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Abstract

Though recent years have witnessed remarkable

progress in single image super-resolution (SISR) tasks

with the prosperous development of deep neural networks

(DNNs), the deep learning methods are confronted with

the computation and memory consumption issues in prac-

tice, especially for resource-limited platforms such as mo-

bile devices. To overcome the challenge and facilitate the

real-time deployment of SISR tasks on mobile, we combine

neural architecture search with pruning search and propose

an automatic search framework that derives sparse super-

resolution (SR) models with high image quality while sat-

isfying the real-time inference requirement. To decrease

the search cost, we leverage the weight sharing strat-

egy by introducing a supernet and decouple the search

problem into three stages, including supernet construc-

tion, compiler-aware architecture and pruning search, and

compiler-aware pruning ratio search. With the proposed

framework, we are the first to achieve real-time SR infer-

ence (with only tens of milliseconds per frame) for imple-

menting 720p resolution with competitive image quality (in

terms of PSNR and SSIM) on mobile platforms (Samsung

Galaxy S20).

1. Introduction
In recent year, people have ever-increasing demands for

image processing to achieve higher resolutions, leading to
the rapid development of SR. In general, the SR principle
is to convert low-resolution images to high-resolution im-
ages with clearer details and more information. It has been
adopted in various applications such as crime scene analysis
to identify unnoticeable evidence or medical image process-
ing for more accurate diagnosis.

*Equal contribution.

With the fast growth of live streaming and video record-
ing, video contents enjoy high popularity. However, videos
often have lower resolution due to the limited communica-
tion bandwidth or higher resolution of the display. Besides,
live streaming usually has a real-time

1 requirement that the
latency of each frame should not exceed a threshold. Thus,
it is desirable to achieve real-time SR for video locally.

Compared with the classic interpolation algorithms to
improve image or video resolution, deep learning-based SR
can deliver higher visual qualities by learning the map-
pings from the low-resolution to high-resolution images
from external datasets. Despite its superior visual perfor-
mance, deep learning-based SR is usually more expensive
with large amounts of computations and huge power con-
sumption (typically hundreds of watts on powerful GPUs)
[19, 17, 53], leading to difficulties for the real-time imple-
mentations. Moreover, in practice, as SR is often deployed
on edge devices such as mobile phones for live streaming or
video capturing due to the wide spread of mobile phones,
the limited memory and computing resources on edge de-
vices make it even harder for achieving real-time SR.

Weight pruning [60, 22, 26] is often adopted to remove
the redundancy in DNNs to reduce the resource requirement
and accelerate the inference. There are various pruning
schemes including unstructured pruning [23, 22, 20, 44],
coarse-grained structured pruning [50, 71, 70, 47, 42], and
fine-grained structured pruning [45, 18, 21]. Unstructured
pruning removes arbitrary weights, leading to irregular
pruned weight matrices and limited hardware parallelism.
Structured pruning maintains a full matrix format of the
remaining weights such that the pruned model is compat-
ible with GPU acceleration for inference. Recently, fine-
grained structured pruning including pattern-based pruning
and block-based pruning are proposed to provide a finer
pruning granularity for higher accuracy while exhibiting

1We believe targeting sub 100ms can be reasonably called real-time
[49] and we require the real-time implementation to be faster than 50ms.
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certain regularities which can be optimized with compilers
to improve hardware parallelism. To achieve inference ac-
celeration of SR models, we focus on conventional struc-
tured pruning and fine-grained structured pruning.

Prior works usually use fixed pruning scheme for the
whole model. As different pruning schemes can achieve
different SR and acceleration performance, a new optimiza-
tion dimension is introduced to find the most-suitable prun-
ing configuration for each layer instead of for the whole
model. Besides, as the performance of pruning depends on
the original unpruned model, it is also essential to search an
unpruned starting model with high SR performance.

In this paper, to facilitate the real-time SR deployment
on edge devices, we propose a framework incorporating ar-
chitecture and pruning search to find the most suitable cell-
wise SR block configurations and layer-wise pruning con-
figurations. Our implementation can achieve real-time SR
inference with competitive SR performance on mobile de-
vices. We summarize our contribution as follows.

• We propose an architecture and pruning search frame-
work to automatically find the best configuration of the
SR block in each cell and pruning scheme for each
layer, achieving real-time SR implementation on mo-
bile devices with high image quality.

