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Abstract—It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices, because even the
powerful modern mobile devices are considered as “resource-constrained” when executing large-scale DNNs. It necessitates the sparse
model inference via weight pruning, i.e., DNN weight sparsity, and it is desirable to design a new DNN weight sparsity scheme that can
facilitate real-time inference on mobile devices while preserving a high sparse model accuracy. This paper designs a novel mobile inference
acceleration framework GRIM that is General to both convolutional neural networks (CNNs) and recurrent neural networks (RNNs) and that
achieves Real-time execution and high accuracy, leveraging fine-grained structured sparse model Inference and compiler optimizations for
Mobiles. We start by proposing a new fine-grained structured sparsity scheme through the Block-based Column-Row (BCR) pruning. Based
on this new fine-grained structured sparsity, our GRIM framework consists of two parts: (a) the compiler optimization and code generation for
real-time mobile inference; and (b) the BCR pruning optimizations for determining pruning hyperparameters and performing weight pruning.
We compare GRIM with Alibaba MNN, TVM, TensorFlow-Lite, a sparse implementation based on CSR, PatDNN, and ESE (a representative
FPGA inference acceleration framework for RNNs), and achieve up to 14.08 x speedup.

Index Terms—Compiler optimization, model compression, real-time inference, deep neural networks, mobile computing

1 INTRODUCTION

DEEP learning, as one of the most powerful machine learn-
ing techniques, has achieved extraordinary performance
in computer vision and surveillance, speech recognition and
natural language processing, healthcare and disease diagno-
sis, etc. The two major categories of deep neural network
(DNN) models are convolutional neural networks (CNNs)
[1], [2] and recurrent neural networks (RNNs) [3], [4] with
unique model structures and application domains.

Due to the high efficiency and reliability, low cost, small
footprint, and reprogrammability, mobile devices have
been pervasively used for wireless access points, wearable
electronics, robotics, autonomous driving, etc. If equipped
with deep learning, mobile devices will achieve comprehen-
sive functionality and better performance, further enabling
their broader applications [5], [6], [7], [8], [9], [10].
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It is appealing to support on-device inference by mobile
devices, however, achieving efficient inference with real-time
performance is still a challenging task. Because even the pow-
erful modern mobile devices with high-end CPUs and GPUs
are considered as “resource constrained” when executing the
computation-extensive and memory-hungry state-of-the-art
DNN models. Take the image classification task on ImageNet
dataset [11] with VGG-16 model [12] as an example. The
VGG-16 model has a size of 528 MB and sufficient learning
capacity and therefore is used as one of the major pre-trained
models in transfer learning [13]. We executed the VGG-16
model on an embedded GPU (Adreno 640) with 16-bit float-
ing-point for weights/intermediate results by using two rep-
resentative mobile inference acceleration frameworks -
TensorFlow-Lite (TFLite) [14] and TVM [15]. The end-to-end
inference time is 307 ms and 221 ms per frame on TFLite and
TVM, respectively. However, the real-time performance typi-
cally requires 30 frames/seci.e., 33ms/frame.

Complementary to those mobile inference acceleration
approaches, DNN model compression techniques provide
another possibility to efficient on-device inference. Two main-
stream model compression techniques are weight pruning
[16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36] and weight quantization
[37], [38], [39], [40], [41]. Weight pruning enjoys the great flexi-
bility of various DNN weight sparsity schemes and has achieved
very high pruning rate and accuracy. On the other hand,
weight quantization is less supported in mobile devices espe-
cially mobile GPUs. Therefore, this paper leverages weight
pruning as the main model compression technique, while we
use 16-bit floating-point representation throughout the paper.
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In this paper, we implement efficient DNN inference on
mobile devices aiming for both real-time performance and
high accuracy. The difficulty of achieving real-time DNN
inference on mobile devices necessitates the sparse model infer-
ence via the weight pruning techniques, i.e, DNN weight
sparsity. However, the majority of the DNN weight sparsity
schemes i.e., the non-structured sparsity and the structured
sparsity are (i) incompatible with the data parallel executions
on the computing systems and (ii) suffering from significant
accuracy loss, respectively.

Recently, the pattern-based weight pruning techniques
[34], [35] provide a novel weight sparsity scheme, i.e., the fine-
grained structured sparsity. It can be considered as enabling a
certain level of flexibility in the previous (coarse-grained)
structured sparsity, thus simultaneously boosting the accu-
racy of the structured sparsity and facilitating real-time on-
device inference. Furthermore, the work of PatDNN [42] lev-
erages the pattern-based weight pruning techniques [35] to
implement fine-grained structured sparse DNN models and
performs compiler optimizations to achieve real-time mobile
inference. PatDNN is the state-of-the-art mobile inference
acceleration framework.

In this paper, we design a novel mobile inference accelera-
tion framework GRIM that is General to both convolutional
neural networks and recurrent neural networks and that
achieves Real-time performance and high accuracy leveraging
fine-grained structured sparse model Inference and compiler
optimizations for Mobiles. We start by proposing a new fine-
grained structured sparsity scheme through the Block-based
Column-Row (BCR) pruning techniques, which works for
both CNNs and RNNSs. Specifically, for any weight matrices
in CNNs and RNNs, we first partition it into a number of
weight blocks and then apply independent column pruning
and row pruning to each block. Please note that the operations
in CONV layers can be transferred into the general matrix
multiplication (GEMM) routine [43] and therefore we can
obtain the corresponding matrix format for filters in a CONV
layer. Our BCR pruning can result in a new fine-grained struc-
tured weight sparsity that enjoys the high accuracy as the non-
structured sparsity and the regularity as the course-grained
structured sparsity to facilitate real-time mobile inference
while overcoming their shortcomings.

Based on the new fine-grained structured sparsity scheme,
our GRIM framework consists of two parts: (a) the com-
piler optimizations of execution code generation for real-
time mobile inference; and (b) the BCR pruning optimi-
zations for determining pruning hyperparameters and
performing weight pruning. Particularly, compared with
PatDNN, GRIM’s new compiler optimizations depend on
the newly proposed BCR pruning that is generally appli-
cable to both CNNs and RNNs, thus requiring different
designs and implementations. For example, PatDNN tar-
gets CONV computations mainly without efficient support to
the fully connected (FC) layers, another kind of computation
kernels in neural networks (both CNNs and RNNs). GRIM
unifies both CONV and FC operations by converting CONV
into GEMM (im2col), supporting CNN, RNN, and potentially
the latest transformer-based models (e.g., MobileBERT and
GPT-2). Correspondingly, GRIM requires a new weight com-
pression format, a different computation reorder strategy,
and a different set of tuning parameters. Moreover, GRIM
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includes a more flexible/declarative Domain Specific Lan-
guage (DSL) to assist finding the best-suited block configura-
tion offline, thus saving training time. In contrast, PatDNN
needs to consume more epochs to find the patterns during
training.

We summarize the contributions of this paper as:

e We propose a new fine-grained structured sparsity
scheme through the BCR pruning technique that is
general to both CNNs and RNNs, achieves high
accuracy for the sparse DNN model inference and
facilitates real-time execution.

e We present a set of new compiler techniques to gener-
ate optimized execution codes of the sparse DNN
inference implemented by the proposed BCR pruning,
including a layerwise Intermediate Representation
(IR) with the associated Domain Specific Language
(DSL), matrix reordering, a compact model storage
format, register-level load redundancy elimination,
and an auto-tuning module.

e We provide systematic optimizations of the BCR
pruning. We use a decoupling strategy to reduce
the pruning hyperparameter search space and our
hyperparameter optimizations incorporate mobile
testing with compiler optimizations. For perform-
ing the pruning, we formulate the BCR pruning
problem and provide an ADMM-based solution.

e We design the whole GRIM framework for mobile
devices to realize real-time, end-to-end inference
performance supporting both CNNs and RNNSs.
GRIM is the first unified mobile inference accelera-
tion framework for both CNNs and RNNSs.

