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Weight pruning is an effective model compression technique to tackle the challenges of achieving real-time

deep neural network (DNN) inference on mobile devices. However, prior pruning schemes have limited appli-

cation scenarios due to accuracy degradation, difficulty in leveraging hardware acceleration, and/or restric-

tion on certain types of DNN layers. In this article, we propose a general, fine-grained structured pruning

scheme and corresponding compiler optimizations that are applicable to any type of DNN layer while achiev-

ing high accuracy and hardware inference performance. With the flexibility of applying different pruning

schemes to different layers enabled by our compiler optimizations, we further probe into the new problem of

determining the best-suited pruning scheme considering the different acceleration and accuracy performance

of various pruning schemes. Two pruning scheme mapping methods—one -search based and the other is rule

based—are proposed to automatically derive the best-suited pruning regularity and block size for each layer

of any given DNN. Experimental results demonstrate that our pruning scheme mapping methods, together

with the general fine-grained structured pruning scheme, outperform the state-of-the-art DNN optimization

framework with up to 2.48× and 1.73× DNN inference acceleration on CIFAR-10 and ImageNet datasets with-

out accuracy loss.
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1 INTRODUCTION

Model compression techniques have been proposed to reduce computation and memory intensity

without compromising accuracy [22, 26, 40, 57, 69, 81, 82]. It is a promising solution for achiev-

ing various practical deep learning (DL) based methods such as fingerprinting [31], YOLO [9],

super-resolution [79], and speech recognition [18] in real time on resource-limited platforms, es-

pecially mobiles and embedded devices [37, 58, 84]. Among the compression techniques, weight

pruning [22, 26, 27, 57, 69] explores and reduces the vast redundancy in the number of weights

and results in structural sparsity of deep neural network (DNN) models with fewer memory

references and less power consumption during inference.

The design of a weight pruning method includes two fundamental aspects: pruning regularity

and pruning algorithm. The former refers to the structural characteristics of the DNNs after prun-

ing, whereas the latter determines the rule to identify the weights to be pruned. From the prun-

ing regularity aspect, the widely adopted pruning schemes include unstructured pruning, struc-

tured pruning, and pattern-based pruning. Specifically, unstructured pruning is flexible to prune

any weights and generally yields promising accuracy, but they are not compatible with hardware

accelerations due to the irregular computation after pruning [22, 23, 48]. However, structured

pruning eliminates weights while maintaining a full matrix format. It is hardware-friendly but

suffers from notable accuracy degradation due to the coarse-grained nature in pruning whole fil-

ters/channels [45, 54, 57, 83, 86, 87]. Recently proposed pattern-based pruning overcomes the short-

comings of prior works by incorporating fine-grained structured pruning in a hardware-aware

fashion [50, 59], with the aid of compiler. However, pattern-based pruning is only applicable to

3 × 3 convolutional (CONV) layers and is difficult to be generalized to fully connected (FC)

layers and CONV layers with other kernel sizes. There is a lack of pruning regularity that is general

and achieves high accuracy and hardware performance simultaneously.

From the pruning algorithm aspect, heuristic-based pruning was first proposed by Han et al.

[23] and gets improvements with more sophisticated designed heuristics [19, 27, 36, 49, 74, 87].

Regularization-based pruning [21, 26, 39, 41, 43, 55, 56, 62, 69, 76, 77, 81], however, is more math-

ematics oriented. Recent works [39, 51, 62, 81, 82] achieve substantial weight reduction without

hurting the accuracy by leveraging alternating direction methods of multipliers (ADMM)

with dynamic regularization penalties, but these methods require the manual setting of the com-

pression rate for each layer.

To fully exploit the potential of the pruned models on mobile devices for inference accelerations,

it is necessary to incorporate compiler optimizations to support efficient sparse computation and

storage. However, state-of-the-art compiler-based DNN execution frameworks such as Tensor-

Flow Lite (TFLite) [1], Alibaba Mobile Neural Network (MNN) [2], and TVM [11] do not

support sparse (pruned) model inference acceleration on the mobile platforms, whereas the recent

works PCONV [50] and PatDNN [59] only have limited sparse inference support for 3 × 3 CONV

layers.

Apart from the individual limitations mentioned previously, there is one additional deficiency

that prevents DNN models from taking full advantage of weight pruning. Different pruning

schemes result in different acceleration and accuracy performance, but prior works simply apply
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the same pruning scheme to the entire model, undermining the flexibility to select the best-suited

pruning scheme for each layer to achieve better accuracy and acceleration performance.

This work aims to overcome the preceding limitations of prior works. More specifically, we

make the following contributions toward a general, fine-grained structured pruning scheme and

two automatic pruning scheme mapping methods.

For the pruning scheme part:

• We propose a novel and general pruning regularity, block-based pruning for FC layers and

block-punched pruning for CONV layers with different kernel sizes, which can achieve high

accuracy and high hardware inference performance simultaneously.

• We adopt a reweighted dynamic regularization algorithm to derive the structured sparsity

with an automatically determined compression rate for each layer and each block without

compromising accuracy.

• To extract the fine-grained structure information and exploit hardware parallelism, we pro-

pose a compiler-based mobile acceleration framework that supports the proposed pruning

regularity as well as other pruning regularities. It provides the flexibility to apply different

pruning schemes to different layers for better performance of the pruned model.

With regard to the automatic pruning scheme mapping methods part, taking the different

acceleration and accuracy performance of various pruning schemes into consideration, we probe

into the new problem of determining the best-suited pruning scheme for each layer of any given

DNN. We propose two automatic pruning scheme mapping methods to address this problem.

More specifically:

• The first is a search-based method leveraging the recent concept of network architecture

search [8, 67, 70, 85, 88], which employs reinforcement learning (RL) technique to yield

close-to-optimal pruning scheme mappings.

• The second is a training-free, rule-based method leveraging an offline-generated latency

model. It is efficient and more useful in practice.

We perform comprehensive evaluations of the proposed general pruning scheme and the two

mapping methods on representative DNN models and benchmark datasets. Experimental results

demonstrate that our methods significantly outperform the state-of-the-art DNN pruning frame-

work PatDNN in terms of accuracy and latency performance. We achieve 17.22-, 18.17-, and

3.90-ms ImageNet inference time with negligible accuracy loss on an off-the-shelf mobile phone for

ResNet-50, VGG-16, and MobileNetV2, respectively. Furthermore, the search-based method only

shows a slightly better performance than the rule-based method, whereas the rule-based method

is training-free in pruning scheme mapping.

2 BACKGROUND AND RELATED WORKS

2.1 DNN Pruning: Regularity and Algorithm

2.1.1 Pruning Regularity. From the pruning regularity aspect, existing pruning schemes can be

divided into three categories: fine-grained unstructured pruning, coarse-grained structured prun-

ing, and pattern-based pruning. We show the different pruning regularities in Figure 1, with col-

ored grids representing remaining weights. The left and middle columns in the figure illustrate

pruning regularities in the 4D weight tensor format and 2D weight matrix format for CONV lay-

ers, respectively. The right column shows the different regularities for FC layers.

Unstructured pruning is fine-grained and flexible in removing weights at arbitrary locations [15,

16, 20, 22], as shown in Figure 1(a) and (b). Although having the advantage in maintaining accuracy,

unstructured pruning leads to sparse and irregular weight matrices, and as a result, indices are
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Fig. 1. Different weight pruning schemes for CONV and FC layers using 4D tensor and 2D matrix

representation.

required to locate the non-zero weights in the sparse matrix storage format (e.g., compressed

sparse row (CSR) format). Therefore, it cannot effectively and efficiently leverage the hardware

parallelism provided by the underlying system. Consequently, unstructured pruning is generally

not compatible with GPU acceleration for DNN inference, and speed degradation can often be

observed [52].