• We train a supernet to provide a well-trained unpruned
model for all possible combinations of the SR block
in each supernet cell before the architecture and prun-
ing search. Thus there is no need to train a separate
unpruned model for each combination with multiple
epochs, saving tremendous training efforts.

• Different from previous works with fixed pruning
scheme for all layers or fixed SR blocks for all cells,
we automatically search the best-suited SR block for
each cell and pruning scheme for each layer. To reduce
the complexity, we decouple the pruning ratio search
and employ Bayesian optimization (BO) to accelerate
the SR block and pruning scheme search.

• With the proposed method, we are the first to achieve
real-time SR inference (with only tens of millisec-
onds per frame) for implementing 720p resolution
with competitive image quality (in terms of PSNR and
SSIM) on mobile platforms (Samsung Galaxy S20).
Our achievements facilitate various practical applica-
tions with real-time requirements such as live stream-
ing or video communication.

2. Background and Related Works
2.1. Preliminaries on Deep Learning-based SR

SISR aims to generate a high resolution image from the
low-resolution version. The usage of DNNs for SR task

was first proposed in SRCNN [16] and later works try to
improve the upscaling characteristic and image quality with
larger networks [33, 41, 68, 67, 14]. However, SR models
are resource-intensive due to maintaining or upscaling the
spatial dimensions of the feature map for each layer. There-
fore, the number of multiply-accumulate (MAC) operations
is typically counted in gigabits, leading to high inference
latency (seconds per image) on a powerful GPU.

Several attempts were made to design lightweight SR
models for practical applications, including using upsam-
pling operator at the end of a network [17, 53], adopt-
ing channel splitting [31], and using wider activation [64].
Specifically, work [64] proposed WDSR-A and WDSR-
B blocks, which are two of the state-of-the-art SR build-
ing blocks with high image quality. Besides, inspired by
the success of neural architecture search (NAS), latest SR
works try to establish more efficient and lightweight SR
models by leveraging NAS approaches [12, 54, 37, 13]. But
the proposed models are still too large with tremendous re-
source demands. Furthermore, they do not consider prac-
tical mobile deployments with limited hardware resource.
For mobile deployment, the winner of the PIRM challenge
[57] and MobiSR [38] are the few works that make progress
for SR inference on mobiles. But the latency is still far from
real time, requiring nearly one second per frame.

2.2. DNN Model Pruning

Weight pruning reduces the redundancy in DNNs for less
storage and computations. Existing pruning schemes can
be divided into unstructured pruning, coarse-grained struc-

tured pruning, and fine-grained structured pruning.
Unstructured pruning allows weights at arbitrary loca-

tions to be removed [22, 20, 15], as shown in Figure 1
(a). Despite the high accuracy, its irregular weight matrices
are not compatible with GPU acceleration. Coarse-grained
structured pruning [60, 27, 26, 65, 28] keeps structured reg-
ularity of remaining weights such as channel pruning prunes
entire channels as in Figure 1 (b). The key advantage is that
a full matrix format is maintained, thus facilitating hardware
acceleration. However, coarse-grained structured pruning
often leads to non-negligible accuracy degradation [59].

Fine-grained structured pruning includes block-based
pruning [18] and pattern-based pruning [51, 45, 21]. They
incorporate the benefits from fine-grained pruning while
maintaining structures that can be exploited for hardware
accelerations with the help of compiler. Block-based prun-
ing divides the weight matrix of a DNN layer into multiple
equal-sized blocks and applies structured pruning indepen-
dently to each block, as shown in Figure 1 (c). Pattern-
based pruning is a combination of kernel pattern pruning
and connectivity pruning, as illustrated in Figure 1 (d). Ker-
nel pattern pruning removes weights by forcing the remain-
ing weights in a kernel to form a specific kernel pattern.
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Figure 1. (a) Unstructured pruning; (b) coarse-grained structured
pruning (channel); (c) fine-grained structured pruning (block-
based); and (d) fine-grained structured sparsity (pattern-based).

Connectivity pruning removes entire redundant kernels and
is the supplementary to kernel pattern pruning for a higher
compression rate. With an appropriate pruning regularity
degree, compiler-level code generation can be exploited to
achieve a high hardware parallelism.