For CNNs, we compare GRIM with Alibaba Mobile Neural
Network (MNN) [44], TVM [15], TensorFlow-Lite (FTLite)
[14], a sparse DNN inference implementation based on CSR
format [45], and PatDNN [42], across various datasets, neural
network models, and CPU/GPU excutions, achieving speed-
ups in the end-to-end inference time up to 6.84 x, 7.09 x ,
14.08 x, 5.81 x , and 2.11 x , respectively. Since our GRIM is
the first mobile inference acceleration framework for RNNs,
we compare with ESE [46], a representative FPGA inference
acceleration framework for RNNs. We achieve comparable
end-to-end inference time (around 81 us by GRIM and 82 us
by ESE) with significantly higher energy efficiency (38 x ) com-
pared with ESE.

2 BACKGROUND ON SPARSE DNNSs

We use Fig. 1 to illustrate existing DNN weight sparsity
schemes. We use grey color to represent the pruned weights.
We start by Fig. 1a showing the weight tensors in a convolu-
tional (CONV) layer. For Figs. 1b, 1c, and 1d the CONV
weight tensors are transferred into the GEMM matrix format.

Fig. 1b is the non-structured sparsity by the irregular
weight pruning techniques [20], [24], [25], which prune
weights at arbitrary locations. The irregular pruning can
achieve a high pruning rate, but the non-structured sparsity is
not compatible with data-parallel executions on the comput-
ing systems.

Fig. 1c is a coarse-grained structured sparsity scheme by
the filter pruning techniques [18], [19], [22] and Fig. 1d is a
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Fig. 1. Weight sparsity schemes by different pruning techniques.

coarse-grained structured sparsity scheme by the column
pruning techniques [26], [31]. Filter pruning by the name
prunes whole filters from a layer. (Please note that some refer-
ences mention channel pruning [19], which by the name
prunes some channels completely from the filters. Essentially
channel pruning is equivalent to filter pruning, because if
some filters are pruned in a layer, it makes the corresponding
channels of next layer invalid.) Column pruning prunes
weights for all filters in a layer, at the same locations. The
coarse-grained structured sparsity preserves regularity on the
sparse models, but suffer from significant accuracy loss.

Fig. 1e shows a fine-grained structured sparsity scheme by
the pattern-based pruning techniques [34], [35], [42], which
are a combination of kernel pattern pruning and connectivity
pruning. In kernel pattern pruning, for each kernel in a filter, a
fixed number of weights are pruned, and the remaining
weights form specific kernel patterns. The example in Fig. 1e
is defined as 4-entry kernel pattern pruning, since every ker-
nel reserves 4 non-zero weights out of the original 3x3 ker-
nels. The connectivity pruning cuts the connections between
some input and output channels, which is equivalent to
removing corresponding kernels. Note that the pattern-based
pruning is not based on the GEMM matrix format. More
details about the differences between this fine-grained struc-
tured sparsity scheme by the pattern-based pruning and that
by our BCR pruning are provided in Section 7.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 10, OCTOBER 2022

3 THE NEw FINE-GRAINED STRUCTURED
SPARSITY AND GRIM OVERVIEW

3.1 Unified View of CNN/RNN Computation

The layerwise computations of CNN include CONV layer
computations with different kernel sizes, mostly 3 x 3and 1 x
1 kernels (Iarger kernels such as 5 x 5 ones may be utilized for
input layer), and FC layer computations which are essentially
matrix-vector multiplications. On the other hand, computa-
tions in RNNs (e.g., LSTM or GRU) are mostly FC layers
(matrix-vector multiplications). It is well known that the
CONYV in DNNs is commonly transformed into GEMM, i.e.,
the multiplication of a weight matrix and an input matrix.
GEMM is commonly utilized in DNN acceleration frame-
works [14], [15]. In this way, all computation types in CNN
and RNN can be unified as matrix-vector or matrix-matrix
multiplication and will be treated in a unified manner through
the fine-grained structured sparsity by BCR pruning.

3.2 Motivation of Fine-Grained BCR Pruning

From a survey of recent research works, we have reached the
following conclusions: (i) non-structured sparsity has the
advantage of high pruning rate but is typically not compatible
with the data parallel executions on the computing systems;
(ii) coarse-grained structured sparsity facilitates inference
acceleration but is often subject to accuracy degradation. The
accuracy degradation in coarse-grained structured sparsity is
especially significant for RNNs. When a whole row or column
in a weight matrix (input, state-transition, or output matrix) of
RNN is pruned, it assumes that a whole input or output entry
is not used at all time steps. This is easy to cause intolerable
accuracy loss. As a result, it is desirable to design a fine-
grained structured sparsity scheme possessing more flexibil-
ity (and thus higher accuracy) while still maintaining regular-
ity (for facilitating inference acceleration).

We propose BCR pruning to achieve this goal, which
applies to different computation layers in CNNs and RNNs.
For a weight matrix in GEMM or FC layer computation, we
divide itinton x m blocks with equal size. We apply indepen-
dent row and column pruning on each block, with potentially
different pruning rates (number of pruned rows/columns) in
each block, to ensure high flexibility. The remaining weights
in each block still form a full matrix. The illustrative example
is shown in Fig. 2. At first glance, BCR pruning is a tradeoff
between the most flexible non-structured pruning and the
most rigid structured pruning that prunes whole rows/col-
umns. It becomes the former with block size 1-by-1 and
becomes the latter with block size the same as the whole
weight matrix. We will see in the following that BCR pruning
is beyond a mere tradeoff, from both accuracy (pruning rate)
and inference acceleration perspectives, especially with the
aid of compiler optimizations.

From the accuracy perspective, we observe that BCR prun-
ing obtains a significant accuracy enhancement (under the
same pruning rate) compared with the most coarse-grained
structured pruning that eliminates whole rows/columns,
even with a small number of blocks. This is validated in var-
ious datasets under the same (ADMM-based) pruning algo-
rithm. With a moderate 8 - 256 number of blocks in weight
matrix, BCR pruning’s accuracy can be similar or even sur-
pass non-structured pruning under the same pruning rate.

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 02:33:07 UTC from IEEE Xplore. Restrictions apply.
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This is because non-structured pruning has a large search
space, and it often takes too long time to converge to a desir-
able solution. This accuracy phenomenon is illustrated con-
ceptually in Fig. 3.

Here is an example to quantitatively compare the searching
space of non-structure pruning and BCR pruning. Consider
pruning a layer with 64 filters and 64 channels with a 2x prun-
ing rate. The total number of possible combinations of non-
structured pruning positions is C(4096, 2048), extremely large.
In contrast, if using BCR pruning with a block size of 4 x 16
and only considering the column pruning, the total number of
combinations is C(1024, 512). If using filter pruning, the num-
ber of combinations is C(64, 32). The above comparison shows
that the total number of BCR pruning candidate combinations
is within a proper range, neither too large like non-structured
pruning, nor too small like coarse-grained structured pruning.
Although Reinforcement Learning can somehow alleviate the
impact of large search space for non-structured pruning, the
sampling action in DRL is generated in a randomized manner,
and it is challenging to make satisfied decisions for high prun-
ing rates. Thus, we claim that controlling the search space for
weight pruning is still necessary.

From the inference acceleration perspective, with a moderate
8 - 256 number of blocks in weight matrix, the inference
acceleration performance on a mobile device can be close to
the coarse-grained structured pruning, far better than the
non-structured one. The most important reason is that the
remaining parallelism in each block (after pruning) is still
much higher than that in a mobile CPU/GPU. Taking a
1024 x 1024 weight matrix as an example. Suppose 64
blocks are utilized and a further 8x BCR pruning rate is
adopted, the average number of remaining weights per
block is 2,048. These 2,048 weights form a weight matrix
that is still large enough for parallelization on mobile CPU/

Performance Accuracy

A Block-size i

4

Block number

Proposed block-based
column-row pruning

—
-

Regularity

Non-structured
pruning

Coarse-grained
structured pruning

Fig. 3. Relation of accuracy and performance with regularity.

