2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS) | 978-1-6654-8106-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/IPDPS53621.2022.00022

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

MICCO: An Enhanced Multi-GPU Scheduling
Framework for Many-Body Correlation Functions

Qihan Wang", Bin Ren”, Jie Chen’, and Robert G. Edwards!

“Department of Computer Science, William & Mary, Williamsburg, VA

Email: gwangl9@email .wm.edu,

bren@wm.edu

tJefferson Lab, Newport News, VA
Email: {chen, edwards}@jlab.org

Abstract—Calculation of many-body correlation functions is
one of the critical kernels utilized in many scientific computing
areas, especially in Lattice Quantum Chromodynamics (Lattice
QCD). It is formalized as a sum of a large number of contraction
terms each of which can be represented by a graph consisting
of vertices describing quarks inside a hadron node and edges
designating quark propagations at specific time intervals. Due to
its computation- and memory-intensive nature, real-world physics
systems (e.g., multi-meson or multi-baryon systems) explored by
Lattice QCD prefer to leverage multi-GPUs. Different from gen-
eral graph processing, many-body correlation function calcula-
tions show two specific features: a large number of computation-
/data-intensive kernels and frequently repeated appearances of
original and intermediate data. The former results in expensive
memory operations such as tensor movements and evictions.
The latter offers data reuse opportunities to mitigate the data-
intensive nature of many-body correlation function calculations.
However, existing graph-based multi-GPU schedulers cannot
capture these data-centric features, thus resulting in a sub-optimal
performance for many-body correlation function calculations.

To address this issue, this paper presents a multi-GPU schedul-
ing framework, MICCO, to accelerate contractions for correla-
tion functions particularly by taking the data dimension (e.g., data
reuse and data eviction) into account. This work first performs
a comprehensive study on the interplay of data reuse and load
balance, and designs two new concepts: local reuse pattern and
reuse bound to study the opportunity of achieving the optimal
trade-off between them. Based on this study, MICCO proposes
a heuristic scheduling algorithm and a machine-learning-based
regression model to generate the optimal setting of reuse bounds.
Specifically, MICCO is integrated into a real-world Lattice QCD
system, Redstar, for the first time running on multiple GPUs. The
evaluation demonstrates MICCO outperforms other state-of-art
works, achieving up to 2.25x speedup in synthesized datasets,
and 1.49x speedup in real-world correlation functions.

I. INTRODUCTION

Calculation of many-body correlation functions is a key
kernel widely used in many scientific physics systems (such
as Lattice Quantum Chromodynamics(QCD)) [5], [6], [7], [8],
[26], [2]. Hadronic correlation function in complex multi-
meson and multi-baryon systems is a typical example of many-
body correlation function, which involves quarks enclosed in
mesons and baryons. Calculating hadronic correlation func-
tions converts a series of quark propagations describing inter-
actions among hadrons into many undirected graphs that have
quarks of the hadrons as vertices and quark propagations as
edges, followed by performing a graph contraction on every

graph that reduces graph edges one after another until only
two hadrons are left. Each reduction of an edge is a tensor
contraction between hadron nodes which is dubbed hadron
contraction.

Calculation of many-body correlation functions is compu-
tation and memory-intensive because it usually involves many
thousands even millions of contractions resulting in extremely
large numbers of tensor contractions. Graph contractions also
generate a large amount of intermediate data, requiring sig-
nificant memory resources. Thus, real-world physics systems
commonly rely on high-end computing devices like many-core
GPUs to compute many-body correlation functions. Specifi-
cally, due to the limited memory size of a single GPU, multi-
GPU systems are preferred.

However, accelerating the calculation of many-body corre-
lation functions on multi-GPUs is challenging. In contrast to
general graph-based applications that process a huge graph
on multi-GPUs [4], [9], [16], many-body correlation function
calculations are featured with two specific characteristics:
First, the entire calculation consists of many computation-
/data-intensive kernels that are represented by graph edges.
Second, repeated hadron nodes appear frequently because of
overlapped reduction paths among multiple contraction graphs.
The former shifts the scheduling bottleneck from optimizing
graph partition and reducing partition synchronization (as
shown frequently in general graph processing) to improving
the GPU assignment of these computation kernels to avoid
expensive memory operations such as tensor evictions in
memory oversubscription situations, or tensor movements.
The latter offers unique (and many) data reuse opportunities
that potentially mitigate the data-intensive nature of many-
body correlation function calculations. Unfortunately, existing
multi-GPU scheduling frameworks [29], [4], [1], [15], [18],
[24] mainly focus on workload balance without considering
the above data dimension that is critical to the execution
performance of many-body correlation, thus resulting in sub-
optimal system performance if they are adopted directly.

To address this issue, this work presents a new multi-
GPU scheduling framework, MICCO, to accelerate calculat-
ing many-body correlation functions. The key innovation of
MICCO is that it brings the data dimension into the whole
scheduling picture, particularly by studying the impact of a

1530-2075/22/$31.00 ©2022 IEEE 135
DOI 10.1109/IPDPS53621.2022.00022

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

data reuse-load balance interplay on the scheduling and lever-
aging this interplay to find the optimal scheduling scheme. The
key insight of this study is that data reuse and load balance
form a trade-off relationship in scheduling scheme exploring
and multiple factors affect this trade-off, rendering it very
challenging to find a global optimal scheduling solution within
a practical time budget for real-world systems.

Fortunately, this study demonstrates that it is possible to cre-
ate a highly effective local optimal scheduling with the help of
two newly designed concepts including local reuse pattern and
associated simplified but effective mapping analysis, and reuse
bound that characterizes the allowed level of load imbalance
when exploring data reuse opportunities. Based on both new
concepts, this work proposes a heuristic scheduling algorithm
that toggles between leveraging data reuse and pursuing load
balance particularly by taking memory evictions into account,
and designs a machine-learning-based regression model to
determine the optimal setting of reuse bounds. MICCO is
integrated into a well-known Lattice QCD system, Redstar [6],
[7], [8], for the first time running it on multiple GPUs.

The main contributions can be summarized as follows:

o For the first time performing a comprehensive study on
the interplay between data reuse and load balance in
multi-GPU scheduling of many-body correlation function
calculations, particularly introducing two new concepts
that are critical in multi-GPU scheduler design, local
reuse pattern and reuse bound.

o Based on the previous study, presenting a multi-GPU
scheduling framework, MICCO, to accelerate the calcu-
lation of many-body correlation functions that consists of
a heuristic scheduling algorithm and a regression model
to generate optimal settings to balance the impact of
data reuse and load balance, particularly by considering
memory oversubscription situations.

o Integrating MICCO into a real-world Lattice QCD sys-
tem, Redstar, and for the first time running it on a multi-
GPU environment.

MICCO is extensively evaluated with both synthesized
datasets and real-world datasets with varied settings. The
evaluation demonstrates that MICCO outperforms other state-
of-art works in all situations, achieving up to 2.25x speedup.