2.3. DNN Acceleration Frameworks on Mobile
On-mobile DNN inference has attracted many interests

from both industry and academia [35, 36, 61, 32, 63, 25].
Representative DNN acceleration frameworks, including
Tensorflow-Lite [1], Alibaba MNN [2], Pytorch-Mobile [3],
and TVM [10], are designed to support inference accelera-
tion on mobile. Several graph optimization techniques are
used in these frameworks, including layer fusion, constant
folding, and runtime optimizations on both mobile CPU and
GPU. But the missing piece is that sparse (pruned) mod-
els for further speedup are not supported. Recently, some
efforts are made to accelerate pattern-based pruned mod-
els on mobile with compiler-based optimizations [51, 45].
But they suffer difficulties when generalized to DNN layers
other than 3⇥3 convolutional (CONV) layers.

2.4. Motivation
State-of-the-art SR methods leverage huge DNNs to pur-

sue high image quality, causing extremely high computation
cost. Thus, it is difficult to achieve real-time SR even on
powerful GPUs, not to mention mobile devices with limited
resource. But due to the widespread of mobile phones and
the popular video communication and live streaming appli-
cations with high resolution requirements, it is desirable to
implement on-mobile real-time SR with high image quality.

SR models usually constitute several cascaded SR
blocks. Different blocks have different latency perfor-
mance, while different combinations can form various SR
models with different image quality. Meanwhile, with
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Figure 2. Inference acceleration rate vs. pruning ratio of different
pruning schemes. Results are measured on a Samsung Galaxy S20
smartphone, and a typical 3⇥3 CONV layer in WDSR block with
24/48 input/output channels and 320⇥180 feature size is used.

weight pruning for acceleration, each layer may prefer a dif-
ferent pruning scheme, resulting in different accuracy and
acceleration performance. For instance, Figure 2 illustrates
the acceleration curves of different pruning schemes on a
given 3⇥3 CONV layer. Hence, it is desirable to find the
best-suited combination of SR blocks and per-layer prun-
ing scheme and ratio to achieve high image quality while
satisfying the real-time execution requirement.

Finding the satisfied network architecture and pruning
configurations is too complex to be solved manually. Thus
an automatic architecture and pruning search method [58]
is desired. However, it is expensive to directly search
in a large space, including block number (depth), block
type, per-layer pruning scheme, and per-layer pruning ra-
tio. Hence, we decouple the search into several stages and
solve them separately.

3. Framework Overview
The objective is to combine architecture search with

pruning search to find sparse SR models facilitating vari-
ous practical applications such as live streaming or video
communication. The sparse SR models should satisfy the
real-time inference requirement (with only tens of millisec-
onds per frame) for high upscaling resolution such as 720p
(1280⇥720) on mobile devices, with competitive image
quality with the state-of-the-art methods.

The searching problem involves the determination of the
number of stacked cells, the type of selected block in each
cell, and pruning scheme and pruning ratio for each layer of
the SR network. Direct search in such a high-dimensional
search space is computationally expensive. To reduce the
search cost in terms of time and computation, we leverage
the weight sharing strategy by introducing a supernet and
decouple the search problem into three stages: 1) super-
net construction, 2) compiler-aware architecture and prun-
ing search, and 3) compiler-aware pruning ratio determina-
tion. Supernet construction includes supernet initialization
that determines the number of stacked cells, and supernet
training that provides a good starting point for the following
two steps. Then, a combination of block determination and
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pruning scheme selection for each layer is performed. The
goal is to find a desirable structure that maximizes the image
quality while satisfying the target latency t with the aid of
compiler optimizations. Specifically, when t  50ms, the
target latency meets the real-time requirement. The follow-
ing step is the automatic pruning ratio determination with
the reweighted dynamic regularization method. We show
the overall framework in Figure 3.

4. Supernet Construction
In architecture and pruning search, the accuracy of a

model (architecture) after pruning largely depends on the
accuracy of unpruned starting model. To obtain the well-
trained starting models for various architectures with satis-
fying SR performance, the straightforward method is to per-
form training for each new architecture, which usually costs
huge training efforts. Instead of training separate models re-
spectively, we train a supernet such that, for any new model,
we can activate the corresponding path in the supernet to de-
rive the well-trained unpruned model immediately without
further efforts to train each new model from scratch. Thus,
the supernet can significantly reduce the training time for
the unpruned models, thereby accelerating the search.