Weight Matrix

Block-based Column-Row Pruning

GPU. Moreover, the overhead in column/row index stor-
age, input and output transition, etc. can be effectively
reduced through code optimization capability of compiler,
and load balancing can be maintained. As a result, with the
help of compiler, the inference performance can be guaran-
teed under fine-grained BCR pruning.

In summary, the conceptual Fig. 3 shows that BCR prun-
ing is “beyond a mere tradeoff” of non-structured and the
most coarse-grained structured pruning. Rather, it can
achieve the best of both schemes, i.e., both high accuracy
(pruning rate) and high inference acceleration performance,
under a compiler-assisted acceleration framework.

3.3 Overview of the GRIM Framework

Fig. 4 illustrates the overview of our end-to-end GRIM
acceleration framework, which consists of two major parts:
(1) an execution code generation stage with the compiler-
based optimizations enabled by our BCR pruning (Sec-
tion 4). This part assists inference acceleration with a given
BCR pruned DNN (CNN or RNN) model and is performed
offline; and (2) an optimization framework to determine the
block size (for each layer) and other hyperparameters, and
perform BCR pruning accordingly (Section 5). This part is
performed during the training phase.

At the high-level, GRIM represents the DNN models as
computational graphs with a set of associated optimizations
like TVM [15]. Based on this optimized baseline and by
leveraging our BCR pruning, this work focuses on propos-
ing a layerwise Intermediate Representation (and a Domain
Specific Language) for each DNN layer, and designing mul-
tiple optimization and code generation techniques. Our pro-
posed optimizations include an efficient CONV to matrix
multiplication transformation (i.e., Im2col for CNN only),
matrix reordering, a compact model storage format, regis-
ter-level load redundancy elimination, and an optimized
auto-tuning. These optimizations are general, applicable for
both CNNs and RNNSs (and associated computation types),
working for both CPUs and GPUs on mobile devices. The
optimized RNN and CNN models with BCR pruning can be
used for various real-time workloads like natural language
processing, computer vision, and video processing.

4 COMPILER OPTIMIZATIONS

GRIM employs a compiler-based framework to generate
optimized DNN inference code on mobile devices. At the
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high-level, this framework represents DNN models as
computational graphs like TVM [15] with all optimizations
summarized in Table 5. Based on this optimized baseline,
this section focuses on the optimizations performed on each
DNN layer and enabled by BCR pruning only.

It is worth noting that although GRIM shares similar opti-
mization objectives with PatDNN (.e., addressing perfor-
mance challenges in pruned DNN executions: thread divergence
and load imbalance among threads, redundant memory access,
and unnecessary zero storage), its new optimization techniques
depend on the new BCR pruning that is generally applicable
toboth CNNs and RNNSs, thus requiring very different designs
and implementations comparing to PatDNN. Moreover,
GRIM introduces a new DSL to improve DNN programming
productivity. Fig. 5 shows an overview and a simplified code
transformation and generation example of the GRIM compiler.

4.1 DSL and Compiler-Based Framework

DNN models contain layers with varied computations, such
as CONV, FC, pooling, etc. GRIM offers a high-level Domain
Specific Language (DSL) to specify the functionality (e.g.,
CONV or FC), input (e.g., model, image, and intermediate
results), output (e.g., intermediate and final results), and a
layerwise Intermediate Representation (IR) with BCR pruning
information. The input and output are in the form of tensors
with different shapes. GRIM’s DSL also provides a Tensor
function for users to create matrices (or tensors).

Essentially, this DSL is equivalent to the computational
graph (i.e., DSL is another high-level set of functions to
model the data-flow of DNN models) and they can convert
to each other conveniently. DSL offers users the flexibility of
using existing DNNs or creating new DNNs, improving the
programmability (or productivity) in DNN programming.
If a DNN already exists, GRIM transforms it into an opti-
mized computational graph and translates this graph to
DSL. Otherwise, the user writes the model code in our DSL,
translates it back to a computational graph, performs high-
level optimizations, and re-generates the optimized DSL
code.

Fig. 5 shows a DSL example with two connected layers,
Conv2D and FC. Conv2D takes a model tensor (w0) with the
shape of shape0 and data of data0 and an input feature

H  Matrix reorder

{

Inference Compiler-based opt and code generation

map (in) with the shape of shapel, and generates a result
tensor (out0). Next, FC takes a model tensor (wl) with the
shape of shape2 and data of datal and previous Conv2D
output, and generates a new result tensor (out1).

GRIM compiler translates DSL to low-level C++ (on CPU)
and OpenCL code (on GPU) and optimizes the low-level code
with a set of BCR pruning enabled optimizations, such as
matrix reorder, compact data storage, load redundancy elimi-
nation, configuration parameters auto-tuning, and vectoriza-
tion (as Fig. 5). The generated code is deployed on mobile
devices.

Layerwise IR: The key design of our DSL is prune-aware. It
allows integrating BCR pruning information to the kernel
computation by a layerwise IR (e.g., info in the DSL exam-
ple in Fig. 5). This IR provides the compiler necessary infor-
mation to perform the subsequent BCR pruning-based code
optimization. Fig. 6 shows more details of this IR. It is an FC
layer (full_cnt1) from vggl6, and this IR is for CPU opti-
mization. It mainly consists of three aspects of information:
block information (e.g., block_size and layout), tuning
information (e.g., unroll factor, and tiling size), and
other basic information (e.g., strides). This design is gen-
eral, potential to support more advanced pruning and to
represent other sparsity information for further perfor-
mance optimization.

4.2 Matrix Reordering

BCR pruning partitions the weight matrix of a whole layer
into blocks with different pruning configurations. Without
any further optimization, it will encounter the well-known
challenges for sparse matrix multiplications, i.e., heavy con-
trol-flows within each thread, load imbalance among multiple
threads, and irregular memory access. Although there are
many existing efforts on sparse matrix multiplications [45],
[47], they cannot leverage the optimization opportunities
offered by BCR pruning.

To address this issue, we propose a matrix reorder method
based on BCR pruning. Our later evaluation demonstrates
that this kind of compression and acceleration co-design signif-
icantly outperforms existing general sparse matrix multiplica-
tion optimizations that do not take the pruning characteristic
into account.
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for r = @ to rows step 1: A_ptr = A + row_offset[r] result +=
for ¢ = @ to cols step 1: for d = column_stridelr] to A_ptr++ x
A_ptr = A + row_offset[r] column_stridelr + 1]: load_N(B[column[d] *
for d = column_stride[r] to // reuse the column data here cols + cl)
column_stride[r + 1]: // unroll N times, omit code //upper loop
// reuse the column data here Clr x cols + c] += A_ptr++ % store_N(address(C[r * cols +
Clr * cols + c] += A_ptr++ * Blcolumn[d] * cols + c] cl), result)
Blcolumn[d] * cols + cl r+=N
J J/

(-

Fig. 5. GRIM’s compiler-based optimization and code generation flow: compiler takes both DSL and layerwise IR (as an example in Fig. 6) to gener-
ate low-level C/C++ and OpenCL. This low-level code is further optimized with matrix reordering and our BCRC compact model storage (+Reorder),
the register-level load redundancy elimination (+LRE), and other optimizations like vectorization (+Vectorization). Finally, the code is further

tuned by the auto-tuning module and deployed on mobile devices.

Fig. 7 illustrates the basic idea of matrix reorder. Because
BCR pruning removes certain whole columns and rows of
weights within a block, the remaining weights only appear
in other rows and columns with a certain degree of regular-
ity. Based on this insight, matrix reorder first reorders the
rows (e.g., filters in CNN) by arranging the ones with the
same or similar patterns together. Next, it compacts the
weights in the column direction (e.g., kernels in CNN). At
last, the rows with the same or similar computations are
grouped together.

Fig. 7 shows a simplified example with only three groups
and two rows in each group. Real CNN and RNN models
usually have tens of groups with hundreds of rows in each
group. Each group is processed by all threads in parallel,
and each thread is in charge of multiple continuous rows.
Thus, the computation divergence among these threads is
significantly reduced.