Structured pruning [27, 28, 69, 74, 75] focuses on CONV layers and maintains structured regular-

ity. It consists of filter pruning and channel pruning that prune the entire filter(s)/channel(s). In the

weight matrix format representation as shown in Figure 1(c), filter pruning corresponds to reduc-

ing one row of the weight matrix, and it is also called row pruning. Accordingly, channel pruning

corresponds to reducing multiple consecutive columns. The key advantage of structured pruning

is that a full matrix will be maintained with dimension reduction, thereby facilitating hardware

acceleration. However, structured pruning is coarse-grained and often leads to certain accuracy

degradation [59, 68].

Pattern-based pruning [50, 59, 78] alleviates the shortcomings of prior works by incorporating

the benefits from fine-grained pruning while maintaining structures that can be exploited for

hardware accelerations with the help of compiler. Pattern-based pruning is a combination of

kernel pattern pruning and connectivity pruning as shown in Figure 1(e). Kernel pattern pruning

prunes weights at an intra-kernel level by enforcing the locations of the remaining weights in a

kernel to form a specific kernel pattern. Different kernels can have different kernel patterns, but

the total types of kernel patterns are restricted to a fixed-size set. Each kernel pattern reserves

four non-zero weights to match the single-instruction multiple-data (SIMD) architecture of

embedded CPU/GPU processors to maximize the hardware throughput. As a fixed number of

weights are pruned, the compression rate is constant for kernel pattern pruning. For a higher

compression rate, connectivity pruning is adopted as the supplementary to kernel pattern pruning.
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Connectivity pruning prunes weights at an inter-kernel level via cutting the connections between

certain input and output channels.

However, pattern-based pruning is designed for 3 × 3 CONV layers and suffers difficulty when

generalized to CONV layers with other kernel sizes and FC layers. To avoid the execution overhead

of branching conditions caused by using different pattern types, pattern-based pruning requires

limiting the maximum number of different pattern types to be used. Generally, 8 or 16 different

pattern types are allowed to be selected from all possible 4-entry pattern combinations to ensure a

decent acceleration while not hurting accuracy. For larger kernel sizes such as 5 × 5/7 × 7, 4-entry

patterns need to be selected from 25/49 weights (instead of 9 weights in the 3 × 3 case), making

the pattern have too many potential candidates. As a result, if only 8 or 16 patterns are used, there

will be an accuracy degradation. Moreover, as studied in the work of Ma et al. [53], the Gaussian

filter-like patterns and the enhanced Laplacian of Gaussian (ELoG) filter-like patterns (as shown

in Figure 1(e)) are more preferred since they can provide an enhancement on feature extraction.

But such 4-entry patterns in 5 × 5/7 × 7 kernels cannot provide the receptive field size that the

large kernels are supposed to have. For the 1 × 1 CONV layer, there is only one weight in a kernel,

making the pattern-based pruning same as unstructured pruning, which is hard to achieve actual

acceleration. Therefore, the existing pattern-based pruning is only suitable for 3 × 3 kernels, which

significantly restricts the application scenarios of pattern-based pruning.

2.1.2 Pruning Algorithm. There are two main categories of the pruning algorithm: heuristic

based and regularization based. The heuristic-based pruning algorithm was first proposed to

achieve unstructured pruning by pruning weights with small magnitudes in an iterative manner

[23]. Later heuristic works were improved in multiple directions including structured-preserving

pruning [36, 49, 74], combining growth of neurons and connections with pruning [16], and intro-

ducing meticulously designed criteria [27, 49, 74, 87] to replace magnitudes for the pruning.

The regularization-based algorithm deals with the pruning problem using a more mathematics-

oriented method. To solve filter/channel pruning problems, early works [28, 69] incorporate �1 or

�2 structured regularization in the loss function. The work of Liu et al. [46] introduces a scaling fac-

tor to each channel while imposing �1 regularization on the scaling factors in batch normalization

to prune channels with near-zero scaling factors. However, these works directly apply fixed reg-

ularization terms that penalize all weights equally, incurring potential accuracy loss. Later works

[21, 62, 81] adopt ADMM to reform the pruning problem as optimization problems with dynamic

regularization penalties, thus preserving accuracy. One drawback of these methods is the require-

ment for the manual setting of the compression rate for each layer.

2.2 Compiler-Based DNN Frameworks on Mobile

Mobile devices become key carriers of DL [29, 34, 60, 80] to enable the widespread of machine

intelligence. To facilitate the deployment of various DNN models on mobile devices, multiple

mobile DNN execution frameworks from both industry and academia attract broad attention

[24, 30, 33, 35, 71, 73]. TFLite [1], MNN [2], and TVM [11] are three representative state-of-the-

art end-to-end DNN execution frameworks with high execution efficiency. They employ several

performance optimization techniques, such as various computation graph optimizations, tensor

optimizations, and half-float support. Particularly, TVM includes a more advanced parameter auto-

tuning technique. However, none of these frameworks support sparse (pruned) DNN models on

mobile platforms.1 This is the essential drawback that obstructs the real-time DNN inference on

mobile devices. Taking the VGG-16 network—one of the key DNN models in transfer learning—as

1TVM considers sparsity recently for desktop processors.
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Fig. 2. High-level overview of the proposed automatic pruning scheme mapping framework.

an example, TVM takes 200 ms to perform an inference on the embedded GPU (Adreno 640), and

TFLite takes even longer time (270 ms).

Previous efforts based on fine-grained pattern-based pruning such as PatDNN [59] and

PCONV [50] employ a set of compiler-based optimizations to support sparse DNN models, sig-

nificantly accelerating the end-to-end DNN inference on mobile devices. However, they mainly

accelerate the square and small convolution kernels used in 3 × 3 CONV layers. A larger kernel

size (e.g., 5 × 5, 7 × 7) will introduce huge code execution overhead due to the increasing number

of branches in generated code. In addition, they cannot support FC layers and 1 × 1 CONV layers

that are commonly used in DNNs.

3 OVERVIEW OF THE AUTOMATIC PRUNING SCHEME MAPPING FRAMEWORK

To achieve real-time mobile acceleration for various modern DNNs, we propose an automatic prun-

ing scheme mapping framework, which is illustrated in Figure 2. Given an arbitrary DNN model,

the framework can automatically map the best pruning configurations to each layer and leverage

compiler-based optimizations to achieve inference speedup. The layer-wise configurations include

the pruning regularity, compression rate, and block size.

To achieve the design objective, our framework contains the following innovations. We first

propose a general, fine-grained pruning regularity that is applicable to different types of layers

while achieving both high accuracy and hardware acceleration performance to overcome the limi-

tations of prior pruning regularities in Section 4.1. To determine the compression rate for each layer

automatically without compromising accuracy, we introduce a reweighted pruning algorithm in

Section 4.2. For the goal of transforming compression to real inference speedup on mobile devices,

we propose corresponding compiler-based optimizations that support the proposed pruning regu-

larity as well as other pruning regularities in Section 4.3. As directly applying the same pruning

scheme to the entire model cannot yield the optimal performance, we further propose to map the

best-suited pruning configurations to each layer of any given DNN for mobile devices thanks to

the flexibility enabled by our compiler optimizations. The mapping methods include a comprehen-

sive search-based method that can provide close-to-optimal results in Section 5.1 and a training-

free rule-based method that is more useful in practice while reaching similar performance as the

search-based method in Section 5.2.

4 GENERAL FINE-GRAINED STRUCTURED PRUNING SCHEME

In this section, we present a novel fine-grained structured pruning scheme and corresponding com-

piler optimizations to (i) achieve high accuracy and hardware inference performance simultane-

ously while applicable to different types of layers, (ii) determine the compression rate for each layer

automatically without compromising the accuracy, and (iii) provide the supports to the proposed

pruning regularity and other pruning regularities for the exploitation of the hardware parallelism.
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Fig. 3. Comparisons of parameter ratio (a) and computation ratio (b) for 3 × 3 CONV layers and non-3 × 3

layers for different networks on the ImageNet dataset.