The architecture of the supernet is illustrated in the Fig-
ure 3 (a). We encode the architecture search space A with
a supernet, denoted as S(A,W ), where W represents the
weight collection. The supernet is constituted of N stacked
cells and each cell contains K SR block choices. In our
work, we adopt WDSR-A and WDSR-B, which are two
highly efficient SR blocks with high image quality, as block
choices. Note that our framework is not restricted by the
WDSR blocks and can be generalized to different kinds of
SR residual blocks. The output of each SR block k in cell n
connects with all of the SR blocks in the next cell n+1. We
define the choice of one SR block (WDSR-A or WDSR-
B) for each supernet cell as one path segment, and all of
the possible combinations of the N path segments form the
architecture search space A with a size of KN . Then one
path is the collection of N path segments for all cells, denot-
ing one SR candidate model. During supernet computation,
only one path is activated while other unselected SR blocks
do not participate into the computation.

To construct a supernet, there are two necessary steps:
1) determine the number of stacked cells of the supernet
and initialize the supernet, and 2) fully train the supernet to
provide a good starting point with high image quality and
low overhead for the following SR candidate nets search.

4.1. Determine Cell Number with Latency Models
The number of stacked cells N of the supernet should be

determined beforehand to guarantee the SR candidate mod-
els have the potential to satisfy the target latency t on mobile
devices. Several widely used techniques in SR such as pixel

shuffling (a.k.a., sub-pixel convolution) and global residual
path are often hard to optimize and accelerate, resulting in
a fixed latency overhead. Moreover, the skip (identity) con-
nection structure in a block of a cell leads to a certain exe-
cution overhead that is difficult to be reduced and is accu-
mulated with the number of stacked blocks.

To determine the number of stacked cells, we build a
latency model enabling fast and precise estimation of the
overall model inference latency on the target device (e.g.,
Samsung S20 smartphone). The latency model contains
the look-up-tables of inference latency for different types
of layers used in SR models (e.g., 1⇥1 CONV, 3⇥3 CONV,
5⇥5 CONV, skip connection, and sub-pixel convolution).
For each layer type, several different settings are consid-
ered, including the number of filters and input and out-
put feature map size. Our latency model is compiler-
aware, built by measuring real-world inference latency on
the target device with compiler optimizations incorporated.
More details about our compiler optimization techniques
are shown in Appendix A. The latency model building time
can be ignored since no training process is involved, and
the building process can be conducted in parallel with the
supernet training. We only build once for a specific device.
Moreover, we also include the sparse inference latency for
different types of layers under different pruning schemes
and pruning ratios in our latency model, which will be used
in the pruning search stage (more discussion in Section 5.1).

Therefore, the overall inference latency on the target de-
vice can be estimated by accumulating the per-layer latency
inquired from our latency model. With a target latency t for
the SR candidate models, the suitable number of stacked
cells can be determined. Furthermore, decoupling the su-
pernet depth determination from the search space of the can-
didate SR models can greatly reduce the search complexity.

4.2. Supernet Training

After the supernet is initialized, the next step is to train
its weights W to minimize the loss function L(A,W). The
well-trained supernet provides a good starting point for the
following network architecture and pruning search as can-
didate net architecture a directly inherits weights from the
path W(a) in the supernet. Note that the weights W of the
supernet should be optimized in a way that all the candidate
architectures a 2 A with weights W(a) are optimized si-
multaneously. However, jointly optimizing the architecture
parameters a and model parameters W(a) often introduces
extra complexities. Furthermore, it may lead to the situation
that some nodes in the graph are well trained while others
are poorly trained, incurring unfair comparison for paths of
different levels of maturity in the supernet.

To mitigate this problem, we adopt a single-path sam-
pling & training strategy to accelerate the convergence of
supernet training. Specifically, for each training batch, we
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Figure 3. Framework overview. The framework is composed of three stages to reduce the search cost: (a) stage 1: supernet construction,
(b) stage 2: architecture and pruning search, and (c) stage 3: pruning ratio determination.

only activate and train one random path while other uns-
elected SR blocks are skipped. In this way, the architec-
ture selection and model weights updating are decoupled.
This strategy is hyper-parameter free, and each path is a SR
model providing a well-trained unpruned starting point for
the following architecture and pruning search.