4.3 Compact Model Storage (BCRC)

After the matrix reorder, GRIM stores the model in a compact
format by leveraging the BCR pruning, called BCRC (.e.,
Blocked Column-Row Compact) format. BCRC aims to avoid
zero-weights storage as CSR with an even better compression

name: 'vggl6"
device: ["CPU"]
layers:
- name: "fully_cntl"
blocks: {"block_size": [4, 21, "layout": "BCRC", ...}
tuning: {"unroll": [4, 8, 1], "tile": [64, 27], ...}
params: {"strides": [1, 1], "size": [64, 27], ...}
Fig. 6. A layerwise IR example.
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Fig. 7. Matrix reordering.

ratio by adopting a hierarchical index structure to remove
redundant column indices generated by BCR pruning. BCRC
helps to save the scarce memory-bandwidth of mobile
devices.

Fig. 8 shows a simplified example of BCRC. The original
matrix with BCR pruning (left-hand side) is transformed
into a compact matrix by reordering (middle) and then
stored in BCRC (right-hand side). BCRC consists of six
arrays: reorder, row offset, occurrence, column
stride, compact column and weights:

e Reorder array denotes a mapping between the
row id in the original matrix and the one in the reor-
dered matrix. For example, the number 0 and 3 (in
reorder array[0] and [1]) denote that the row, and
rows in the original matrix are placed in the 0 and 1
rows, respectively, after the reorder.

Row offset array denotes the offset of each row
when the reordered matrix is linearized into a 1-d
array (i.e., weights array). For example, the 0 and
3 (in row offset array[0] and [1]) mean that the rowy
and row; in the reordered matrix start from index 0
and 3, respectively, in the 1-d weights array.

The key advantage of BCRC over CSR is to use a more
compact way to store the column index based on the
observation that multiple rows may share the same column
index due to the BCR pruning. It uses three arrays to
achieve this: occurrence, column stride and
compact column. Here is the basic idea. Compact
column array stores the column index of each row in
the reordered matrix. The column stride array

Column Reorder arra
0f3]2]5([4]6
1 2 4
Reorder Row offset array
k 5 1T2l4]  [o[3[e[s[0]i2]i4
slel8] =
HIE 6 8 d amay
g i ) M I NI
Column stride array
5 6 3|4 0|3|5|7|
7 5 715 Compact column array
[o[3T6[o]3]5]7]
Weights array
Reorder I1I2I4I5I6I8|2l3I5I6I3I4I7I5|
Original matrix w/ BCR matrix

Fig. 8. BCRC compact storage.
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Fig. 9. Register level LRE.

denotes the offset of the column index in each row. For
example, the 0 and 3 (in column stride array[0] and
[1]) mean that the first row in reordered matrix has the
column index [0, 3, 6] (i.e., from compact column array
[0] to [2 < nbw > (i.e., < /nbw > 3 — 1)]). If two rows
share the same column index, compact column
array only stores once. The occurrence array is
used to specify which rows have the same column
index. For example, the first two numbers [0, 2] (in
occurrence array [0] and [1]) show row, and row; have
the same column index [0, 3, 6].

e Weights array is to store the matrix weights in a
linearized 1-d array.

The low-level code starts to support computations on

BCRC from +Reorder in Fig. 5.

4.4 Register Load Redundancy Elimination

Poor memory performance caused by the irregular and redun-
dant memory access is another key bottleneck of efficient
DNN execution. GRIM employs two further optimizations to
address this challenge: (1) matrix tiling (with the best tiling
size decided by auto-tuning) to improve the load/store effi-
ciency from memory to register, and (2) register load redun-
dancy elimination (LRE) to reduce the number of register
loads. This section focuses on the latter because of its novelty.

Fig. 9 shows a register-level RLE example, in which both
[1,4] and [5,8] (.e., the first two rows) in the kernel matrix
require the first and the last rows of the input feature map.
Thus, the first and last rows of the input feature map could
be loaded into the register once and reused by the first two
rows of the kernel matrix. GRIM achieves this by a proper
loop unrolling transformation (as shown in Fig. 5, +LRE),
because this LRE opportunity is decided by the kernel
matrix that is already known during the compilation time.

It is worth noting that although it is easy to implement
this LRE for dense models, it is challenging (even not possi-
ble) for randomly pruned models. Our BCR pruning re-ena-
bles LRE, showing the benefit of a model compression and
compiler optimization co-design.

4.5 Auto-Tuning and Other Optimizations
GRIM also includes some other optimizations that improve
execution performance obviously:

Auto-tuning. DNN execution usually involves many con-
figurable performance parameters, such as the data place-
ment on GPU heterogeneous memory, matrix tiling sizes,
loop unrolling factors, etc. Tuning them manually is tedious
and error-prone. GRIM thus includes an auto-tuning mod-
ule based on Genetic Algorithm to explore them automati-
cally. In particular, after BCR pruning, different model
kernels have varied sizes and shapes that require different
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tiling shapes and thread block settings. GRIM employs this
auto-tuning module to extensively explore the best configu-
rations for all DNN kernels. Comparing to existing auto-
tuning approaches in TVM, GRIM’s auto-tuning exploits
better parallelism because its foundation, Genetic Algo-
rithm allows starting parameter search with initializing an
arbitrary number of chromosomes. GRIM’s auto-tuning is
more efficient.

Vectorization. GRIM also vectorizes CPU and GPU code
automatically with ARM NEON and OpenCL, respectively.
CPU and GPU have different (and limited) numbers of vec-
tor registers. To fully utilize them while minimizing the reg-
ister spilling, GRIM carefully designs another level of loop
unrolling to pack more computations together. Combining
this optimization with the regularity given by BCR pruning
and matrix reorder, GRIM generates more efficient vector
codes comparing to other DNN acceleration frameworks.

Computation Transformation. GRIM transforms CONV to
sparse matrix multiplication, which requires to convert CONV
weights to a GEMM-based matrix format (i.e, the step of
Im2col in Fig. 4). Im2col is memory-bound as it only reads
weights and expands them to a larger matrix. GRIM optimizes
Im2col by skipping the matrix row during expanding, when
a certain weight column is completely pruned.

5 BCR PRUNING OPTIMIZATIONS

In this section, we present the BCR pruning techniques to
cooperate with the compiler optimizations. Besides per-
forming BCR pruning itself, we need to optimize the block
size (for each layer) and also other hyperparameters (such
as the pruning rate for each layer). The search space of all
the hyperparameters is huge, therefore we propose a decou-
pling strateqy of the hyperparameter space to reduce the
problem complexity. It is based on the following two obser-
vations. First, generally, the sparse DNN accuracy is higher
when the block size is smaller. Second, the mobile inference
acceleration relates to the block size (and thus the number
of blocks) and is independent of actual weight values.
Therefore, we decouple block size optimization from other
hyperparameter optimizations. More specifically, we per-
form mobile testing with the compiler optimizations to eval-
uate inference acceleration performance at different block
sizes and select the smallest block size such that the infer-
ence acceleration performance degradation (compared with
pruning whole rows/columns under the same pruning
rate) is within a predefined threshold. This step is indepen-
dent of DNN training or actual BCR pruning and should
run much faster. The underlying principle is that the
derived block size will likely provide the highest accuracy
while satisfying the inference acceleration performance
requirement. More elaborations about the decoupled opti-
mizations are provided in the following.

5.1 Block Size Optimization

Block size affects accuracy because a small block size results
in a larger search space that mitigates the accuracy loss
without changing pruning rate. The granularity of pruning
increases with the block size growing. For example, under
the same pruning rate, non-structured pruning can achieve
higher accuracy than coarse-grained structure pruning. As
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the block size increases, the BCR pruning with increasing
regularity becomes increasingly similar to the coarse-
grained structure pruning, while as the block size decreases,
the BCR pruning with less regularity becomes increasingly
similar to a non-structured pruning.