We start by providing a general fine-grained structured pruning regularity that includes block-

based pruning for FC layers and block-punched pruning for CONV layers with different kernel

sizes in Section 4.1. Next, a reweighted dynamic regularization algorithm that allows the automatic

determination of the per-layer and per-block compression rate is introduced to derive the sparse

regularity in Section 4.2. Then we provide corresponding compiler optimizations for the proposed

pruning scheme to enable efficient on-device inference of the pruned model in Section 4.3.

4.1 General Fine-Grained Structured Pruning Regularity

Although state-of-the-art pattern-based pruning strikes a desirable balance between accuracy and

hardware efficiency, it only works for CONV layers with 3 × 3 kernels and suffers difficulty when

generalized to layers with other kernel sizes and FC layers. Note that not all of the layers only

operate on 3 × 3 kernels in a given DNN model. As a result, the number of layers using 3 × 3

kernels affect the effectiveness of pattern-based pruning. Figure 3 illustrates the percentage of the

parameters and multiply-and-accumulates (MACs) in 3×3 CONV layers of four representative

networks. The large portion of non-3 × 3 CONV layers leaves great space for higher compression

rate and faster inference that cannot be achieved by pattern-based pruning alone.

To alleviate the deficiencies, we propose a general pruning scheme with fine-grained structured

pruning regularity, including block-based pruning for FC layers and block-punched pruning for

CONV layers with different kernel sizes.

4.1.1 Block-Based Pruning for FC Layers. Block-based pruning is an extension of the coarse-

grained structured pruning that prunes rows/columns in matrix-based computation for FC layers.

As shown in Figure 1(g), we divide a whole weight matrix of an FC layer to a number of equal-sized

blocks (4 × 4, 16 × 32, 64 × 128, etc.), and apply independent row and column pruning for each

block. The compression rate (the number of pruned rows/columns) for each block can either be

the same or different, which depends on the design requirements.

4.1.2 Block-Punched Pruning for CONV Layers. Compared with matrix-based representation

and computation, tensor-based representation and computation are more suitable for CONV lay-

ers. Thus, inspired by block-based pruning, we further propose block-punched pruning that is tai-

lored for CONV layers and can be accelerated with the same compiler optimizations. As shown in

Figure 1(f), block-punched pruning first partitions the weight tensor of a CONV layer into groups

(blocks) of kernels along the filter and input channel dimensions. For each block, the weights at the

same locations for all kernels within the block are pruned. With effective compiler-level executable

code generation, high hardware parallelism and inference acceleration on mobile can be achieved.
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Table 1. Comparison of Different Pruning Algorithms

Compared with state-of-the-art pattern-based pruning, the proposed fine-grained structured

pruning regularity is general and flexible, as it can adaptively prune FC layers and CONV layers

with different kernel sizes. In addition, block-based pruning and block-punched pruning can si-

multaneously achieve high accuracy and high hardware inference performance like pattern-based

pruning. The high accuracy is attributed to the fine-grained property of pruning regularity, which

allows higher flexibility when searching the pruned model structure compared to coarse-grained

structured pruning that prunes entire rows/columns in weight matrices. However, the high hard-

ware inference performance is attributed to the appropriate degree of structural regularity, which

can be exploited by compiler-level code generation to achieve high or even maximum hardware

parallelism. With an appropriate selection of the block size, the remaining entries in each block

can still be sufficient to exploit high hardware parallelism. The block size for each layer is an im-

portant hyperparameter that influences hardware performance and accuracy. We will elaborate

on how to select the appropriate block size for each layer in Section 5.2.2.

4.2 Reweighted Dynamic Regularization Algorithm

Another important design aspect of a pruning scheme is the pruning algorithm. Prior pruning

algorithms, such as using group Lasso regularization [28, 46, 69] or ADMM [39, 61, 81], either

suffer from potential accuracy loss or require maual compression rate tuning. To overcome the

limitations, we propose to adopt the reweighted group Lasso [10] method to discover the struc-

tured sparsity with systematically and dynamically reweighted penalties. More specifically, the

reweighted method reduces the penalties on weights with larger magnitudes, which are likely

to be more critical weights, and increases the penalties on weights with smaller magnitudes. A

comparison of the characteristics of different regularization-based pruning algorithms is shown in

Table 1.

For the i-th layer in the DNN, if the layer is an FC layer, letWi ∈ RPi×Qi denote the 2D weight

matrix, with Pi and Qi indicating the rows and columns of the weight matrix; otherwise, Wi ∈
R

Pi×Qi×Kh
i ×Kw

i represents the 4D weight tensor of a CONV layer, where Pi is the number of filters,

Qi is the number of input channels, and Kw
i and Kh

i are the kernel width and kernel height. Let

bi ∈ RPi represent the bias for the i-th layer. We also define W � {Wi }Ni=1 and b � {bi }Ni=1 as

the set of all weights and biases in the DNN. We denote the loss of the DNN under dataset D
by f (W ,b;D). Each Wi is divided into J blocks with the same size, pi × qi for an FC layer and

pi × qi × Kh
i × Kw

i for a CONV layer, namelyWi = [Wi1,Wi2, . . . ,Wi J ], whereWi j ∈ Rpi×qi for a

FC layer andWi j ∈ Rpi×qi×Kh
i ×Kw

i for a CONV layer. The general reweighted pruning problem is

formulated as

minimize
W ,b

f (W ,b;D) + λ
N∑

i=1

R
(
α (t )

i ,Wi

)
, (1)

where λ is the hyperparameter to adjust the relative importance between accuracy and sparsity.

Letα (t )
i denote the collection of penalty values applied on the weightsWi for layer i at step t . Note

that each element inα (t )
i is a positive value that is determined by the reweighted �1 algorithm [10].
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For block-based row pruning, the regularization term is

R
(
α (t )

i ,Wi

)
=

J∑

j=1

pi∑

m=1

�
�
�
α (t )

i jm ◦ [Wi j ]m, :
�
�
�

2

F
, (2)

where the operator ◦ represents element-wise multiplication, [Wi j ]m, : denotes the m-th row of

Wi j , and α (t )
i jm is updated by α (t )

i jm =
1

‖[Wi j ]t
m, : ‖2F+ϵ

to help increase the degree of sparsity beyond

group Lasso regularization.

For block-based column pruning, the regularization term is

R
(
α (t )

i ,Wi

)
=

J∑

j=1

qi∑

n=1

�
�
�
α (t )

i jn ◦ [Wi j ]:,n
�
�
�

2

F
, (3)

where [Wi j ]:,n is then-th column ofWi j andα (t )
i jn is updated byα (t )

i jn =
1

‖[Wi j ]t
:,n ‖2F+ϵ

. The block-based

row pruning problem (2) and column pruning problem (3) can be solved separately or simultane-

ously using a standard DL solver.

For block-punched pruning, the regularization term is formulated as

R
(
α (t )

i ,Wi

)
=

J∑

j=1

Kh
i∑

m=1

Kw
i∑

n=1

�
�
�
α (t )

i jmn ◦ [Wi j ]:, :,m,n
�
�
�

2

F
, (4)

where [Wi j ]:, :,m,n indicates the weight located at the m-th row and n-th column in a kernel for

all kernels in the block and α (t )
i jmn =

1
‖[Wi j ]t

:, :,m,n ‖2F+ϵ
. The reweighted method only requires the

hyperparameter λ, and the soft constraints formulation allows the automatic determination of the

compression rate for each layer and each block.

4.3 Compiler Optimizations for Proposed Pruning Regularity

Compiler optimizations can turn the sparsity of pruned models into higher speedups. Without

compiler optimizations, the pruned weights (with zero values) still participate in the inference

computations, resulting in minor inference speedup. Hence, we develop a comprehensive compiler-

based automatic code generation framework to extract the fine-grained structure information in

block-punched and block-based pruning. The framework also supports other pruning regularities

including unstructured pruning, structured pruning, and pattern-based pruning. Our proposed

compiler-based mobile acceleration framework first compacts the model storage with a novel com-

pression format called blocked compressed storage (BCS) format, as shown in Figure 4. Then,

it performs computation reordering to reduce the branches within each thread and eliminate the

load imbalance among threads.