II. BACKGROUND
A. Many-body Correlation Function

Hadronic correlation functions are the central quantities
to be calculated when determining the properties and in-
teractions of quarks directly from Lattice QCD simulations.
Calculation of correlation functions is crucial for generating
physics observables and is relevant to experiments planned
for Jlab, FAIR, and J-PARC facilities [5], [26], [2]. However,
the computational cost of constructing such correlators is,
however, known to be exceptionally enormous. The reason
for such a high cost comes from computing all required quark
propagation diagrams [6] resulting from Wick contractions [6],
[71, [8]. The number of such diagrams grows factorially as

136

[T 1] vectors
iV Hadron Contraction
[TLTTT] vector

Computation Stages

Correlation Function

Contraction Graph

Fig. 1: Topology Representations of many-body Correla-
tion. Correlation functions are represented as multiple con-
traction graphs. Each contraction graph consists of multiple
computation stages. Each stage consists of two vectors of
independent hadron nodes. Each pair of hadron nodes conducts
hadron contractions.

the number of quarks and the total number of freedom of
the hadronic systems under consideration increase. A quark
propagation diagram can be represented as a graph consisting
of a set of hadron nodes each of which has vertices (V)
representing the quarks inside a hadron node and undirected
edges (E) describing quark propagations at specific time
intervals. Especially, the number of unique graphs can be
potentially huge approaching in the order of 500,000. The
graph contraction of a graph, which is defined as deleting one
edge after another, consists of a series of hadron contractions
involving batched matrix multiplications for a meson system
or batched tensor contractions for a baryon system!. A large
number of contraction graphs on many time-slices and the
size of matrices/tensors (=~ 100s) associated with the hadron
nodes present extreme computing challenges. It is paramount
to utilize modern computing accelerators such as GPUs to
speed up the calculations of hadron contractions.

B. Topological Representations

To translate the statistic definition into a formalized com-
putational problem, Fig.1 illustrates many-body correlation
function calculations as a topological representation, in the
form of contraction graphs. It is worth noting that a many-body
correlation may involve thousands of contraction graphs
while this figure only shows one for simplicity. In each con-
traction graph, vertices represent hadron nodes, while edges
describe the interactions between hadron nodes. Hadron nodes
are formalized as batched matrices or tensors, with different
ranks of tensors representing different types of hadron nodes
(e.g., matrices in meson systems and three-dimensional tensors
in baryon systems, respectively). The associated interactions
between two hadron nodes are formalized as matrix multipli-
cations or tensor contractions.

A well-known Lattice QCD system, Redstar [6], [7], [8]
first translates each correlation function into a set of unique
contraction graphs, and then produces a sequence of hadron
contractions from the generated contraction graphs. One cor-
relation function can produce many thousands of contraction
graphs. Each graph undergoes a graph contraction process
during which one edge after another is reduced until only two

I'This paper uses fensor in the following discussion to refer to both two-
dimensional matrix and higher dimensional fensor.

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

nodes are left. Again, each reduction of an edge corresponds
to a matrix multiplication or tensor contraction.

To leverage the concurrency of many-body correlation cal-
culations, pre-processing, based on dependency analysis is
used to partition the computation into several stages (e.g.,
stages 1, 2, and 3 in Fig.1) with these stages executing
sequentially. Each stage contains two vectors and each vector
contains independent hadron nodes. Each pair of associated
hadron nodes in these two vectors accomplishes hadron con-
tractions. Since the hadron nodes are independent, the hadron
contractions can execute concurrently.

C. Challenges and Opportunities

Many-body correlation calculation introduces multiple new
(and interesting) challenges to multi-GPU scheduling due to
its unique computation patterns:

Calculation consists of many computation-intensive ker-
nels. In contrast to conventional graph processing applica-
tions (e.g., BFS, PageRank, and Shortest Path) [29], [25],
many-body correlation comprises a large number of small
contraction graphs that construct a backbone computation
structure, and the overall correlation function consists of many
computation-intensive kernels, e.g., matrix multiplications or
tensor contractions that are represented by edges of these
contraction graphs. The multi-GPU scheduling bottleneck is
shifted from graph partition and partition synchronization
reduction to proper GPU assignment of these computation-
intensive kernels to avoid frequent memory oversubscription
and intensive tensor movement.

Contraction graphs may share hadron nodes. A hadron
node may appear multiple times in more than one contraction
graph in a random manner. The tensors belonging to this
hadron participate in multiple computations if this hadron is
shared by multiple contraction graphs. This key observation
demonstrates that many-body correlation offers many data
reuse opportunities during its computation. It is critical to take
data reuse into account during multi-GPU task allocation. This
work particularly studies the interplay between data reuse and
load balance and proposes an enhanced scheduler based on
this study.

System cannot afford a heavy scheduler. Finding the
optimal scheduling scheme for the entire many-body corre-
lation computation is time-consuming because it consists of
thousands of kernel computations that involve many matrices
and tensors. The resulted searching space is huge. However,
due to the computation- and memory-intensive nature, the real-
world systems cannot afford a heavy scheduling mechanism. A
lightweight approach with a reduced scheduling search space
and the limited cost is desired.

III. INTERPLAY BETWEEN DATA REUSE AND LOAD
BALANCE

This section carefully studies the interplay between two
scheduling metrics, data reuse and load balance, and their
effects on multi-GPU scheduling of many-body correlation

137

D Kernel
Input Tensors Allocated Cost Computation
M Memory Operations
s § w/o evictions
o T 1171
1
A B =
fa B cpjeeu o [T]
©® aABCDZ
P CECE [
asc(as e o [T T]
© ABCDCL,

Example (a) Trade-off between data reuse and load balance

Fig. 2: Example (a): Trade-off between data reuse and
load balance. Input tensors are A, B, C, and D. Case @ only
considers data reuse; Case @ only cares about load balance;
Case @ trades off data reuse and load balance. Red dotted
frames label reused data. The green bars mean kernel compu-
tation cost, and the yellow bars mean memory operation cost
(allocation and communication) without memory evictions.

calculations. This section further analyzes the impact of mul-
tiple key factors on this interplay. This study aims to guide
the design of MICCO.

A. Data Reuse and Load Balance Trade-off Analysis

Although improving load balance and data reuse can both
lead to better multi-GPU system performance, the multi-
GPU scheduler may not be able to achieve optimal for both,
simultaneously, e.g., optimizing data reuse may result in
unbalanced computation. An interesting trade-off relationship
exists between these two metrics. Fig.2 illustrates a detailed
example. Assume input data are four tensors (4, B, C, and
D) in a vector. If at present time GPU 0 has fetched a copy
of these tensors from CPU and GPU 1 stores another set of
tensors (F, F, GG, and H). In the next step, if only considering
data reuse, all input tensors should be assigned to GPU 0
(as shown in case @); while if only caring about workload
balance, GPU 0 and GPU 1 should fetch the identical amount
of tensors (as shown in case ®). However, both cases result
in sub-optimal system performance. Case @ only keeps GPU
0 busy, while case ® incurs extra memory operations for two
tensors (C' and D), including two tensor allocations and two
tensor movements from CPU to GPU. In contrast to both cases,
we point out case @ specifically that trades off data reuse and
load balance, i.e., assigning three tensors (A4, B, and C) to
GPU 0 and one tensor (D) to GPU 1. This case results in the
best system performance among three schedule schemes.

Fig.3 shows that concerning memory oversubscription, both
data reuse (Example (b)) and load balance (Example (c))
are able to reduce memory evictions. Leveraging data reuse
decreases the total new memory allocations to avoid memory
oversubscription. In Example (b), assume each GPU memory
can hold up to four input tensors. Both scheduling cases have
balanced workloads, but case @ does not reuse the repeated
tensors and causes two extra memory operations (including
two memory allocations and two tensor movements), and two

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Definition and Impact of Data Characteristics.