Listing 1. Block Size Optimization

1 def synthesize(origin_layer, rate, size):

2 # Copy the layer information, e.g. Weight
shape

3 layer =copy_layer (origin_layer)

4 # Randomly generate weights

5 generate_random_weight (layer, rate, size)

6 return layer

7

8

# <Algorithm Entry>: find optimal block size
with apruning_rate
9 def find_opt_blk(layer, rate, block_sizes,
device) :
10 opt_size=-1
11 opt_latency = INFINITE_MAX

12 # Traverse different block size

19

13 for sizeinblock_sizes:

14 # Synthesize a new layer

15 syn_layer = synthesize(layer, rate, size)

16 # Run synthesized layer on mobile device and
get latency

17 latency = run_layer (syn_layer, device)

18 # 1f improvement of latency is less thana
threshold, then stop

19 if opt_latency / latency < threshold:

20 break

21 # Record amore optimal block size

22 opt_latency = latency

23 opt_size =size

24  # Return the records
25 returnopt_size

The block size optimization is based on offline mobile test-
ing with the compiler optimizations. Its goal is to select the
smallest block size for each layer such that the inference accel-
eration performance degradation is within a tolerable range.
Different layers may have different properties, e.g., the size of
feature maps and convolution kernels. The runtime perfor-
mance of different layers may vary as different properties
result in different cache performance and computation pat-
terns. Therefore, GRIM requires to study the relationship
between layer size (and layer structure) and desirable block
size and identifies the preferred block size for each layer. We
evaluate mobile CPU/GPU in a layerwise manner, using syn-
thesized BCR pruning strategies with a pruning rate for each target
layer, and then select the desirable block size.

List 1 shows our detailed block size optimization algo-
rithm. The objective of this algorithm is to find the optimal
block size for each target layer under certain pruning rates.
It consists of three steps. The first step accepts a layer, a
pruning rate, a candidate block size set, and a device
(mobile CPU or GPU) as input for the optimal block size
testing (Listing 1 line 9). The block size set consists of a
group of width and height pairs that can divide the layer’s
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Fig. 10. (a) The CPU and GPU execution time (y—axis) for a single
weight matrix as changing the number of blocks (z—axis); (b) The CPU
execution time (left y—axis) and accuracy (right y—axis) for VGG-16 on
CIFAR-10 as changing the block size.

widths and heights. The second step generates a synthe-
sized layer with features (e.g.,, CONV kernel size, weight
size, and stride size, except the real weight numbers) identi-
cal to the original layer. This step also generates random
weights that satisfy the pruning rate and block size require-
ments (Listing 1 lines 1 to 6) to improve the algorithm effi-
ciency by avoiding training weights. The key insight is that
the pruning ratio rather than the specific location of non-
zero weights impacts more on the latency of a certain
CONYV layer with our BCR pruning that already guarantees
certain regularity. The third step runs this synthesized layer
on a mobile device to test its latency. If the latency improve-
ment of this synthesized layer exceeds a threshold, our algo-
rithm sets this block size as local optimal; otherwise it
terminates with returning the last local optimal block size
(Listing 1 lines 19 to 25). This algorithm executes on a host
(PC) machine except the third step (run_layer) that runs on
mobile devices to test latency. The whole process performs
offline efficiently, independent of training/pruning. For
example, for VGG-16 (on ImageNet dataset), this process
takes less than 1 hours.

The left part of Fig. 10 shows an illustrative example
using a 1024 x 1024 weight matrix, under 10x BCR prun-
ing rate. As the block number increases, the execution
time remains stable before it reaches 256, and increases
dramatically after that. The right part of Fig. 10 shows the
execution time and accuracy trend with changing block
size for VGG-16 trained on CIFAR-10. The z-axis shows
the first dimension of the block size, and the second
dimension is fixed as 16. With increasing block size, the
execution time drops quickly at first until reaching a rela-
tively stable level (around 3 ms), and the inference accu-
racy drops slowly at first and quickly after a point.
Therefore, it is possible for us to find a specific block size
(e.g., 4 x16) that yields (near-)optimal execution time
without compromising accuracy.

5.2 BCR Pruning Using ADMM

Based on the derived block size (number) for each layer, we
will perform BCR pruning along with the optimizations of
the remaining key hyperparameters: target pruning rate for
each layer. We adopt state-of-the-art weight pruning algo-
rithm using ADMM (Alternating Direction Methods of Mul-
tipliers) and generalize to BCR pruning, for two reasons: (i)
It achieves (one of) the highest weight pruning rates satisfy-
ing accuracy constraint [25], [26], [32]. (i) The ADMM-
based solution framework, when generalized to BCR prun-
ing, can automatically determine the desirable column and
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row pruning rates for each block given a predefined prun-
ing rate for a whole weight matrix (for a specific layer).

BCR Pruning Problem Formulation and ADMM-based Solu-
tion: For an N-layer DNN of interest, let W; and b; denote
the weights and biases of the ith layer respectively. We min-
imize the loss function associated with the DNN model,
subject to the specific fine-grained structured sparsity con-
straints (columns and rows in a block are pruned) on the
weights in the corresponding layers, i.e.,

minimize f({W; N b, N ,
ninimize (W3, (bi} ) .
subject toW; € S;, i =1,..., N,

where S; is the set of W; with the sparsity constraint ;.

Fine-grained structured sparsity by BCR: Consider the weight
matrix of the ith DNN layer divided into n x m blocks. The
constraint on the weight matrix is that, the ratio of the total
number of zero weights in all blocks to the total number of
weights is no less than «; (the sparsity constraint). And the
zero weights form whole columns and rows.

Corresponding to every set S;, i = 1,..., N, we define the
ST . 0 it W; €8S,,
indicator function ¢;(W;) = { 400 otherwise. - Problem

(1) with constraint cannot be solved directly by classic sto-
chastic gradient descent (SGD) methods [48] as original
DNN training. However, the ADMM regularization can
reforge and separate the problem, then solve them itera-
tively [49], [50]. First, we reformulate the problem (1) as:

minimize

i1

N
FUWHE (b)) + Zgi(zz%

subject to W;=7Z;, i=1,...,N,

2

where Z; is an auxiliary variable. Then, with formation of
augmented Lagrangian [51], the problem (2) can be decom-
posed into two subproblems (3) and (4),

N
minimize WY AV Y+ S 2w -zt U2,
{Wil{b;} JIWiky, {bikin) r— I i + Uillz

3)

N N
minimize > gi(Z) + )G IWE - Zi+ Ully, @)
i i=1 i=1

where U; denotes dual variable and ¢ is the iteration index,
and we update U; in each iteration by U! := U™t + W' —
Z!. These two will be iteratively solved until convergence.

The first subproblem can be solved by classic SGD. For
the second subproblem, the solution is given by

zi = [[(Wi' + U, (5)
S;

where [[g.(*) is the euclidean projection to S;, thereby guar-
antees weight matrices are subjected to the fine-grained struc-
tured sparsity by BCR.

Whole layer pruning rates are the hyperparameters in the
ADMM-based solution framework. We use a straightforward,
uniform target pruning rate for all layers in the DNN. This is
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shown as a valid hyperparameter setting for overall accelera-
tion. More sophisticated hyperparameter determination pro-
cedure is possible and is orthogonal to this work.

6 EVALUATION

This section evaluates GRIM by comparing it with TVM [15],
TFLITE [14], MNN [44], an optimized sparse matrix imple-
mentation (CSR) based on CSR [45], and PatDNN [42].

6.1 Methodology

Evaluation Objective. Our evaluation has four objectives: (1)
proving BCR pruning results in both high pruning rates and
accuracy by comparing it with several state-of-the-art model
compression efforts; (2) demonstrating GRIM runs faster than
state-of-the-art end-to-end DNN execution frameworks,
achieving real-time execution of mainstream DNNs on mobile
devices without accuracy compromise; (3) studying the per-
formance impact of GRIM’s major compiler optimizations
and the underlying reasons for the performance gains; (4) vali-
dating GRIM’s good portability by comparing it with other
frameworks on two other mobile devices.