5. Architecture and Pruning Search
We define each architecture and pruning candidate as

a configuration to select one SR block for each supernet
cell together with choosing the pruning scheme for each
layer. The architecture and pruning search aims to find the
best cell-wise SR block selection and layer-wise pruning
scheme configuration, i.e., the candidate with the highest
image quality satisfying the target latency t. The search
consists of two main steps: 1) candidate generation and
2) candidate evaluation. In each iteration, candidate gen-
eration samples architecture and pruning candidates, which
are further evaluated in the candidate evaluation process.
To improve search efficiency, we adopt evolutionary-based
candidate updating in candidate generation and BO in can-
didate evaluation to obtain the best candidate.

5.1. Candidate Generation
5.1.1 Candidate Sampling

The candidate generation samples architecture and pruning

candidates from the search space. Each candidate g is a di-
rected acyclic graph denoting the cell-wise SR block selec-
tion and layer-wise pruning scheme selection. For SR block
selection in each supernet cell, we can choose from WDSR-
A block or WDSR-B block. For the pruning scheme, we can
choose channel pruning [60], pattern-based pruning [45], or
block-based pruning [18] for each layer. Different from pre-
vious works with fixed pruning scheme for all layers, we
can choose different pruning schemes for different layers,
which is also supported by our compiler code generation.
Note that the difference between the candidate g and the

candidate network architecture a is that g includes the per-
layer pruning scheme selection.

We encode each candidate with a binary vector by as-
signing a binary feature for each possible cell-wise block
choice and layer-wise pruning scheme selection, denoting
whether the block or pruning scheme is adopted or not.

Decoupling pruning ratio search. To prune the model,
we also need to configure the layer-wise pruning ratio cor-
responding to each pruning scheme. As it is expensive to
search the continuous pruning ratio values for each layer,
at this step, we simply set the layer-wise pruning ratio to
a minimal value satisfying the target latency t. Therefore,
we can focus on pruning scheme search first. To determine
the minimal pruning ratio, we can estimate the latency of
the unpruned model t0 and the target latency t, and obtain
the minimal speedup required for the whole model, which is
t
0
/t. To satisfy the overall speedup, we simply require each

layer to achieve this minimal speedup t
0
/t

2. Then, accord-
ing to the latency model (detailed in Section 4.1) and the
layer-wise speedup, we can obtain the layer-wise minimal
pruning ratio corresponding to each pruning scheme.

5.1.2 Candidate Updating

In each iteration, we need to generate a pool of new candi-
dates. To make the candidates updating more efficient, the
evolutionary-based candidate updating method is adopted.
We keep a record of all evaluated candidates with their eval-
uation performance. To generate new candidates, we mutate
the candidates with the best evaluation performance in the
records by randomly changing one SR block of one random
cell or one pruning scheme of one random layer. Specifi-
cally, we first select H candidates with highest evaluation
performance, and mutate each of them iteratively until C
new proposals are derived.

2We find that each layer in the SR model has similar computation
amount. Thus it is reasonable to adopt the same speedup for each layer.
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Algorithm 1 Evaluation with BO
Input: Observation data D, BO batch size B, BO acquisition
function �(·)
Output: The best candidate g⇤
for steps do

Generate a pool of candidates Gc;
Train an ensemble of neural predictors with D;
Select {ĝi}Bi=1 = argmaxg2Gc �(g);
Evaluate the candidate and obtain reward {ri}Bi=1 of
{ĝi}Bi=1;
D  D [ ({ĝi}Bi=1, {ri}Bi=1);

end for

5.2. Candidate Evaluation

As it incurs a high time cost to prune and retrain the
model following each candidate, BO [11] is adopted to ex-
pedite the candidate evaluation. With the generated C can-
didates, we first use BO to select B (B < C) candidates
with potentially better performance. Then the selected can-
didates are evaluated to obtain the accurate SR performance
while the unselected candidates are not evaluated. The num-
ber of actually evaluated candidates is reduced in this way.

BO includes two main components, i.e., training an en-
semble of neural predictors and selecting candidates based
on acquisition function values enabled by the predictor en-
semble. To make use of BO, the ensemble of neural predic-
tors provides an average SR prediction with its correspond-
ing uncertainty estimate for each unseen candidate. Then
BO is able to choose the candidate which maximizes the
acquisition function. We show the full algorithm in Algo-
rithm 1 and specify BO in the following.

