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Weight pruning is an effective model compression technique to tackle the challenges of achieving real-time
deep neural network (DNN) inference on mobile devices. However, prior pruning schemes have limited appli-
cation scenarios due to accuracy degradation, difficulty in leveraging hardware acceleration, and/or restric-
tion on certain types of DNN layers. In this article, we propose a general, fine-grained structured pruning
scheme and corresponding compiler optimizations that are applicable to any type of DNN layer while achiev-
ing high accuracy and hardware inference performance. With the flexibility of applying different pruning
schemes to different layers enabled by our compiler optimizations, we further probe into the new problem of
determining the best-suited pruning scheme considering the different acceleration and accuracy performance
of various pruning schemes. Two pruning scheme mapping methods—one -search based and the other is rule
based—are proposed to automatically derive the best-suited pruning regularity and block size for each layer
of any given DNN. Experimental results demonstrate that our pruning scheme mapping methods, together
with the general fine-grained structured pruning scheme, outperform the state-of-the-art DNN optimization
framework with up to 2.48x and 1.73x DNN inference acceleration on CIFAR-10 and ImageNet datasets with-
out accuracy loss.
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1 INTRODUCTION

Model compression techniques have been proposed to reduce computation and memory intensity
without compromising accuracy [22, 26, 40, 57, 69, 81, 82]. It is a promising solution for achiev-
ing various practical deep learning (DL) based methods such as fingerprinting [31], YOLO [9],
super-resolution [79], and speech recognition [18] in real time on resource-limited platforms, es-
pecially mobiles and embedded devices [37, 58, 84]. Among the compression techniques, weight
pruning [22, 26, 27, 57, 69] explores and reduces the vast redundancy in the number of weights
and results in structural sparsity of deep neural network (DNN) models with fewer memory
references and less power consumption during inference.

The design of a weight pruning method includes two fundamental aspects: pruning regularity
and pruning algorithm. The former refers to the structural characteristics of the DNNs after prun-
ing, whereas the latter determines the rule to identify the weights to be pruned. From the prun-
ing regularity aspect, the widely adopted pruning schemes include unstructured pruning, struc-
tured pruning, and pattern-based pruning. Specifically, unstructured pruning is flexible to prune
any weights and generally yields promising accuracy, but they are not compatible with hardware
accelerations due to the irregular computation after pruning [22, 23, 48]. However, structured
pruning eliminates weights while maintaining a full matrix format. It is hardware-friendly but
suffers from notable accuracy degradation due to the coarse-grained nature in pruning whole fil-
ters/channels [45, 54, 57, 83, 86, 87]. Recently proposed pattern-based pruning overcomes the short-
comings of prior works by incorporating fine-grained structured pruning in a hardware-aware
fashion [50, 59], with the aid of compiler. However, pattern-based pruning is only applicable to
3 X 3 convolutional (CONV) layers and is difficult to be generalized to fully connected (FC)
layers and CONV layers with other kernel sizes. There is a lack of pruning regularity that is general
and achieves high accuracy and hardware performance simultaneously.

From the pruning algorithm aspect, heuristic-based pruning was first proposed by Han et al.
[23] and gets improvements with more sophisticated designed heuristics [19, 27, 36, 49, 74, 87].
Regularization-based pruning [21, 26, 39, 41, 43, 55, 56, 62, 69, 76, 77, 81], however, is more math-
ematics oriented. Recent works [39, 51, 62, 81, 82] achieve substantial weight reduction without
hurting the accuracy by leveraging alternating direction methods of multipliers (ADMM)
with dynamic regularization penalties, but these methods require the manual setting of the com-
pression rate for each layer.

To fully exploit the potential of the pruned models on mobile devices for inference accelerations,
it is necessary to incorporate compiler optimizations to support efficient sparse computation and
storage. However, state-of-the-art compiler-based DNN execution frameworks such as Tensor-
Flow Lite (TFLite) [1], Alibaba Mobile Neural Network (MNN) [2], and TVM [11] do not
support sparse (pruned) model inference acceleration on the mobile platforms, whereas the recent
works PCONV [50] and PatDNN [59] only have limited sparse inference support for 3 x 3 CONV
layers.

Apart from the individual limitations mentioned previously, there is one additional deficiency
that prevents DNN models from taking full advantage of weight pruning. Different pruning
schemes result in different acceleration and accuracy performance, but prior works simply apply
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the same pruning scheme to the entire model, undermining the flexibility to select the best-suited
pruning scheme for each layer to achieve better accuracy and acceleration performance.

This work aims to overcome the preceding limitations of prior works. More specifically, we
make the following contributions toward a general, fine-grained structured pruning scheme and
two automatic pruning scheme mapping methods.

For the pruning scheme part:

e We propose a novel and general pruning regularity, block-based pruning for FC layers and
block-punched pruning for CONV layers with different kernel sizes, which can achieve high
accuracy and high hardware inference performance simultaneously.

e We adopt a reweighted dynamic regularization algorithm to derive the structured sparsity
with an automatically determined compression rate for each layer and each block without
compromising accuracy.

e To extract the fine-grained structure information and exploit hardware parallelism, we pro-
pose a compiler-based mobile acceleration framework that supports the proposed pruning
regularity as well as other pruning regularities. It provides the flexibility to apply different
pruning schemes to different layers for better performance of the pruned model.

With regard to the automatic pruning scheme mapping methods part, taking the different
acceleration and accuracy performance of various pruning schemes into consideration, we probe
into the new problem of determining the best-suited pruning scheme for each layer of any given
DNN. We propose two automatic pruning scheme mapping methods to address this problem.
More specifically:

e The first is a search-based method leveraging the recent concept of network architecture
search [8, 67, 70, 85, 88], which employs reinforcement learning (RL) technique to yield
close-to-optimal pruning scheme mappings.

e The second is a training-free, rule-based method leveraging an offline-generated latency
model. It is efficient and more useful in practice.

We perform comprehensive evaluations of the proposed general pruning scheme and the two
mapping methods on representative DNN models and benchmark datasets. Experimental results
demonstrate that our methods significantly outperform the state-of-the-art DNN pruning frame-
work PatDNN in terms of accuracy and latency performance. We achieve 17.22-, 18.17-, and
3.90-ms ImageNet inference time with negligible accuracy loss on an off-the-shelf mobile phone for
ResNet-50, VGG-16, and MobileNetV2, respectively. Furthermore, the search-based method only
shows a slightly better performance than the rule-based method, whereas the rule-based method
is training-free in pruning scheme mapping.

2 BACKGROUND AND RELATED WORKS
2.1 DNN Pruning: Regularity and Algorithm

2.1.1  Pruning Regularity. From the pruning regularity aspect, existing pruning schemes can be
divided into three categories: fine-grained unstructured pruning, coarse-grained structured prun-
ing, and pattern-based pruning. We show the different pruning regularities in Figure 1, with col-
ored grids representing remaining weights. The left and middle columns in the figure illustrate
pruning regularities in the 4D weight tensor format and 2D weight matrix format for CONV lay-
ers, respectively. The right column shows the different regularities for FC layers.

Unstructured pruning is fine-grained and flexible in removing weights at arbitrary locations [15,
16, 20, 22], as shown in Figure 1(a) and (b). Although having the advantage in maintaining accuracy,
unstructured pruning leads to sparse and irregular weight matrices, and as a result, indices are
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Fig. 1. Different weight pruning schemes for CONV and FC layers using 4D tensor and 2D matrix
representation.

required to locate the non-zero weights in the sparse matrix storage format (e.g., compressed
sparse row (CSR) format). Therefore, it cannot effectively and efficiently leverage the hardware
parallelism provided by the underlying system. Consequently, unstructured pruning is generally
not compatible with GPU acceleration for DNN inference, and speed degradation can often be
observed [52].