[Data Characteristics | Description

\ Impact on Performance

Tensor Size

Dimension length of a tensor

Computation and Allocation

Vector Size

Number of tensors in one vector

Computation, Allocation, and Communication

Data Distribution

Repeated data follows biased or unbiased distribution

Allocation and Communication

Repeated Rate

Ratio of the repeated data by total data per vector

Allocation and Communication

Allocated

Input Tensors Cost D Kernel Computation
Memory Memory Operations
w/o evictions
— Memory evictions
A2 [FEco)ew o]
O ABETF

S DX L e
O ABE F<
N CIEEE] Y
Example (b) Leverage data reuse to reduce evictions
ABCIasco|eu o T T T T
©®2BCK

AB
A B CD|GPU O[T]
O ABCEK
¢ x(Erouerw 1 [T]

Example (c) Leverage load balance to reduce evictions

EF

Fig. 3: Examples: Trade-off between data reuse and load
balance regarding memory evictions.

memory evictions for each GPU. In Example (c), assume each
GPU memory can hold two more output tensors. Example
(c) compares two cases to show load balance can also help
oversubscription: case @ has better reusability with three
reused tensors, and case @ has only two reused tensors but
better workload balance. In case @, a memory eviction occurs
when tensor C' results a new output tensor. Case @ achieves
no evictions and better performance than case @.

Remarks: A proper trade-off between data reuse and work-
load balance results in the optimal task allocation and helps
avoiding memory evictions in GPU oversubscription situations
that frequently happen in large-scale scientific computations
with memory-intensive kernels like many-body correlation.

B. Factors Impacting the Data Reuse-Load Balance Trade-off

The execution of many-body correlation function calcula-
tion consists of three main parts: kernel computation, mem-
ory allocation, and data communication (i.e., data movement
between CPU and GPU or between two GPUs). The latter
two are referred to as memory operations in this paper. Data
reuse mainly reduces memory operation cost, while workload
balance is critical to kernel computation performance. Our
study discovers that multiple factors influence this data reuse-
load balance trade-off, and our multi-GPU scheduler design
can benefit from a careful study of them.

1) The Impact of Local Reuse Pattern on the Trade-off:
Theoretically, if the scheduler can capture all data reuses
and conduct an exhaustive search by targeting the best data
reuse-load balance combination, it can find the optimal task
scheduling scheme. However, two major issues exist: First,
it assumes the global knowledge of all contraction graphs
that may not be available for many cases, particularly when
(partial) contraction graphs are generated dynamically. Second,

138

Tensor Pairs

Allocated Memory

Kernel

Mappings Cost Computation
(1) a1 A2 ->GePU 0 [e ien
(2) cicz2 ->Gpu 0 [1] Memory
(3) Bl B2 -> GPU 1 D:D Communication
(4) A1 A2 -> GPU 2 [T T T 171
(5) B1 B2 -> GPU 2 I 111
(6) C1 €2 -> GPU 2 [T L[11
(7) D1 D2 => GPU 2 [[T [1]

Fig. 4: Example: Local reuse patterns and task assign-
ments. Classify tensor pairs based on four local reuse patterns:
TwoRepeatedSame, TwoRepeatedDif f, OneRepeated,
and T'woNew. Mappings between tensor pairs and GPUs can
be categorized into seven cases. Mapping (1) represents two
reused tensors, assigned to the re-utilized GPU with the least
overhead. Mappings (2) and (3) contain one reused tensor, and
the rest four mappings have two new tensors, resulting in the
most expensive cost.

the search space is too large and this exhaustive search is
easy to be proved an NP problem as other task scheduling
problems. To address this issue, this work proposes to leverage
local reuse pattern information to dynamically search the local
optimal scheduling scheme based on a key study as follows.
Each tensor contraction involves two tensors. The tensor
pair of each (incoming) tensor contraction can be categorized
into one of four local reuse patterns (Fig.4 shows an example):
o twoRepeatedSame: Both tensors in this pair already exist
in the current memory of the same GPUs. Al and A2
already exist in the memory of GPU 0 when the new tensor
pair (with A1 and A2) comes.
twoRepeatedDif f: Two tensors exist in the current mem-
ory of different GPUs. B1 and B2 already exist on GPU 0
and 1, respectively.
oneRepeated: One tensor of this tensor pair exists in current
GPU memory. C'1 presents in GPU 0.
twoN ew: Neither of them exist in current GPUs’ memory.
D1 and D2 are two new tensors.
Based on this local reuse pattern classification, Fig.4 also
demonstrates and analyzes the cost of seven typical task
assignments/mappings>: Mapping (1) assigns both tensors to
the GPU that stores Al and A2, previously. Mappings (2)

2The costs of other mappings that are not shown in this figure have been
covered by these cases.

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Description of Reuse Bounds. Reuse bounds
manage different tensor pairs and mappings, representing the
allowed level of load imbalance.

Name [Tensor Pairs [Mappings |
Reuse_bound_1 TwoRepeatedSame (1)
Reuse_bound_2 | TwoRepeatedDif f,OneRepeated 2) (3)
Reuse_bound_3 TwoN ew 4)-(7)

and (3) assign only one reused tensor in the tensor pair to the
GPU with this tensor before, producing one memory allocation
and one memory communication. Mappings (4) - (7) incur the
most expensive cost: two memory allocations and two memory
communications.

Remarks: Although it is challenging to find the global
optimal scheduling scheme, it is possible to create a local
optimal one with our insights on the local reuse patterns and
mapping study aforementioned, particularly by designing a
heuristic approach (introduced in Section IV). This approach
has demonstrated its high efficacy in our evaluation.

2) The Impact of Reuse Bounds on the Trade-off: Another
key factor that impacts the data reuse-load balance trade-off is
the level of allowed load imbalance, i.e., the scheduler allows
a certain level of load imbalance to leverage the potential data
reuse. This work defines this factor as a special term called
reuse bound. For example, assume assigning eight tensors to
two GPUs. If the reuse bound is zero, each GPU must receive
four tensors (i.e., with a perfect load balance). If the reuse
bound is two, each GPU can receive up to six tensors, i.e.,
each GPU allows to exceed the average allocation by two.

Considering the tensor pairs with different local reuse
patterns and mappings impact the schedule differently (e.g.,
a tensor pair with twoRepeatedSame and mapping type (1)
brings more data reuse benefits while others bring less), this
work specifically maintains three reuse bounds according to
the local reuse patterns and mappings of incoming tensor pairs.
Table II explains these reuse bounds in detail.

Besides local reuse patterns (and mappings), multiple data
characteristics also influence the setting of reuse bounds. Ta-
ble I characterizes them in detail, particularly specifying their
performance impact on either computation and/or memory
operations. Because of these factors, it is challenging to set a
uniform set of reuse bound values. An auto-tuning or machine
learning approach is desired for finding reuse bound values.

