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Abstract—Alternating Least Square (ALS) is a classic algo-
rithm to solve matrix factorization widely used in recommen-
dation systems. Existing efforts focus on parallelizing ALS on
multi-/many-core platforms to handle large datasets. Recently, an
optimized ALS variant called eALS was proposed, and it yields
significantly lower time complexity and higher recommending
accuracy than ALS. However, it is challenging to parallelize
eALS on modern parallel architectures (e.g., CPUs and GPUs)
because: 1) eALS’ data dependence prevents it from fine-grained
parallel execution, thus eALS cannot fully utilize GPU’s massive
parallelism, 2) the sparsity of input data causes poor data locality
and unbalanced workload, and 3) its large memory usage cannot
fit into GPU’s limited on-device memory, particularly for real-
world large datasets.

This paper proposes an efficient CPU/GPU heterogeneous rec-
ommendation system based on fast eALS for the first time (called
HEALS) that consists of a set of system optimizations. HEALS
employs newly designed architecture-adaptive data formats to
achieve load balance and good data locality on CPU and GPU.
HEALS also presents a CPU/GPU collaboration model that can
explore both task parallelism and data parallelism. HEALS also
optimizes this collaboration model with data communication
overlapping and dynamic workload partition between CPU and
GPU. Moreover, HEALS is further enhanced by various parallel
techniques (e.g., loop unrolling, vectorization, and GPU parallel
reduction). Evaluation results show that HEALS outperforms
other state-of-the-art baselines in both performance and recom-
mendation quality. Particularly, HEALS achieves up to 5.75×
better performance than a state-of-the-art ALS GPU library.
This work also demonstrates the possibility of conducting fast
recommendations on large datasets with constrained (or relaxed)
hardware resources, e.g, a single CPU/GPU node.

I. INTRODUCTION

A recommendation system is a fundamental building block
of many real-world applications ranging from online shopping,
social networking, to short video sharing and media business,
etc [1], [2]. With rapidly increasing data volumes, exploiting
more efficient (and accurate) recommendation models has been
attracting attention from the fields of information retrieval,
machine learning, and high-performance computing fields [3],
[4] etc.

Matrix factorization and its variants [5]–[10] have been
widely studied and among the most prevalent approaches for
recommendation. In essence, the input data forms a sparse

matrix whose elements either represent ratings (explicit), or
implicit feedback from users (such as click or add-cart). The
goal of the factorization aims to produce two (dense) matrices,
a user matrix and an item matrix, whose product can be
used to recover the sparse matrix. Especially, the missing
elements in the sparse matrix can be then approximated by
the multiplication between the user and item matrices. We can
then recommend the top-rated missing items to each user.

There are different optimization methods for matrix-
factorization based recommendation, and among them, Alter-
nating Least Square (ALS) [11]–[13] is one of the state-of-
the-art methods due to its simplicity, ease of implementation,
and (recommendation) accuracy. It is also rather efficient if the
data is not very large. Intuitively, ALS will fix one matrix (for
instance, the user matrix), and then optimize the other matrix
(for instance, the item matrix); then we will fix the latter matrix
and optimize the first one. This alternating optimization will
perform iterative until it converges.

However, when the data size becomes larger (i.e., the num-
ber of users and the number of items), ALS also requires com-
putation efficiency and memory capacity. To efficiently train
large datasets [14], various ALS-based parallel recommen-
dation models are implemented on many-core architectures,
such as LIBMF [7] and CuMF libraries [8], [15]. To further
accelerate ALS algorithm, recently He’s work [9] proposes
an optimized ALS algorithm, fast element-wise Alternating
Least Square (eALS) algorithm and shows its outperforming
convergent speed (and recommendation accuracy) compared
with other MF-based recommendation models.

However, it is challenging to parallelize eALS on modern
parallel architectures like GPUs [16]: First, data dependence
in the fast eALS algorithm prevents it from fine-grained
workload partition, thus eALS cannot fully utilize GPU’s mas-
sive parallelism. Second, implicit information constitutes large
sparse matrices, resulting in poor data locality and workload
unbalance. Third, addressing large datasets is challenging for
GPUs with limited on-device memory.

Targeting these challenges, this work proposes a CPU/GPU
heterogeneous recommendation framework (HEALS) based
on implementing an efficient parallel fast eALS algorithm.
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Fig. 1. Problem Statement: Motivation, Challenges, and Optimizations.

