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Abstract—Calculation of many-body correlation functions is
one of the critical kernels utilized in many scientific computing
areas, especially in Lattice Quantum Chromodynamics (Lattice
QCD). It is formalized as a sum of a large number of contraction
terms each of which can be represented by a graph consisting
of vertices describing quarks inside a hadron node and edges
designating quark propagations at specific time intervals. Due to
its computation- and memory-intensive nature, real-world physics
systems (e.g., multi-meson or multi-baryon systems) explored by
Lattice QCD prefer to leverage multi-GPUs. Different from gen-
eral graph processing, many-body correlation function calcula-
tions show two specific features: a large number of computation-
/data-intensive kernels and frequently repeated appearances of
original and intermediate data. The former results in expensive
memory operations such as tensor movements and evictions.
The latter offers data reuse opportunities to mitigate the data-
intensive nature of many-body correlation function calculations.
However, existing graph-based multi-GPU schedulers cannot
capture these data-centric features, thus resulting in a sub-optimal
performance for many-body correlation function calculations.

To address this issue, this paper presents a multi-GPU schedul-
ing framework, MICCO, to accelerate contractions for correla-
tion functions particularly by taking the data dimension (e.g., data
reuse and data eviction) into account. This work first performs
a comprehensive study on the interplay of data reuse and load
balance, and designs two new concepts: local reuse pattern and
reuse bound to study the opportunity of achieving the optimal
trade-off between them. Based on this study, MICCO proposes
a heuristic scheduling algorithm and a machine-learning-based
regression model to generate the optimal setting of reuse bounds.
Specifically, MICCO is integrated into a real-world Lattice QCD
system, Redstar, for the first time running on multiple GPUs. The
evaluation demonstrates MICCO outperforms other state-of-art
works, achieving up to 2.25× speedup in synthesized datasets,
and 1.49× speedup in real-world correlation functions.

I. INTRODUCTION

Calculation of many-body correlation functions is a key

kernel widely used in many scientific physics systems (such

as Lattice Quantum Chromodynamics(QCD)) [5], [6], [7], [8],

[26], [2]. Hadronic correlation function in complex multi-

meson and multi-baryon systems is a typical example of many-

body correlation function, which involves quarks enclosed in

mesons and baryons. Calculating hadronic correlation func-

tions converts a series of quark propagations describing inter-

actions among hadrons into many undirected graphs that have

quarks of the hadrons as vertices and quark propagations as

edges, followed by performing a graph contraction on every

graph that reduces graph edges one after another until only

two hadrons are left. Each reduction of an edge is a tensor
contraction between hadron nodes which is dubbed hadron

contraction.

Calculation of many-body correlation functions is compu-

tation and memory-intensive because it usually involves many

thousands even millions of contractions resulting in extremely

large numbers of tensor contractions. Graph contractions also

generate a large amount of intermediate data, requiring sig-

nificant memory resources. Thus, real-world physics systems

commonly rely on high-end computing devices like many-core

GPUs to compute many-body correlation functions. Specifi-

cally, due to the limited memory size of a single GPU, multi-

GPU systems are preferred.

However, accelerating the calculation of many-body corre-

lation functions on multi-GPUs is challenging. In contrast to

general graph-based applications that process a huge graph

on multi-GPUs [4], [9], [16], many-body correlation function

calculations are featured with two specific characteristics:

First, the entire calculation consists of many computation-

/data-intensive kernels that are represented by graph edges.

Second, repeated hadron nodes appear frequently because of

overlapped reduction paths among multiple contraction graphs.

The former shifts the scheduling bottleneck from optimizing

graph partition and reducing partition synchronization (as

shown frequently in general graph processing) to improving

the GPU assignment of these computation kernels to avoid

expensive memory operations such as tensor evictions in

memory oversubscription situations, or tensor movements.

The latter offers unique (and many) data reuse opportunities

that potentially mitigate the data-intensive nature of many-

body correlation function calculations. Unfortunately, existing

multi-GPU scheduling frameworks [29], [4], [1], [15], [18],

[24] mainly focus on workload balance without considering

the above data dimension that is critical to the execution

performance of many-body correlation, thus resulting in sub-

optimal system performance if they are adopted directly.

To address this issue, this work presents a new multi-

GPU scheduling framework, MICCO, to accelerate calculat-

ing many-body correlation functions. The key innovation of

MICCO is that it brings the data dimension into the whole

scheduling picture, particularly by studying the impact of a
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data reuse-load balance interplay on the scheduling and lever-

aging this interplay to find the optimal scheduling scheme. The

key insight of this study is that data reuse and load balance

form a trade-off relationship in scheduling scheme exploring

and multiple factors affect this trade-off, rendering it very

challenging to find a global optimal scheduling solution within

a practical time budget for real-world systems.

Fortunately, this study demonstrates that it is possible to cre-

ate a highly effective local optimal scheduling with the help of

two newly designed concepts including local reuse pattern and

associated simplified but effective mapping analysis, and reuse
bound that characterizes the allowed level of load imbalance

when exploring data reuse opportunities. Based on both new

concepts, this work proposes a heuristic scheduling algorithm

that toggles between leveraging data reuse and pursuing load

balance particularly by taking memory evictions into account,

and designs a machine-learning-based regression model to

determine the optimal setting of reuse bounds. MICCO is

integrated into a well-known Lattice QCD system, Redstar [6],

[7], [8], for the first time running it on multiple GPUs.

The main contributions can be summarized as follows:

• For the first time performing a comprehensive study on

the interplay between data reuse and load balance in

multi-GPU scheduling of many-body correlation function

calculations, particularly introducing two new concepts

that are critical in multi-GPU scheduler design, local
reuse pattern and reuse bound.