To further support the above claim, this work leverages
Spearman’s rank correlation coefficient [22], a widely used ap-
proach to explore the relationships among data characteristics,
three reuse bounds, and performance. The Spearman correla-
tion unveils the correlation (whether linear or not) between
two variables. All seven factors have positive impacts on the
GFLOPS, as shown in Fig.5. Data Distribution and Repeated
Rate benefit data reuse to improve the GFLOPS. Larger Vector
Size and Tensor Size bring more kernel computations, resulting
in higher GFLOPS. Reuse bounds represent better data reuse
and workload unbalance. The positive coefficients of reuse
bounds illustrate that data reuse is slightly more important than
workload balance. Data Distribution and Repeated Rate have

139

1.0

Distribution 0 0.18 | 0.27 | 0.17 | 0.13 | 0.088 | 0.58 [
0.8
Vector size4 0 0 [GEl -0.58 -0 0.17
-0.6
Repeated Rate - 0.18 0 0 0.68 | 0.51 | 0.065 -0.4
Tensor size 4 0.27 | 0.63 -0.28 -0.25 | 0.69 -0.2
Reuse_bound_1 - 0.17 0.58 0 -0.28 0.62 | 0.39 | 0.14 -0.0
Reuse_bound_2 4 0.13 [&0 0.68 0.62 0.51 | 0.11 -=0.2
Reuse_bound_3 4 0.088 051 | -0.25 | 0.39 | 0.51 0.11 04
-0.6
GFLOPS 4 0.58 | 0.17 |0.065 | 0.69 | 0.14 | 0.11 | 0.11 I
T T T T T T T
3O \1° ;e a® 4 ¥ 25%°
W o ? 3% o ® 00“6 o&\d 0\5‘\%5\«0
N e X" (e o o
oo N € @ s el
<! Q@Y e et

Fig. 5: Heatmap of the Spearman correlation coefficients.
The correlation coefficients are among data characteristics
(Data Distribution, Vector Size, Repeat Rate, and Tensor Size),
three reuse bounds, and GFLOPS.

positive coefficients with reuse bounds, due to the benefits
of data reuse. Vector Size and Tensor Size are sensitive with
workload imbalance, having negative coefficients with reuse
bounds.

Remarks: Reuse bounds are critical to trade-off data reuse
benefits and load imbalance costs; however, many factors
influence the setting of reuse bounds. This fact guides us to
design an approach to find the optimal reuse bounds efficiently
(e.g., our regression model in Section IV-C).

IV. MULTI-GPU SCHEDULING FRAMEWORK

This section introduces the design and optimization of our
multi-GPU scheduling framework, MICCO. MICCO’s design
focuses on these aspects: 1) exploring data reuse opportunities
for repeated tensors, 2) improving load balance to keep GPUs
busy, and 3) achieving optimal data reuse-load balance trade-
off with considerations of memory evictions.

A. System Overview

Fig. 6 shows an overview of MICCO that mainly consists of
two components: a heuristic scheduling algorithm, and a pre-
trained lightweight regression model. Fig. 6 also illustrates the
workflow that MICCO calculates many-body correlation func-
tions. In the first step, MICCO fetches input vectors from the
upstream module of a scientific application (e.g., Lattice QCD)
and feeds each vector to the pre-trained regression model (@).
In the second step, the pre-trained regression model prepares
for its online inference input (e.g., the data characteristics of
tensor pairs in a given vector), conducts an online inference,
and outputs a set of reuse bounds for this vector (@). Because
this regression model is small, this step is lightweight incurring
negligible overhead. In the third step, the heuristic scheduling
algorithm takes each tensor pair (@) in a given vector and the
associated reuse bounds to assign the related tensor contraction
(and its tensor pair) to a specific GPU. Particularly, the
heuristic scheduling algorithm toggles among three policies to
assign tensors: data-centric policy, computation-centric policy,
and memory-eviction-sensitive policy.

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

Vector

Pre-trained
1) Regression Model
| © Reuse Bounds
o | Heuristic Scheduling
Tensor Pair Algorithm

|
| [|
Data-centric Computation- Memory-eviction-
Policy centric Policy sensitive Policy

Fig. 6: System overview of MICCQO. Input data is tensors in
vectors. MICCO dynamically handles vectors and generates
GPU assignments for each vector. MICCO consists of a re-
gression model and a heuristic scheduling algorithm. MICCO
extracts data characteristics of each vector to the regression
model (@). The regression model generates optimal reuse
bounds (@). The heuristic algorithm classifies tensor pairs ()
and jointly manages three policies.

TABLE III: Definitions of Variables.

Variable Name Descriptions
Tensorl,Tensor2 Input tensor of one tensor pair
reuseBd A vector of three reuse bounds
tensorsG PU A pair between tensors and GPU
mapGPUTensor GPU-Tensor pairs mappings
mapGPUCom GPU-Computation cost mappings
mapGPUMem GPU-Memory cost mappings
numGPU The number of GPUs
numTensor The number of tensors
balanceNum [numTensor | numGPU]|
candiQueue A queue of candidate GPUs
GPUMaxzMemory | The maximal memory size of GPU

B. Heuristic Scheduling Algorithm

To trade-off data reuse and load balance, this heuristic al-
gorithm toggles among three scheduling policies. Data-centric
policy emphasizes data reuse, and assigns tensors based on the
aforementioned tensor pair local reuse pattern classification
and mapping strategy. Computation-centric policy emphasizes
workload balance, and ensures each GPU handles the identi-
cal number of tensor pairs. Memory-eviction-sensitive policy
emphasizes reducing memory cost to avoid evictions.

As claimed in Sec. III, data reuse is the principal factor
to alleviate expensive memory operations, thus benefiting
the data-intensive nature of many-body correlation functions.
Therefore, the data-centric policy first dominates MICCO’s
scheduling to find available GPUs that hold the incoming
tensors already, and then MICCO stores these GPUs’ IDs
in a queue (candiQueue). To decide if a GPU is available,
MICCO compares a GPU’s computing utilization with the
reuse bounds from the regression model, i.e., if assigning the
incoming pair to a given GPU results in severe load imbalance,
this GPU is unavailable. Next, the computation-centric policy
dominates MICCO’s scheduling to select the GPU with least
computation from candiQueue to further balance workload.
If the former scheduling causes any oversubscription of a
GPU in candiQueue, the memory-eviction-sensitive policy
kicks in to select the GPU with the most available memory in
candiQueue to avoid data evictions.

Alg.1 illustrates the designed heuristic scheduling algorithm

140

Algorithm 1: Heuristic Scheduling Algorithm

Input: Tensor T'ensorl, Tensor2, Vector reuseBd, Map
mapGPUTensor, mapGPUCom, mapGPUMem,
Integer balance Num

Output: A pair tensorsGPU

Initialize candiQueue;

GPUsofTensorl = mapGPUTensor.find(Tensorl);

GPUsofTensor2 = mapGPUTensor. find(Tensor2);

if (GPUsofTensorl N GPUsofTensor2) # NULL then

for itl : GPUsofTensorl do

if it1 € GPUsofTensor2 N

mapGPUTensor.at(itl).size() <
reuseBd[0] 4+ balanceNum then

7 L Add itl to candiQueue;

E I N

8 if candiQueue = NULL N (GPUsofTensorl #
NULLUGPUsofTensor2 # NULL) then
9 for itl : GPUsofTensorl do
if mapGPUTensor.at(itl).size() <
reuseBd[1] 4+ balance Num then
| Add itl to candiQueue;

for it2 : GPUsofTensor2 do

if mapGPUTensor.at(it2).size() <
reuseBd[1] + balance Num then
L Add it2 to candiQueue;

if candiQueue = NULL then

for it = 1;it < numGPU;it + + do

if mapGPUTensor.at(it).size() <
reuseBd|[2] + balanceNum then
L Add it to candiQueue;

15

17

18

19
20
21

Call Alg.2 to determine tensorsGPU;
Update mapG PUT ensor, mapGPUCom, mapGPUMem,;
return tensorsGPU;

that processes tensor pairs one after another. Alg.2 shows the

generation of an assignment between a tensor pair and a GPU

by designed scheduling policies. Tab. III explains the variables
in both algorithms. The heuristic algorithm is greedy with

O(n2) time complexity, where n is the number of tensor pairs.