Structured pruning [27, 28, 69, 74, 75] focuses on CONV layers and maintains structured regular-
ity. It consists of filter pruning and channel pruning that prune the entire filter(s)/channel(s). In the
weight matrix format representation as shown in Figure 1(c), filter pruning corresponds to reduc-
ing one row of the weight matrix, and it is also called row pruning. Accordingly, channel pruning
corresponds to reducing multiple consecutive columns. The key advantage of structured pruning
is that a full matrix will be maintained with dimension reduction, thereby facilitating hardware
acceleration. However, structured pruning is coarse-grained and often leads to certain accuracy
degradation [59, 68].

Pattern-based pruning [50, 59, 78] alleviates the shortcomings of prior works by incorporating
the benefits from fine-grained pruning while maintaining structures that can be exploited for
hardware accelerations with the help of compiler. Pattern-based pruning is a combination of
kernel pattern pruning and connectivity pruning as shown in Figure 1(e). Kernel pattern pruning
prunes weights at an intra-kernel level by enforcing the locations of the remaining weights in a
kernel to form a specific kernel pattern. Different kernels can have different kernel patterns, but
the total types of kernel patterns are restricted to a fixed-size set. Each kernel pattern reserves
four non-zero weights to match the single-instruction multiple-data (SIMD) architecture of
embedded CPU/GPU processors to maximize the hardware throughput. As a fixed number of
weights are pruned, the compression rate is constant for kernel pattern pruning. For a higher
compression rate, connectivity pruning is adopted as the supplementary to kernel pattern pruning.
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Connectivity pruning prunes weights at an inter-kernel level via cutting the connections between
certain input and output channels.

However, pattern-based pruning is designed for 3 x 3 CONV layers and suffers difficulty when
generalized to CONV layers with other kernel sizes and FC layers. To avoid the execution overhead
of branching conditions caused by using different pattern types, pattern-based pruning requires
limiting the maximum number of different pattern types to be used. Generally, 8 or 16 different
pattern types are allowed to be selected from all possible 4-entry pattern combinations to ensure a
decent acceleration while not hurting accuracy. For larger kernel sizes such as 5 X 5/7 X 7, 4-entry
patterns need to be selected from 25/49 weights (instead of 9 weights in the 3 X 3 case), making
the pattern have too many potential candidates. As a result, if only 8 or 16 patterns are used, there
will be an accuracy degradation. Moreover, as studied in the work of Ma et al. [53], the Gaussian
filter-like patterns and the enhanced Laplacian of Gaussian (ELoG) filter-like patterns (as shown
in Figure 1(e)) are more preferred since they can provide an enhancement on feature extraction.
But such 4-entry patterns in 5 X 5/7 X 7 kernels cannot provide the receptive field size that the
large kernels are supposed to have. For the 1 X 1 CONV layer, there is only one weight in a kernel,
making the pattern-based pruning same as unstructured pruning, which is hard to achieve actual
acceleration. Therefore, the existing pattern-based pruning is only suitable for 3 X 3 kernels, which
significantly restricts the application scenarios of pattern-based pruning.

2.1.2  Pruning Algorithm. There are two main categories of the pruning algorithm: heuristic
based and regularization based. The heuristic-based pruning algorithm was first proposed to
achieve unstructured pruning by pruning weights with small magnitudes in an iterative manner
[23]. Later heuristic works were improved in multiple directions including structured-preserving
pruning [36, 49, 74], combining growth of neurons and connections with pruning [16], and intro-
ducing meticulously designed criteria [27, 49, 74, 87] to replace magnitudes for the pruning.

The regularization-based algorithm deals with the pruning problem using a more mathematics-
oriented method. To solve filter/channel pruning problems, early works [28, 69] incorporate ¢; or
{, structured regularization in the loss function. The work of Liu et al. [46] introduces a scaling fac-
tor to each channel while imposing ¢; regularization on the scaling factors in batch normalization
to prune channels with near-zero scaling factors. However, these works directly apply fixed reg-
ularization terms that penalize all weights equally, incurring potential accuracy loss. Later works
[21, 62, 81] adopt ADMM to reform the pruning problem as optimization problems with dynamic
regularization penalties, thus preserving accuracy. One drawback of these methods is the require-
ment for the manual setting of the compression rate for each layer.

2.2 Compiler-Based DNN Frameworks on Mobile

Mobile devices become key carriers of DL [29, 34, 60, 80] to enable the widespread of machine
intelligence. To facilitate the deployment of various DNN models on mobile devices, multiple
mobile DNN execution frameworks from both industry and academia attract broad attention
[24, 30, 33, 35, 71, 73]. TFLite [1], MNN [2], and TVM [11] are three representative state-of-the-
art end-to-end DNN execution frameworks with high execution efficiency. They employ several
performance optimization techniques, such as various computation graph optimizations, tensor
optimizations, and half-float support. Particularly, TVM includes a more advanced parameter auto-
tuning technique. However, none of these frameworks support sparse (pruned) DNN models on
mobile platforms.! This is the essential drawback that obstructs the real-time DNN inference on
mobile devices. Taking the VGG-16 network—one of the key DNN models in transfer learning—as

ITVM considers sparsity recently for desktop processors.
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Fig. 2. High-level overview of the proposed automatic pruning scheme mapping framework.

an example, TVM takes 200 ms to perform an inference on the embedded GPU (Adreno 640), and
TFLite takes even longer time (270 ms).

Previous efforts based on fine-grained pattern-based pruning such as PatDNN [59] and
PCONYV [50] employ a set of compiler-based optimizations to support sparse DNN models, sig-
nificantly accelerating the end-to-end DNN inference on mobile devices. However, they mainly
accelerate the square and small convolution kernels used in 3 X 3 CONV layers. A larger kernel
size (e.g., 5 X 5, 7 X 7) will introduce huge code execution overhead due to the increasing number
of branches in generated code. In addition, they cannot support FC layers and 1 X 1 CONV layers
that are commonly used in DNNs.

3 OVERVIEW OF THE AUTOMATIC PRUNING SCHEME MAPPING FRAMEWORK

To achieve real-time mobile acceleration for various modern DNNs, we propose an automatic prun-
ing scheme mapping framework, which is illustrated in Figure 2. Given an arbitrary DNN model,
the framework can automatically map the best pruning configurations to each layer and leverage
compiler-based optimizations to achieve inference speedup. The layer-wise configurations include
the pruning regularity, compression rate, and block size.

To achieve the design objective, our framework contains the following innovations. We first
propose a general, fine-grained pruning regularity that is applicable to different types of layers
while achieving both high accuracy and hardware acceleration performance to overcome the limi-
tations of prior pruning regularities in Section 4.1. To determine the compression rate for each layer
automatically without compromising accuracy, we introduce a reweighted pruning algorithm in
Section 4.2. For the goal of transforming compression to real inference speedup on mobile devices,
we propose corresponding compiler-based optimizations that support the proposed pruning regu-
larity as well as other pruning regularities in Section 4.3. As directly applying the same pruning
scheme to the entire model cannot yield the optimal performance, we further propose to map the
best-suited pruning configurations to each layer of any given DNN for mobile devices thanks to
the flexibility enabled by our compiler optimizations. The mapping methods include a comprehen-
sive search-based method that can provide close-to-optimal results in Section 5.1 and a training-
free rule-based method that is more useful in practice while reaching similar performance as the
search-based method in Section 5.2.

4 GENERAL FINE-GRAINED STRUCTURED PRUNING SCHEME

In this section, we present a novel fine-grained structured pruning scheme and corresponding com-
piler optimizations to (i) achieve high accuracy and hardware inference performance simultane-
ously while applicable to different types of layers, (ii) determine the compression rate for each layer
automatically without compromising the accuracy, and (iii) provide the supports to the proposed
pruning regularity and other pruning regularities for the exploitation of the hardware parallelism.
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Fig. 3. Comparisons of parameter ratio (a) and computation ratio (b) for 3 x 3 CONV layers and non-3 X 3
layers for different networks on the ImageNet dataset.