BCS stores non-zero weights as CSR format with a better compression rate by further compress-

ing the index with a hierarchical structure. Traditional CSR format has to store each non-zero

weight with an explicit column index. Our proposed block-based/block-punched pruning pre-

serves non-zero weights in identical columns within each block, inducing many repeated column

indices if we use CSR format. BCS eliminates this redundancy with a hierarchical compression

on the column index only.

Figure 4 shows a simplified example. The weights array stores all non-zero weights. The

compact column array stores the compressed column index—for example, [0, 3, 6] denotes the

column id of the first three weights [1, 2, 3]. The column stride array denotes the start and

end index of each row in the compact column array—for example, [0, 3] denotes that the column

index for the first row starts from index 0 and ends at index 2 in the compact column array. The

same column indices may be used for multiple rows. The occurrence array is used to specify the
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Fig. 4. BCS for weights.

start and end rows with the identical column index—for example, [0, 2] means that rows 0 and 1

share the same column index. BCS also contains a row offset array to specify the starting location

of each row in the weights array.

Usually, the weight distribution is not as regular as the preceding simplified example, thus a

row reordering optimization is also included to further improve the regularity of the weight ma-

trix. After this reordering, the continuous rows with identical or similar numbers of non-zero

weights are processed by multi-threads simultaneously, thereby eliminating thread divergence

and achieving load balance. Each thread processes more than one row, thus eliminating branches

and improving instruction-level parallelism. We also incorporate other compiler-based optimiza-

tions for on-mobile DNN inference acceleration, such as layer fusion, auto-tuning, and high-level

domain-specific language (DSL). More details are provided in the Appendix.

4.4 Effectiveness of the Proposed Pruning Scheme

We show an example of the inference accuracy and acceleration performance of the proposed

pruning scheme on ResNet-50 using the ImageNet dataset in Figure 5. More thorough evaluation

results are presented in Section 6.2. Here, block-based pruning is applied for all FC layers and block-

punched pruning is applied for all CONV layers. The compression rate for each layer is derived

by the reweighted dynamic regularization algorithm. As can be seen from the figure, unstructured

pruning, which is equivalent to setting the block size as 1 × 1 for each layer, achieves the highest

accuracy but the worst performance in latency. In contrast, structured pruning (i.e., using the

whole matrix as the block size) achieves the fastest inference but degrades the accuracy the most.

With a suitable block size, our proposed fine-grained structured pruning scheme achieves high

accuracy and inference speed simultaneously. The reason is that the maximal hardware parallelism

is limited by the computation resource. Since the weight matrix/tensor is typically very large,

the remaining entries in each block are still sufficient to exploit high hardware parallelism. With

parallelism maximally exploited, the hardware inference performance can be almost the same as

coarse-grained structured pruning.

Takeaway. In this section, we first introduced a general fine-grained structured pruning regu-

larity, which can work for CONV layers with any kernel size and FC layers. Second, we proposed

the reweighted group Lasso with block-based constraints as the pruning algorithm to derive the

structured sparsity with an automatically determined compression rate for each layer and each

block. Third, we developed the first compiler-based mobile acceleration framework that supports

general block-based/block-punched sparsity as well as other pruning regularities, which is flexible

and allows different layers to adopt different pruning regularities and block sizes.

5 AUTOMATIC PRUNING SCHEME MAPPING METHODS FOR MOBILE DEVICES

Although the general fine-grained pruning scheme proposed in Section 4 can achieve high accu-

racy and hardware acceleration performance, it is not optimal to directly apply the same pruning
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Fig. 5. Accuracy and latency performance with different block sizes on ResNet-50 using the ImageNet

dataset.

Fig. 6. Overview of search-based pruning scheme mapping (a) and rule-based pruning scheme mapping (b).

scheme to the entire model, as different layers may prefer different pruning regularities and con-

figurations (e.g., the compression rate and block size). Fortunately, effective compiler optimization

techniques provide the flexibility to apply different pruning regularities and block sizes to different

layers. As different weight pruning schemes have different acceleration and accuracy performance

under the same mobile acceleration framework, it is important to have a pruning scheme mapping

method to determine the pruning configurations for each layer. Therefore, we further probe into

the problem of mapping the best-suited pruning scheme for each layer of any given DNN to obtain

a pruned model with better performance in terms of accuracy and latency in this section.

The performance of a pruned model is influenced by the compression rate, pruning regularity,

and block size when block-based/block-punched pruning is selected, of each layer. This is a new

challenge that resulted from the new dimension of compiler-aware pruning scheme optimizations.

To find the appropriate pruning schemes in such a large design space, we propose two automatic

pruning scheme mapping methods: one is search based and the other is rule based, as shown in

Figure 6. The former is a more comprehensive framework to yield close-to-optimal pruning scheme

mapping results, whereas the latter is a training-free procedure that is efficient and more useful in

practice. Note that with our proposed reweighted dynamic regularization algorithm in Section 4.2,

the compression rate can be obtained automatically for each layer and each block. Thus, the search

space of the pruning scheme mapping problem can be reduced to finding the appropriate pruning

regularity and the block size for each layer in the given DNN.

5.1 Search-Based Pruning Scheme Mapping Method

Although we simplify the search space with the reweighted dynamic regularization algorithm to

determine the per-layer and per-block compression rate automatically, there is still a huge amount
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of combinations of pruning regularities and block sizes to seek. Inspired by recent advances in

network architecture search [8, 67, 70, 85, 88], we consider to leverage a search-based method by

employing RL [38, 65] to map the appropriate pruning scheme for each layer of a given DNN.

In RL, an agent interacts with the environment by taking an action at ∈ A according to a policy

π upon the observation of a state st ∈ S at timestep t . For our problem, each timestep t corresponds

to the pruning scheme mapping of one layer. The state st ∈ S represents the information of current

layer, which is defined as a 4D vector {layer type, kernel size, input channel number, output channel

number}. The action at ∈ A is the mapping decision for the current layer, which is a 2D vector

{pruning regularity, block size}. For an N -layer DNN with information I = {s1, . . . , sN }, an entire

mapping M = {a1, . . . ,aN } can be found with N timesteps. Let R (M) denote the cumulative

reward forM, which is the optimization target of the RL agent. A good pruning scheme mapping

should achieve high accuracy and hardware performance jointly, thus we define R (M) as the

weighted sum of the accuracy and the negative of the latency of the pruned model with information

I under the mappingM.

We leverage the policy gradient method [66] to directly learn a parameterized policy for the

pruning scheme mapping, and the training objective of the policy is defined as follows:

J (θ ) = EM∼π (M|I;θ )[R (M) |I], (5)

where π (M|I;θ ) is a sequence-to-sequence model in our work. The input to the encoder recur-

rent neural network is the sequence of the information of each layer in the target DNN, and the

decoder is an LSTM with N timesteps to output the mapping decision for each layer at the same

encoder timestep. We estimate the gradient of the objective function by drawing K mapping deci-

sion samples fromMk ∼ π (M|I;θ ) and reduce the variance of the estimate with a baseline term

B, leading to

∇θ J (θ ) ≈ 1

K

K∑

k=1

(R (Mk ) − B) · ∇θ logπ (Mk |I;θ ). (6)

For each mapping decision sample Mk in a training iteration of the policy, we need to compress

the target DNN to obtain the accuracy and latency performance for the calculation of the reward

R (Mk ). The latency is obtained via deploying the pruned model with compiler code generation on

target device and measuring the real execution time. To accelerate the policy training, we adopt

magnitude-based one-shot pruning and early stopping for faster accuracy evaluation during the

policy training process. More specifically, once a mapping Mk is obtained, we conduct a one-

shot pruning for each layer of the DNN based on the weight magnitude and retrain the DNN for

two epochs to regain accuracy. This partially regained accuracy can be used to predict the final

model accuracy and compare the performance between different schemes [67, 85]. Furthermore, as

compiler code generation and latency measurement do not depend on absolute weight values and

are faster than DNN training, we overlap the compiler code generation and latency measurement

with the accuracy evaluation of the pruned model.