• Based on the previous study, presenting a multi-GPU

scheduling framework, MICCO, to accelerate the calcu-

lation of many-body correlation functions that consists of

a heuristic scheduling algorithm and a regression model

to generate optimal settings to balance the impact of

data reuse and load balance, particularly by considering

memory oversubscription situations.

• Integrating MICCO into a real-world Lattice QCD sys-

tem, Redstar, and for the first time running it on a multi-

GPU environment.

MICCO is extensively evaluated with both synthesized

datasets and real-world datasets with varied settings. The

evaluation demonstrates that MICCO outperforms other state-

of-art works in all situations, achieving up to 2.25× speedup.

II. BACKGROUND

A. Many-body Correlation Function

Hadronic correlation functions are the central quantities

to be calculated when determining the properties and in-

teractions of quarks directly from Lattice QCD simulations.

Calculation of correlation functions is crucial for generating

physics observables and is relevant to experiments planned

for Jlab, FAIR, and J-PARC facilities [5], [26], [2]. However,

the computational cost of constructing such correlators is,

however, known to be exceptionally enormous. The reason

for such a high cost comes from computing all required quark

propagation diagrams [6] resulting from Wick contractions [6],

[7], [8]. The number of such diagrams grows factorially as

Fig. 1: Topology Representations of many-body Correla-
tion. Correlation functions are represented as multiple con-

traction graphs. Each contraction graph consists of multiple

computation stages. Each stage consists of two vectors of

independent hadron nodes. Each pair of hadron nodes conducts

hadron contractions.

the number of quarks and the total number of freedom of

the hadronic systems under consideration increase. A quark

propagation diagram can be represented as a graph consisting

of a set of hadron nodes each of which has vertices (V )

representing the quarks inside a hadron node and undirected

edges (E) describing quark propagations at specific time

intervals. Especially, the number of unique graphs can be

potentially huge approaching in the order of 500, 000. The

graph contraction of a graph, which is defined as deleting one

edge after another, consists of a series of hadron contractions

involving batched matrix multiplications for a meson system

or batched tensor contractions for a baryon system1. A large

number of contraction graphs on many time-slices and the

size of matrices/tensors (≈ 100s) associated with the hadron

nodes present extreme computing challenges. It is paramount

to utilize modern computing accelerators such as GPUs to

speed up the calculations of hadron contractions.

B. Topological Representations

To translate the statistic definition into a formalized com-

putational problem, Fig.1 illustrates many-body correlation

function calculations as a topological representation, in the

form of contraction graphs. It is worth noting that a many-body

correlation may involve thousands of contraction graphs
while this figure only shows one for simplicity. In each con-

traction graph, vertices represent hadron nodes, while edges

describe the interactions between hadron nodes. Hadron nodes

are formalized as batched matrices or tensors, with different

ranks of tensors representing different types of hadron nodes

(e.g., matrices in meson systems and three-dimensional tensors

in baryon systems, respectively). The associated interactions

between two hadron nodes are formalized as matrix multipli-

cations or tensor contractions.

A well-known Lattice QCD system, Redstar [6], [7], [8]

first translates each correlation function into a set of unique

contraction graphs, and then produces a sequence of hadron

contractions from the generated contraction graphs. One cor-

relation function can produce many thousands of contraction

graphs. Each graph undergoes a graph contraction process

during which one edge after another is reduced until only two

1This paper uses tensor in the following discussion to refer to both two-
dimensional matrix and higher dimensional tensor.
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nodes are left. Again, each reduction of an edge corresponds

to a matrix multiplication or tensor contraction.

To leverage the concurrency of many-body correlation cal-

culations, pre-processing, based on dependency analysis is

used to partition the computation into several stages (e.g.,

stages 1, 2, and 3 in Fig.1) with these stages executing

sequentially. Each stage contains two vectors and each vector

contains independent hadron nodes. Each pair of associated

hadron nodes in these two vectors accomplishes hadron con-

tractions. Since the hadron nodes are independent, the hadron

contractions can execute concurrently.

C. Challenges and Opportunities

Many-body correlation calculation introduces multiple new

(and interesting) challenges to multi-GPU scheduling due to

its unique computation patterns:

Calculation consists of many computation-intensive ker-
nels. In contrast to conventional graph processing applica-

tions (e.g., BFS, PageRank, and Shortest Path) [29], [25],

many-body correlation comprises a large number of small

contraction graphs that construct a backbone computation

structure, and the overall correlation function consists of many

computation-intensive kernels, e.g., matrix multiplications or

tensor contractions that are represented by edges of these

contraction graphs. The multi-GPU scheduling bottleneck is

shifted from graph partition and partition synchronization

reduction to proper GPU assignment of these computation-

intensive kernels to avoid frequent memory oversubscription

and intensive tensor movement.

Contraction graphs may share hadron nodes. A hadron

node may appear multiple times in more than one contraction

graph in a random manner. The tensors belonging to this

hadron participate in multiple computations if this hadron is

shared by multiple contraction graphs. This key observation

demonstrates that many-body correlation offers many data
reuse opportunities during its computation. It is critical to take

data reuse into account during multi-GPU task allocation. This

work particularly studies the interplay between data reuse and

load balance and proposes an enhanced scheduler based on

this study.

System cannot afford a heavy scheduler. Finding the

optimal scheduling scheme for the entire many-body corre-

lation computation is time-consuming because it consists of

thousands of kernel computations that involve many matrices

and tensors. The resulted searching space is huge. However,

due to the computation- and memory-intensive nature, the real-

world systems cannot afford a heavy scheduling mechanism. A

lightweight approach with a reduced scheduling search space

and the limited cost is desired.