We start by providing a general fine-grained structured pruning regularity that includes block-
based pruning for FC layers and block-punched pruning for CONV layers with different kernel
sizes in Section 4.1. Next, a reweighted dynamic regularization algorithm that allows the automatic
determination of the per-layer and per-block compression rate is introduced to derive the sparse
regularity in Section 4.2. Then we provide corresponding compiler optimizations for the proposed
pruning scheme to enable efficient on-device inference of the pruned model in Section 4.3.

4.1 General Fine-Grained Structured Pruning Regularity

Although state-of-the-art pattern-based pruning strikes a desirable balance between accuracy and
hardware efficiency, it only works for CONV layers with 3 x 3 kernels and suffers difficulty when
generalized to layers with other kernel sizes and FC layers. Note that not all of the layers only
operate on 3 X 3 kernels in a given DNN model. As a result, the number of layers using 3 X 3
kernels affect the effectiveness of pattern-based pruning. Figure 3 illustrates the percentage of the
parameters and multiply-and-accumulates (MACs) in 3 X3 CONV layers of four representative
networks. The large portion of non-3 X 3 CONV layers leaves great space for higher compression
rate and faster inference that cannot be achieved by pattern-based pruning alone.

To alleviate the deficiencies, we propose a general pruning scheme with fine-grained structured
pruning regularity, including block-based pruning for FC layers and block-punched pruning for
CONV layers with different kernel sizes.

4.1.1 Block-Based Pruning for FC Layers. Block-based pruning is an extension of the coarse-
grained structured pruning that prunes rows/columns in matrix-based computation for FC layers.
As shown in Figure 1(g), we divide a whole weight matrix of an FC layer to a number of equal-sized
blocks (4 X 4, 16 X 32, 64 X 128, etc.), and apply independent row and column pruning for each
block. The compression rate (the number of pruned rows/columns) for each block can either be
the same or different, which depends on the design requirements.

4.1.2  Block-Punched Pruning for CONV Layers. Compared with matrix-based representation
and computation, tensor-based representation and computation are more suitable for CONV lay-
ers. Thus, inspired by block-based pruning, we further propose block-punched pruning that is tai-
lored for CONV layers and can be accelerated with the same compiler optimizations. As shown in
Figure 1(f), block-punched pruning first partitions the weight tensor of a CONV layer into groups
(blocks) of kernels along the filter and input channel dimensions. For each block, the weights at the
same locations for all kernels within the block are pruned. With effective compiler-level executable
code generation, high hardware parallelism and inference acceleration on mobile can be achieved.
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Table 1. Comparison of Different Pruning Algorithms

Accuracy |Compression Rate
GroupLasso Low Auto
ADMM High Manual
Reweighted High Auto

Compared with state-of-the-art pattern-based pruning, the proposed fine-grained structured
pruning regularity is general and flexible, as it can adaptively prune FC layers and CONV layers
with different kernel sizes. In addition, block-based pruning and block-punched pruning can si-
multaneously achieve high accuracy and high hardware inference performance like pattern-based
pruning. The high accuracy is attributed to the fine-grained property of pruning regularity, which
allows higher flexibility when searching the pruned model structure compared to coarse-grained
structured pruning that prunes entire rows/columns in weight matrices. However, the high hard-
ware inference performance is attributed to the appropriate degree of structural regularity, which
can be exploited by compiler-level code generation to achieve high or even maximum hardware
parallelism. With an appropriate selection of the block size, the remaining entries in each block
can still be sufficient to exploit high hardware parallelism. The block size for each layer is an im-
portant hyperparameter that influences hardware performance and accuracy. We will elaborate
on how to select the appropriate block size for each layer in Section 5.2.2.

4.2 Reweighted Dynamic Regularization Algorithm

Another important design aspect of a pruning scheme is the pruning algorithm. Prior pruning
algorithms, such as using group Lasso regularization [28, 46, 69] or ADMM [39, 61, 81], either
suffer from potential accuracy loss or require maual compression rate tuning. To overcome the
limitations, we propose to adopt the reweighted group Lasso [10] method to discover the struc-
tured sparsity with systematically and dynamically reweighted penalties. More specifically, the
reweighted method reduces the penalties on weights with larger magnitudes, which are likely
to be more critical weights, and increases the penalties on weights with smaller magnitudes. A
comparison of the characteristics of different regularization-based pruning algorithms is shown in
Table 1.

For the i-th layer in the DNN, if the layer is an FC layer, let W; € RF*9i denote the 2D weight
matrix, with P; and Q; indicating the rows and columns of the weight matrix; otherwise, W; €
RPXQK! XK} represents the 4D weight tensor of a CONV layer, where P; is the number of filters,
Q; is the number of input channels, and K}” and K lh are the kernel width and kernel height. Let
b; € RYi represent the bias for the i-th layer. We also define W := {Wi}fil and b = {bi}f\il as
the set of all weights and biases in the DNN. We denote the loss of the DNN under dataset
by f(W,b; D). Each W; is divided into J blocks with the same size, p; X g; for an FC layer and
pi X qi X th x K} for a CONV layer, namely W; = [W;;, Wj3, ..., W], where W;; € RPi*4qi for a
FC layer and W;; € R?: XK XK} for 3 CONV layer. The general reweighted pruning problem is
formulated as

N
inimi W.b; D)+ 1 Y R (", W), 1
minimize f(W.b D) +2 ) R (e W) M

where A is the hyperparameter to adjust the relative importance between accuracy and sparsity.

Let al.(t) denote the collection of penalty values applied on the weights W; for layer i at step t. Note
()

that each element in «; "’ is a positive value that is determined by the reweighted ¢; algorithm [10].
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For block-based row pruning, the regularization term is

R(ef"w) = 30 5l o Wil @

j=1 m=
where the operator represents element-wise multiplication, [W;;]m, . denotes the m-th row of
W;j, and a ;, is updated by al ’ m = W L — to help increase the degree of sparsity beyond

[(Wijlm,:lIF
group Lasso regularlzatlon.

For block-based column pruning, the regularization term is

R(ef"w) = 3) 3 ol w0 g

j=1 n=1

where [W;;]. , is the n-th column of W;; and a( ) ;, isupdated by “Un = W The block-based
jl,n

row pruning problem (2) and column pruning problem (3) can be solved separately or simultane-
ously using a standard DL solver.
For block-punched pruning, the regularization term is formulated as

Kh Kw

(el w) =30 5) Sl o Wil

Jj=1 m=1n=1

- @

where [Wj]. . m, » indicates the weight located at the m-th row and n-th column in a kernel for
) _ 1

ijmn T |[[WijE i ll5+e
hyperparameter A, and the soft constraints formulation allows the automatic determination of the
compression rate for each layer and each block.

all kernels in the block and «; . The reweighted method only requires the

4.3 Compiler Optimizations for Proposed Pruning Regularity

Compiler optimizations can turn the sparsity of pruned models into higher speedups. Without
compiler optimizations, the pruned weights (with zero values) still participate in the inference
computations, resulting in minor inference speedup. Hence, we develop a comprehensive compiler-
based automatic code generation framework to extract the fine-grained structure information in
block-punched and block-based pruning. The framework also supports other pruning regularities
including unstructured pruning, structured pruning, and pattern-based pruning. Our proposed
compiler-based mobile acceleration framework first compacts the model storage with a novel com-
pression format called blocked compressed storage (BCS) format, as shown in Figure 4. Then,
it performs computation reordering to reduce the branches within each thread and eliminate the
load imbalance among threads.

