
Design and Implementation of Autoencoder-LSTM
Accelerator for Edge Outlier Detection

Nadya A. Mohamed and Joseph R. Cavallaro
Department of Electrical and Computer Engineering

Rice University
Houston, TX, USA

Abstract—Sensors are used to monitor various parameters in
many real-world applications. Sudden changes in the underlying
patterns of the sensors readings may represent events of interest.
Therefore, event detection, an important temporal version of
outlier detection, is one of the primary motivating applications
in sensor networks. This work describes the implementation of
a real-time outlier detection that uses an Autoencoder-LSTM
neural-network accelerator implemented on the Xilinx PYNQ-
Z1 development board. The implemented accelerator consists
of a fine-tuned Autoencoder to extract the latent features in
sensor data followed by a Long short-term memory (LSTM)
network to predict the next step and detect outliers in real-time.
The implemented design achieves 2.06 ms minimum latency and
85.9 GOp/s maximum throughput. The low latency and 0.25 W
power consumption of the Autoencoder-LSTM outlier detector
makes it suitable for resource-constrained computing platforms.

Index Terms—Accelerator, FPGA, embedded systems, Autoen-
coder, LSTM, outliers, CORDIC

I. INTRODUCTION

With the increasing advances of science and technology in
digital electronics and wireless communication, new breeds of
tiny embedded systems known as wireless sensor nodes have
emerged. A large collection of these devices forms a wireless
sensor network (WSN). The ultimate goal of the WSNs goes
beyond monitoring and data collection. Instead, it concerns
timely data analysis and accurate real-time decision-making
[1], [2]. Outlier detection is one of the primary motivating data
analysis applications in sensor networks. Outlier is a data point
that deviates significantly from the remaining data to arouse
suspicions that a different mechanism generated them. The
recognition of outliers provides valuable insights into the char-
acteristics of the underlying generating system [3]. Although
a central network entity could do the task of outlier detection,
such a scheme tends to cause inefficient resource utilization
and undesirable delay. Therefore, pushing outlier detection to
the network’s edge would be suitable for improving resource
utilization and system responsiveness. Typically, WSN systems
are resource-constrained. A significant proportion of network
resources are consumed by data transmission. Therefore, a
well-designed outlier detection algorithm could reduce the
number of data transmissions while ensuring data accuracy.

Deep neural networks (DNNs) have recently become the
standard tool for solving various practical problems with
state-of-art performance [4]. For example, Deep Autoencoder
(DAE), a feed-forward multi-layer neural network for feature

learning, has greatly impacted areas such as speech recog-
nition, object recognition, and natural language processing
[5], [6]. DAE’s primary objective is to learn a map from
the input to itself through a pair of encoding and decoding
phases. The learned mapping could then be used as an input to
another machine learning model. Recurrent Neural Networks
(RNNs) are another subset of DNNs capable of handling
long-term dependencies, making them useful for sequential
data processing [6], [7]. RNNs are fully connected single
or multi-layer networks with complex neurons and internal
states at each time step that enable them to build a memory
of time-series events. The prediction accuracy of RNNs is
further improved by introducing gating units to let information
through the network optionally. Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU) are the most popular
gated variants of RNNs nowadays.

Deploying DNNs on resource-constrained devices require
hardware implementations that are energy efficient. Hardware
architectures on resource-constrained devices and embedded
systems face the constraint of computing resources, reduced
memory, and memory bandwidth. Therefore, reducing the
computation complexity is critical for the intended networks
running on these platforms. Proposed methods to reduce the
computation complexity of DNNs include quantization, prun-
ing, and special hardware modules. Quantization of weights
or activations helps to reduce the area of arithmetic units
and memory requirement [8]–[10]. Special hardware modules
such as multipliers that are based on Look-Up Tables (LUTs)
can also be used for area reduction in networks with low bit
precision parameters [11]. Additionally, pruning connections
with small weight values using special training methods could
help in creating networks with a small number of parameters
[12].

Inspired by the success of Deep neural networks in solving
various practical problems, this work explores the integration
of DAE and LSTM networks for outlier detection on resource-
constrained devices. The proposed solution consists of a fine-
tuned deep Autoencoder to extract the latent features in sensor
data followed by an LSTM network to predict the next step
and detect outliers in real-time. Our contributions in this work
are:

• A novel two-stage hardware architecture for real-time
outlier detection in time series data based on Autoencoder
and LSTM networks.