Models and Datasets. GRIM is evaluated on three main-
stream CNNs, VGG-16 (VGG), ResNet-18 (RNT) and Mobile-
Net-V2 (MBNT). They are trained and tested on two datasets,
CIFAR-10 and ImageNet. Here, we use 4 x 16 as the block
size. When pruning and retraining models, the initial learning
rate is le—2 for CIFAR-10, and it is reduced to 1e—3 for Image-
Net. The learning rate is fixed for pruning, while adjusted in
retraining with a scheduler following the cosine function.
Besides, the numbers of epochs for pruning of all models on
CIFAR-10 and ImageNet are fixed to 400 and 100, respec-
tively, and for retraining are 300 and 100, respectively. For all
models’ pruning, the penalty factor (p) increases exponen-
tially from le—4 to le—1. All training are conducted on NVI-
DIA Titan RTX GPUs with Ubuntu operating system and the
PyTorch 1.3 framework with CUDA 10.1. For training cost,
take VGG-16 as an example. On CIFAR-10 dataset, pruning
(with ADMM optimization) and retraining (with normal
DNN training setting) consume 22 seconds/epoch and 20 sec-
onds/epoch on average with one Titan RTX GPU, respec-
tively. On ImageNet dataset, pruning and retraining consume
42 minutes/epoch and 38 minutes/epoch on average with
four Titan RTX GPUs, respectively. GRIM is also evaluated on
a popular GRU RNN model that is widely used in previous
studies [46], [52], [53]. GRU contains 2 GRU layers and about
9.6M parameters. GRU is trained and tested on the TIMIT
dataset [54] that is commonly used for evaluating automatic
speech recognition systems.

Testbed and Evaluation Setup. Our evaluations are con-
ducted on a cell phone, Samsung Galaxy S10 with the latest
Qualcomm Snapdragon 855 that consists of a Qualcomm
Kryo 485 Octa-core CPU and a Qualcomm Adreno 640
GPU. The portability is tested on a Xiaomi POCOPHONE
F1 phone with a Qualcomm Snapdragon 845 that consists of
a Kryo 385 Octa-core CPU and an Adreno 630 GPU, and an
Honor Magic 2 phone with a Kirin 980 that consists of an
ARM Octa-core CPU and a Mali-G76 GPU. All experiments
run 50 times on varied inputs with 8 threads on CPU, and
all pipelines on GPU. Multiple runs do not vary severely, so
we only report the average execution time for readability.
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TABLE 1
BCR Pruning with Optimized Block Size Versus Other Pruning Methods on CIFAR-10
Methods Dense Accuracy Sparse Accuracy Conv Pruning Rate Pruning Method
VGG-16
Iterative Pruning[16][24] 92.5% 92.2% 2.0x Irregular
One Shot Pruning[24] 92.5% 92.4% 2.5x% Irregular
2PFPCE[29] 92.9% 92.8% 4.0x Filter
Efficient ConvNet [21] 93.2% 93.4% 2.7x Filter
2:4 Pattern [56] 93.5% 93.8% 35.7x Irregular
2:4 Pattern [56] 93.5% 93.3% 71.3x Irregular
PatDNN [42] 93.5% 93.7% 19.8x Pattern-based
GRIM 93.5% 93.8% 35.7x BCR
GRIM 93.5% 93.6% 50.5x BCR
GRIM 93.5% 93.1% 71.3x BCR
ResNet-18
DCP[28] 88.9% 87.6% 2.0x Filter
AMC[23] 90.5% 90.2% 2.0x Filter
Variational Pruning[33] 92.0% 91.7% 1.6x Filter
PatDNN [42] 94.1% 94.2% 16.0x Pattern-based
GRIM 94.1% 94.4% 22.9x BCR
GRIM 94.1% 94.1% 24.4x BCR
GRIM 94.1% 93.9% 27.0x BCR
MobileNet-V2
DCP[28] 94.5% 94.7% 1.4x Filter
GRIM 94.5% 94.7% 6.0x BCR
GRIM 94.5% 94.5% 7.2% BCR
GRIM 94.5% 94.4% 9.0x BCR
GRIM 94.5% 93.3% 11.9x BCR

We tune all runs to their best configurations, e.g., we apply
Winograd optimization [55] for all dense runs, and use 16-
bit float point for all GPU runs.

6.2 Accuracy Report
CIFAR-10. Table 1 shows the BCR pruning results for
CIFAR-10 dataset. We use pre-trained VGG-16, ResNet-18
and MobileNet-V2 networks as our starting points to per-
form BCR pruning separately. For VGG-16, the original
accuracy of the pre-trained model is 93.5 percent. Compared
to the original model, BCR pruning achieves up to 50.5x
pruning rate without any accuracy degradation. We further
extend the pruning rate to 71.3x and get only 0.4 percent
accuracy loss. For ResNet-18, when the pruning rate is
24.4x, BCR pruning achieves lossless 94.1 percent accuracy.
When the pruning rate extends to 27.0x, the accuracy deg-
radation is still negligible. For MobileNet-V2, BCR pruning
achieves 9x pruning rate with minor accuracy loss com-
pared to the original model (94.5 percent). Considering
MobileNet-V2 is already a compact network, this weight
pruning result is still prominent. To conduct an apple-to-
apple comparison among DCP [28], PatDNN [42], and
GRIM. We also evaluate the accuracy of ResNet-18 under a
pruning rate of 27.0x. DCP, PatDNN, and GRIM yield an
accuracy of 68.2,92.1, and 93.9 percent, respectively.
ImageNet. Table 2 shows the BCR pruning results of
VGG-16, ResNet-18 and MobileNet-V2 on ImageNet data-
set. For VGG, the original model has top-5 accuracy as 91.7
percent, and BCR pruning achieves 8 x pruning rate with no
accuracy loss for top-5. When the pruning rate reaches 12x,
the top-5 accuracy is 90.8 percent. For ResNet-18, the accuracy

degradation is negligible when the pruning rate is 4x. For
MobileNet-V2, BCR pruning achieves 2x pruning rate with
0.7 percent top-5 accuracy degradation.

TIMIT for RNN. Table 3 shows the BCR pruning results that
are evaluated by phone error rate (PER) and pruning rate. We
compare BCR pruning with other state-of-the-art methods,
including ESE[46], C-LSTM[52] and E-RNNI53] on the same
dataset TIMIT. When pruning rates are low (i.e., not higher
than 20x), the BCR pruning guarantees no accuracy degrada-
tion, which outperforms ESE at 8 x pruning rate and C-LSTM
at both 8x and 16x pruning rates in terms of both pruning
rate and accuracy. When pruning rates are high (such as
103.8x), BCR can maintain an admirable speech recognition
performance, which means the BCR pruned model can even
outperform C-LSTM regarding both pruning rate and accu-
racy. Moreover, the BCR method can well adapt to ultra-high
pruning rate scenario, e.g., our model with 245X pruning rate
can still maintain a comparable phone error rate (24.20 per-
cent) to C-LSTM (24.15 percent).