BCS stores non-zero weights as CSR format with a better compression rate by further compress-
ing the index with a hierarchical structure. Traditional CSR format has to store each non-zero
weight with an explicit column index. Our proposed block-based/block-punched pruning pre-
serves non-zero weights in identical columns within each block, inducing many repeated column
indices if we use CSR format. BCS eliminates this redundancy with a hierarchical compression
on the column index only.

Figure 4 shows a simplified example. The weights array stores all non-zero weights. The
compact column array stores the compressed column index—for example, [0, 3, 6] denotes the
column id of the first three weights [1, 2, 3]. The column stride array denotes the start and
end index of each row in the compact column array—for example, [0, 3] denotes that the column
index for the first row starts from index 0 and ends at index 2 in the compact column array. The
same column indices may be used for multiple rows. The occurrence array is used to specify the
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start and end rows with the identical column index—for example, [0, 2] means that rows 0 and 1
share the same column index. BCS also contains a row offset array to specify the starting location
of each row in the weights array.

Usually, the weight distribution is not as regular as the preceding simplified example, thus a
row reordering optimization is also included to further improve the regularity of the weight ma-
trix. After this reordering, the continuous rows with identical or similar numbers of non-zero
weights are processed by multi-threads simultaneously, thereby eliminating thread divergence
and achieving load balance. Each thread processes more than one row, thus eliminating branches
and improving instruction-level parallelism. We also incorporate other compiler-based optimiza-
tions for on-mobile DNN inference acceleration, such as layer fusion, auto-tuning, and high-level
domain-specific language (DSL). More details are provided in the Appendix.

4.4 Effectiveness of the Proposed Pruning Scheme

We show an example of the inference accuracy and acceleration performance of the proposed
pruning scheme on ResNet-50 using the ImageNet dataset in Figure 5. More thorough evaluation
results are presented in Section 6.2. Here, block-based pruning is applied for all FC layers and block-
punched pruning is applied for all CONV layers. The compression rate for each layer is derived
by the reweighted dynamic regularization algorithm. As can be seen from the figure, unstructured
pruning, which is equivalent to setting the block size as 1 X 1 for each layer, achieves the highest
accuracy but the worst performance in latency. In contrast, structured pruning (i.e., using the
whole matrix as the block size) achieves the fastest inference but degrades the accuracy the most.
With a suitable block size, our proposed fine-grained structured pruning scheme achieves high
accuracy and inference speed simultaneously. The reason is that the maximal hardware parallelism
is limited by the computation resource. Since the weight matrix/tensor is typically very large,
the remaining entries in each block are still sufficient to exploit high hardware parallelism. With
parallelism maximally exploited, the hardware inference performance can be almost the same as
coarse-grained structured pruning.

Takeaway. In this section, we first introduced a general fine-grained structured pruning regu-
larity, which can work for CONV layers with any kernel size and FC layers. Second, we proposed
the reweighted group Lasso with block-based constraints as the pruning algorithm to derive the
structured sparsity with an automatically determined compression rate for each layer and each
block. Third, we developed the first compiler-based mobile acceleration framework that supports
general block-based/block-punched sparsity as well as other pruning regularities, which is flexible
and allows different layers to adopt different pruning regularities and block sizes.

5 AUTOMATIC PRUNING SCHEME MAPPING METHODS FOR MOBILE DEVICES

Although the general fine-grained pruning scheme proposed in Section 4 can achieve high accu-
racy and hardware acceleration performance, it is not optimal to directly apply the same pruning
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scheme to the entire model, as different layers may prefer different pruning regularities and con-
figurations (e.g., the compression rate and block size). Fortunately, effective compiler optimization
techniques provide the flexibility to apply different pruning regularities and block sizes to different
layers. As different weight pruning schemes have different acceleration and accuracy performance
under the same mobile acceleration framework, it is important to have a pruning scheme mapping
method to determine the pruning configurations for each layer. Therefore, we further probe into
the problem of mapping the best-suited pruning scheme for each layer of any given DNN to obtain
a pruned model with better performance in terms of accuracy and latency in this section.

The performance of a pruned model is influenced by the compression rate, pruning regularity,
and block size when block-based/block-punched pruning is selected, of each layer. This is a new
challenge that resulted from the new dimension of compiler-aware pruning scheme optimizations.
To find the appropriate pruning schemes in such a large design space, we propose two automatic
pruning scheme mapping methods: one is search based and the other is rule based, as shown in
Figure 6. The former is a more comprehensive framework to yield close-to-optimal pruning scheme
mapping results, whereas the latter is a training-free procedure that is efficient and more useful in
practice. Note that with our proposed reweighted dynamic regularization algorithm in Section 4.2,
the compression rate can be obtained automatically for each layer and each block. Thus, the search
space of the pruning scheme mapping problem can be reduced to finding the appropriate pruning
regularity and the block size for each layer in the given DNN.

5.1 Search-Based Pruning Scheme Mapping Method

Although we simplify the search space with the reweighted dynamic regularization algorithm to
determine the per-layer and per-block compression rate automatically, there is still a huge amount
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of combinations of pruning regularities and block sizes to seek. Inspired by recent advances in
network architecture search [8, 67, 70, 85, 88], we consider to leverage a search-based method by
employing RL [38, 65] to map the appropriate pruning scheme for each layer of a given DNN.

In RL, an agent interacts with the environment by taking an action a; € A according to a policy
7 upon the observation of a state s; € S at timestep t. For our problem, each timestep t corresponds
to the pruning scheme mapping of one layer. The state s; € S represents the information of current
layer, which is defined as a 4D vector {layer type, kernel size, input channel number, output channel
number}. The action a; € A is the mapping decision for the current layer, which is a 2D vector
{pruning regularity, block size}. For an N-layer DNN with information 7 = {s;, ..., sy}, an entire
mapping M = {ai,...,an} can be found with N timesteps. Let R(M) denote the cumulative
reward for M, which is the optimization target of the RL agent. A good pruning scheme mapping
should achieve high accuracy and hardware performance jointly, thus we define R(M) as the
weighted sum of the accuracy and the negative of the latency of the pruned model with information
7 under the mapping M.

We leverage the policy gradient method [66] to directly learn a parameterized policy for the
pruning scheme mapping, and the training objective of the policy is defined as follows:

J(0) = Epter(Mm1:0) [RIM) 1], (5)

where 7(M|T;0) is a sequence-to-sequence model in our work. The input to the encoder recur-
rent neural network is the sequence of the information of each layer in the target DNN, and the
decoder is an LSTM with N timesteps to output the mapping decision for each layer at the same
encoder timestep. We estimate the gradient of the objective function by drawing K mapping deci-
sion samples from My ~ w(M)|I;0) and reduce the variance of the estimate with a baseline term
B, leading to

K
Vo(0) ~ 11< > (ROMy) = B) - Vo log (M 6). (©)
k=1
For each mapping decision sample My in a training iteration of the policy, we need to compress
the target DNN to obtain the accuracy and latency performance for the calculation of the reward
R(M}). The latency is obtained via deploying the pruned model with compiler code generation on
target device and measuring the real execution time. To accelerate the policy training, we adopt
magnitude-based one-shot pruning and early stopping for faster accuracy evaluation during the
policy training process. More specifically, once a mapping My is obtained, we conduct a one-
shot pruning for each layer of the DNN based on the weight magnitude and retrain the DNN for
two epochs to regain accuracy. This partially regained accuracy can be used to predict the final
model accuracy and compare the performance between different schemes [67, 85]. Furthermore, as
compiler code generation and latency measurement do not depend on absolute weight values and
are faster than DNN training, we overlap the compiler code generation and latency measurement
with the accuracy evaluation of the pruned model.