5.2.1 Bayesian Optimization with Neural Predictors

Neural predictor. The neural predictor is a neural net-
work repeatedly trained on the current set of evaluated can-
didates with their evaluation performance to predict the re-
ward of unseen candidates. It is a neural network with 8
sequential fully-connected layers of width 40 trained by the
Adam optimizer with a learning rate of 0.01. For the loss
function to train neural predictors, mean absolute percent-
age error (MAPE) is adopted as it can give a higher weight
to candidates with higher evaluation performance:

L(mpred,mtrue) =
1
n

nX

i=1

�����
m(i)

pred �mUB

m(i)
true �mUB

� 1

����� , (1)

where m
(i)
pred and m

(i)
true are the predicted and true values, re-

spectively, of the reward for the i-th candidate in a batch,
and mUB is a global upper bound on the maximum true re-
ward. Note that the training of the predictors does not cost
too much efforts due to their simple architectures.

Ensemble of neural predictors. To incorporate BO, it
also needs an uncertainty estimate for the prediction. So
we adopt an ensemble of neural predictors to provide the
uncertainty estimate. More specifically, we train P neural
predictors using different random weight initializations and
training data orders. Then for any candidate g, we can ob-
tain the mean and standard deviation of these P predictions.
Formally, we train an ensemble of P predictors, {fp}Pp=1,
where fp(g) provides a predicted reward for a candidate g.
The mean prediction and its deviation are given by

f̂(g) =
1
P

PX

p=1

fp(g), and �̂(g) =

sPP
p=1(fp(g)� f̂(g))2

P � 1
.

(2)

Selection with acquisition function. After training an
ensemble of neural predictors, we can obtain the acquisition
function value for candidates in the pool and select a small
portion of candidates with the largest acquisition function
values. We choose the upper confidence bound (UCB) [55]
as the acquisition function shown below:

�UCB(g) = f̂(g) + ��̂(g), (3)

where the tradeoff parameter � is set to 0.5.

5.2.2 Evaluation with magnitude-based pruning

After selecting the candidates from the pool, we need to
measure the performance of the selected candidate g to up-
date the neural predictors. For faster evaluation, magnitude-
based pruning framework [23] (with two steps including
pruning and retraining) is adopted to perform the actual
pruning for candidate g to obtain its evaluation perfor-
mance. Note that multiple candidates can be evaluated in
parallel. Once the evaluation finishes, their actual perfor-
mances are recorded as a reference such that the candidate
generation can sample better candidates.

6. Pruning Ratio Determination
After finding the best SR block configuration for each

cell and the pruning scheme for each layer, we adopt a prun-
ing ratio determination process to derive the suitable layer-
wise pruning ratio. Unlike prior works (i.e., group Lasso
regularization [60, 27, 43] or Alternating Direction Meth-
ods of Multipliers (ADMM) [66, 52, 39]) that suffers from
significant accuracy loss or complicated pruning ratio tun-
ing, we adopt the reweighted group Lasso [9, 46] method to
determine the layer-wise prune ratio automatically.

The basic idea is to assign a penalty to each weight or
pruning pattern, and dynamically reweight the penalties.
More specifically, during the training (pruning) process, the
reweighted method reduces the penalties on weights with
larger magnitudes, thus enlarging the more critical weights,
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and increases the penalties on weights with smaller mag-
nitudes, thus decreasing negligible weights. After conver-
gence, the desired pruning ratio for each layer is determined
automatically. The reweighted method can be adopted for
different pruning schemes and layer types. We show the
detailed reweighted pruning algorithm in Appendix B.

7. Experiments
7.1. Methodology
Datasets: All SR models were trained on the training set
of the DIV2K [4] dataset with 800 training images. For the
evaluation, four benchmark datasets Set5 [6], Set14 [62],
B100 [48] and Urban100 [29] are employed as test sets, and
the PSNR and SSIM indices are calculated on the luminance
channel (a.k.a. Y channel) of YCbCr color space.
Evaluation Platforms and Running Configurations: The
training codes are implemented with the PyTorch API. 8
Nvidia TITAN RTX GPUs are used to conduct the architec-
ture and pruning search. We train an ensemble of 20 pre-
dictors and 8 models are evaluated in parallel in each step.
Since we start from a well-trained supernet, we retrain 2
epochs for each one-shot pruned candidate model for fast
evaluation. The search process takes 6 GPU days. The la-
tency is measured on the GPU of an off-the-shelf Samsung
Galaxy S20 smartphone, which has the Qualcomm Snap-
dragon 865 mobile platform with a Qualcomm Kryo 585
Octa-core CPU and a Qualcomm Adreno 650 GPU. Each
test takes 50 runs on different inputs with 8 threads on CPU,
and all pipelines on GPU. As different runs do not vary
greatly, only the average time is reported for readability.