5.2 Rule-Based Pruning Scheme Mapping Method

The advantage of the search-based method is that it can find the globally close-to-optimal pruning

configurations for each of the layers in a given DNN. Although it works perfectly for small DNN

models, the searching overheads increase exponentially when the model size increases, making it

unsuitable for large-size DNN models. Therefore, we design a training-free rule-based method that

maps the best-suited pruning schemes in a layer-wise fashion to avoid the time-consuming search

process for the best mapping. We consider the search-based solution as the performance upper
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bound, and we target to make the rule-based method perform as well as the search-based one, yet

highly efficient and practical.

5.2.1 Latency Model. To obtain the latency performance without the pruning and retraining of

the given DNN, we build latency models for different types of layers (e.g., 1 × 1 CONV, 3 × 3 CONV,

5 × 5 CONV, and 3 × 3 depth-wise (3 × 3-DW) CONV) on the target device (e.g., a Samsung S10

smartphone). Each latency model contains latency results for different settings, including block

size, number of filters, input and output feature map size, pruning scheme, and compression rate.

The results are measured on the target device by running test models with each setting for 100 runs.

Each test model has 10 cascaded layers with the same setting. Since building the latency model

does not involve DNN training, it will not take a very long time. The testing time for each run of

each setting is in the milliseconds level. For instance, our latency model including 512 different

layer settings can be built in around 30 minutes. Such a building time is negligible compared to

the DNN training or the searching process, which usually counts in days. The latency model only

needs to be built once for a target device and is universal to different DNN models.

5.2.2 Block-Size Selection. Block size has a significant impact on the accuracy and hard-

ware performance for block-based/block-punched pruning. A larger block size is typically more

hardware-friendly and easier to leverage the built-in hardware acceleration, yet it may cause more

severe accuracy degradation due to the coarse granularity. On the contrary, a smaller block size

typically leads to higher accuracy but also increases the latency. An appropriate setting of the

block size can achieve high accuracy as unstructured pruning (essentially with block size 1 × 1)

and high hardware acceleration performance as structured pruning (essentially with the block size

of the whole weight tensor/matrix) simultaneously.

To determine the proper block size for each layer without the requirement of a time-consuming

training process, we consider decoupling the two optimization targets: accuracy and hardware per-

formance. To minimize the impact of pruning on hardware performance, our rule-based method

will first derive the inference latency of each block size from the offline-generated latency models

and normalize the latency (i.e., divide by the MACs of that layer). We introduce a latency threshold

β , indicating the acceptable latency degradation range of the proposed general pruning regularity

compared with coarse-grained structured pruning. The value of β can be adjusted according to the

design requirement, and it can either be the same for the entire model or different for each layer.

For example, β = 20% means that the inference speed of block-based/block-punched pruning

can be at most 20% slower than structured pruning under the same compression rate. After the

hardware performance-driven design is satisfied, we only need to consider the influence of block

size on accuracy. As a smaller block size can provide a finer granularity in pruning and the conse-

quent higher accuracy, the smallest valid block size that satisfies the β-degradation requirement

is selected as the desired block size. This process depends on our latency model and is free of

training.

5.2.3 3 × 3 CONV Layer: Pattern or Block. For 3 × 3 CONV layers, both pattern-based pruning

and block-punched pruning can be applied. To map the best-suited pruning scheme, the problem

is to compare the accuracy and inference latency of block-punched pruning and pattern-based

pruning.

Accuracy perspective. To investigate the accuracy of pattern-based pruning and block-punched

pruning, we conduct comprehensive experiments on ResNet-18 and VGG-16 with CIFAR-10 and

ImageNet datasets. Figure 7(a) and (b) show an example of the comparison results on the CIFAR-10

dataset, and the block size is set to 4 × 16. Note that only 3 × 3 CONV layers are pruned and non-

3× 3 layers remain unpruned to provide a fair comparison. Here, the compression rate indicates the
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Fig. 7. The top-1/top-5 accuracy comparisons of pattern-based pruning and block-punched pruning (block

size of 4 × 16) under the same compression rates for ResNet-18 and VGG-16 on CIFAR-10 and ImageNet

datasets.

parameter reduction rate for each 3 × 3 CONV layer. From the figure, we can make the following

observations: (i) block-punched pruning consistently shows comparable or higher accuracy for

the pruned model under different compression rates on the CIFAR-10 dataset; and (ii) both block-

punched and pattern-based pruning achieve accuracy enhancement when the compression rate is

relatively low, especially on ResNet-18. The reason is that pruning with a small compression rate

can help mitigate the overfitting problem.

The comparison results of pattern-based pruning and block-punched pruning on the ImageNet

dataset with different compression rates are shown in Figure 7(c) and (d). Different from the obser-

vations on the CIFAR-10 dataset, pattern-based pruning shows better accuracy performance under

various compression rate settings for both ResNet-18 and VGG-16.

We attribute the different performance on the two datasets to the following. First, for tasks on

easy datasets such as CIFAR-10 that can easily achieve higher than 90% accuracy, the networks are

generally overparameterized, and both block-punched and pattern-based pruning schemes can

achieve a high compression rate (e.g., >10×) and significant acceleration without hurting the model

generalization ability. Thus, the acceleration performance of the two pruning schemes becomes a

more essential factor that contributes to the pruning scheme selection. Compared to pattern-based

pruning, the block-based/block-punched pruning has a more strict constraint on the weight struc-

ture, benefiting hardware parallelism and hence a higher acceleration performance under the same

compression rate. Therefore, block-based/block-punched pruning is more favorable for easier

datasets. Second, for tasks on harder datasets, the pattern-based pruning scheme is more desirable

than block-based/block-punched pruning on 3× 3 CONV layers. An example of the harder dataset

is ImageNet, of which even the unpruned network can only achieve less than 80% top-1 accuracy.

Because the patterns used by pattern-based pruning form the shape of a Gaussian filter or

Laplacian of Gaussian filter that can enhance the ability for feature extraction (as mentioned in

Section 2.1). Therefore, it plays an important role in preserving accuracy under an accelerable

compression rate.
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Based on the preceding results, we make the following remark.

Remark 1. For 3 × 3 CONV layers, block-punched pruning is more suitable for tasks with easier

datasets, whereas pattern-based pruning suits tasks with harder datasets better.

We will provide more discussions and verification of the remark in Section 6.3.

Latency perspective. Latency is the other important aspect in performance evaluation of a prun-

ing scheme. From comprehensive comparative experiments conducted offline, we have observed

that under the same compression rate, the latency performance of block-punched pruning is better

than pattern-punched pruning when the block size is large but worse when the block size is small.

The latency of these two pruning regularities mainly depends on which one can achieve a larger

compression rate under the same accuracy. Thus, latency is considered as a secondary criterion

for the best-suited pruning scheme mapping in the rule-based method. More discussion will be

provided in Section 6.3.

5.2.4 3× 3-DW CONV Layer. The 3× 3-DW CONV layer is widely used in current DNN designs

such as the MobileNet family [63]. It is a special case of the 3 × 3 CONV layer, which applies a 2D

depth filter at each depth level of the input tensor. Thus, both pattern-based pruning and block-

punched pruning can be applied to 3 × 3-DW layers theoretically. In our rule-based selection

policy, we prefer to not prune 3 × 3-DW layers mainly for two reasons: (i) 3 × 3-DW layers are

computation- and memory efficient; (ii) 3 × 3-DW layers are sensitive to pruning.

We use MobileNet-V2 on ImageNet as an example; 33% of layers are 3 × 3-DW layers, but they

only contribute 6.9% MACs and 1.7% parameters in total. Pruning 3 × 3-DW layers will not achieve

a considerable gain even if all of them are pruned. However, the 3 × 3-DW layers contribute 33%

of activations, making each weight in the 3 × 3-DW layer more significant. Moreover, in a regular

3 × 3 CONV layer, one input (activation) channel will be filtered by multiple CONV kernels that

come from different CONV filters and have different pruned locations, mitigating the damage of

pruning on feature extraction. On the contrary, in a 3 × 3-DW layer, one input channel will only

be filtered by one CONV kernel, which makes 3 × 3-DW layers more sensitive to the pruning.