5.2 Rule-Based Pruning Scheme Mapping Method

The advantage of the search-based method is that it can find the globally close-to-optimal pruning
configurations for each of the layers in a given DNN. Although it works perfectly for small DNN
models, the searching overheads increase exponentially when the model size increases, making it
unsuitable for large-size DNN models. Therefore, we design a training-free rule-based method that
maps the best-suited pruning schemes in a layer-wise fashion to avoid the time-consuming search
process for the best mapping. We consider the search-based solution as the performance upper
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bound, and we target to make the rule-based method perform as well as the search-based one, yet
highly efficient and practical.

5.2.1 Latency Model. To obtain the latency performance without the pruning and retraining of
the given DNN, we build latency models for different types of layers (e.g., 1 X 1 CONV, 3 X 3 CONV,
5% 5 CONYV, and 3 X 3 depth-wise (3 X 3-DW) CONV) on the target device (e.g., a Samsung S10
smartphone). Each latency model contains latency results for different settings, including block
size, number of filters, input and output feature map size, pruning scheme, and compression rate.
The results are measured on the target device by running test models with each setting for 100 runs.
Each test model has 10 cascaded layers with the same setting. Since building the latency model
does not involve DNN training, it will not take a very long time. The testing time for each run of
each setting is in the milliseconds level. For instance, our latency model including 512 different
layer settings can be built in around 30 minutes. Such a building time is negligible compared to
the DNN training or the searching process, which usually counts in days. The latency model only
needs to be built once for a target device and is universal to different DNN models.

5.2.2  Block-Size Selection. Block size has a significant impact on the accuracy and hard-
ware performance for block-based/block-punched pruning. A larger block size is typically more
hardware-friendly and easier to leverage the built-in hardware acceleration, yet it may cause more
severe accuracy degradation due to the coarse granularity. On the contrary, a smaller block size
typically leads to higher accuracy but also increases the latency. An appropriate setting of the
block size can achieve high accuracy as unstructured pruning (essentially with block size 1 X 1)
and high hardware acceleration performance as structured pruning (essentially with the block size
of the whole weight tensor/matrix) simultaneously.

To determine the proper block size for each layer without the requirement of a time-consuming
training process, we consider decoupling the two optimization targets: accuracy and hardware per-
formance. To minimize the impact of pruning on hardware performance, our rule-based method
will first derive the inference latency of each block size from the offline-generated latency models
and normalize the latency (i.e., divide by the MACs of that layer). We introduce a latency threshold
B, indicating the acceptable latency degradation range of the proposed general pruning regularity
compared with coarse-grained structured pruning. The value of ff can be adjusted according to the
design requirement, and it can either be the same for the entire model or different for each layer.
For example, f = 20% means that the inference speed of block-based/block-punched pruning
can be at most 20% slower than structured pruning under the same compression rate. After the
hardware performance-driven design is satisfied, we only need to consider the influence of block
size on accuracy. As a smaller block size can provide a finer granularity in pruning and the conse-
quent higher accuracy, the smallest valid block size that satisfies the f-degradation requirement
is selected as the desired block size. This process depends on our latency model and is free of
training.

5.2.3 3% 3 CONYV Layer: Pattern or Block. For 3 x 3 CONV layers, both pattern-based pruning
and block-punched pruning can be applied. To map the best-suited pruning scheme, the problem
is to compare the accuracy and inference latency of block-punched pruning and pattern-based
pruning.

Accuracy perspective. To investigate the accuracy of pattern-based pruning and block-punched
pruning, we conduct comprehensive experiments on ResNet-18 and VGG-16 with CIFAR-10 and
ImageNet datasets. Figure 7(a) and (b) show an example of the comparison results on the CIFAR-10
dataset, and the block size is set to 4 X 16. Note that only 3 X 3 CONV layers are pruned and non-
3 x 3 layers remain unpruned to provide a fair comparison. Here, the compression rate indicates the
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Fig. 7. The top-1/top-5 accuracy comparisons of pattern-based pruning and block-punched pruning (block
size of 4 X 16) under the same compression rates for ResNet-18 and VGG-16 on CIFAR-10 and ImageNet
datasets.

parameter reduction rate for each 3 X 3 CONV layer. From the figure, we can make the following
observations: (i) block-punched pruning consistently shows comparable or higher accuracy for
the pruned model under different compression rates on the CIFAR-10 dataset; and (ii) both block-
punched and pattern-based pruning achieve accuracy enhancement when the compression rate is
relatively low, especially on ResNet-18. The reason is that pruning with a small compression rate
can help mitigate the overfitting problem.

The comparison results of pattern-based pruning and block-punched pruning on the ImageNet
dataset with different compression rates are shown in Figure 7(c) and (d). Different from the obser-
vations on the CIFAR-10 dataset, pattern-based pruning shows better accuracy performance under
various compression rate settings for both ResNet-18 and VGG-16.

We attribute the different performance on the two datasets to the following. First, for tasks on
easy datasets such as CIFAR-10 that can easily achieve higher than 90% accuracy, the networks are
generally overparameterized, and both block-punched and pattern-based pruning schemes can
achieve a high compression rate (e.g., >10x) and significant acceleration without hurting the model
generalization ability. Thus, the acceleration performance of the two pruning schemes becomes a
more essential factor that contributes to the pruning scheme selection. Compared to pattern-based
pruning, the block-based/block-punched pruning has a more strict constraint on the weight struc-
ture, benefiting hardware parallelism and hence a higher acceleration performance under the same
compression rate. Therefore, block-based/block-punched pruning is more favorable for easier
datasets. Second, for tasks on harder datasets, the pattern-based pruning scheme is more desirable
than block-based/block-punched pruning on 3 X3 CONV layers. An example of the harder dataset
is ImageNet, of which even the unpruned network can only achieve less than 80% top-1 accuracy.
Because the patterns used by pattern-based pruning form the shape of a Gaussian filter or
Laplacian of Gaussian filter that can enhance the ability for feature extraction (as mentioned in
Section 2.1). Therefore, it plays an important role in preserving accuracy under an accelerable
compression rate.
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Based on the preceding results, we make the following remark.

Remark 1. For 3 X 3 CONV layers, block-punched pruning is more suitable for tasks with easier
datasets, whereas pattern-based pruning suits tasks with harder datasets better.

We will provide more discussions and verification of the remark in Section 6.3.

Latency perspective. Latency is the other important aspect in performance evaluation of a prun-
ing scheme. From comprehensive comparative experiments conducted offline, we have observed
that under the same compression rate, the latency performance of block-punched pruning is better
than pattern-punched pruning when the block size is large but worse when the block size is small.
The latency of these two pruning regularities mainly depends on which one can achieve a larger
compression rate under the same accuracy. Thus, latency is considered as a secondary criterion
for the best-suited pruning scheme mapping in the rule-based method. More discussion will be
provided in Section 6.3.

5.24 3x3-DWCONYV Layer. The 3 x 3-DW CONV layer is widely used in current DNN designs
such as the MobileNet family [63]. It is a special case of the 3 X 3 CONV layer, which applies a 2D
depth filter at each depth level of the input tensor. Thus, both pattern-based pruning and block-
punched pruning can be applied to 3 X 3-DW layers theoretically. In our rule-based selection
policy, we prefer to not prune 3 X 3-DW layers mainly for two reasons: (i) 3 X 3-DW layers are
computation- and memory efficient; (ii) 3 X 3-DW layers are sensitive to pruning.

We use MobileNet-V2 on ImageNet as an example; 33% of layers are 3 X 3-DW layers, but they
only contribute 6.9% MACs and 1.7% parameters in total. Pruning 3 X 3-DW layers will not achieve
a considerable gain even if all of them are pruned. However, the 3 X 3-DW layers contribute 33%
of activations, making each weight in the 3 X 3-DW layer more significant. Moreover, in a regular
3 X 3 CONV layer, one input (activation) channel will be filtered by multiple CONV kernels that
come from different CONV filters and have different pruned locations, mitigating the damage of
pruning on feature extraction. On the contrary, in a 3 X 3-DW layer, one input channel will only
be filtered by one CONV kernel, which makes 3 X 3-DW layers more sensitive to the pruning.