7.2. Comparison with State-of-the-Art
The comparison of our SR model obtained through

the proposed framework with state-of-the-art methods are
shown in Table 1. Some extremely large models [68, 67, 14]
could take several seconds for them to upscale only one
image on a large GPU. Therefore, those results are not in-
cluded in Table 1. PSNR and SSIM are adopted as metrics
to evaluate the image quality by convention. The evalua-
tions are conducted on tasks with different scales including
⇥2, ⇥3, and ⇥4. For a fair comparison, we start from dif-
ferent low resolution inputs but the outputs have the same
high resolution (720p–1280⇥ 720).

To make a comprehensive study, we set the target la-
tency t to different values for each scale. Particularly, as
real-time execution typically requires at least 20 frames per
second (FPS), we adopt t = 50ms for ⇥2 and ⇥3 up-
scaling task and t = 40ms for ⇥4 upscaling task to ob-
tain models that satisfy real-time inference requirement. As
shown in Table 1, with a target latency t = 450ms, our
model outperforms CARN-M and FALSR-C with higher
PSNR/SSIM using much fewer MACs for a ⇥2 upscal-
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HR Bicubic

Ours
125 k, 7.1 G

FSRCNN
12 k, 4.6 G

FEQE-P
96 k, 5.64 G

CARN-M
412 k, 32.5 G

WDSR
1203 k, 69.3 G

Ours
67.3 k, 3.9 G

302008 from B100

HR Bicubic
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125 k, 7.1 G

FSRCNN
12 k, 4.6 G

FEQE-P
96 k, 5.64 G

CARN-M
412 k, 32.5 G

WDSR
1203 k, 69.3 G

Ours
67.3 k, 3.9 G

Figure 4. Visual comparison with other SR models on ⇥4 scale.
Model parameters and MACs are listed under model name. More
results can be found in Appendix D.

ing. With t = 150ms, our model has better PSNR/SSIM
than FSRCNN, MOREMNAS-C, and TPSR-NOGAN with
similar or even fewer MACs. Furthermore, both of our
models for the two different target latency cases achieve
higher PSNR/SSIM with fewer MACs compared with SR-
CNN and LapSRN. Compared with ESRN-V, EDSR, and
WDSR, our model greatly saves the MACs while still main-
taining high PSNR/SSIM. Specially, we even obtain a ex-
tremely lightweight model that meets the real-time require-
ment by setting t = 50ms and the model still maintains sat-
isfying PSNR/SSIM. As for the ⇥4 scaling task, our model
obtained with a target latency t = 120ms prevails SRCNN,
FSRCNN and FEQE-P over MACs, PSNR, and SSIM on
the four datasets. With a target latency t = 170ms, our
model outperforms DI-based and CARN-M in PSNR/SSIM
with similar or even much fewer MACs. Moreover, with
t = 40ms, our model attains real-time inference while keep-
ing competitive PSNR/SSIM.

7.3. Searched Results for Real-Time SR on Mobile
We further examine the real-time performance of our SR

model assisted with the compiler-based optimizations. As
shown in Figure 5, with the same SR model derived with
the proposed method, our method with compiler optimiza-
tions achieves the highest FPS for various scales compared
with implementations by other acceleration frameworks in-
cluding MNN [2] and PyTorch Mobile [3]. The models are
obtained by setting t = 50ms for ⇥2 and ⇥3, and t = 40ms
for ⇥4. We can observe from Figure 5 that our proposed
method can satisfy the real-time requirement with a FPS
higher than 20 for ⇥2 and ⇥3, and higher than 25 for ⇥4.