• A low complexity FPGA-based implementation of
the proposed architecture utilizing quantization, activa-
tion pipelining, and special hardware modules based
on the Coordinate rotation digital computer algorithm
(CORDIC).

• Validation of the implemented architecture on the Xil-
inx PYNQ-Z1 development board using meteorological
dataset collected using a multi-hop WSN.

The rest of the paper is organized as follows. Section II
gives an overview of the proposed Autoencoder-LSTM out-
lier detection system. Section III describes the accelerator
architecture and its implementation on the Xilinx PYNQ-Z1
development board. Section IV discuss experimental results in
addition to performance/complexity tradeoffs. Finally, section
V concludes the paper.

II. AUTOENCODER-LSTM OUTLIER DETECTION SYSTEM

A. System Overview

The flow of the proposed two-stage real-time outlier de-
tection in time series data based on Autoencoder and LSTM
networks is shown in Fig. 1. The input data from the sensor is
preprocessed, buffered, and then fed to the Autoencoder (AE)
for dimensionality reduction and feature extraction. The pre-
processing step will normalize the input data using minimax
normalization. The normalization step is essential to enabling
the following system to find trends and patterns in the input
data. The sensor data buffer will serve as a sliding window
to update the inputs fed to the AE. Typically, in the case of
time-series data, a past window of history is used to determine
outliers. The implementation of the AE includes the encoding
part only, as the LSTM prediction does not require the AE
reconstruction part. The AE generates an m-dimensional code
using d-dimensional buffered sensor data, d � m. The
LSTM predictor forecasts the next time-step using the AE m-
dimensional code. Given that in time series data, the values in
consecutive timestamps do not change significantly or change
in a smooth way, the forecasted time step pi produced by the
LSTM predictor is compared against the new sensed value
xi+1. If the absolute difference is sufficiently high, the new
sensed value is flagged as an outlier.

B. AutoEncoder Neural Network Model

Autoencoders (AE) are unsupervised learning techniques
that leverage artificial neural networks for representation learn-
ing. Therefore, autoencoder networks’ primary objective is
to reconstruct the inputs instead of predicting some target
variables. The AE learns by encoding the inputs; the network
forces a compressed knowledge representation of the original
input by imposing a bottleneck in the network architecture.
Therefore, if some structure exists in the input data, this
structure could be learned, compressed into a compact, latent
representation. A general structure of the AE network with
three hidden layers is shown in Fig. 2. The number of outputs
is the same as the number of inputs, and each input xi is
reconstructed to x̂i for the ith dimension. The projection
of inputs to reduced representation (code) is termed encode,

while decode is the reconstruction of the outputs from the
reduced representation. The network is trained by minimizing
the aggregated reconstruction error

∑d
i=1|xi − x̂i| over all d-

dimensions.

Fig. 1. The proposed Autoencoder-LSTM outlier detection system architec-
ture.

Fig. 2. A general structure of autoencoder network. The projection of inputs
to latent representation (code) is termed encode, while decode is the recon-
struction of the outputs from the reduced representation. The implementation
of our proposed system includes the encode part only. Given that the latent
representation vector is used as the input sequence to the LSTM predictor,
the decoding part is not included in the implementation.

Fig. 3. A single LSTM cell architecture. Cell inputs are, the prior LSTM
cell hidden-state ht−1 and cell-state, ct−1 and a single element yt from
the input sequence, which is in our proposed system the latent representation
vector from the autoencoder network. The cell outputs are the updated hidden-
state ht and cell-state ct. The σ represents the sigmoid function while T the
tanh function.

C. LSTM Neural Network Model

Long short-term memory networks (LSTM) are a special
kind of recurrent neural network (RNN), capable of learning
long-term dependencies. LSTM networks have the form of a
chain of repeating modules of neural networks. Each repeating

module known as LSTM cell consists of four neural network
layers interacting uniquely, as shown in Fig. 3. The key to
LSTMs is the cell-state, ct. The LSTM cell can add or remove
information to the cell state using structures called gates.
Gates are ways to let information through optionally. They
are composed out of sigmoid and tanh neural net layers, in
addition to point-wise multiplication operations. The equations
for a single LSTM cell with n neurons and m-dimensional
inputs are given as:

ft = sigmoid(Uf ∗ ht−1 +Wf ∗ yt + bf)

it = sigmoid(Ui ∗ ht−1 +Wi ∗ yt + bi)

ut = tanh(Uu ∗ ht−1 +Wu ∗ yt + bu)

ot = sigmoid(Uo ∗ ht−1 +Wo ∗ yt + bo)

ct = (ft · ct−1) + (it · ut)
ht = ot · tanh(ct)

(1)

where ft, it, ut, ot ∈ IRn are the outputs of forget gate, input
gate, update gate, and output gate respectively. The ct and ht
are the cell-state and the hidden-state. W ∈ IRmxn, U ∈ IRnxn

are weight matrices and b ∈ IRn are bias vectors.