We conducted an ablation study about the impact of pruning 3 X 3-DW on accuracy and over-
all pruning ratio. The results showed that pruning 3 X 3-DW layers will only slightly increase
the pruning ratio while leading to a noticeable accuracy loss. Our experiment results shown in
Section 6.2 indicate that both pattern-based pruning and block-punched pruning lead to a non-
negligible accuracy drop when applied to 3 X 3-DW layers. Therefore, our rule-based method
does not map any pruning scheme to the 3 X 3-DW CONYV layers.

We summarize the workflow of the training-free rule-based method in Figure 8. For each layer
of a given DNN, we first examine the layer type. If the layer is a 3 X 3-DW CONV layer, no pruning
scheme is mapped. For 3 X 3 CONV layers, the pruning regularity depends on the size of the dataset.
Pattern-based pruning is mapped to 3 X 3 CONV layers if the task has a large dataset; otherwise,
block-punched pruning is selected. The proposed general block-based/block-punched pruning is
mapped to all other types of layers. When block-based/block-punched pruning is selected, the
block size is determined according to an offline-generated latency model with a latency threshold.
We note that the entire mapping process, including the pruning regularity mapping and block size
selection, is training-free without incurring any additional cost.

6 EVALUATION
6.1 Methodology

Evaluation objective. The first part of our evaluation objective is to show the effectiveness of the
general fine-grained structured pruning scheme and the corresponding compiler optimizations.
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The second part of our evaluation objective is to compare the overall pruning scheme mapping
framework with the state-of-the-art DNN inference acceleration framework PatDNN [59] in terms
of accuracy and latency. Note that PatDNN already outperforms other DNN inference frameworks
including TVM [11], MNN [2], and TFLite [1], thus the comparison with PatDNN is sufficient to
show the effectiveness of our methods.

Our achieved speedup mainly comes from the following. First, our general fine-grained struc-
tured pruning is applicable to all types of layers, which better compresses the model size and
reduces the computation workload. Second, our compressed sparse matrix storage and associ-
ated compiler optimizations improve the computation regularity/parallelism, thus transforming
the computation reduction to real performance gains. Third, our automatic pruning scheme map-
ping methods successfully map the best-suited pruning configurations to each layer, maximizing
the compression rate while maintaining accuracy.

DNN models. We evaluate on three mainstream DNNs: VGG-16 [64], ResNet-50 [25], and
MobileNet-V2 [63]. They are trained on two representative datasets: CIFAR-10 and ImageNet [17].
We also conduct experiments on YOLOv4 [6] with the Microsoft COCO dateset [42].

Evaluation platforms and running configurations. All evaluated models are trained on a server
with eight NVIDIA RTX 2080Ti GPUs. The training codes are implemented with the PyTorch APIL
The latency is measured on the mobile GPU of an off-the-shelf Samsung Galaxy S10 smartphone,
which has the Qualcomm Snapdragon 855 mobile platform with a Qualcomm Kryo 485 Octa-core
CPU and a Qualcomm Adreno 640 GPU. Each test takes 50 runs on different inputs with eight
threads on the CPU and all pipelines on the GPU. As different runs do not vary greatly, only
the average time is reported for readability. All runs are tuned to the best configurations. We
empirically choose the latency threshold § = 20%.

6.2 Evaluations of the Proposed Pruning Scheme

We first evaluate the inference latency of block-punched pruning using different block sizes on
1 X 1 and 3 X 3 CONV layers with different layer sizes, as shown in Figure 9. The input feature
map size of the testing CONV layers is set to 56 X 56, 28 X 28, 14 X 14, and 7 X 7, whereas the
input/output channel size is set to 64, 128, 256, and 512. These configurations are commonly used in
real DNN networks such as ResNet-50 and VGG-16 on ImageNet. In addition, these configurations
keep the MACs the same for all 1 X 1/3 X 3 CONV layers, which can help us observe the impact
of different input feature map size and number of channels on latency better.

From Figure 9(a), we can see that the latency is reduced with a larger block size. However, the
speedup gradually saturates. The reason is that the remaining weights in each block are more likely
to be sufficient to exploit high hardware parallelism with larger block size. Another observation
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Fig. 9. Latency of 1 X 1and 3 x 3 CONV layers under different feature sizes and input/output channels.

is that the layer inference latency increases for all block sizes as the size of the input feature map
decreases and the number of input/output channels increases. The reason is that a smaller input
feature map size lowers the reuse rate of each weight, causing hardware parallelism degradation.
Similar observations can also be found in Figure 9(b), which shows the latency results for different
3 X 3 CONV layers.

Similar results can also be observed on FC layers with block-based pruning. Figure 10(a) shows
the latency comparisons on two FC layers. The size of the FC layer on the left-hand side is used as
the first FC layer in VGG-16, whereas the right-hand side is the representative FC layer in BERT.
The latency of each FC layer is normalized to its own 1 X 1 block size result. We can observe that
for large FC layers, increasing the block size can reduce latency effectively, whereas the latency
reduction achieved by increasing the block size gets saturated gradually in relatively small FC
layers.

6.3 Automatic Pruning Scheme Mapping Methods Evaluations

6.3.1  Accuracy Analysis on Pattern-Based Pruning and Block-Punched Pruning. From the results
on ResNet-18 and VGG-16 with CIFAR-10 and ImageNet datasets, we make Remark 1. We further
examine the remark on YOLOv4 with the Microsoft COCO dataset, which can be reasonably re-
garded as difficult task, as shown in Table 2. The compression rate refers to the compression rate of
the entire model, and the block size is 4 X 16. When only 3 x 3 CONV layers are pruned, pattern-
based pruning achieves a higher mean average precision (mAP), which matches the remark
that pattern-based pruning suits tasks with larger datasets better on 3 X 3 CONV layers. However,
current pattern-based pruning is only applicable to 3 X 3 layers, limiting the compression per-
formance. With the proposed general pruning scheme applicable to different layers, we achieve
an 8.1x compression rate with 51.3 mAP and 11.5 frames per second (FPS). A hybrid pruning
scheme by mapping pattern-based pruning to 3 X 3 CONV layers and block-based/block-punched
pruning to all of the other layers can further achieve an 8.5x compression rate with 51.7 mAP and
12.3 FPS. We also show the results of unstructured pruning and structured pruning, which achieve
52.5 mAP and 39.4 mAP, and 7.6 FPS and 11.8 FPS, respectively. It can be observed that our hybrid
scheme method is 1.62X faster than unstructured pruning while maintaining comparable accuracy.
When compared to structured pruning, our hybrid scheme method achieves much higher accuracy
and is also slightly faster than structured pruning at the same time. This further strengthens the
advantage of our proposed method.

6.3.2 Latency Analysis on Pattern-Based Pruning and Block-Punched Pruning. We conduct com-
prehensive comparative experiments offline to analyze the latency performance of pattern-based
pruning and block-punched pruning to determine the best-suited pruning scheme for 3 x 3 CONV
layers. Figure 10(b) shows an example of the latency comparisons for a 3 X 3 CONV layer with
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Table 2. Comparison on YOLOv4

Pruning Scheme | # Weights | Compression Rate | mAP | FPS
Not prune 64.36M 1X 573 | 3.5
Structured 8.82M 7.3% 394 | 11.8

Unstructured 5.75M 11.2% 525 | 7.6
Pattern 10.22M *6.3% 52.8 | 9.7
Block 10.38M *6.2% 524 | 9.1
Block 7.94M 8.1X 513 | 11.5
Hybrid 7.57M 8.5 51.7 | 12.3
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Fig. 10. (a) Latency of two example FC layers. (b) Example of Compression rate | 7.19 X ->8.12 | 2.78 X ->2.91X
latency comparisons of the 3 x 3 CONV layer using pattern- Pattern Based —04 —09

Block Based —1.01 —1.51

based pruning and block-punched pruning.

