01)

True negative rate
AVG. 66.21 66.19 19.28 41.08 81.88 81.42 26.09 62.18 45.96 46.02 54.34 27.32 (1.21)
m = 1 65.77 65.75 0.07 43.55 82.04 81.50 0.04 62.19 20.25 21.00 40.83 37.83 (2.2)
m = 2 67.95 68.06 2.29 36.46 81.58 81.10 2.76 62.04 23.83 24.33 42.17 42.83 (2.48)
m = 3 64.9 64.75 55.50 43.23 82.01 81.67 75.48 62.31 93.79 92.72 80.02 1.30 (0.52)

(%) Model 4 Model 5 Model 6

Sep. Ora. Seq. Cyc. Sep. Ora. Seq. Cyc. Sep. Ora. Seq. Cyc. S.E.≤
Frobenius norm loss

m = 2 0.67 0.66 2.78 1.64 – – – – – – – – (0.01)
m = 3 0.60 0.59 0.71 1.37 0.61 0.61 1.40 1.39 4.91 4.88 13.41 38.64 (0.02)

Max norm loss
m = 2 0.16 0.16 0.29 0.17 – – – – – – – – (0.01)
m = 3 0.16 0.15 0.16 0.17 0.16 0.16 0.17 0.17 0.36 0.36 0.36 0.66 (0.01)

True negative rate
m = 2 67.59 67.28 1.47 0.68 – – – – – – – – (0.35)
m = 3 64.48 64.56 48.63 0.81 65.77 65.63 0 0 91.34 92.17 47.34 0.18 (0.83)

NOTES: All methods have achieved 100% true positive rate (and hence not shown in the table). Comparison of means and the maximum standard errors (in parentheses)
of different performance measures for Models 4–6 from 100 replicates. Results form = 2 in Models 5 and 6 are not reported because�∗

2 is not sparse.
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the cyclically iterative algorithm cannot improve the estimation
accuracy in the iteration for partially sparse models. This con-
firms our concern that violation of sparsity assumption hurts
the performance of iterative methods. It also indicates that the
performance of the proposedmethod is more stable and consis-
tent. The proposed method also shows superior performance in
terms of support recovery.

5. Real Data Analysis

As an illustration, we apply the proposed method on the elec-
troencephalography (EEG) data from a study to examine EEG
correlates of genetic predisposition to alcoholism. The dataset
is available at http://kdd.ics.uci.edu/databases/eeg/. In the study,
64 channels of electrodes were placed on the scalp at standard
sites. There were 122 subjects among which 77 were alcohol
individuals and 45 were nonalcoholic individuals. Each subject
had 120 trials under exposure to different picture stimuli and
measurements were collected from the electrodes which were
sampled at 256 Hz (3.9-msec epoch) for 1 second. More col-
lection details could be found in Zhang et al. (1995). We used
the same part of the data that was analyzed in Li, Kim and
Altman (2010). The data focused on single stimulus condition
and were averages from all the corresponding trials. Therefore,
each EEG sample was a 256× 64 matrix. We further downsized
it to 64 × 64. We divided the dataset into an alcoholic group
and a nonalcoholic group. For each group, we standardized the
data and applied the proposed method to estimate the precision
matrix for channels. Tuning parameter was chosen by five-fold
cross-validation.

The correlation networks identified by the proposed method
are displayed in Figure 1. To have a clear insight of the graph

pattern, we only present the top 100 correlations. We can
observe that channels located close to each other tend to be
correlated. For example, channels F4, F2, FZ, F1, F3, and F5 that
are physically placed in line on the scalp are strongly correlated.
The centered channels such as AFZ and OZ also have strong
connections with the adjacent nodes AF1, AF2 and O1, O2.
We also notice that the correlations among POZ and PO1, PO2
are stronger in nonalcoholic group than in alcoholic group.
As POZ is located near the parietal-occipital junction, there
is a large probability for it to be most sensitive to the visual
stimuli (Lei and Liao 2017). A possible explanation for the
weaker correlations in alcoholic group is that alcohol can slow
down the brain’s information processing (Tzambazis and Stough
2000).

The results from the cyclic algorithm and the colored version
of the network graphs are given in the supplementary materials.
While the cyclic algorithm can identify most of the strong
correlation pairs, the total number of correlation pairs is about
two or three times of the number identified by the proposed
method. For nonalcoholic group, the proposed method identi-
fies 387 and 425 correlation pairs respectively for the twomodes,
while the cyclic algorithm identifies 888 and 1598 pairs. For
alcoholic group, the proposed method identifies 416 and 441
pairs and the cyclic algorithm identifies 947 and 1536 pairs. The
separable method offers a more sparse solution that is easier to
interpret.

SupplementaryMaterials

Supp.pdf.This file contains proofs, additional numerical results, and appli-
cation to partially sparse model. (pdf)

Rcode.zip. The file includes R code files for simulation and real data
analysis and a readme file for demonstration. (zip)

Figure 1. Correlation networks constructed by the proposedmethod using the estimated precisionmatrices among channels for alcoholic group and nonalcoholic group.
Only the first 100 strongest correlations are displayed. Nodes are labeled with EEG electrode identifiers. The gray nodes are placed on the middle of the scalp whose left
and right nodes are placed on the left and right of the scalp respectively. Nodes that are not correlated with the others are not included. The thickness of edges represents
the magnitude of correlations.
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