III. INTERPLAY BETWEEN DATA REUSE AND LOAD

BALANCE

This section carefully studies the interplay between two

scheduling metrics, data reuse and load balance, and their

effects on multi-GPU scheduling of many-body correlation

Fig. 2: Example (a): Trade-off between data reuse and
load balance. Input tensors are A, B, C, and D. Case � only

considers data reuse; Case � only cares about load balance;

Case � trades off data reuse and load balance. Red dotted

frames label reused data. The green bars mean kernel compu-

tation cost, and the yellow bars mean memory operation cost

(allocation and communication) without memory evictions.

calculations. This section further analyzes the impact of mul-

tiple key factors on this interplay. This study aims to guide

the design of MICCO.

A. Data Reuse and Load Balance Trade-off Analysis

Although improving load balance and data reuse can both

lead to better multi-GPU system performance, the multi-

GPU scheduler may not be able to achieve optimal for both,

simultaneously, e.g., optimizing data reuse may result in

unbalanced computation. An interesting trade-off relationship

exists between these two metrics. Fig.2 illustrates a detailed

example. Assume input data are four tensors (A, B, C, and

D) in a vector. If at present time GPU 0 has fetched a copy

of these tensors from CPU and GPU 1 stores another set of

tensors (E, F , G, and H). In the next step, if only considering

data reuse, all input tensors should be assigned to GPU 0

(as shown in case �); while if only caring about workload

balance, GPU 0 and GPU 1 should fetch the identical amount

of tensors (as shown in case �). However, both cases result

in sub-optimal system performance. Case � only keeps GPU

0 busy, while case � incurs extra memory operations for two

tensors (C and D), including two tensor allocations and two

tensor movements from CPU to GPU. In contrast to both cases,

we point out case � specifically that trades off data reuse and

load balance, i.e., assigning three tensors (A, B, and C) to

GPU 0 and one tensor (D) to GPU 1. This case results in the

best system performance among three schedule schemes.

Fig.3 shows that concerning memory oversubscription, both

data reuse (Example (b)) and load balance (Example (c))

are able to reduce memory evictions. Leveraging data reuse

decreases the total new memory allocations to avoid memory

oversubscription. In Example (b), assume each GPU memory

can hold up to four input tensors. Both scheduling cases have

balanced workloads, but case � does not reuse the repeated

tensors and causes two extra memory operations (including

two memory allocations and two tensor movements), and two
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TABLE I: Definition and Impact of Data Characteristics.

Data Characteristics Description Impact on Performance
Tensor Size Dimension length of a tensor Computation and Allocation
Vector Size Number of tensors in one vector Computation, Allocation, and Communication

Data Distribution Repeated data follows biased or unbiased distribution Allocation and Communication
Repeated Rate Ratio of the repeated data by total data per vector Allocation and Communication

Fig. 3: Examples: Trade-off between data reuse and load
balance regarding memory evictions.

memory evictions for each GPU. In Example (c), assume each

GPU memory can hold two more output tensors. Example

(c) compares two cases to show load balance can also help

oversubscription: case � has better reusability with three

reused tensors, and case � has only two reused tensors but

better workload balance. In case �, a memory eviction occurs

when tensor C results a new output tensor. Case � achieves

no evictions and better performance than case �.

Remarks: A proper trade-off between data reuse and work-

load balance results in the optimal task allocation and helps

avoiding memory evictions in GPU oversubscription situations

that frequently happen in large-scale scientific computations

with memory-intensive kernels like many-body correlation.

B. Factors Impacting the Data Reuse-Load Balance Trade-off

The execution of many-body correlation function calcula-

tion consists of three main parts: kernel computation, mem-

ory allocation, and data communication (i.e., data movement

between CPU and GPU or between two GPUs). The latter

two are referred to as memory operations in this paper. Data

reuse mainly reduces memory operation cost, while workload

balance is critical to kernel computation performance. Our

study discovers that multiple factors influence this data reuse-

load balance trade-off, and our multi-GPU scheduler design

can benefit from a careful study of them.

1) The Impact of Local Reuse Pattern on the Trade-off:
Theoretically, if the scheduler can capture all data reuses

and conduct an exhaustive search by targeting the best data

reuse-load balance combination, it can find the optimal task

scheduling scheme. However, two major issues exist: First,

it assumes the global knowledge of all contraction graphs

that may not be available for many cases, particularly when

(partial) contraction graphs are generated dynamically. Second,

Fig. 4: Example: Local reuse patterns and task assign-
ments. Classify tensor pairs based on four local reuse patterns:

TwoRepeatedSame, TwoRepeatedDiff , OneRepeated,

and TwoNew. Mappings between tensor pairs and GPUs can

be categorized into seven cases. Mapping (1) represents two

reused tensors, assigned to the re-utilized GPU with the least

overhead. Mappings (2) and (3) contain one reused tensor, and

the rest four mappings have two new tensors, resulting in the

most expensive cost.

the search space is too large and this exhaustive search is

easy to be proved an NP problem as other task scheduling

problems. To address this issue, this work proposes to leverage

local reuse pattern information to dynamically search the local

optimal scheduling scheme based on a key study as follows.

Each tensor contraction involves two tensors. The tensor

pair of each (incoming) tensor contraction can be categorized

into one of four local reuse patterns (Fig.4 shows an example):

• twoRepeatedSame: Both tensors in this pair already exist

in the current memory of the same GPUs. A1 and A2
already exist in the memory of GPU 0 when the new tensor

pair (with A1 and A2) comes.