We conducted an ablation study about the impact of pruning 3 × 3-DW on accuracy and over-

all pruning ratio. The results showed that pruning 3 × 3-DW layers will only slightly increase

the pruning ratio while leading to a noticeable accuracy loss. Our experiment results shown in

Section 6.2 indicate that both pattern-based pruning and block-punched pruning lead to a non-

negligible accuracy drop when applied to 3 × 3-DW layers. Therefore, our rule-based method

does not map any pruning scheme to the 3 × 3-DW CONV layers.

We summarize the workflow of the training-free rule-based method in Figure 8. For each layer

of a given DNN, we first examine the layer type. If the layer is a 3 × 3-DW CONV layer, no pruning

scheme is mapped. For 3× 3 CONV layers, the pruning regularity depends on the size of the dataset.

Pattern-based pruning is mapped to 3 × 3 CONV layers if the task has a large dataset; otherwise,

block-punched pruning is selected. The proposed general block-based/block-punched pruning is

mapped to all other types of layers. When block-based/block-punched pruning is selected, the

block size is determined according to an offline-generated latency model with a latency threshold.

We note that the entire mapping process, including the pruning regularity mapping and block size

selection, is training-free without incurring any additional cost.

6 EVALUATION

6.1 Methodology

Evaluation objective. The first part of our evaluation objective is to show the effectiveness of the

general fine-grained structured pruning scheme and the corresponding compiler optimizations.
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Fig. 8. Rule-based pruning scheme selection.

The second part of our evaluation objective is to compare the overall pruning scheme mapping

framework with the state-of-the-art DNN inference acceleration framework PatDNN [59] in terms

of accuracy and latency. Note that PatDNN already outperforms other DNN inference frameworks

including TVM [11], MNN [2], and TFLite [1], thus the comparison with PatDNN is sufficient to

show the effectiveness of our methods.

Our achieved speedup mainly comes from the following. First, our general fine-grained struc-

tured pruning is applicable to all types of layers, which better compresses the model size and

reduces the computation workload. Second, our compressed sparse matrix storage and associ-

ated compiler optimizations improve the computation regularity/parallelism, thus transforming

the computation reduction to real performance gains. Third, our automatic pruning scheme map-

ping methods successfully map the best-suited pruning configurations to each layer, maximizing

the compression rate while maintaining accuracy.

DNN models. We evaluate on three mainstream DNNs: VGG-16 [64], ResNet-50 [25], and

MobileNet-V2 [63]. They are trained on two representative datasets: CIFAR-10 and ImageNet [17].

We also conduct experiments on YOLOv4 [6] with the Microsoft COCO dateset [42].

Evaluation platforms and running configurations. All evaluated models are trained on a server

with eight NVIDIA RTX 2080Ti GPUs. The training codes are implemented with the PyTorch API.

The latency is measured on the mobile GPU of an off-the-shelf Samsung Galaxy S10 smartphone,

which has the Qualcomm Snapdragon 855 mobile platform with a Qualcomm Kryo 485 Octa-core

CPU and a Qualcomm Adreno 640 GPU. Each test takes 50 runs on different inputs with eight

threads on the CPU and all pipelines on the GPU. As different runs do not vary greatly, only

the average time is reported for readability. All runs are tuned to the best configurations. We

empirically choose the latency threshold β = 20%.

6.2 Evaluations of the Proposed Pruning Scheme

We first evaluate the inference latency of block-punched pruning using different block sizes on

1 × 1 and 3 × 3 CONV layers with different layer sizes, as shown in Figure 9. The input feature

map size of the testing CONV layers is set to 56 × 56, 28 × 28, 14 × 14, and 7 × 7, whereas the

input/output channel size is set to 64, 128, 256, and 512. These configurations are commonly used in

real DNN networks such as ResNet-50 and VGG-16 on ImageNet. In addition, these configurations

keep the MACs the same for all 1 × 1/3 × 3 CONV layers, which can help us observe the impact

of different input feature map size and number of channels on latency better.

From Figure 9(a), we can see that the latency is reduced with a larger block size. However, the

speedup gradually saturates. The reason is that the remaining weights in each block are more likely

to be sufficient to exploit high hardware parallelism with larger block size. Another observation
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Fig. 9. Latency of 1 × 1 and 3 × 3 CONV layers under different feature sizes and input/output channels.

is that the layer inference latency increases for all block sizes as the size of the input feature map

decreases and the number of input/output channels increases. The reason is that a smaller input

feature map size lowers the reuse rate of each weight, causing hardware parallelism degradation.

Similar observations can also be found in Figure 9(b), which shows the latency results for different

3 × 3 CONV layers.

Similar results can also be observed on FC layers with block-based pruning. Figure 10(a) shows

the latency comparisons on two FC layers. The size of the FC layer on the left-hand side is used as

the first FC layer in VGG-16, whereas the right-hand side is the representative FC layer in BERT.

The latency of each FC layer is normalized to its own 1 × 1 block size result. We can observe that

for large FC layers, increasing the block size can reduce latency effectively, whereas the latency

reduction achieved by increasing the block size gets saturated gradually in relatively small FC

layers.

6.3 Automatic Pruning Scheme Mapping Methods Evaluations

6.3.1 Accuracy Analysis on Pattern-Based Pruning and Block-Punched Pruning. From the results

on ResNet-18 and VGG-16 with CIFAR-10 and ImageNet datasets, we make Remark 1. We further

examine the remark on YOLOv4 with the Microsoft COCO dataset, which can be reasonably re-

garded as difficult task, as shown in Table 2. The compression rate refers to the compression rate of

the entire model, and the block size is 4 × 16. When only 3 × 3 CONV layers are pruned, pattern-

based pruning achieves a higher mean average precision (mAP), which matches the remark

that pattern-based pruning suits tasks with larger datasets better on 3 × 3 CONV layers. However,

current pattern-based pruning is only applicable to 3 × 3 layers, limiting the compression per-

formance. With the proposed general pruning scheme applicable to different layers, we achieve

an 8.1× compression rate with 51.3 mAP and 11.5 frames per second (FPS). A hybrid pruning

scheme by mapping pattern-based pruning to 3 × 3 CONV layers and block-based/block-punched

pruning to all of the other layers can further achieve an 8.5× compression rate with 51.7 mAP and

12.3 FPS. We also show the results of unstructured pruning and structured pruning, which achieve

52.5 mAP and 39.4 mAP, and 7.6 FPS and 11.8 FPS, respectively. It can be observed that our hybrid

scheme method is 1.62× faster than unstructured pruning while maintaining comparable accuracy.

When compared to structured pruning, our hybrid scheme method achieves much higher accuracy

and is also slightly faster than structured pruning at the same time. This further strengthens the

advantage of our proposed method.

6.3.2 Latency Analysis on Pattern-Based Pruning and Block-Punched Pruning. We conduct com-

prehensive comparative experiments offline to analyze the latency performance of pattern-based

pruning and block-punched pruning to determine the best-suited pruning scheme for 3 × 3 CONV

layers. Figure 10(b) shows an example of the latency comparisons for a 3 × 3 CONV layer with
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Table 2. Comparison on YOLOv4

Pruning Scheme # Weights Compression Rate mAP FPS

Not prune 64.36M 1× 57.3 3.5

Structured 8.82M 7.3× 39.4 11.8

Unstructured 5.75M 11.2× 52.5 7.6

Pattern 10.22M *6.3× 52.8 9.7

Block 10.38M *6.2× 52.4 9.1

Block 7.94M 8.1× 51.3 11.5

Hybrid 7.57M 8.5× 51.7 12.3
∗Overall compression rate, but only 3 × 3 CONV layers are pruned.