III. DESIGN AND IMPLEMENTATION

A. AE-LSTM Network Training

Keras, Tensorflow [15] is used to train both the AE network
and the LSTM predictor. The Grand St. Bernard dataset [16] is
used to demonstrate the performance of the proposed approach
in section II. The dataset consists of temperature measurements
along with other metrological characteristics of the environ-
ment collected for two months with a sampling frequency
of two minutes from multiple sensor nodes deployed at the
Grand St. Bernard pass, located between Switzerland and Italy.
Since our focus in this work is outlier detection in univariate
series, the temperature measurements were used to extract
the overlapping windows to train the networks. A 3 hours
window (90 samples) is selected to capture the increase and
decrease trends in ambient temperature measurement while
maintaining acceptable computational complexity of both the
AE and the LSTM networks. Each such window of length 90
is treated as a 90-dimensional data point. The Autoencoder
is first trained using the preprocessed extracted overlapping
windows; then, the encoding part is used to generate the
low dimensional code to train the LSTM predictor. Both
networks were trained to find the right balance between bias,

TABLE I
AE-LSTM MODEL SUMMARY.

Layer Type Output Shape Activation Param #
Input Input (90,1) tanh 0
AE1 Dense (60,1) tanh 5460
AE2 Dense (30,1) tanh 1830
LSTM LSTM (40,1) Sigmoid, tanh 6720
FC1 Dense (20,1) tanh 820
FC2 (Output) Dense (1,1) tanh 21

Total: 14,851

variance, and computational complexity. Grid search, a neural
network hyperparameters optimization technique, is used to
find the number of layers, the hidden units per layer, activation
function, and learning rate. Table I shows a summary of
the Keras TensorFlow model that gave the desired results
in terms of performance and computational complexity. The
autoencoder encoding part consists of two fully connected
layers (AE1, AE2), while the LSTM predictor comprises an
LSTM layer followed by two fully connected layers (FC1,
FC2). The autoencoder network is trained for 500 epochs
using the Mean Absolute Error (MAE) loss function and L2

regularizer with factor β = 5× 10−5. On the other hand, the
LSTM is trained for 200 epochs, also using the MAE loss
function. Adam optimizer was used to update both network
parameters with a learning rate of 1× 10−4. Finally, the two
networks are stacked, and the dense layers AE2, FC1, and FC2
are fine-tuned to improve prediction performance further.

B. Accelerator Design

The design of Autoencoder-LSTM aims to achieve low com-
plexity, low latency real-time outlier detection on resource-
constrained sensor nodes. Fig. 4 shows the architecture of the
Autoencoder-LSTM accelerator. The main modules consist of
the input buffer (INBUF), the Autoencoder (AE) unit, the
LSTM unit, and the fully connected (FC) unit. The IBUF
implemented using BRAM will serve as a sliding window to
update the inputs fed to the Autoencoder unit (AE). The AE
unit will perform the matrix-vector multiplications required
to compute the latent representation of the buffered sensor
readings. The LSTM unit performs the computations presented
in the LSTM cell in Fig. 3 using the output of the AE unit. The
FC unit comes last to calculate the predictor output using the
hidden state output from the LSTM unit. All three computation
units, AE, LSTM, and FC, have access to the sigmoid and tanh
activation units implemented using the CORDIC algorithm. In
addition to the input buffer and computational network units,
BRAMs units are used to hold constant network parameters
and internal results to reduce external memory access and
improve latency.

Fig. 4. Autoencoder-LSTM Accelerator architecture.

TABLE II
RANGE OF THE QUANTIZED NETWORK PARAMETERS.