• twoRepeatedDiff : Two tensors exist in the current mem-

ory of different GPUs. B1 and B2 already exist on GPU 0

and 1, respectively.

• oneRepeated: One tensor of this tensor pair exists in current

GPU memory. C1 presents in GPU 0.

• twoNew: Neither of them exist in current GPUs’ memory.

D1 and D2 are two new tensors.

Based on this local reuse pattern classification, Fig.4 also

demonstrates and analyzes the cost of seven typical task

assignments/mappings2: Mapping (1) assigns both tensors to

the GPU that stores A1 and A2, previously. Mappings (2)

2The costs of other mappings that are not shown in this figure have been
covered by these cases.
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TABLE II: Description of Reuse Bounds. Reuse bounds

manage different tensor pairs and mappings, representing the

allowed level of load imbalance.

Name Tensor Pairs Mappings
Reuse_bound_1 TwoRepeatedSame (1)
Reuse_bound_2 TwoRepeatedDiff ,OneRepeated (2) (3)
Reuse_bound_3 TwoNew (4)-(7)

and (3) assign only one reused tensor in the tensor pair to the

GPU with this tensor before, producing one memory allocation

and one memory communication. Mappings (4) - (7) incur the

most expensive cost: two memory allocations and two memory

communications.

Remarks: Although it is challenging to find the global

optimal scheduling scheme, it is possible to create a local

optimal one with our insights on the local reuse patterns and

mapping study aforementioned, particularly by designing a

heuristic approach (introduced in Section IV). This approach

has demonstrated its high efficacy in our evaluation.

2) The Impact of Reuse Bounds on the Trade-off: Another

key factor that impacts the data reuse-load balance trade-off is

the level of allowed load imbalance, i.e., the scheduler allows

a certain level of load imbalance to leverage the potential data

reuse. This work defines this factor as a special term called

reuse bound. For example, assume assigning eight tensors to

two GPUs. If the reuse bound is zero, each GPU must receive

four tensors (i.e., with a perfect load balance). If the reuse

bound is two, each GPU can receive up to six tensors, i.e.,

each GPU allows to exceed the average allocation by two.

Considering the tensor pairs with different local reuse

patterns and mappings impact the schedule differently (e.g.,

a tensor pair with twoRepeatedSame and mapping type (1)

brings more data reuse benefits while others bring less), this

work specifically maintains three reuse bounds according to

the local reuse patterns and mappings of incoming tensor pairs.

Table II explains these reuse bounds in detail.

Besides local reuse patterns (and mappings), multiple data

characteristics also influence the setting of reuse bounds. Ta-

ble I characterizes them in detail, particularly specifying their

performance impact on either computation and/or memory

operations. Because of these factors, it is challenging to set a

uniform set of reuse bound values. An auto-tuning or machine

learning approach is desired for finding reuse bound values.

To further support the above claim, this work leverages

Spearman’s rank correlation coefficient [22], a widely used ap-

proach to explore the relationships among data characteristics,

three reuse bounds, and performance. The Spearman correla-

tion unveils the correlation (whether linear or not) between

two variables. All seven factors have positive impacts on the

GFLOPS, as shown in Fig.5. Data Distribution and Repeated
Rate benefit data reuse to improve the GFLOPS. Larger Vector
Size and Tensor Size bring more kernel computations, resulting

in higher GFLOPS. Reuse bounds represent better data reuse

and workload unbalance. The positive coefficients of reuse

bounds illustrate that data reuse is slightly more important than

workload balance. Data Distribution and Repeated Rate have

Fig. 5: Heatmap of the Spearman correlation coefficients.
The correlation coefficients are among data characteristics

(Data Distribution, Vector Size, Repeat Rate, and Tensor Size),

three reuse bounds, and GFLOPS.

positive coefficients with reuse bounds, due to the benefits

of data reuse. Vector Size and Tensor Size are sensitive with

workload imbalance, having negative coefficients with reuse

bounds.

Remarks: Reuse bounds are critical to trade-off data reuse

benefits and load imbalance costs; however, many factors

influence the setting of reuse bounds. This fact guides us to

design an approach to find the optimal reuse bounds efficiently

(e.g., our regression model in Section IV-C).

IV. MULTI-GPU SCHEDULING FRAMEWORK

This section introduces the design and optimization of our

multi-GPU scheduling framework, MICCO. MICCO’s design

focuses on these aspects: 1) exploring data reuse opportunities

for repeated tensors, 2) improving load balance to keep GPUs

busy, and 3) achieving optimal data reuse-load balance trade-

off with considerations of memory evictions.

A. System Overview

Fig. 6 shows an overview of MICCO that mainly consists of

two components: a heuristic scheduling algorithm, and a pre-

trained lightweight regression model. Fig. 6 also illustrates the

workflow that MICCO calculates many-body correlation func-

tions. In the first step, MICCO fetches input vectors from the

upstream module of a scientific application (e.g., Lattice QCD)

and feeds each vector to the pre-trained regression model (�).

In the second step, the pre-trained regression model prepares

for its online inference input (e.g., the data characteristics of

tensor pairs in a given vector), conducts an online inference,

and outputs a set of reuse bounds for this vector (�). Because

this regression model is small, this step is lightweight incurring

negligible overhead. In the third step, the heuristic scheduling

algorithm takes each tensor pair (�) in a given vector and the

associated reuse bounds to assign the related tensor contraction

(and its tensor pair) to a specific GPU. Particularly, the

heuristic scheduling algorithm toggles among three policies to

assign tensors: data-centric policy, computation-centric policy,

and memory-eviction-sensitive policy.
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Fig. 6: System overview of MICCO. Input data is tensors in

vectors. MICCO dynamically handles vectors and generates

GPU assignments for each vector. MICCO consists of a re-

gression model and a heuristic scheduling algorithm. MICCO

extracts data characteristics of each vector to the regression

model (�). The regression model generates optimal reuse

bounds (�). The heuristic algorithm classifies tensor pairs (�)

and jointly manages three policies.