Fig. 10. (a) Latency of two example FC layers. (b) Example of

latency comparisons of the 3 × 3 CONV layer using pattern-

based pruning and block-punched pruning.

Table 3. Accuracy Comparison (Δ acc.)

of Applying Pattern-Based Pruning and

Block-Punched Pruning to the

Depth-Wise 3 × 3 CONV Layers in

MobileNetV2

CIFAR-10 CIFAR-100

Compression rate 7.19 × ->8.12× 2.78 × ->2.91×
Pattern Based −0.4 −0.9

Block Based −1.01 −1.51

28 × 28 input feature map size and 128 input/output channels under different compression rates.

Under 4× and 8× compression, pattern-based pruning has similar latency performance to block-

punched pruning with a block size of 8 × 16. When the compression rate is higher than 12×,

pattern-based pruning has speed that is similar to block-punched pruning with a block size of

16 × 32. However, the latency difference between pattern-based pruning and block-punched prun-

ing is minor, as we discussed in Section 5.2.3, thus we consider latency performance as a secondary

criterion in the rule-based pruning scheme mapping method.

6.3.3 Ablation Study on the 3 × 3-DW CONV Layer. As mentioned in Section 5.2.4, 3 × 3-DW

CONV layers usually only account for a small portion of weights and computations, and they play

an important role in capturing spatial correlations in DNNs [13], thus we propose not to prune

3 × 3-DW CONV layers. Table 3 shows the accuracy results of applying pattern-based pruning and

block-punched pruning to 3 × 3-DW CONV layers in MobileNetV2. Here we use the baseline mod-

els in which all 1× 1 CONV layers are pruned by block-punched pruning with compression rates of

7.19× and 2.78× for CIFAR-10 and CIFAR-100, respectively. Then, on top of the pruned model, we

apply an extra 2.22× pattern-based/block-punched pruning only for the 3 × 3-DW CONV layers

and compare the final accuracy. The results show that the overall compression rate only increases

slightly, but there is a non-negligible accuracy drop for pattern-based pruning and block-based

pruning. Thus, our rule-based pruning scheme mapping method will not map any pruning scheme

for 3 × 3-DW CONV layers.

6.3.4 Evaluations of Automatic Pruning Scheme Mapping Methods. We compare the search-

based and rule-based methods with the state-of-the-art end-to-end inference framework PatDNN

[59], which uses pattern-based pruning with the ADMM pruning algorithm. The comparison re-

sults are shown in Table 4. Here, the compression rate refers to the parameter reduction rate of

the CONV layers. The accuracy for the ImageNet dataset indicates the top-5 accuracy.
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Table 4. Comparison with PatDNN on the CIFAR-10 Dataset (Top-1 Accuracy) and the ImageNet Dataset

(Top-1/Top-5 Accuracy)

Network Method
Pruning
Scheme

Pruned Layers
Original
Acc. (%)

Compression
Rate

Acc.
Drop (%)

Latency
(ms)

MACs

CIFAR-10

ResNet-50
PatDNN Pattern 3 × 3 CONV 95.6 1.57× −1.0 10.44 1.9G

Rule based Block 3 × 3 CONV, 1 × 1 CONV 95.6 11.51 × 0.1 4.25 0.6G
Search based Hybrid 3 × 3 CONV, 1 × 1 CONV 95.6 11.88× 0.1 4.20 0.6G

VGG-16
PatDNN Pattern 3 × 3 CONV 93.9 8.0× −0.4 2.59 73M

Rule based Block 3 × 3 CONV 93.9 12.38 × −0.3 2.02 59M
Search based Hybrid 3 × 3 CONV 93.9 12.50× −0.3 2.00 58M

MobileNetV2
PatDNN Pattern 3 × 3 DW CONV 94.6 1.01× −0.1 3.63 296M

Rule based Block 1 × 1 CONV 94.6 7.53 × 0.2 1.86 89M
Search based Block 1 × 1 CONV 94.6 7.54× 0.1 1.86 89M

ImageNet

ResNet-50
PatDNN Pattern 3 × 3 CONV 76.1/92.8 1.56× −/−0.2 29.89 3.0G

Rule based Hybrid 3 × 3 CONV, 1 × 1 CONV 76.1/92.8 4.37 × 0.3/0.1 17.26 1.6G
Search based Hybrid 3 × 3 CONV, 1 × 1 CONV 76.1/92.8 4.41× 0.1/0 17.22 1.6G

VGG-16
PatDNN Pattern 3 × 3 CONV 74.5/91.7 8.0× −/0.1 18.91 3.8G

Rule based Pattern 3 × 3 CONV 74.5/91.7 8.22 × 0.2/0.1 18.17 3.5G
Search based Pattern 3 × 3 CONV 74.5/91.7 8.22× 0.2/0.1 18.17 3.5G

MobileNetV2
PatDNN Pattern 3 × 3 DW CONV 71.0/90.3 1.01× −/0 4.90 300M

Rule based Block 1 × 1 CONV 71.0/90.3 1.76 × 0.5/0.3 3.98 177M
Search based Block 1 × 1 CONV 71.0/90.3 1.82× 0.5/0.3 3.90 165M

The configurations of the search-based method are obtained using five GPU servers, and take

3 and 9 days for CIFAR-10 and ImageNet models, respectively, which is acceptable for RL-based

search methods [67, 88]. We use a search-based method to provide a close-to-optimal result, which

indicates the performance upper bound. Accelerating the search process is not the main concern

of our work, and our search process can be accelerated by adopting fast evaluation techniques

such as Bayesian optimization [12, 32].

For ResNet-50 on CIFAR-10, the rule-based method can achieve an 11.51× compression rate

with only 0.1% accuracy drop, which is significantly higher than the results obtained by PatDNN.

The reason for the limited performance of PatDNN is that only 44.3% of the parameters of ResNet-

50 are in the 3 × 3 CONV layers that can be pruned with pattern-based pruning, as shown in

Figure 3. Our rule-based method, however, maps the flexible block-punched pruning that can be

applied to CONV layers with different kernel sizes, thus achieving a much higher compression rate.

The search-based method reaches a slightly higher compression rate and minor latency reduction

compared with the rule-based method.

With the automatic mapping of block-punched pruning and block size provided by the rule-

based method and compression rate derived by the reweighted pruning algorithm, we reach a

12.38× compression rate with 0.3% accuracy improvement on VGG-16 for the CIFAR-10 dataset.

Still, the search-based method renders slightly better performance than the rule-based method.

For MobileNet-V2, mapping block-based pruning with an optimized block size on 1 × 1 CONV

layers by the rule-based method achieves a 7.53× compression rate with only 0.2% accuracy drop.

The compression rate is much higher than PatDNN, as pattern-based pruning cannot be applied

to 1 × 1 CONV, and 3 × 3-DW CONV layers only account for 1.9% of the parameters in the model.

The performance difference between the rule-based method and the search-based method is

negligible.

Different from CIFAR-10, pattern-based pruning has better accuracy performance on tasks with

large datasets like ImageNet, as discussed in Remark 1. Hence, the rule-based method maps pattern-

based pruning to 3 × 3 CONV layers and block-punched pruning with optimized block size to the

remaining layers. For ResNet-50 on ImageNet, the rule-based method can reach a 4.37× compres-

sion rate with only 0.1% accuracy loss, and 1.73× speedup on mobile GPU over PatDNN.
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Table 5. Comparisons with Models Obtained by Various Model Compression

Techniques on ImageNet

Group Model MACs Top-1 Acc.