Range (Float-32) Range (Q4.14)
AE1 [-0.19818062, 0.24633783] [0x3f352, 0xfc3]
AE2 [-0.387591, 0.36001575] [0x3e732, 0x170a]
LSTM (W) [-2.407916, 1.2157106] [0x365e5, 0x4dce]
LSTM (U) [-2.2846708, 2.3490372] [0x36dc8, 0x9656]
FC1 [-0.41140792, 0.40138096] [0x3e5ac, 0x19b0]
FC2 [-0.27747655, 0.60573983] [0x3ee3e, 0x26c4]

C. Data Representation

The most used software frameworks for Deep learning
performs inference adopting the floating-point representation
to ensure the best accuracy. However, considering hardware
implementation on resource-constrained devices, floating-point
arithmetic is not optimal for resource usage. Therefore, this
work uses fixed-point representations capable of ensuring
a suitable precision for the computations and keeping low
resource usage. A software version of the AE-LSTM network
exploiting the fixed-point toolbox included in the python
environment is used to test different fixed-point configurations
and evaluate the error between the floating-point based imple-
mentation and the fixed-point one. The performed experiments
showed that the optimal solution is obtained using 18-bits
representation, 4 bits for the signed integer part, while the
remaining 14 bits for the decimal part. All network parameters
and normalized input vectors are quantized into the same 18-
bits Q4.14 fixed-point representation. The range of parameter
values before and after quantization is summarized in table II.
The mean squared error between the floating-point and the
fixed-point implementation is in the order of 10−4.

D. Activation Functions

Different methods are used for approximating nonlinear
activation functions on resource-constrained and mobile plat-
forms, including Taylor Series Expansion, LUT tables, and
approximation formulas [19]. This work utilizes the Coordi-
nate rotation digital computer algorithm (CORDIC) in hyper-
bolic and linear rotation modes to implement the sigmoid
and hyperbolic tangent (tanh) activation functions. The
CORDIC algorithm has very low complexity, using only shifts
and adds, and better precision than the previously listed ap-
proaches. Besides, it has a low memory footprint, using only a
small look-up table (LUT) with as many entries as the number
of precision bits required [13], [14]. The CORDIC algorithm
can be seen as a sequence of micro rotations where the input
vector [x, y] is rotated by an angle z as shown in (2). The
rotation angles shown in (2) are chosen such that the tanh(z)
is a power of two; therefore, the multiplication is reduced to
a bit shift. Scaling the components by K = 1/cosh(z), the
CORDIC gain, the equations in 2 reduce to only bit shifts and
additions.

x(i+1) = cosh(z)[xi − tanh(z)yi]

y(i+1) = cosh(z)[tanh(z)xi + yi]
(2)

The generalized CORDIC equations at the ith iterations are
described as follows.

Kx(i+1) = (xi − µdi(2−iyi))

Ky(i+1) = (yi − di(2−ixi))

z(i+1) = zi − diei
(3)

where µ = −1, ei = tanh−12−i, K = Πn(
√

1− 2−2i), and
n is the number of iterations in hyperbolic rotation mode and
µ = 0 and ei = 2−i and K = 1 in linear rotation mode.
Given that the CORDIC algorithm in the hyperbolic coordinate
system allows the computation of exp function and in a linear
coordinate system can be used to perform division operation,
the integration of the two modes allows the computation of
the sigmoid and tanh activation functions as shown in (4).

tanh(z) =
ez − e−z

ez + e−z
=
sinh(z)

cosh(z)

sigmoid(z) =
1

1 + e−z
=

1

1 + cosh(z) + sinh(z)

(4)

E. LSTM Cell Activation Pipeline

Given that the LSTM Cell latency dominates other system
modules’ latency, the LSTM cell activation is pipelined to
improve the overall system latency and throughput. Fig. 5
shows the data flow in the LSTM cell activation pipeline,
which has five pipeline stages, S0 − S4. The LSTM cell
formulation shown in (1) is divided into five steps, and each
step corresponds to one pipeline stage. The inputs to the
activation pipeline are the matrix-vector multiplication results
of the forget gate, input gate, update gate, and output gate
shown in Fig. 3 and expressed in the LSTM cell formulation
shown in (1). Implementing the activation functions using the
low complexity CORDIC algorithm enabled the instantiation
of multiple activation function blocks to operate in parallel,
reducing the overall latency while consuming reasonable hard-
ware resources. The cell state ct and the hidden state ht are
stored in BRAMs within the LSTM cell as both are used as
inputs in the following time-step calculations.