TABLE III: Definitions of Variables.

Variable Name Descriptions
Tensor1,Tensor2 Input tensor of one tensor pair

reuseBd A vector of three reuse bounds
tensorsGPU A pair between tensors and GPU

mapGPUTensor GPU-Tensor pairs mappings
mapGPUCom GPU-Computation cost mappings
mapGPUMem GPU-Memory cost mappings

numGPU The number of GPUs
numTensor The number of tensors
balanceNum |numTensor / numGPU |
candiQueue A queue of candidate GPUs

GPUMaxMemory The maximal memory size of GPU

B. Heuristic Scheduling Algorithm

To trade-off data reuse and load balance, this heuristic al-

gorithm toggles among three scheduling policies. Data-centric
policy emphasizes data reuse, and assigns tensors based on the

aforementioned tensor pair local reuse pattern classification

and mapping strategy. Computation-centric policy emphasizes

workload balance, and ensures each GPU handles the identi-

cal number of tensor pairs. Memory-eviction-sensitive policy
emphasizes reducing memory cost to avoid evictions.

As claimed in Sec. III, data reuse is the principal factor

to alleviate expensive memory operations, thus benefiting

the data-intensive nature of many-body correlation functions.

Therefore, the data-centric policy first dominates MICCO’s

scheduling to find available GPUs that hold the incoming

tensors already, and then MICCO stores these GPUs’ IDs

in a queue (candiQueue). To decide if a GPU is available,

MICCO compares a GPU’s computing utilization with the

reuse bounds from the regression model, i.e., if assigning the

incoming pair to a given GPU results in severe load imbalance,

this GPU is unavailable. Next, the computation-centric policy

dominates MICCO’s scheduling to select the GPU with least

computation from candiQueue to further balance workload.

If the former scheduling causes any oversubscription of a

GPU in candiQueue, the memory-eviction-sensitive policy

kicks in to select the GPU with the most available memory in

candiQueue to avoid data evictions.

Alg.1 illustrates the designed heuristic scheduling algorithm

Algorithm 1: Heuristic Scheduling Algorithm

Input: Tensor Tensor1, Tensor2, Vector reuseBd, Map
mapGPUTensor, mapGPUCom, mapGPUMem,
Integer balanceNum

Output: A pair tensorsGPU
1 Initialize candiQueue;
2 GPUsofTensor1 = mapGPUTensor.find(Tensor1);
3 GPUsofTensor2 = mapGPUTensor.find(Tensor2);
4 if (GPUsofTensor1 ∩GPUsofTensor2) �= NULL then
5 for it1 : GPUsofTensor1 do
6 if it1 ∈ GPUsofTensor2 ∩

mapGPUTensor.at(it1).size() <
reuseBd[0] + balanceNum then

7 Add it1 to candiQueue;

8 if candiQueue = NULL ∩ (GPUsofTensor1 �=
NULL ∪GPUsofTensor2 �= NULL) then

9 for it1 : GPUsofTensor1 do
10 if mapGPUTensor.at(it1).size() <

reuseBd[1] + balanceNum then
11 Add it1 to candiQueue;

12 for it2 : GPUsofTensor2 do
13 if mapGPUTensor.at(it2).size() <

reuseBd[1] + balanceNum then
14 Add it2 to candiQueue;

15 if candiQueue = NULL then
16 for it = 1; it ≤ numGPU ; it++ do
17 if mapGPUTensor.at(it).size() <

reuseBd[2] + balanceNum then
18 Add it to candiQueue;

19 Call Alg.2 to determine tensorsGPU ;
20 Update mapGPUTensor, mapGPUCom, mapGPUMem;
21 return tensorsGPU ;

that processes tensor pairs one after another. Alg.2 shows the

generation of an assignment between a tensor pair and a GPU

by designed scheduling policies. Tab. III explains the variables

in both algorithms. The heuristic algorithm is greedy with

O(n2) time complexity, where n is the number of tensor pairs.

The outer n loop is to traverse all tensor pairs, while the inner

n loop is to check previous tensor pairs in mapGPUTensor.

The main steps of this algorithm are clarified as follows:

• Step-I: Alg.1 figures out the local reuse pattern of an

incoming tensor pair by checking mapGPUTensor (line

2-3). If the pair belongs to twoRepeatedSame (line 4),

Alg.1 finds all available GPUs that hold this pair already

and puts their IDs in candiQueue (line 5-7).

• Step-II: If the twoRepeatedSame pair cannot find any

available GPUs or the pair belongs to twoRepeatedDiff
or oneRepeated (line 8), Alg.1 fills in candiQueue with

the available GPUs containing one tensor of the pair (line 9-

14). Otherwise, Alg.1 fills in candiQueue with all available

GPUs (line 15-18).

• Step-III: Alg.2 monitors memory cost and recognizes mem-

ory oversubscription (line 3-5). If no memory eviction

occurs (line 6), Alg.2 selects the GPU with the least compu-

tation from the candiQueue (line 7-11). If memory eviction

appears, Alg.2 selects the GPU with the most memory

capacity from the candiQueue (line 12-17).
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• Step-IV: Alg.2 creates a tensor assignment (tensorGPU )

by combining the selected GPU ID with this tensor pair

(line 18), and passes it to Alg.1 (line 19). Alg.1 dynamically

updates mapGPUTensor after handling each tensor pair

(line 20).