The outer n loop is to traverse all tensor pairs, while the inner

n loop is to check previous tensor pairs in mapG PUT ensor.

The main steps of this algorithm are clarified as follows:

o Step-I: Alg.1 figures out the local reuse pattern of an
incoming tensor pair by checking mapGPUTensor (line
2-3). If the pair belongs to twoRepeatedSame (line 4),
Alg.1 finds all available GPUs that hold this pair already
and puts their IDs in candiQueue (line 5-7).

o Step-II. If the twoRepeatedSame pair cannot find any
available GPUs or the pair belongs to twoRepeatedDif f
or oneRepeated (line 8), Alg.1 fills in candiQueue with
the available GPUs containing one tensor of the pair (line 9-
14). Otherwise, Alg.1 fills in candiQueue with all available
GPUs (line 15-18).

o Step-III: Alg.2 monitors memory cost and recognizes mem-
ory oversubscription (line 3-5). If no memory eviction
occurs (line 6), Alg.2 selects the GPU with the least compu-
tation from the candiQueue (line 7-11). If memory eviction
appears, Alg.2 selects the GPU with the most memory
capacity from the candiQueue (line 12-17).

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

o Step-IV: Alg.2 creates a tensor assignment (tensorGPU)
by combining the selected GPU ID with this tensor pair
(line 18), and passes it to Alg.1 (line 19). Alg.1 dynamically
updates mapGPUTensor after handling each tensor pair
(line 20).

Algorithm 2: Tensor Assignment Algorithm

Input: Map mapGPUCom, mapGPUMem,
mapGPUTensor, Vector candiQueue, Tensor T'ensorl,
Tensor2, Integer GPU MaxMemory

Output: A pair tensorsGPU

Initialize vector G PU Select, Integer GPUID, Bool evictFlag;

Integer candidate Num = candiQueue.size();

for id = 1;id < candidate Num;id + + do

if mapGPU Mem.at(id).size() > GPUMaxMemory then

L evictFlag = TRUE;

moR W N =

6 if evictFlag # TRUE then
7 GPUSelect.add(min (mapGPUC om.at(id).size(),
id € candiQueue));
8 if GPU Select.size()>1 then
GPUID =random (min (mapGPU M em.at(id).size(),
L id € candiQueue));
else

L GPUID = GPU Select.at(0);

else
GPU Select.add (min (mapGPU Mem.at (id).size(),
id € candiQueue));
if GPU Select.size()>1 then
GPUID =random(min (mapGPUCom.at(id).size(),
L id € candiQueue));
else

L GPUID = GPU Select.at(0);

tensorsGPU = make_pair (T'ensorl, Tensor2, GPUID);
return tensorsGPU,;

C. Regression Model

To determine the optimal setting of the three reuse bounds,
MICCO builds a regression model to explore the correlation
between data characteristics and reuse bounds. Input (feature
variables) is data characteristics and output (response labels)
is optimal reuse bound setting. Data characteristics include
vector size, tensor size, data distribution, and repeated rate.
Vector size and tensor size are given variables by input data.
Data distribution is judged to be uniform or biased. Repeated
rate is calculated dynamically for each vector. The regression
model is offline trained once in the beginning. In offline
training, the total data size is 300, 20% of which is test data
to evaluate the prediction. For each set of feature variables,
we measure GFLOPS of all possible values of reuse bounds
and set the optimal reuse bounds to be the response labels.
Reuse bounds range from 0 to numTensor — balanceNum
(i.e., assigning all data to one GPU). During online schedul-
ing, MICCO extracts data characteristics of each vector and
executes the inference of the pre-trained regression model to
generate optimal reuse bound values.

Tab. IV compares the precision of three regression mod-
els [21], including Linear Regression, Gradient Boosting, and
Random Forest. R? Score [17] is a well-known statistical

141

TABLE IV: R? Score of Regression Models

RandomForest
0.95

Linear Regresston
0.57

GradientBoosting
0.91

metric to measure the regression predicting quality. R? Score
is closer to 1, the regression model is more accurate. The
results in Tab. IV illustrate that the correlation among data
characteristics, reuse bounds, and GFLOPS is non-linear. It is
also difficult to predict the optimal reuse bound setting by a
policy-based approach. Thus, building a non-linear regression
model is necessary. MICCO selects Random Forest [23] as its
regression model because of its high accuracy (95%). Here are
more details about this model: the learning rate of Gradient
Boosting and Random Forest is 0.1, the number of boosting
stages in Gradient Boosting is 150, and the number of trees
in Random Forest is 150.

V. EVALUATION

This section aims to evaluate MICCO, particularly with the
following objectives: (1) proving MICCO outperforms state-
of-art schedulers with varied vector sizes and data repeated
rates for both uniform and non-uniform data distributions;
(2) exploring the impact of reuse bounds and demonstrating
MICCO obtains stable improvements with varied numbers of
GPUs (scalability), tensor size, and memory oversubscription
rate; (3) showing that MICCO can be integrated into a real-
world system, Redstar [6], [7], [8], and yields obvious benefits
on real problem sizes and datasets.

A. Experiment Setup

Platforms. MICCO is evaluated on eight AMD MI100
GPUs, each with 32G GPU memory?>. The compiler is Rocm-
4.3.0 based on clang 13.0.0. These GPUs are connected to an
AMD EPYC 7502 32-Core CPU Processor.

Baseline and optimized versions. This evaluation com-
pares MICCO with a state-of-art work, Groute [4], a popular
and efficient multi-GPU scheduling framework. Groute as-
signs jobs and associated data on the earliest available device
to achieve good load balance similar to many other frame-
works [16], [9] Two versions of MICCO are evaluated includ-
ing MICCO-naive and MICCO-optimal. MICCO-naive
does not benefit from reuse bounds (by setting these values
as zero) while MICCO-optimal leverages reuse bounds
produced from the regression model.

Evaluation setups. Our experiments extensively evaluate
MICCO by changing multiple data characteristics including
vector size, repeated rate, tensor size, and memory oversub-
scription rate. MICCO is also evaluated with varied numbers
of GPUs for scalability. To evaluate the impact of data distri-
bution, our experiments synthesize both unbiased and biased
datasets. The selection of repeated data from the previous data
follows two distributions: Uniform and Gaussian.

3 Although MICCO is evaluated on the latest AMD GPUs, it can also run
on other GPUs like other generations of AMD GPUs and NVIDIA GPUs
because its design is general, and not bound with specific GPU hardware
implementations.