Fig. 5. Data flow in the LSTM cell activation pipeline. The inputs to the
activation pipeline are the matrix-vector multiplication results of the forget
gate, input gate, update gate, and output gate. The outputs are the cell state
ct and the hidden state ht.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To analyze the performance of the proposed architecture on
hardware, the Xilinx PYNQ-Z1 FPGA development board is
used [17]. The development board consists of an XC7Z020
ZYNQ series FPGA containing a Dual ARM Cortex-A9 core
processor. In addition, it is a hardware platform for the PYNQ
open-source framework, which comprises software running on
the ARM CPUs and a base hardware library. The software
running on the ARM core includes a web server hosting the
Jupyter notebooks design environment, the IPython kernel and
packages, Linux, and API for the FPGA. Xilinx’s Vivado
tools are used to design the proposed system hardware [18].
After quantizing the trained Autoencoder-LSTM network pa-
rameters into Q4.14 fixed-point representation, the parameters
were extracted into C/C++ hardware header files and used in
Xilinx’s Vivado tools to design the proposed system hardware
architecture. The resulting hardware overlay containing the
Autoencoder-LSTM network IP is loaded on the PYNQ-Z1
board. A single sensor reading is transferred from the PS to
the accelerator using the AXI4-Lite interface in each time step.
Once the accelerator output is ready, a done register connected
to the PS is flagged. The accelerator outputs are extracted and
evaluated offline to measure the performance.

B. Hardware Resource Utilization

The top-level diagram of the hardware implementation using
Xilinx Vivado tools targeting the PYNQ-Z1 board is shown in
Fig. 6. With reference to Fig. 1, the sensor data buffer, AE,
and LSTM predictors are implemented on the programmable
logic (PL), while the rest are implemented on the ARM core
processing system (PS). Table III shows the PL resource
utilization of the floating-point implementation and the accel-
erated fixed-point version. A 100MHz clock globally drives
the PL from the PS. The fixed-point data representation, the
activation pipelining, and the CORDIC implementation of the
activation functions have substantially reduced the PL resource
utilization. The estimated response time of the floating-point
version is 13.06 ms, while for the accelerated fixed-point
version, it is 2.06 ms giving a 6X reduction. In addition,
the estimated power consumption of the accelerated fixed-
point implementation is 0.25 W compared to the floating-point
version, which is 0.766 W .

Fig. 6. Top-level diagram of the proposed system architecture on PYNQ-Z1
board.

TABLE III
RESOURCE UTILIZATION OF THE PROPOSED SYSTEM IMPLEMENTATION

ON PYNQ-Z1 BOARD.

LUT LUTRAM FF BRAM DSP
Available 53200 17400 106400 140 220

Floating-Point Implementation
Utilization 26870 721 23285 43 117
Utilization % 50.51% 4.14% 21.88% 30.71% 53.18%

Accelerated Fixed-Point Implementation
Utilization 18883 351 16364 40 18
Utilization % 35.49% 2.02% 15.38% 28.57% 8.18%

C. Outlier Detection Accuracy

Since the Grand St. Bernard dataset used in this work is
unlabeled and previous examples of interesting outliers are
unavailable, it is an unsupervised scenario. Therefore, the de-
viation of sensor reading from the proposed model prediction
is used to quantify each data point’s level of outlierness. The
deviation vector of the training set is modeled to fit a Gaussian
distribution, X ∼ N (µ, σ2), as shown in Fig. 7. A sensor
reading is flagged as an outlier if its likelihood p ≤ τ and τ
is set to 0.01 given a sufficient confidence interval of 99%.
Suppose the absolute difference between the sensor reading
and the predicted value is greater than 0.15, which is the
threshold that gives a 99% confidence interval. In that case, the
data point is flagged as an outlier. Fig. 8 shows an example
of the system response to normal sensor readings from the
Grand St. Bernard dataset. The absolute difference between
the sensor reading x and the AE-LSTM prediction p is lower
than the predefined threshold, denoting that the sensor readings
in the sequence are normal. On the other hand, Fig. 9 shows
an example of the system response to noisy sensor readings
from the same dataset. The absolute difference between the
sensor reading x and the AE-LSTM prediction p goes beyond
the predefined threshold, indicating that the sensor readings
are abnormal. In this case, a second stage of exploration
is required to examine if the detected abnormality has any
application-specific importance or is a weak form of outliers
that could be considered as a system noise.