Algorithm 2: Tensor Assignment Algorithm

Input: Map mapGPUCom, mapGPUMem,
mapGPUTensor, Vector candiQueue, Tensor Tensor1,
Tensor2, Integer GPUMaxMemory

Output: A pair tensorsGPU
1 Initialize vector GPUSelect, Integer GPUID, Bool evictF lag;
2 Integer candidateNum = candiQueue.size();
3 for id = 1; id ≤ candidateNum; id++ do
4 if mapGPUMem.at(id).size() > GPUMaxMemory then
5 evictF lag = TRUE;

6 if evictF lag �= TRUE then
7 GPUSelect.add(min (mapGPUCom.at(id).size(),

id ∈ candiQueue));
8 if GPUSelect.size()>1 then
9 GPUID =random (min (mapGPUMem.at(id).size(),

id ∈ candiQueue));

10 else
11 GPUID = GPUSelect.at(0);

12 else
13 GPUSelect.add (min (mapGPUMem.at (id).size(),

id ∈ candiQueue));
14 if GPUSelect.size()>1 then
15 GPUID =random(min (mapGPUCom.at(id).size(),

id ∈ candiQueue));

16 else
17 GPUID = GPUSelect.at(0);

18 tensorsGPU = make pair (Tensor1, Tensor2, GPUID);
19 return tensorsGPU ;

C. Regression Model

To determine the optimal setting of the three reuse bounds,

MICCO builds a regression model to explore the correlation

between data characteristics and reuse bounds. Input (feature

variables) is data characteristics and output (response labels)

is optimal reuse bound setting. Data characteristics include

vector size, tensor size, data distribution, and repeated rate.

Vector size and tensor size are given variables by input data.

Data distribution is judged to be uniform or biased. Repeated

rate is calculated dynamically for each vector. The regression

model is offline trained once in the beginning. In offline

training, the total data size is 300, 20% of which is test data

to evaluate the prediction. For each set of feature variables,

we measure GFLOPS of all possible values of reuse bounds

and set the optimal reuse bounds to be the response labels.

Reuse bounds range from 0 to numTensor − balanceNum
(i.e., assigning all data to one GPU). During online schedul-

ing, MICCO extracts data characteristics of each vector and

executes the inference of the pre-trained regression model to

generate optimal reuse bound values.

Tab. IV compares the precision of three regression mod-

els [21], including Linear Regression, Gradient Boosting, and

Random Forest. R2 Score [17] is a well-known statistical

TABLE IV: R2 Score of Regression Models

LinearRegression GradientBoosting RandomForest
0.57 0.91 0.95

metric to measure the regression predicting quality. R2 Score

is closer to 1, the regression model is more accurate. The

results in Tab. IV illustrate that the correlation among data

characteristics, reuse bounds, and GFLOPS is non-linear. It is

also difficult to predict the optimal reuse bound setting by a

policy-based approach. Thus, building a non-linear regression

model is necessary. MICCO selects Random Forest [23] as its

regression model because of its high accuracy (95%). Here are

more details about this model: the learning rate of Gradient

Boosting and Random Forest is 0.1, the number of boosting

stages in Gradient Boosting is 150, and the number of trees

in Random Forest is 150.

V. EVALUATION

This section aims to evaluate MICCO, particularly with the

following objectives: (1) proving MICCO outperforms state-

of-art schedulers with varied vector sizes and data repeated

rates for both uniform and non-uniform data distributions;

(2) exploring the impact of reuse bounds and demonstrating

MICCO obtains stable improvements with varied numbers of

GPUs (scalability), tensor size, and memory oversubscription

rate; (3) showing that MICCO can be integrated into a real-

world system, Redstar [6], [7], [8], and yields obvious benefits

on real problem sizes and datasets.

A. Experiment Setup

Platforms. MICCO is evaluated on eight AMD MI100

GPUs, each with 32G GPU memory3. The compiler is Rocm-

4.3.0 based on clang 13.0.0. These GPUs are connected to an

AMD EPYC 7502 32-Core CPU Processor.

Baseline and optimized versions. This evaluation com-

pares MICCO with a state-of-art work, Groute [4], a popular

and efficient multi-GPU scheduling framework. Groute as-

signs jobs and associated data on the earliest available device

to achieve good load balance similar to many other frame-

works [16], [9] Two versions of MICCO are evaluated includ-

ing MICCO-naive and MICCO-optimal. MICCO-naive
does not benefit from reuse bounds (by setting these values

as zero) while MICCO-optimal leverages reuse bounds

produced from the regression model.

Evaluation setups. Our experiments extensively evaluate

MICCO by changing multiple data characteristics including

vector size, repeated rate, tensor size, and memory oversub-

scription rate. MICCO is also evaluated with varied numbers

of GPUs for scalability. To evaluate the impact of data distri-

bution, our experiments synthesize both unbiased and biased

datasets. The selection of repeated data from the previous data

follows two distributions: Uniform and Gaussian.

3Although MICCO is evaluated on the latest AMD GPUs, it can also run
on other GPUs like other generations of AMD GPUs and NVIDIA GPUs
because its design is general, and not bound with specific GPU hardware
implementations.
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Fig. 7: Overall Performance. Two distributions: Uniform (a)-(d) and Gaussian (e)-(h). Blue stars denote speedup of MICCO-
optimal / Groute. Repeated rate varies from 25% to 100%. Vector size varies from 8 to 64. Tensor size is 384. The utilized

GPU number is eight.

TABLE V: Execution Time (ms). Tensor size is 384. Vector

size is 64. Repeated rate is 50%. Sum of 10 vectors.