6.3 Overall Execution Time Report

Fig. 11 reports GRIM’s CPU and GPU execution performance,
and compares GRIM with MNN [44], TVM [15], TFLITE [14],
CSR [45], and PatDNN [42] on three CNNs (VGG-16, ResNet-
18, and MobileNet-V2) trained on two datasets (ImageNet
and CIFAR-10), respectively'. These evaluations test and
report the whole model execution time rather than the time of
CONV layers only as PatDNN. GRIM outperforms other

1. Sparse models w/ highest pruning rate in Tables 1, 2, and 3 are
selected
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TABLE 2
BCR Pruning with Optimized Block Size Versus Other Pruning Methods on ImageNet
Methods Dense Top 1/5 Accuracy Sparse Top 1/5 Accuracy Conv Pruning Rate Pruning Method
VGG-16
Decorrelation [27] 73.1%/NJA 73.2%/NJA 3.9% Filter
APoZ [17] N/A/88.4% 66.2/87.6% 2.0x Filter
2:4 Pattern [56] 74.5%/91.7% 73.4%/91.0% 12.0x Irregular
PatDNN [42] N/A/91.7% N/A/91.6% 8.0x Pattern-based
GRIM 74.5%191.7 % 74.4%191.7 % 3.0x BCR
GRIM 74.5%/91.7% 74.1%/91.7% 8.0x BCR
GRIM 74.5%191.7% 73.1%/90.8% 12.0% BCR
ResNet-18
Network Slimming [22] 68.9/88.7% 67.2/87.4% 1.4x Filter
DCP [28] 69.6/88.9% 64.1/85.7% 3.3x Filter
PatDNN [42] 69.9/89.1% 69.5/89.2% 4.0x Pattern-based
GRIM 69.9%1/89.1% 69.6%/89.2% 4.0x BCR
GRIM 69.9%/89.1% 68.4%/88.6% 6.0x BCR
GRIM 69.9%1/89.1% 67.2%/87.7% 8.0x BCR
MobileNet-V2
AMC [23] 71.8% /NJA 70.8%/NJA 1.4x Irregular
GRIM 70.9%1/90.4% 70.0%/89.7 % 2.0x BCR
TABLE 3
BCR Pruning with Optimized Block Size Versus Other Methods on TIMIT
Methods Dense PER Sparse PER Pruning Rate Pruning Method
GRU
ESE[46] 20.40% 20.70% 8.0x Irregular
C-LSTM[52] 24.15% 24.57% 8.0x Block-circulant
C-LSTM[52] 24.15% 25.48% 16.0x Block-circulant
E-RNN [53] 20.02% 20.20% 8.0x Block-circulant
GRIM 18.8% 18.8% 10.0x BCR
GRIM 18.8% 18.8% 19.5% BCR
GRIM 18.8% 23.2% 103.8x BCR
GRIM 18.8% 24.2% 245.5% BCR

PER is Phone Error Rate.

frameworks for all cases. On CPU, GRIM achieves 2.47x to
5.75%, 3.08x to 6.11x, 5.98x to 12.55x%, 2.81x to 5.81x, and
1.09% to 2.06x speedup over MNN, TVM, TFLITE, CSR, and
PatDNN, respectively. On GPU, GRIM achieves 2.46x to
6.84x, 3.08 to 7.09%, 547x to 14.08x, 2.59x to 5.41x, and
1.03x to 2.11x speedup over MNN, TVM, TFLITE, CSR, and
PatDNN, respectively. Particularly, comparing to PatDNN,
GRIM’s BCR pruning is more flexible, not only working for
3 x 3 (or5 x 5, etc.) CONV layers targeted by PatDNN but also
leading to better pruning and proper optimizations for 1 x 1
CONV and varied FC layers that PatDNN cannot fully

optimize. For the largest CNN (VGG) trained on the largest
dataset (ImageNet), GRIM can complete the whole inference
of a single input within 33 ms with our mobile GPU, meeting
the industrial real-time standard (i.e., 30 frames/sec).

BCR pruning requires to convert all convolutions to
GEMM through Im2col, which incurs overhead, particu-
larly for large kernels. To validate GRIM’s performance on
large kernels, this part compares the performance of two
kernel sizes, (3, 3) and (11, 11) under the same computation
workload (by changing the number of channels) and a 10x
pruning rate. The (3, 3) CONV layer achieves 4.5x speedup

% 240f 42 [IMNN  [JTVM i 30
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Fig. 11. Overall performance: z—axis are DNN models; y—axis is average DNN end-to-end inference time on a single input.
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Fig. 12. Matrix multiply performance: z—axis is row/column size.

over TFLite, while (11, 11) achieves 3.3x speedup over
TFLite. This is consistent with our intuition and proves that
GRIM can still result in notable performance gains on larger
kernels regardless of the overhead introduced by Im2col.
Moreover, large kernels (>5x5) usually occupy a small por-
tion of the overall computation of models (e.g., 9.3 percent
in AlexNet).

To further validate the advantages of GRIM, this part
also compares it with another cutting-edge sparsification
approach (named 2:4 pattern) proposed by NVIDIA[56]. 2:4
pattern can also be defined as a fine-grained structured
pruning that is natively supported by the latest NVIDIA
GPU architecture. This work implements 2:4 pattern prun-
ing with the algorithm stated in the Section 5.2. Tables 1 and
2 shows that GRIM achieves comparable accuracy with 2:4
pattern pruning under the same pruning rate. Because nei-
ther mobile CPU or mobile GPU is equipped with dedicated
hardware that supports 2:4 pattern pruning, this work uses
the CSR baseline aforementioned to store the sparse data
and performs the computation of 2:4 pattern. For VGG-16
on CIFAR-10 (with 71.3x pruning rate) and VGG-16 on
ImageNet (with 12x pruning rate), GRIM achieves 2.6x
and 3.1x speedup compared with this CSR-based NVIDIA
2:4 implementation on mobile CPU, respectively.

For GRU RNN, because the above mobile frameworks do
not support end-to-end execution. We compare GRIM with
them on matrix multiplication kernels with varied sizes.

The weight matrix is pruned with a 10x pruning rate.
Fig. 12 reports the result. All frameworks” execution time
increases as the matrix size grows. GRIM performs the best,
with up to 2.3%, 4.3x, 6.1x, and 2.5x speedup over MNN,
TVM, TFLITE, and CSR. PatDNN is not listed because it
optimizes CONV directly without transforming to GEMM.
GRIM completes GRU inference on Adreno 640 GPU within
81us (for sequence length of 1 and batch size of 32). We com-
pare GRIM with a representative FPGA implementation,
ESE[16]. GRIM can even slightly outperform ESE.” Specifi-
cally, GRIM can achieve significantly higher energy effi-
ciency (38x) comparing with ESE.

6.4 Performance Optimizations Break-down

GRIM’s superior performance mainly comes from two
major resources. First, it has a fully optimized dense base-
line, which is already 1.1x to 1.6x faster than TVM and
MNN (extra optimizations are shown in Table 5). Second,
the flexible BCR pruning compresses the overall computa-
tion by 4x to 20 x . However, this computation reduction
cannot transform to performance gains directly without fur-
ther compiler optimizations due to the computation and

2. ESE completes GRU with around 82us
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Fig. 13. Speedup: opt over no-opt on different CONV layers of VGG.

memory access irregularity. This can be proved by CSR’s
performance in Fig. 11. Because CSR cannot leverage our
compiler optimization, although its computation is almost
equivalent to GRIM’s, a significant performance gap still
exists between CSR and GRIM. This part carefully studies
the impact of GRIM’s compiler optimizations. Please notice
that these optimizations are only enabled by BCR pruning.

Fig. 13 shows the performance improvement given by each
optimization for VGG (on ImageNet).? The z—axis denotes the
layers in VGG, and more detailed information is shown in
Table 4. This result uses the DNN execution code on BCR
pruned models without any optimization (No-Opt) as the
evaluation baseline. On CPU, matrix reorder (Reorder)
brings 1.21x to 1.88x speedup, register-level load redun-
dancy elimination brings extra 1.11x to 3.51x speedup, and
auto-tuning brings additional 0.31x to 1.45x speedup. On
GPU, these numbers are 1.30x to 2.88x, 0.89x to 1.90x, and
0.19x to 2.28x, respectively. Matrix reorder optimization
yields more benefits on GPU than CPU, because GPU has
more threads and hence is more sensitive to thread diver-
gence and load imbalance. We next characterize matrix reor-
der, load redundancy elimination, and compact storage
optimizations to explain why they work. Auto-tuning and
other optimizations are not further explained because their
effects are more straightforward.