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

(a) Repeated Rate=25%, Uniform

(b) Repeated Rate=50%, Uniform
5000

5000 * — 1 1.40
14 * speedup
4000 4 ’ 4000 + F1.38
|

£ 1 % S ¥ 3000 B 136 3
§ 3000 138 § E
ko []
%5 20004 == Groute | & & 2000 134 &

10004 =] MICCO—nalye F1.2 1000 4 L1.32

=1 MICCO-optimal
| r1.30

l_l' I IJ_I I_lll_l L
8 16 32
Vector Size

(e) Repeated Rate=25%, Gaussian

4000
H_H

8

0 T 0 T T

64 8 S
Vector Size
(f) Repeated Rate=50%, Gaussian
-

64

2.2 12500 4

i

Vector Size

[P

3000 - 10000 -

N

7500 L6

2000

GFLOPS
Speedup
GFLOPS

5000 15

1000 1 2500 4

0

1.4

1% -
64

16 32
Vector Size

8

Speedup

GFLOPS

GFLOPS

(c) Repeated Rate=75%, Uniform
12500 * F1.825

(d) Repeated Rate=100%, Uniform
— 2.1

10000 - r 1.800 6000

0

k2.0
[=%
7500 4 FL7758 & 000 2
[*] ¢z H * 1.9 &
5000 F1750 & 5 a
2000
2500 & F1.725 l1s
T L T T T r1.700 Li T T
32 64 2 64

16
Vector Size
ted Rate=100%, Gaussian

o
"H
16 32
Vector Size

8 16
Vector Size

(g) Repeated Rate=75%, Gaussian

il

8 16 32 64
Vector Size

10000 -
8000
6000
4000
2000

0

1.8

rle

i

Speedup

rl.4

8

Fig. 7: Overall Performance. Two distributions: Uniform (a)-(d) and Gaussian (e)-(h). Blue stars denote speedup of MICCO-
optimal / Groute. Repeated rate varies from 25% to 100%. Vector size varies from 8 to 64. Tensor size is 384. The utilized

GPU number is eight.

TABLE V: Execution Time (ms). Tensor size is 384. Vector
size is 64. Repeated rate is 50%. Sum of 10 vectors.

Distribution | Scheduling Overhead | Total Time
Uniform 8.27 4925.73
Gaussian 8.52 1550.88

Real-world system and datasets. To further validate the
practical performance, MICCO* is also integrated into Redstar
and evaluated on three real-world correlation functions.

B. Overall Performance Evaluation

Fig.7 illustrates the overall performance improvements by
comparing MICCO with Groute in two distributions: Uni-
form and Gaussian. We measure four vector sizes from 8§ to
64, and the tensor size is 384. The speedup of MICCO over
Groute is also shown in Fig.11, labeled as blue stars.

Experiment results demonstrate that MICCO outperforms
Groute in all cases, achieving up to 2.25x speedup. Fig.7
(a)-(d) show throughput in Uniform distribution. The optimal
version of MICCO (MICCO-optimal) is able to achieve
1.57x geometric mean speedup than Groute. Fig.7 (e)-(h)
show throughput in Gaussian distribution, and the geomet-
ric mean speedup is 1.65x than Groute. Compared with
MICCO-naive, MICCO-optimal achieves up to 1.89x
speedup. These results show the great benefits of MICCO’s
heuristic scheduling algorithm and regression model.

One interesting observation is growing repeated rate cannot
keep improving performance, further validating the trade-off
between data reuse and load balance. The best performance
appears with 75% repeated rate in Uniform, and 50% repeated
rate in Gaussian. Please note that repeated rate describes initial
characteristics of input data rather than real reused data in
calculations. Considering load balance, some repeated data
has to be assigned to new GPUs for the optimal performance
according to our heuristic scheduling, so improving repeated
rate does not necessarily mean more data reuse.

“https://github.com/JeffersonLab/hadron.

142

When comparing data distributions, the following two ob-
servations also support that data reuse and load balance jointly
impact the performance. One is that to reach the best through-
put, the repeated rate of Uniform is higher than Gaussian. This
is because biased distribution (like Gaussian that determines
the selection of repeated data) leads to more load imbalance
than Uniform distribution, and this load imbalance particularly
increases with the growth of biased degree. Another observa-
tion is that a larger vector size may degrade the performance of
Gaussian (as shown in Fig.7 (g) and (h)). This is because the
increasing vector size and large repeated rate (more than 50%)
produce many biased repeated data and cause increasingly
severe load imbalance.

Tab.V demonstrates the extremely low scheduling over-
head of MICCO (MICCO-optimal), particularly compared
with the total executing time (5.4%o and 1.6%o).

C. Performance analysis

This section further studies MICCO’s performance from
multiple aspects. Please notice that MICCO in this section
denotes MICCO-optimal.

Exploring the impacts of reuse bounds. Fig.8 shows the
impact of changing reuse bounds on the performance. The
experiments include three cases: Case (1) vector size = 64,
repeated rate = 50%; Case (2) vector size 16, repeated
rate = 25%; Case (3) vector size = 32, repeated rate = 75%.
This work measures thirteen values of three reuse bounds.
The reuse bound values of the best performance vary when
changing vector size, repeated rate, and data distribution. In
Case (1) of Fig.8 (a), the best performance is 9753 GFLOPS
with (0,2,0), but in Case (3) of Fig.8 (b), the best performance
is 5869 GFLOPS with (0,2,2). The evaluation results explicitly
show that multiple data characteristics influence data reuse-
load balance trade-off and the optimal values of reuse bounds,
which are hard to predict by a policy-based approach or
linear regression. This observation is consistent with Tab. IV,

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

) Gaussian

rmm

\QQ"L \,“\ x"\ \,”D 'L°\ 1”\ 11\ 0"\ 0"\01\ A&

10000 A

5000

GFLOPS

o

\0“ O
Reuse Bound Values

(b) Uniform

FHInﬂHM

6000
4000
): 64 50%

1 Case (

[Case (2) 16 25%

1 Case (3): 32 75%
0 L

2000
N x\ ”D a\ \,\ 1\ 0\ \,\ 1\ OV o8 o) . N
m“ R R R R A S R N L RS

GFLOPS

Reuse Bound Values

Fig. 8: Impact of Reuse Bounds. Case (1) vector size = 64,
repeated rate = 50%; Case (2) vector size = 16, repeated rate
=25%; Case (3) vector size = 32, repeated rate = 75%; Tensor
size is 384. 13 sets of three reuse bounds are measured, and
the ranging from 0 to 2.

(a) Scalability (Gaussian) (b) Scalability (Uniform)

12500 1 @ Groute
=3 MIcco

[Groute
=3 MICCo

10000

7500

GFLOPS

5000

2500

1 2 4 8 1 2 4 8
Number of GPU Number of GPU

Fig. 9: Scalability. Tensor size is 384. Vector size is 64.

and further supports the necessity of building a non-linear
regression model to generate optimal reuse bounds.

Exploring scalability. This work compares MICCO with
Groute and changes the number of GPUs from 1 to 8 in Uni-
form and Gaussian distributions. As shown in Fig.9, MICCO
outperforms Groute, achieving up to 1.96x speedup. One
observation is the slow growth of GFLOPS with an increasing
number of GPUs. e.g., GFLOPS increases from 7877 GFLOPS
on 1 GPU, to 13043 GFLOPS on 8 GPUs in Fig.9 (a).
One reason is when computing small tensors (tensor size is
384), memory operation impacts more than computation on
GFLOPS. Another reason is more GPUs bring more compu-
tation capacity but make data reuse harder. One GPU can reuse
all repeated tensors, while multiple GPUs cannot achieve full
data reuse concerning load balance. The speedup improves
from 1.18 x on 2 GPUs to 1.68 x on 8§ GPUs, showing MICCO
yields great benefits on leveraging data reuse and reducing
memory operations.

Exploring the impact of tensor size. This work com-
pares Groute and MICCO with varying tensor sizes in-
cluding 128, 256, 384, 768 in two distributions. As shown
in Fig.10, MICCO outperforms Groute, achieving speedup
from 1.35x to 1.92x. The performance is sensitive to the
tensor size, which determines the kernel computation cost.
Overall, MICCO obtains better performance than Groute in

143

(a) Performance (Gaussian) (b) Performance (Uniform)

250001 mam Groute

=3 MIicco

[Groute

100009 = micco

20000 1
8000 1

15000 6000

GFLOPS
GFLOPS

10000 4 4000 4

20001

o

128

256 384
Tensor Size

768

128

256 384
Tensor Size

768

Fig. 10: Impact of Tensor Size. Tensor size varies from 128
to 768. Vector size is 64. Repeated rate is 50%.