Distribution Scheduling Overhead Total Time
Uniform 8.27 4925.73
Gaussian 8.52 1550.88

Real-world system and datasets. To further validate the

practical performance, MICCO4 is also integrated into Redstar

and evaluated on three real-world correlation functions.

B. Overall Performance Evaluation

Fig.7 illustrates the overall performance improvements by

comparing MICCO with Groute in two distributions: Uni-

form and Gaussian. We measure four vector sizes from 8 to

64, and the tensor size is 384. The speedup of MICCO over

Groute is also shown in Fig.11, labeled as blue stars.

Experiment results demonstrate that MICCO outperforms

Groute in all cases, achieving up to 2.25× speedup. Fig.7

(a)-(d) show throughput in Uniform distribution. The optimal

version of MICCO (MICCO-optimal) is able to achieve

1.57× geometric mean speedup than Groute. Fig.7 (e)-(h)

show throughput in Gaussian distribution, and the geomet-

ric mean speedup is 1.65× than Groute. Compared with

MICCO-naive, MICCO-optimal achieves up to 1.89×
speedup. These results show the great benefits of MICCO’s

heuristic scheduling algorithm and regression model.

One interesting observation is growing repeated rate cannot

keep improving performance, further validating the trade-off

between data reuse and load balance. The best performance

appears with 75% repeated rate in Uniform, and 50% repeated

rate in Gaussian. Please note that repeated rate describes initial

characteristics of input data rather than real reused data in

calculations. Considering load balance, some repeated data

has to be assigned to new GPUs for the optimal performance

according to our heuristic scheduling, so improving repeated

rate does not necessarily mean more data reuse.

4https://github.com/JeffersonLab/hadron.

When comparing data distributions, the following two ob-

servations also support that data reuse and load balance jointly

impact the performance. One is that to reach the best through-

put, the repeated rate of Uniform is higher than Gaussian. This

is because biased distribution (like Gaussian that determines

the selection of repeated data) leads to more load imbalance

than Uniform distribution, and this load imbalance particularly

increases with the growth of biased degree. Another observa-

tion is that a larger vector size may degrade the performance of

Gaussian (as shown in Fig.7 (g) and (h)). This is because the

increasing vector size and large repeated rate (more than 50%)

produce many biased repeated data and cause increasingly

severe load imbalance.

Tab.V demonstrates the extremely low scheduling over-
head of MICCO (MICCO-optimal), particularly compared

with the total executing time (5.4‰ and 1.6‰).

C. Performance analysis

This section further studies MICCO’s performance from

multiple aspects. Please notice that MICCO in this section

denotes MICCO-optimal.

Exploring the impacts of reuse bounds. Fig.8 shows the

impact of changing reuse bounds on the performance. The

experiments include three cases: Case (1) vector size = 64,

repeated rate = 50%; Case (2) vector size = 16, repeated

rate = 25%; Case (3) vector size = 32, repeated rate = 75%.

This work measures thirteen values of three reuse bounds.

The reuse bound values of the best performance vary when

changing vector size, repeated rate, and data distribution. In

Case (1) of Fig.8 (a), the best performance is 9753 GFLOPS

with (0,2,0), but in Case (3) of Fig.8 (b), the best performance

is 5869 GFLOPS with (0,2,2). The evaluation results explicitly

show that multiple data characteristics influence data reuse-

load balance trade-off and the optimal values of reuse bounds,

which are hard to predict by a policy-based approach or

linear regression. This observation is consistent with Tab. IV,
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Fig. 8: Impact of Reuse Bounds. Case (1) vector size = 64,

repeated rate = 50%; Case (2) vector size = 16, repeated rate

= 25%; Case (3) vector size = 32, repeated rate = 75%; Tensor

size is 384. 13 sets of three reuse bounds are measured, and

the ranging from 0 to 2.

Fig. 9: Scalability. Tensor size is 384. Vector size is 64.

and further supports the necessity of building a non-linear

regression model to generate optimal reuse bounds.

Exploring scalability. This work compares MICCO with

Groute and changes the number of GPUs from 1 to 8 in Uni-

form and Gaussian distributions. As shown in Fig.9, MICCO

outperforms Groute, achieving up to 1.96× speedup. One

observation is the slow growth of GFLOPS with an increasing

number of GPUs. e.g., GFLOPS increases from 7877 GFLOPS

on 1 GPU, to 13043 GFLOPS on 8 GPUs in Fig.9 (a).

One reason is when computing small tensors (tensor size is

384), memory operation impacts more than computation on

GFLOPS. Another reason is more GPUs bring more compu-

tation capacity but make data reuse harder. One GPU can reuse

all repeated tensors, while multiple GPUs cannot achieve full

data reuse concerning load balance. The speedup improves

from 1.18× on 2 GPUs to 1.68× on 8 GPUs, showing MICCO

yields great benefits on leveraging data reuse and reducing

memory operations.

Exploring the impact of tensor size. This work com-

pares Groute and MICCO with varying tensor sizes in-

cluding 128, 256, 384, 768 in two distributions. As shown

in Fig.10, MICCO outperforms Groute, achieving speedup

from 1.35× to 1.92×. The performance is sensitive to the

tensor size, which determines the kernel computation cost.

Overall, MICCO obtains better performance than Groute in

Fig. 10: Impact of Tensor Size. Tensor size varies from 128

to 768. Vector size is 64. Repeated rate is 50%.

Fig. 11: Memory Oversubscription. Oversubscription rate

increases from 125% to 200%. Vector size is 64. Tensor size

is 384. Repeated rate is 50%.

all cases as tensor size varies.