300M MACs

MobileNetV2 1.0× 300M 71.0%

NetAdapt-MobileNetV1 [72] 284.3M 69.1%

ChamNet-B [14] 323M 73.8%

200M MACs

MobileNetV2 0.75× 209M 69.8%

AMC-MobileNetV2 [26] 211M 70.8%

AutoSlim-MobileNetV2 [44] 207M 73%

MetaPruning-MobileNetV2 [47] 217M 71.2%

Ours (rule based) 203M 70.8%

150M MACs

MobileNetV1 0.5× 150M 63.3%

AutoSlim-MobileNetV1 [44] 150M 67.9%

Ours (rule based) 177M 70.5%

Ours (rule based) 151M 69.8%

For VGG-16 on ImageNet, both the rule-based method and the search-based method map

pattern-based pruning to all 3 × 3 layers with the reweighted dynamic regularization algorithm,

and achieves a 8.22× compression rate with only 0.1% accuracy loss, which outperforms PatDNN.

As all methods adopt pattern-based pruning, the performance difference between our methods

and PatDNN is attributed to the pruning algorithm. With the reweighted pruning aglorithm,

our method has the advantage of determining the compression rate for each layer automatically,

whereas PatDNN is based on ADMM and requires manual setting of the compression rate for each

layer. For MobileNet-V2 on the ImageNet dataset, both the rule-based method and the search-based

method map block-punched pruning to 1 × 1 CONV layers, and reach a 1.76× compression rate

and a 1.82× compression rate, respectively.

We also compare our method with other representative model compression techniques including

NetAdapt [72], ChamNet [14], AMC [26], AutoSlim [44], and MetaPruning [47] on the ImageNet

dataset, and the results are shown in Table 5. At the 200M MAC level, our rule-based method

achieves the same accuracy as AMC with fewer MACs. Our method also outperforms the 0.75×
channel scaled MobileNetV2 in both accuracy and MACs. At the 150M MAC level, the model ob-

tained by our rule-based model achieves the highest top-1 accuracy with similar MACs compared

with AutoSlim and the 0.5× channel scaled MobileNetV1.

Combining all of the results, we can see that both the rule-based and the search-based method

significantly outperform PatDNN. The rule-based method can provide pruned models with similar

accuracy and latency performance as the search-based method, and avoids the policy training pro-

cess, thus it is more useful in practice. Moreover, with the assist of our compiler optimization, both

methods can easily achieve real-time DNN inference (less than 33 ms) on all models mentioned

previously.

6.3.5 Portability Evaluation on Different Platforms. We further evaluate the portability of

our proposed rule-based pruning scheme mapping method on different mobile platforms. Three

tested platforms are Samsung Galaxy S10, S20, and S21, respectively. They are equipped with

different types of chipsets and mobile GPUs. The detailed hardware specifications are shown

in Table 6. Table 7 shows the portability evaluation results on the three platforms using our

rule-based pruning scheme mapping method. We use the VGG-16 network and test on CIFAR-10

and ImageNet datasets, respectively. We build a latency model for each platform and use the same
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Table 6. Hardware Specifications of Platforms for Portability Evaluation

Model Chipset GPU RAM

Samsung Galaxy S10 Qualcomm Snapdragon 855 Adreno 640 8 GB

Samsung Galaxy S20 Qualcomm Snapdragon 865 Adreno 650 12 GB

Samsung Galaxy S21 Qualcomm Snapdragon 888 Adreno 666 8 GB

Table 7. Portability Evaluation on Different Platforms Using the Rule-Based

Method on VGG-16

Dataset Platform
Compression

Rate
MACs

Top-1

Acc.

Latency

(ms)

CIFAR-10

Galaxy S10 12.38× 59M 94.2% 2.02

Galaxy S20 12.06× 62M 94.1% 1.85

Galaxy S21 12.12× 61M 94.2% 1.65

ImageNet

Galaxy S10 8.22× 3.5G 74.3% 18.17

Galaxy S20 8.12× 3.4G 74.5% 16.23

Galaxy S21 8.15× 3.4G 74.5% 15.12

latency threshold of β = 20%. It can be observed that our rule-based method can consistently

achieve high model accuracy and leverages better hardware for a higher inference speed, which

illustrates the stability of our reweighted pruning algorithm and the effectiveness and portability

of our rule-based method.

7 CONCLUSION

We propose a general pruning scheme with fine-grained structured pruning regularity and a

reweighted dynamic pruning algorithm. Compiler optimizations are introduced to extract the

structure information and exploit hardware parallelism. We further probe into the new problem

of mapping the best-suited pruning scheme for each layer of any given DNN and propose two

automatic pruning scheme mapping methods. Experimental results demonstrate the effectiveness

of the proposed pruning scheme and pruning scheme mapping methods.

APPENDIX

A COMPILER OPTIMIZATION DETAILS

We provide more details of our compiler optimizations in this section. Different from prior DNN in-

ference acceleration frameworks [1–3, 11, 50, 59] that only support dense models or pattern-based

pruned models, our compiler optimizations are general, and support both dense (unpruned) mod-

els and sparse (pruned) models with different pruning schemes for fast inference on various mobile

platforms. Besides the BCS and the row reordering optimization mentioned in the main article (Sec-

tion 4.3), our compiler-based optimization techniques also include (i) a layer fusion mechanism to

fuse different layers together for the reduction of memory consumption of intermediate results

and number of operators; (ii) an auto-tuning process to determine the best-suited configurations

of parameters for different mobile CPUs/GPUs; and (iii) DSL-based code generation.

A.1 Layer Fusion Mechanism

To effectively reduce the model inference latency, a layer fusion technique is incorporated in our

compiler optimization to fuse the computation operators in the computation graph. With layer

fusion, both the memory consumption of the intermediate results and the number of operators
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can be reduced. The fusion candidates in a model are identified based on two kinds of polynomial

calculation properties: compression laws and data access patterns. The compression laws include

associative property, communicative property, and distributive property.

However, looking for the fusion candidates in such a large space of all combinations of compu-

tation operations is too expensive. Therefore, we introduce two constraints to guide the look-up

process: (i) only explore the opportunities that are specifically provided due to the preceding prop-

erties, and (ii) only consider enlarging the overall computation for CPU/GPU utilization improve-

ment and reducing the memory access for memory performance improvement as the cost metrics

in the fusion. Compared with prior works on loop fusion [4, 5, 7], our method is more aggressive

without high exploration cost.

A.2 Auto-Tuning for Different Mobile CPUs/GPUs

During DNN execution, there are many tuning parameters, such as matrix tiling sizes, loop un-

rolling factors, and data placement on GPU memory, that influence the performance. It is hard to

determine the best-suited configuration of these parameters manually. To alleviate this problem,

our compiler incorporates an auto-tuning approach for both sparse (pruned) models and dense

(unpruned) models. The genetic algorithm is leveraged to explore the best-suited configurations

automatically. It starts parameter search after an initialization with an arbitrary number of chro-

mosomes and explores the parallelism better. Acceleration codes for different DNN models and

different mobile CPUs/GPUs can be generated efficiently and quickly through this auto-tuning

process, providing the foundation for fast end-to-end inference. The auto-tuning optimizations,

together with the layer fusion and sparse model optimizations, make our framework outperform

other acceleration frameworks.

A.3 DSL-Based Code Generation

In DL, a computational graph of a DNN model can be represented by a directed acyclic graph (DAG).

Each node in this graph corresponds to an operator. We propose a high-level DSL to specify such

kind of operators. Each operator in a computational graph also with a layer-wise intermediate

representation (IR) that contains BCS pruning information. The input and output are different

tensors in terms of different shapes. This DSL also provides a Tensor function for users to create

matrices (or tensors).

In this way, DSL is equivalent to a computational graph (i.e., DSL is another type of high-level

functions used to simulate the dataflow of the DNN model), and they can be easily converted

to each other. DSL provides users with the flexibility to use existing DNNs or create new DNNs,

improving the productivity of DNN programming. If the DNN already exists, we will convert it into

an optimized calculation graph and convert this graph into a DSL. Otherwise, the user writes the

model code in the DSL, converts it back to a calculation graph, performs advanced optimization,

and regenerates the optimized DSL code.

Finally, our compiler translates the DSL into low-level C++ code for mobile CPU and OpenCL

code for mobile GPU, and optimizes the low-level code through a set of optimizations enabled by

BCS pruning. The generated code can be then deployed on the mobile device.
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