Fig. 7. Histogram of the training set prediction error with fitted Kernel Density
Estimation (KDE) using Gaussian kernel with bandwidth = 0.004. The µ ∼ 0
and the σ2 ∼ 0.06.

Fig. 8. System response to normal sensor readings. (a) Normal sensor readings
(blue) and corresponding AE-LSTM predictions (black). (b) The absolute
difference between the sensor observations and the predicted values is below
the predefined threshold indicating a regular sequence.

Fig. 9. System response to noisy sensor readings. (a) Noisy sensor readings
(blue) and corresponding AE-LSTM predictions (black). (b) The absolute
difference between the sensor observations and the predicted values exceeds
the predefined threshold in the middle region, indicating abnormality that
requires further study.

V. CONCLUSION

In this work, we introduced an FPGA-based two-stage out-
lier detection architecture that utilizes an autoencoder network

for dimensionality reduction and feature extraction and an
LSTM network for prediction and detection. The proposed
architecture was implemented on the Xilinx PYNQ-Z1 board.
The implementation results verify the effectiveness of the
proposed architecture in detecting outliers in real-time. The
2.06 ms minimum latency and 0.25 W power consumption
of the detector makes it suitable for resource-constrained
computing platforms.

ACKNOWLEDGMENT

This work was supported in part by the US NSF under
grants CNS-2016727.

REFERENCES

[1] L. M. Oliveira, J. J. Rodrigues, “Wireless sensor networks: a survey on
environmental monitoring,” Journal of Communications, vol. 6, no. 2,
pp. 143-151, April 2011.

[2] G. Hua, Y. Li, X. Yan, “Research on the Wireless Sensor Networks
Applied in the Battlefield Situation Awareness System,” International
Conference ECWAC 2011, April 16-17, 2011.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys, vol. 41, no. 3, pp. 15:1–15:58, 2009.

[4] I. Arel, D. C. Rose and T. P. Karnowski, “Research frontier: Deep
machine learning-a new frontier in artificial intelligence research, ”
Comp. In tell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.

[5] W. Guo, J. Wang, and S. Wanga, “Deep multimodal representation
learning: A survey,” IEEE Access, vol. 7, pp. 63373–63394, 2019.

[6] K. Cho, et al. “Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing
(EMNLP), 2014, doi:10.3115/v1/d14-1179.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.
1997.9.8.1735.

[8] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S.
Yao, Y. Wang et al., “ESE: Efficient speech recognition engine with
sparse LSTM on FPGA,” in Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays. ACM,
2017, pp. 75–84.

[9] A. X. M. Chang and E. Culurciello, “Hardware accelerators for recurrent
neural networks on FPGA,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), ser. ISCAS ’17, 2017.

[10] Y. Guan, H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang,
and J. Cong, “FP-DNN: An automated framework for mapping deep
neural networks onto FPGAs with RTL-HLS hybrid templates,” in 2017
IEEE 25th Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM), April 2017, pp. 152–159.

[11] D. Shin, J. Lee, J. Lee, and H. Yoo, “14.2 DNPU: An 8.1TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in 2017 IEEE International Solid-State Circuits Conference
(ISSCC), Feb 2017, pp. 240–241.

[12] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huff-
man Coding,” CoRR, vol. abs/1510.00149, 2015. [Online]. Available:
http://arxiv.org/abs/1510.00149

[13] J. S. Walther, “A Unified algorithm for elementary functions, ” Spring
Joint Computer Conf., pp. 379-385, 1971.

[14] X. Hu et al., “Expanding the range of convergence of the CORDIC
algorithm,” IEEE Transactions on Computers, pp. 13-21, Jan. 1991.

[15] F. Chollet et al., “Keras” https://keras.io, 2015.
[16] SensorScope System [online]. Available:

http://sensorscope.ep.ch/index.php/Main Page.
[17] PYNQ-Z1: Python Productivity for Zynq-7000 ARM/FPGA SoC. Dig-

ilent [online]. Available: https://store.digilentinc.com/pynq-z1-python-
productivity-for-zynq-7000-arm-fpga-soc/

[18] Vivado Design Suite. Xilinx [online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html.

[19] T. Yang, Y. Wei, Z. Tu, H. Zeng, M. A. Kinsy, N. Zheng, and P.
Ren, “Design space exploration of neural network activation function
circuits,” IEEE Trans. CAD Integr. Circ. Syst. 38, 1974–1978, 2019.