Exploring memory oversubscription. The experiments mea-

sure two data distributions when vector size is 64, tensor size

is 384, and the repeated rate is 50%. MICCO achieves a

speedup up to 1.9× over Groute. The GFLOPS decreases

with the increasing memory oversubscription. For instance,

GFLOPS decreases from 1841 to 1224 in Gaussian and 2663

to 1194 in Uniform as the subscription rate increases from

125% to 200%. This observation shows that the performance

is sensitive to memory evictions. The geometric mean speedup

of MICCO over Groute is 1.4× in Gaussian and 1.2× in

Uniform. Memory evictions have slightly more impacts on

Uniform than Gaussian distribution.

D. Case Study: Real-world Datasets in Redstar System
TABLE VI: Real Many-body Correlation Functions. Total

memory represents the total device memory about input and

intermediate output data. ’Speedup’ is based on the Groute.

Function Tensor Size Memory Cost Speedup
a1_rhopi 128 56.05G 1.49x
f0d2 256 4645.12G 1.41x
f0d4 256 4064.48G 1.36x

In order to evaluate practical scenarios, this work measures

three real physics correlation functions in the Redstar system.

The correlation functions are a1_rhopi in a1 system, and

f0d2 and f0d4 in f0 system. All of them belong to meson

systems and consist of two-particle and single-particle con-

structions. Their tensor size and total device memory cost are

shown in Tab. VI. The memory cost is the sum of sixteen time

slices, including initial input data and intermediate output data.

The utilized number of GPUs is eight. Vector size, repeated

rate, and data distribution vary dynamically. Compared with

Groute, the speedup achieves up to 1.49×. The experiment

results demonstrate the practical significance of MICCO.
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VI. RELATED WORKS

Recently, many multi-GPU scheduling frameworks have

been developed to support different types of applications [10],

[14], [4], [12], [15], [19], [35], [34], [31], [30], [32]. The

efforts closely related to this work include some general data-

aware multi-GPU schedulers, graph processing schedulers,

schedulers that support other irregular computations, streaming

task schedulers aiming to process a sequence of computation

kernels, and schedulers for machine learning models [33].

General data-aware Multi-GPU schedulers Although the

current general data-aware GPU schedulers (as [3], [11], [27])

that consider data locality have shown efficacy on many ap-

plications based on large matrices (e.g., Matrix Multiplication,

LU, etc.), it is not easy to directly apply them to our applica-

tion due to multiple unique features of many-body correlation

calculations. Augonnet et al. [3] mainly focus on reducing

transfer latency and overlapping with kernel computation,

while reducing data movement counts brings more significant

performance gains for our application because of the large

number of kernels (with reusable data). Gonthier et al. [11]

assume the knowledge of all tasks and dependencies, but our

application requires online scheduling for dynamic graphs.

This work also mainly focuses on single-GPU scheduling.

Teodoro et al. [27] mainly focus on optimizing CPU-GPU

transfers instead of multi-GPUs.

Multi-GPU schedulers in graph applications and other
irregular applications. Many multi-GPU graph processing

schedulers [4], [9], [16] adopt greedy-based strategies that

assign jobs to the earliest available devices and mainly con-

sider workload balance. Ben et al. [4] present an asynchronous

and runtime multi-GPU programming model for graph and

irregular applications. Chen et al. [9] propose a task-based dy-

namic load-balancing solution for both single- and multi-GPU

systems. These efforts mainly focus on optimizing workload

balance to improve the GPU utilization without considering

data reusability and the interplay between load balance and

data reusability. More close to our work, Kim et al. [18]

develop CODA that enables co-placement of compute and data

for fine-grained interleaved memory with a low-cost method.

Although this work takes data placement into account, it pays

more attention to data locations rather than reusing data.

Multi-GPU schedulers for streaming tasks and machine
learning models. Huynh et al. [15] propose a code generation

framework mapping streaming applications onto a multi-GPU

system. Melot et al. [20] present a crown scheduling to

improve the efficiency of energy utilization. Udupa et al. [28]

propose an efficient technique to execute stream programs on

GPUs. These efforts do not consider data reuse-load balance

trade-off in terms of memory oversubscription as MICCO.

Many multi-GPU schedulers for machine learning workloads

have been proposed recently [35], [19], [12], [13]. Gandiva

[35] is a domain-specific scheduler, accelerating deep learning

models by packing jobs on multiple GPUs. CROSSBOW

[19] proposes a multi-GPU scheduler for deep learning with

small batch sizes. These efforts have different focuses and

do not study the trade-off of load balance and data reuse as

MICCO, either. Additionally, many works, e.g., Tiresias [12]

and Marble [13], apply preemptive scheduling approaches,

which are not suitable for this work, due to the heavy overhead

of suspending and resuming in many kernel computations.

VII. CONCLUSION AND FUTURE WORK

This work presents MICCO, a multi-GPU scheduling frame-

work to accelerate calculating many-body correlation func-

tions, integrated in a real-world Lattice QCD system, Redstar

system. This work extensively studies the data reuse-load

balance interplay, and further brings up local reuse pattern
and reuse bounds. MICCO proposes a heuristic scheduling

algorithm toggling data reuse and load balance regarding

memory oversubscription. Moreover, MICCO builds a regres-

sion model to predict optimal reuse bounds. In evaluation,

MICCO achieves up to 2.25× speedup in synthesized datasets

and 1.49× speedup in real correlation functions. In the future,

we plan to extend the design of MICCO to a multi-node cluster

with GPUs and implement it on an NVIDIA GPU cluster

upon the availability of these devices. Additionally, we are

exploring further optimizations on both intra-node and inter-

node communications, including asynchronous data copy and

prefetching data.
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