28 % 28 input feature map size and 128 input/output channels under different compression rates.
Under 4x and 8X compression, pattern-based pruning has similar latency performance to block-
punched pruning with a block size of 8 X 16. When the compression rate is higher than 12X,
pattern-based pruning has speed that is similar to block-punched pruning with a block size of
16 x 32. However, the latency difference between pattern-based pruning and block-punched prun-
ing is minor, as we discussed in Section 5.2.3, thus we consider latency performance as a secondary
criterion in the rule-based pruning scheme mapping method.

6.3.3 Ablation Study on the 3 X 3-DW CONV Layer. As mentioned in Section 5.2.4, 3 X 3-DW
CONV layers usually only account for a small portion of weights and computations, and they play
an important role in capturing spatial correlations in DNNs [13], thus we propose not to prune
3 X 3-DW CONV layers. Table 3 shows the accuracy results of applying pattern-based pruning and
block-punched pruning to 3 X 3-DW CONV layers in MobileNetV2. Here we use the baseline mod-
elsin which all 1 X 1 CONV layers are pruned by block-punched pruning with compression rates of
7.19% and 2.78% for CIFAR-10 and CIFAR-100, respectively. Then, on top of the pruned model, we
apply an extra 2.22X pattern-based/block-punched pruning only for the 3 X 3-DW CONV layers
and compare the final accuracy. The results show that the overall compression rate only increases
slightly, but there is a non-negligible accuracy drop for pattern-based pruning and block-based
pruning. Thus, our rule-based pruning scheme mapping method will not map any pruning scheme
for 3 x 3-DW CONV layers.

6.3.4 Evaluations of Automatic Pruning Scheme Mapping Methods. We compare the search-
based and rule-based methods with the state-of-the-art end-to-end inference framework PatDNN
[59], which uses pattern-based pruning with the ADMM pruning algorithm. The comparison re-
sults are shown in Table 4. Here, the compression rate refers to the parameter reduction rate of
the CONV layers. The accuracy for the ImageNet dataset indicates the top-5 accuracy.
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Table 4. Comparison with PatDNN on the CIFAR-10 Dataset (Top-1 Accuracy) and the ImageNet Dataset
(Top-1/Top-5 Accuracy)

Original | Compression

Network ‘ Method ‘ E?ﬁ:gf ‘ Pruned Layers ‘ Acc. (%) Rate Drﬁ;c)c(' %) ‘ La(:l:)c Y ‘ MACs
CIFAR-10
PatDNN Pattern 3 X3 CONV 95.6 1.57X -1.0 10.44 1.9G
ResNet-50 Rule based Block 3 X 3CONV,1x 1CONV 95.6 11.51 X 0.1 4.25 0.6G
Search based | Hybrid | 3 X3 CONV, 1 X 1 CONV 95.6 11.88X 0.1 4.20 0.6G
PatDNN Pattern 3 X 3 CONV 93.9 8.0X —0.4 2.59 73M
VGG-16 Rule based Block 3 X 3 CONV 93.9 12.38 X —-0.3 2.02 59M
Search based | Hybrid 3 X 3 CONV 93.9 12.50% —0.3 2.00 58M
PatDNN Pattern 3 X 3DW CONV 94.6 1.01x —0.1 3.63 296M
MobileNetV2 Rule based Block 1x 1 CONV 94.6 7.53 X 0.2 1.86 89M
Search based Block 1x 1 CONV 94.6 7.54% 0.1 1.86 89M
ImageNet
PatDNN Pattern 3 X 3 CONV 76.1/92.8 1.56X —/=0.2 29.89 3.0G
ResNet-50 Rule based Hybrid 3x3CONV,1x1CONV | 76.1/92.8 437 X 0.3/0.1 17.26 1.6G
Search based | Hybrid 3X3CONV,1x1CONV | 76.1/92.8 441X 0.1/0 17.22 1.6G
PatDNN Pattern 3 X3 CONV 74.5/91.7 8.0X —/0.1 18.91 3.8G
VGG-16 Rule based Pattern 3 X 3 CONV 74.5/91.7 8.22 X 0.2/0.1 18.17 3.5G
Search based | Pattern 3 X 3 CONV 74.5/91.7 8.22X 0.2/0.1 18.17 3.5G
PatDNN Pattern 3 X 3DW CONV 71.0/90.3 1.01x —/0 4.90 300M
MobileNetV2 Rule based Block 1x 1 CONV 71.0/90.3 1.76 X 0.5/0.3 3.98 177M
Search based Block 1 X 1 CONV 71.0/90.3 1.82% 0.5/0.3 3.90 165M

The configurations of the search-based method are obtained using five GPU servers, and take
3 and 9 days for CIFAR-10 and ImageNet models, respectively, which is acceptable for RL-based
search methods [67, 88]. We use a search-based method to provide a close-to-optimal result, which
indicates the performance upper bound. Accelerating the search process is not the main concern
of our work, and our search process can be accelerated by adopting fast evaluation techniques
such as Bayesian optimization [12, 32].

For ResNet-50 on CIFAR-10, the rule-based method can achieve an 11.51X compression rate
with only 0.1% accuracy drop, which is significantly higher than the results obtained by PatDNN.
The reason for the limited performance of PatDNN is that only 44.3% of the parameters of ResNet-
50 are in the 3 X 3 CONV layers that can be pruned with pattern-based pruning, as shown in
Figure 3. Our rule-based method, however, maps the flexible block-punched pruning that can be
applied to CONV layers with different kernel sizes, thus achieving a much higher compression rate.
The search-based method reaches a slightly higher compression rate and minor latency reduction
compared with the rule-based method.

With the automatic mapping of block-punched pruning and block size provided by the rule-
based method and compression rate derived by the reweighted pruning algorithm, we reach a
12.38X compression rate with 0.3% accuracy improvement on VGG-16 for the CIFAR-10 dataset.
Still, the search-based method renders slightly better performance than the rule-based method.

For MobileNet-V2, mapping block-based pruning with an optimized block size on 1 X 1 CONV
layers by the rule-based method achieves a 7.53x compression rate with only 0.2% accuracy drop.
The compression rate is much higher than PatDNN, as pattern-based pruning cannot be applied
to 1 X 1 CONV, and 3 x 3-DW CONYV layers only account for 1.9% of the parameters in the model.
The performance difference between the rule-based method and the search-based method is
negligible.

Different from CIFAR-10, pattern-based pruning has better accuracy performance on tasks with
large datasets like ImageNet, as discussed in Remark 1. Hence, the rule-based method maps pattern-
based pruning to 3 X 3 CONV layers and block-punched pruning with optimized block size to the
remaining layers. For ResNet-50 on ImageNet, the rule-based method can reach a 4.37x compres-
sion rate with only 0.1% accuracy loss, and 1.73X speedup on mobile GPU over PatDNN.
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Table 5. Comparisons with Models Obtained by Various Model Compression
Techniques on ImageNet

Group Model MACs Top-1 Acc.
MobileNetV2 1.0x 300M 71.0%
300M MACs NetAdapt-MobileNetV1 [72] 284.3M 69.1%
ChamNet-B [14] 323M 73.8%
MobileNetV2 0.75% 209M 69.8%
AMC-MobileNetV2 [26] 211M 70.8%
200M MACs AutoSlim-MobileNetV2 [44] 207M 73%
MetaPruning-MobileNetV2 [47]  217M 71.2%
Ours (rule based) 203M 70.8%
MobileNetV1 0.5x 150M 63.3%
AutoSlim-MobileNetV1 [44] 150M 67.9%
150M MACs Ours (rule based) 177M 70.5%
Ours (rule based) 151M 69.8%

For VGG-16 on ImageNet, both the rule-based method and the search-based method map
pattern-based pruning to all 3 X 3 layers with the reweighted dynamic regularization algorithm,
and achieves a 8.22x compression rate with only 0.1% accuracy loss, which outperforms PatDNN.
As all methods adopt pattern-based pruning, the performance difference between our methods
and PatDNN is attributed to the pruning algorithm. With the reweighted pruning aglorithm,
our method has the advantage of determining the compression rate for each layer automatically,
whereas PatDNN is based on ADMM and requires manual setting of the compression rate for each
layer. For MobileNet-V2 on the ImageNet dataset, both the rule-based method and the search-based
method map block-punched pruning to 1 X 1 CONV layers, and reach a 1.76X compression rate
and a 1.82X compression rate, respectively.