MobiSR and FEQE-P also conduct SR inference on mo-
bile devices. They achieve 2792ms and 912ms inference
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Scale Model
Params

(K)

Multi-Adds

(G)

Set5

(PSNR/SSIM)

Set14

(PSNR/SSIM)

B100

(PSNR/SSIM)

Urban100

(PSNR/SSIM)

⇥ 2

SRCNN [16] 57 52.7 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946
FSRCNN [17] 12 6.0 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020
MOREMNAS-C [13] 25 5.5 37.06/0.9561 32.75/0.9094 31.50/0.8904 29.92/0.9023
TPSR-NOGAN [37] 60 14.0 37.38/0.9583 33.00/0.9123 31.75/0.8942 30.61/0.9119
LAPSRN [34] 813 29.9 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100
CARN-M [31] 412 91.2 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193
FALSR-C [12] 408 93.7 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187
ESRN-V [54] 324 73.4 37.85/0.9600 33.42/0.9161 32.10/0.8987 31.79/0.9248
EDSR [41] 1518 458.0 37.99/0.9604 33.57/0.9175 32.16/0.8994 31.98/0.9272
WDSR [64] 1203 274.1 38.10/0.9608 33.72/0.9182 32.25/0.9004 32.37/0.9302
Ours (t = 450ms) 106 24.3 37.81/0.9599 33.37/0.9153 32.07/0.8980 31.58/0.9225
Ours (t = 150ms) 52 11.7 37.52/0.9582 33.24/0.9140 31.88/0.8953 31.18/0.9180
Ours (t = 50ms,real-time) 14 3.1 37.32/0.9549 33.17/0.9071 31.67/0.8885 30.35/0.8986

⇥ 4

SRCNN [16] 57 52.7 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221
FSRCNN [17] 12 4.6 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280
TPSR-NOGAN [37] 61 3.6 31.10/0.8779 27.95/0.7663 27.15/0.7214 24.97/0.7456
FEQE-P [57] 96 5.6 31.53/0.8824 28.21/0.7714 27.32/0.7273 25.32/0.7583
DI-BASED [28] 92 7.0 31.84/0.889 28.38/0.775 27.40/0.730 25.51/0.765
CARN-M [31] 412 32.5 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694
ESRN-V [54] 324 20.7 31.99/0.8919 28.49/0.7779 27.50/0.7331 25.87/0.7782
EDSR [41] 1518 114.5 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849
DHP-20 [40] 790 34.1 31.94/ — 28.42/ — 27.47/ — 25.69/ —
IMDN [30] 715 — 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838
WDSR [64] 1203 69.3 32.27/0.8963 28.67/0.7838 27.64/0.7383 26.26/0.7911
Ours (t = 170ms) 125 7.1 31.93/0.8906 28.42/0.7763 27.44/0.7307 25.66/0.7715
Ours (t = 120ms) 67 3.9 31.77/0.8886 28.34/0.7730 27.33/0.7280 25.41/0.7615
Ours (t = 40ms, real-time) 12 0.7 30.74/0.8671 27.68/0.7562 26.98/0.7156 24.65/0.7299

† Results on ⇥3 scaling task are shown in Appendix C.
Table 1. Comparison of searched results with state-of-the-art efficient SR models.
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Figure 5. On-mobile inference comparisons with state-of-the-art
mobile acceleration frameworks.

latency on a mobile GPU, respectively, which are far from
the real-time requirement. We highlight that we are the first
to achieve real-time SR inference (higher than 20 FPS for
⇥2 and ⇥3, and 25 for ⇥4) for implementing 720p reso-
lution upsaling with competitive image quality (in terms of
PSNR) on mobile platforms (Samsung Galaxy S20).

7.4. Ablation study

We investigate the influence of architecture search and
pruning search separately. For ⇥2 upscaling, architecture
search only achieves a 37.84 PSNR on Set5, slightly higher
than ours. But as the computations are not reduced by prun-
ing, it suffers from low inference speed (1.82 FPS). Starting
from WDSR blocks, pruning search only with t = 150ms

achieves 6.8 FPS with a lower PSNR (37.40 on Set5). Thus,
we can see that pruning search significantly improves the
speed performance while architecture search helps mitigate
the SR performance loss due to pruning.

To promote the reproducibility and evaluate speedup us-
ing the same framework, we also implement our derived
models and other baseline models including CARN-M [31]
and FSRCNN [17] with the open-source MNN framework.
We compare their PSNR and FPS performance and observe
that we can achieve higher FPS and PSNR than the base-
lines. More details are attached in Appendix E.

8. Conclusion
We combine architecture search with pruning search and

propose an automatic search framework that derives sparse
SR models satisfying real-time execution requirement on
mobile devices with competitive image quality.
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