Effect of Matrix Reorder. Fig. 14 shows the number of non-
zero weights (nnz) in each row for an RNN FC layer and a
CNN CONYV layer, respectively. Only the first 256 rows are
plotted for readability. The nnz distribution is very random
before matrix reorder (No-Reorder), incurring significant
thread divergence and load imbalance if these rows are
processed by different threads. This distribution becomes
much more regular after reorder (Reorder). The rows with
similar nnzs can be grouped together and each group can
be processed by all threads simultaneously to minimize
thread divergence and load imbalance.

Effect of LRE. Fig. 15 reports the register load counts
before and after the load redundancy elimination for multi-
ple layers with different matrix sizes from both GRU (RNIN)
and VGG (CNN). It shows the number of register loads is
significantly reduced with LRE optimization. This explains
why LRE yields so obvious performance gains even after
the traditional data locality optimizations like tiling.

BCRC VERSUS CSR. Fig. 16 shows the extra data storage
overhead (i.e., the data size other than non-zero weights)
for both BCRC and CSR with varied matrix sizes and prun-
ing rates. BCRC saves 61.7 to 97.1, 54.9 to 95.2, 48.3 to 93.3
percent, and 30.1 to 87.7 percent extra data over CSR for

3. RNN and other CNN results are omitted, very similar to VGG.
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TABLE 4
VGG CONYV Layers Characteristics
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TABLE 5
DNN Acceleration Frameworks on Mobile

Name Filter shape Name Filter shape Name Filter shape = DNNs Optimization Knobs TFLite TVM MNN GRIM
L1 [64,3,3,3] L4 [128,128,3,3] L7 [512,256,3,3] Parameters auto-tuning N Y N Y
CPU/GPU support Y Y Y Y
12 [64,64,33] L5 [256,128,3,3] L8 [512,512,3,3] Dense Half-floating support Y Y Y Y
L3 [128,64,3,3] L6 [256,256,33] L9 [512,512,3,3] Computation graph opt. Y Y Y Y
Tensor optimization Y! YT Y! O YiT
RNN opt support Yp N N Y
Sparse DNN model support N N N Y
No-Reorder — Reorder 200| BCR pruning N N N Y
£100 5150 . Sparse Matrix reordering N N N Y
< Ty e T4 Opt. sparse kernel code gen N N N Y
5 5ol LTI p i | 3100 TR Auto-tuning sparse models N N N Y
z bl Rl
=z Z 50 H . . .
* Operator fusion, constant folding, static memory plan, data layout transform
0 0 ** Besides above in *, operation replacement
0 128 256 0 128 256 i . X o . e
. ) . Scheduling, nested parallelism, tensorization, explicit memory latency hiding
EE)RII_{JI)\IN. a 1024 x 1024 layer r(gls(gygc)%éxus in/out chan- T Besides above in 1, dense kernel reordering, SIMD operation optimization

Fig. 14. Matrix reorder: x—axis is row id.
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Fig. 15. Register load counts before and after LRE. (R1to R3in RNN are
layers of GRU with different matrix sizes, 152 x 1024, 512 x 1024, 1024 x
1024. CNN uses CONV layers from VGG.)

different pruning rates. This results in up to 48.5, 47.6, 46.6,
and 43.8 percent overall data reduction.

6.5 Portability Evaluation

We also run GRIM on two other phones to validate its porta-
bility. We got very similar performance comparison results
as above, which are omitted due to the space limitation.

[] Pruningrate -5 [] Pruning rate - 10
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BCRC /CSR
N
o
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Fig. 16. Extra data overhead comparison: BCRC/CSR with varied matrix
sizes (z—axis) and pruning rates.
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Fig. 17. Portability evaluation with VGG on ImageNet.

! Similar optimizations as TVM, but less advanced
p Latest version (partially) supports some RNN executions wfo RNN-specific
opts.

Fig. 17 reports the performance comparison of VGG (the
most complex/largest DNN in our evaluation) between
GRIM and other frameworks. On both platforms, GRIM
outperforms others for both CPU and GPU, proving GRIM’s
good performance portability. GRIM's design and optimiza-
tion are general, not specific to any brand or type of mobile
device. GRIM is also less sensitive to resource constraints
because of its high pruning rate, so its performance is stable
on other mobile devices with even weaker computation
power and smaller memory capabilities (e.g., Raspberry Pi).

7 RELATED WORK

There have been many efforts on DNN acceleration frame-
works on mobiles, like DeepEar [57], MCDNN [58], Deep-
Mon [59], DeepSense [60], DeepCache [61], etc. Among those
TFLite [14], TVM [15], Alibaba MNN [44], and PatDNN [42]
are four state-of-the-art end-to-end acceleration frameworks
for mobiles. Please note that those four do not or only partially
support RNNs. Also, these prior work do not utilize sparse
DNN model inference, except for PatDNN. Table 5 compares
the major optimizations in TFLite, TVM, and MNN with
GRIM. Basically, TFLite, TVM, and MNN are optimized for
dense DNNs.

Table 6 compares GRIM with PatDNN [42], an effort shar-
ing the most similarities with GRIM. PatDNN does not sup-
port RNNs, because the pattern-based pruning it uses results
in a fine-grained structured sparsity that only applies to
weight tensors of the CONV layers. So next we will further
explain the differences between them on CNNs. The fine-
grained structured sparsity scheme by our BCR pruning

TABLE 6
Comparison Between GRIM and PatDNN
Approach Generality Granularity Pruning Prune DSL
rate Strategy
PatDNN CNN  Fine-grain = Low Empirical N
GRIM  CNN&RNN Fine-grain ~ High  Systematical Y

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 02:33:07 UTC from IEEE Xplore. Restrictions apply.



NIU ET AL.: GRIM: A GENERAL, REAL-TIME DEEP LEARNING INFERENCE FRAMEWORK FOR MOBILE DEVICES BASED ON...

achieves a higher pruning rate than PatDNN without accu-
racy loss. Because (i) our fine-grained structured sparsity
scheme has higher flexibility since PatDNN performs pruning
only within CONV filter kernels, while our BCR pruning is
performed within in a desirable block size, which does not
necessarily follow the CONV filter kernels; (ii) GRIM uses a
systematic optimization approach to determine the hyper-
parameters for pruning, while PatDNN uses a heuristic
approach to select pattern candidates. From the compiler opti-
mizations, our GRIM introduces a new Domain Specific Lan-
guage to offer users more flexibility of using existing DNNs or
creating new ones, thus improving the programmability and
productivity in DNN programming. Furthermore, our com-
piler optimizations are fully customized for our BCR pruning
techniques. Lastly, PatDNN and GRIM are complementary to
each other and can be combined.

There are some other efforts that explore model compres-
sion to accelerate DNN executions including [47], DeftNN [62],
SCNN [63], and AdaDeep [64]. However, they either require
new hardware support, or need a trade-off between inference
acceleration performance and accuracy, or do not target
mobile platforms. Their focuses are different from GRIM.

8 CONCLUSION

This paper presents a novel mobile inference acceleration
framework GRIM that is general to both CNNs and RNNs
and that achieves real-time performance and high accuracy,
leveraging fine-grained structured sparse model inference
and compiler optimizations for mobile devices. We begin
with design of a new fine-grained structured sparsity
scheme through the BCR pruning techniques. Our GRIM
framework consists of two parts: (a) the compiler optimiza-
tions of execution code generation for real-time mobile
inference; and (b) the BCR pruning optimizations for deter-
mining pruning hyperparameters and performing weight
pruning. For CNNs, we compare with Alibaba MNN, TVM,
TensorFlow-Lite, a sparse DNN inference implementation
based on CSR format, and PatDNN, achieving significant
speedups in the end-to-end inference time. For RNNs, we
compare with ESE. GRIM achieves comparable end-to-end
inference time with significantly higher energy efficiency.
GRIM also has the potential to support other neural net-
works (e.g, transformers). The extremely deep nature of
transformer models (e.g., BERT and its variants, and GPT,
etc) requires more careful designs and optimizations of
GRIM. This serves as a promising direction of our future
work. Particularly, our on-going study shows that GRIM
can achieve a 1.8 x pruning rate on BERT-base models with-
out notable accuracy loss.
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