We also compare our method with other representative model compression techniques including
NetAdapt [72], ChamNet [14], AMC [26], AutoSlim [44], and MetaPruning [47] on the ImageNet
dataset, and the results are shown in Table 5. At the 200M MAC level, our rule-based method
achieves the same accuracy as AMC with fewer MACs. Our method also outperforms the 0.75x
channel scaled MobileNetV2 in both accuracy and MACs. At the 150M MAC level, the model ob-
tained by our rule-based model achieves the highest top-1 accuracy with similar MACs compared
with AutoSlim and the 0.5X channel scaled MobileNetV1.

Combining all of the results, we can see that both the rule-based and the search-based method
significantly outperform PatDNN. The rule-based method can provide pruned models with similar
accuracy and latency performance as the search-based method, and avoids the policy training pro-
cess, thus it is more useful in practice. Moreover, with the assist of our compiler optimization, both
methods can easily achieve real-time DNN inference (less than 33 ms) on all models mentioned
previously.

6.3.5 Portability Evaluation on Different Platforms. We further evaluate the portability of
our proposed rule-based pruning scheme mapping method on different mobile platforms. Three
tested platforms are Samsung Galaxy S10, S20, and S21, respectively. They are equipped with
different types of chipsets and mobile GPUs. The detailed hardware specifications are shown
in Table 6. Table 7 shows the portability evaluation results on the three platforms using our
rule-based pruning scheme mapping method. We use the VGG-16 network and test on CIFAR-10
and ImageNet datasets, respectively. We build a latency model for each platform and use the same
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Table 6. Hardware Specifications of Platforms for Portability Evaluation

Model Chipset GPU RAM
Samsung Galaxy S10 Qualcomm Snapdragon 855 Adreno 640 8 GB
Samsung Galaxy S20 Qualcomm Snapdragon 865 Adreno 650 12 GB
Samsung Galaxy S21 Qualcomm Snapdragon 888 Adreno 666 8 GB

Table 7. Portability Evaluation on Different Platforms Using the Rule-Based
Method on VGG-16

Dataset Platform Compression MACs Top-1 Latency

Rate Acc. (ms)

Galaxy S10 12.38% 59M  94.2% 2.02

CIFAR-10 Galaxy S20 12.06X 62M  94.1% 1.85
Galaxy S21 12.12% 61IM  94.2% 1.65

Galaxy S10 8.22% 35G  74.3% 18.17

ImageNet Galaxy S20 8.12x 34G  745%  16.23
Galaxy S21 8.15% 34G  74.5% 15.12

latency threshold of f = 20%. It can be observed that our rule-based method can consistently
achieve high model accuracy and leverages better hardware for a higher inference speed, which
illustrates the stability of our reweighted pruning algorithm and the effectiveness and portability
of our rule-based method.

7 CONCLUSION

We propose a general pruning scheme with fine-grained structured pruning regularity and a
reweighted dynamic pruning algorithm. Compiler optimizations are introduced to extract the
structure information and exploit hardware parallelism. We further probe into the new problem
of mapping the best-suited pruning scheme for each layer of any given DNN and propose two
automatic pruning scheme mapping methods. Experimental results demonstrate the effectiveness
of the proposed pruning scheme and pruning scheme mapping methods.

APPENDIX
A COMPILER OPTIMIZATION DETAILS

We provide more details of our compiler optimizations in this section. Different from prior DNN in-
ference acceleration frameworks [1-3, 11, 50, 59] that only support dense models or pattern-based
pruned models, our compiler optimizations are general, and support both dense (unpruned) mod-
els and sparse (pruned) models with different pruning schemes for fast inference on various mobile
platforms. Besides the BCS and the row reordering optimization mentioned in the main article (Sec-
tion 4.3), our compiler-based optimization techniques also include (i) a layer fusion mechanism to
fuse different layers together for the reduction of memory consumption of intermediate results
and number of operators; (ii) an auto-tuning process to determine the best-suited configurations
of parameters for different mobile CPUs/GPUs; and (iii) DSL-based code generation.

A.1 Layer Fusion Mechanism

To effectively reduce the model inference latency, a layer fusion technique is incorporated in our
compiler optimization to fuse the computation operators in the computation graph. With layer
fusion, both the memory consumption of the intermediate results and the number of operators
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can be reduced. The fusion candidates in a model are identified based on two kinds of polynomial
calculation properties: compression laws and data access patterns. The compression laws include
associative property, communicative property, and distributive property.

However, looking for the fusion candidates in such a large space of all combinations of compu-
tation operations is too expensive. Therefore, we introduce two constraints to guide the look-up
process: (i) only explore the opportunities that are specifically provided due to the preceding prop-
erties, and (ii) only consider enlarging the overall computation for CPU/GPU utilization improve-
ment and reducing the memory access for memory performance improvement as the cost metrics
in the fusion. Compared with prior works on loop fusion [4, 5, 7], our method is more aggressive
without high exploration cost.

A.2  Auto-Tuning for Different Mobile CPUs/GPUs

During DNN execution, there are many tuning parameters, such as matrix tiling sizes, loop un-
rolling factors, and data placement on GPU memory, that influence the performance. It is hard to
determine the best-suited configuration of these parameters manually. To alleviate this problem,
our compiler incorporates an auto-tuning approach for both sparse (pruned) models and dense
(unpruned) models. The genetic algorithm is leveraged to explore the best-suited configurations
automatically. It starts parameter search after an initialization with an arbitrary number of chro-
mosomes and explores the parallelism better. Acceleration codes for different DNN models and
different mobile CPUs/GPUs can be generated efficiently and quickly through this auto-tuning
process, providing the foundation for fast end-to-end inference. The auto-tuning optimizations,
together with the layer fusion and sparse model optimizations, make our framework outperform
other acceleration frameworks.

A.3 DSL-Based Code Generation

In DL, a computational graph of a DNN model can be represented by a directed acyclic graph (DAG).
Each node in this graph corresponds to an operator. We propose a high-level DSL to specify such
kind of operators. Each operator in a computational graph also with a layer-wise intermediate
representation (IR) that contains BCS pruning information. The input and output are different
tensors in terms of different shapes. This DSL also provides a Tensor function for users to create
matrices (or tensors).

In this way, DSL is equivalent to a computational graph (i.e., DSL is another type of high-level
functions used to simulate the dataflow of the DNN model), and they can be easily converted
to each other. DSL provides users with the flexibility to use existing DNNs or create new DNNs,
improving the productivity of DNN programming. If the DNN already exists, we will convert it into
an optimized calculation graph and convert this graph into a DSL. Otherwise, the user writes the
model code in the DSL, converts it back to a calculation graph, performs advanced optimization,
and regenerates the optimized DSL code.

Finally, our compiler translates the DSL into low-level C++ code for mobile CPU and OpenCL
code for mobile GPU, and optimizes the low-level code through a set of optimizations enabled by
BCS pruning. The generated code can be then deployed on the mobile device.
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