(a) Performance (Gaussian) (b) Performance (Uniform)

2500

[Groute
@ Micco

1500
2000

1000 1500

GFLOPS
GFLOPS

1000
500
500

125%
Oversubsribed Rate

150% 200% 125% 150%

Oversubsribed Rate

200%

Fig. 11: Memory Oversubscription. Oversubscription rate
increases from 125% to 200%. Vector size is 64. Tensor size
is 384. Repeated rate is 50%.

all cases as tensor size varies.

Exploring memory oversubscription. The experiments mea-
sure two data distributions when vector size is 64, tensor size
is 384, and the repeated rate is 50%. MICCO achieves a
speedup up to 1.9x over Groute. The GFLOPS decreases
with the increasing memory oversubscription. For instance,
GFLOPS decreases from 1841 to 1224 in Gaussian and 2663
to 1194 in Uniform as the subscription rate increases from
125% to 200%. This observation shows that the performance
is sensitive to memory evictions. The geometric mean speedup
of MICCO over Groute is 1.4x in Gaussian and 1.2x in
Uniform. Memory evictions have slightly more impacts on
Uniform than Gaussian distribution.

D. Case Study: Real-world Datasets in Redstar System

TABLE VI: Real Many-body Correlation Functions. Total
memory represents the total device memory about input and
intermediate output data. *Speedup’ is based on the Groute.

Function Tensor Size | Memory Cost | Speedup
al_rhopi 128 56.05G 1.49x
£0d2 256 4645.12G 1.41x
£0d4 256 4064.48G 1.36x

In order to evaluate practical scenarios, this work measures
three real physics correlation functions in the Redstar system.
The correlation functions are al_rhopi in a; system, and
£0d2 and £0d4 in fy system. All of them belong to meson
systems and consist of two-particle and single-particle con-
structions. Their tensor size and total device memory cost are
shown in Tab. VI. The memory cost is the sum of sixteen time
slices, including initial input data and intermediate output data.
The utilized number of GPUs is eight. Vector size, repeated
rate, and data distribution vary dynamically. Compared with
Groute, the speedup achieves up to 1.49x. The experiment
results demonstrate the practical significance of MICCO.

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

VI. RELATED WORKS

Recently, many multi-GPU scheduling frameworks have
been developed to support different types of applications [10],
[14], [4], [12], [15], [19], [35], [34], [31], [30], [32]. The
efforts closely related to this work include some general data-
aware multi-GPU schedulers, graph processing schedulers,
schedulers that support other irregular computations, streaming
task schedulers aiming to process a sequence of computation
kernels, and schedulers for machine learning models [33].
General data-aware Multi-GPU schedulers Although the
current general data-aware GPU schedulers (as [3], [11], [27])
that consider data locality have shown efficacy on many ap-
plications based on large matrices (e.g., Matrix Multiplication,
LU, etc.), it is not easy to directly apply them to our applica-
tion due to multiple unique features of many-body correlation
calculations. Augonnet er al. [3] mainly focus on reducing
transfer latency and overlapping with kernel computation,
while reducing data movement counts brings more significant
performance gains for our application because of the large
number of kernels (with reusable data). Gonthier et al. [11]
assume the knowledge of all tasks and dependencies, but our
application requires online scheduling for dynamic graphs.
This work also mainly focuses on single-GPU scheduling.
Teodoro et al. [27] mainly focus on optimizing CPU-GPU
transfers instead of multi-GPUs.

Multi-GPU schedulers in graph applications and other
irregular applications. Many multi-GPU graph processing
schedulers [4], [9], [16] adopt greedy-based strategies that
assign jobs to the earliest available devices and mainly con-
sider workload balance. Ben et al. [4] present an asynchronous
and runtime multi-GPU programming model for graph and
irregular applications. Chen et al. [9] propose a task-based dy-
namic load-balancing solution for both single- and multi-GPU
systems. These efforts mainly focus on optimizing workload
balance to improve the GPU utilization without considering
data reusability and the interplay between load balance and
data reusability. More close to our work, Kim et al. [18]
develop CODA that enables co-placement of compute and data
for fine-grained interleaved memory with a low-cost method.
Although this work takes data placement into account, it pays
more attention to data locations rather than reusing data.

Multi-GPU schedulers for streaming tasks and machine
learning models. Huynh ez al. [15] propose a code generation
framework mapping streaming applications onto a multi-GPU
system. Melot et al. [20] present a crown scheduling to
improve the efficiency of energy utilization. Udupa et al. [28]
propose an efficient technique to execute stream programs on
GPUs. These efforts do not consider data reuse-load balance
trade-off in terms of memory oversubscription as MICCO.
Many multi-GPU schedulers for machine learning workloads
have been proposed recently [35], [19], [12], [13]. Gandiva
[35] is a domain-specific scheduler, accelerating deep learning
models by packing jobs on multiple GPUs. CROSSBOW
[19] proposes a multi-GPU scheduler for deep learning with
small batch sizes. These efforts have different focuses and

144

do not study the trade-off of load balance and data reuse as
MICCO, either. Additionally, many works, e.g., Tiresias [12]
and Marble [13], apply preemptive scheduling approaches,
which are not suitable for this work, due to the heavy overhead
of suspending and resuming in many kernel computations.

VII. CONCLUSION AND FUTURE WORK

This work presents MICCO, a multi-GPU scheduling frame-
work to accelerate calculating many-body correlation func-
tions, integrated in a real-world Lattice QCD system, Redstar
system. This work extensively studies the data reuse-load
balance interplay, and further brings up local reuse pattern
and reuse bounds. MICCO proposes a heuristic scheduling
algorithm toggling data reuse and load balance regarding
memory oversubscription. Moreover, MICCO builds a regres-
sion model to predict optimal reuse bounds. In evaluation,
MICCO achieves up to 2.25x speedup in synthesized datasets
and 1.49x speedup in real correlation functions. In the future,
we plan to extend the design of MICCO to a multi-node cluster
with GPUs and implement it on an NVIDIA GPU cluster
upon the availability of these devices. Additionally, we are
exploring further optimizations on both intra-node and inter-
node communications, including asynchronous data copy and
prefetching data.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for making innumerable helpful suggestions and comments.
This work is partially supported by the NSF award CCF-
2047516 (CAREER), and the US Department Of Energy,
Office of Science, Offices of Nuclear Physics and Advanced
Scientific Computing Research, through the SciDAC program
under contract DE-AC05-060R23177 under which JSA LLC
operates and manages Jefferson Lab, and under the 17-SC-20-
SC Exascale Computing Project.

REFERENCES
[1

—

Ahmad Al Badawi, Bharadwaj Veeravalli, Jie Lin, Nan Xiao, Matsumura
Kazuaki, and Aung Khin Mi Mi. Multi-gpu design and performance
evaluation of homomorphic encryption on gpu clusters. TPDS, 2020.
Y Aoki, T Blum, N Christ, C Dawson, K Hashimoto, T Izubuchi,
JW Laiho, L Levkova, M Lin, R Mawhinney, et al. Lattice qcd with two
dynamical flavors of domain wall fermions. Physical Review D, 2005.
Cédric Augonnet, Jérome Clet-Ortega, Samuel Thibault, and Raymond
Namyst. Data-aware task scheduling on multi-accelerator based plat-
forms. In 2010 IEEE 16th International Conference on Parallel and
Distributed Systems, pages 291-298. IEEE, 2010.

Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali.
Groute: An asynchronous multi-gpu programming model for irregular
computations. ACM SIGPLAN Notices, 2017.

Evan Berkowitz, Thorsten Kurth, Amy Nicholson, Bdlint Jo6, Enrico
Rinaldi, Mark Strother, Pavlos M Vranas, and André Walker-Loud. Two-
nucleon higher partial-wave scattering from lattice qcd. Physics Letters
B, 2017.

Jie Chen, Robert Edwards, and Frank Winter. Graph-based contractions
with optimal evaluation strategies. ADSEO03-LatticeQCD Application
Strategy WBS 1.2.1.03, (Milestone ADSE03-7), 2017.

Jie Chen, Robert Edwards, and Frank Winter. Performance enhance-
ment to the graph-based contraction calculations. ADSEO03-LatticeQCD
Application Strategy WBS 1.2.1.03, (Milestone ADSE03-7), 2018.

Jie Chen, Robert Edwards, and Frank Winter. Enabling graph based con-
traction calculations for multi-nucleon systems. ADSEO03-LatticeQCD
Application Strategy WBS 1.2.1.03, (Milestone ADSE03-14), 2019.

[2

=
&

[6

[7

—

[8

—

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

(91

[10]

[11]

[12

[13

[14]

(15

[16

[17]

[18]

[19]

[20]

[21

[22
[23]

[31]

Long Chen, Oreste Villa, Sriram Krishnamoorthy, and Guang R Gao.
Dynamic load balancing on single-and multi-gpu systems. In IPDPS.
IEEE, 2010.

Trilce Estrada, David A Flores, Michela Taufer, Patricia J Teller, Andre
Kerstens, and David P Anderson. The effectiveness of threshold-based
scheduling policies in boinc projects. In e-Science’06. IEEE, 2006.
Maxime Gonthier, Loris Marchal, and Samuel Thibault. Locality-Aware
Scheduling of Independant Tasks for Runtime Systems. PhD thesis, Inria,
2021.

Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Honggiang Liu, and Chuanxiong Guo. Tiresias:
A {GPU} cluster manager for distributed deep learning. In {NSDI},
pages 485-500, 2019.

Jingoo Han, M Mustafa Rafique, Luna Xu, Ali R Butt, Seung-Hwan
Lim, and Sudharshan S Vazhkudai. Marble: A multi-gpu aware job
scheduler for deep learning on hpc systems. In CCGRID. 1IEEE, 2020.
Stephen Herbein, Dong H Ahn, Don Lipari, Thomas RW Scogland,
Marc Stearman, Mark Grondona, Jim Garlick, Becky Springmeyer, and
Michela Taufer. Scalable i/o-aware job scheduling for burst buffer
enabled hpc clusters. In HPDC, 2016.

Huynh Phung Huynh, Andrei Hagiescu, Weng-Fai Wong, and Rick
Siow Mong Goh. Scalable framework for mapping streaming appli-
cations onto multi-gpu systems. In PPoPP, 2012.

Zhihao Jia, Yongkee Kwon, Galen Shipman, Pat McCormick, Mattan
Erez, and Alex Aiken. A distributed multi-gpu system for fast graph
processing. Proceedings of the VLDB Endowment, 11(3):297-310, 2017.
Michael I Jordan and Tom M Mitchell. Machine learning: Trends,
perspectives, and prospects. Science, 2015.

Hyojong Kim, Ramyad Hadidi, Lifeng Nai, Hyesoon Kim, Nuwan
Jayasena, Yasuko Eckert, Onur Kayiran, and Gabriel Loh. Coda:
Enabling co-location of computation and data for multiple gpu systems.
ACM TACO, 2018.

Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo
Mai, Paolo Costa, and Peter Pietzuch. Crossbow: scaling deep learn-
ing with small batch sizes on multi-gpu servers. arXiv preprint
arXiv:1901.02244, 2019.

Nicolas Melot, Christoph Kessler, Jorg Keller, and Patrick Eitschberger.
Fast crown scheduling heuristics for energy-efficient mapping and scal-
ing of moldable streaming tasks on manycore systems. ACM TACO,
2015.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Founda-
tions of machine learning. MIT press, 2018.

Philip Sedgwick. Spearman’s rank correlation coefficient. Bmj, 2014.
Tao Shi and Steve Horvath. Unsupervised learning with random forest
predictors. Journal of Computational and Graphical Statistics, 2006.
Qiong Wu, Adam Hare, Sirui Wang, Yuwei Tu, Zhenming Liu, Christo-
pher G Brinton, and Yanhua Li. Bats: A spectral biclustering approach

145

[24]

[25]

[26]

27

[28]

[29]

[30]

[32]

[33]

[34]

[35]

Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil
Nagarkar, Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna.
Goffish: A sub-graph centric framework for large-scale graph analytics.
In Euro-Par. Springer, 2014.

Markus Steinberger, Michael Kenzel, Pedro Boechat, Bernhard Kerbl,
Mark Dokter, and Dieter Schmalstieg. Whippletree: Task-based schedul-
ing of dynamic workloads on the gpu. TOG, 2014.

SN Syritsyn, JD Bratt, MF Lin, HB Meyer, JW Negele, AV Pochinsky,
M Procura, M Engelhardt, Ph Hégler, TR Hemmert, et al. Nucleon
electromagnetic form factors from lattice qcd using 2+ 1 flavor domain
wall fermions on fine lattices and chiral perturbation theory. Physical
Review D, 2010.

George Teodoro, Tony Pan, Tahsin M Kurc, Jun Kong, Lee AD Cooper,
Norbert Podhorszki, Scott Klasky, and Joel H Saltz. High-throughput
analysis of large microscopy image datasets on cpu-gpu cluster plat-
forms. In 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing, pages 103-114. IEEE, 2013.

Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil.
Software pipelined execution of stream programs on gpus. In CGO.
IEEE, 2009.

Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy
Riffel, and John D Owens. Gunrock: A high-performance graph
processing library on the gpu. In PPoPP, 2016.

Qiong Wu, G. Brinton Christopher, Zhang Zheng, Pizzoferrato Andrea,
LIU Zhenming, and Cucuringu Mihai. Equity2vec: End-to-end deep
learning framework for cross-sectional asset pricing. International
Conference on Al in Finance, 2021.

to single document topic modeling and segmentation. ACM Transactions
on Intelligent Systems and Technology, 2021.

Qiong Wu, Wen-Ling Hsu, Tan Xu, Zhenming Liu, George Ma, Guy
Jacobson, and Shuai Zhao. Speaking with actions-learning customer
journey behavior. In 2019 IEEE 13th International Conference on
Semantic Computing (ICSC), pages 279-286. IEEE, 2019.

Qiong Wu and Zhenming Liu. Rosella: A self-driving distributed
scheduler for heterogeneous clusters. International Conference on
Mobility, Sensing and Networking (MSN), 2021.

Qiong Wu, Felix M Wong, Yanhua Li, Zhenming Liu, and Varun
Kanade. Adaptive reduced rank regression. Advances in Neural
Information Processing Systems, 33:4103—4114, 2020.

Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. Gandiva: Introspective cluster
scheduling for deep learning. In {OSDI}, pages 595-610, 2018.

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 03:52:13 UTC from IEEE Xplore. Restrictions apply.