HEALS employs a hybrid CPU/GPU collaboration model to
alleviate the impact of data dependence. HEALS accomplishes
not only data movement overlapping for distinct GPU kernels
but concurrent kernels between CPU and GPU as well. More-
over, HEALS reorganizes both sparse and dense matrices to
new architecture-adaptive formats to improve workload un-
balance and data locality. HEALS partitions data into several
chucks to handle large datasets. HEALS also leverages several
classic system techniques to further accelerate recommenda-
tion. The key contributions are summarized as follows:

• We propose a CPU/GPU heterogeneous recommendation
system, HEALS, based on an efficient parallel eALS-
based matrix factorization for the first time.

• We design an architecture-adaptive data format for GPU
and CPU to solve workload unbalance. Additionally,
HEALS unfolds and packs dense matrices for better data
locality.

• We present a hybrid CPU/GPU collaboration model in-
corporating data parallelism, task parallelism, and over-
lapped data transfer. It also adopts a data partition adjust-
ment approach to balance workload between concurrent
kernels.

• We apply crucial hardware-based accelerating techniques
to further accelerate kernel computation, including loop
transformation and GPU parallel reduction.

HEALS is extensively evaluated on four datasets by com-
paring with three other state-of-the-art works. To further
validate its prediction accuracy and recommendation quality,
HEALS is also evaluated on two metrics, Root Mean Square
Error (RMSE) and Normalized Discounted Cumulative Gain
(NDCG). Evaluation results demonstrate that HEALS out-
performs other ALS-based parallel libraries. Particularly, it
runs 5.75× faster than CuMF (a state-of-the-art GPU library),
and 15.7× faster than LIBMF (a state-of-the-art CPU li-
brary), respectively. HEALS also demonstrates the possibility
of performing fast recommendations on large datasets with
constrained (or relaxed) hardware resources.

II. PROBLEM STATEMENT

Fig. 1 illustrates the overview of the problem statement.
The overall motivation is to accelerate recommendations for
large datasets by designing a parallel fast eALS algorithm

with the help of the superior computing capability of a
heterogeneous CPU and GPU system. This section introduces
three prerequisites of this work, explains the corresponding
challenges, and summarizes some specific solutions. More
specifically, it analyzes three sub-topics: coarse-grained com-
putation, workload unbalance, and memory limitation.

A. Coarse-Grained Computation

As a variant of ALS, the sequential eALS algorithm [9]
offers a theoretical guarantee of low computation cost and
fast convergence, inspiring us to build our efficient parallel
recommendation system based on this state-of-the-art algo-
rithm. However, the original eALS algorithm leads to data
dependence, which limits the performance of parallelism. Part
of the kernel computation is prone to coarse-grained. More
specifically, the kernel computation consists of three loops, and
data dependence exists in the inner loops. We attempt to relax
this inner-loop dependence by unrolling the inner loop, but this
straightforward method significantly degrades the accuracy
because it violates the theoretical guarantee. Therefore, this
work focuses on utilizing a set of system optimizations to
alleviate the influence of data dependence. This work splits
the kernel computation into a CPU part and a GPU part and
designs a CPU/GPU collaborative processing model.

B. Workload Unbalance

Workload unbalance is another bottleneck when calculating
sparse matrices in eALS. The computation cost of different
rows may vary dramatically for sparse matrices, directly
leading to workload unbalance. A straightforward solution is
to designate different numbers of threads to compute different
rows; however, it will cause a significant overhead of threads
scheduling. It is also time-consuming to quantify the workload
of each row and decide which threads to use, especially for
large datasets. Comparing with the above approach, it is more
efficient to reorganize input data in advance. Thus, this work
designs new data formats and divides the original data into
groups with a more balanced workload. Threads are able
to directly deal with reorganized groups, without any extra
management in kernel computations.

C. Memory Limitation

Usually, large datasets cannot fit into the limited on-device
memory of a single GPU. Two possible ways to solve this
problem include scaling up to multiple GPUs and applying
a CPU/GPU heterogeneous design. CuMF [15] selects the
former to enlarge the whole memory size; however, it depends
on the availability of hardware. In contrast, this work designs
and implements a CPU/GPU concurrent execution model
to leverage the large host memory efficiently with relaxed
hardware requirements.

III. ALGORITHM ANALYSIS

Before discussing the parallel implementation, this section
explains the original eALS and its sequential implementation.
It mainly explains eALS’ theoretical definitions and analyzes
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TABLE I
SYMBOL DEFINITIONS

Name Definitions
R Sparse rating matrix
M Number of users
N Number of items
U Dense user matrix
V Dense item matrix
W Sparse weight matrix
K Number of factors
T Predicted training matrix
L Loss function
λ Parameter to control the regularization

its computation patterns. Tab. I illustrates the definitions of
symbols used in the following sections.

A. Fast eALS Algorithm

Fast eALS algorithm aims to solve matrix factorization.
Matrix factorization decomposes one matrix (usually a sparse
matrix, e.g., a user-item rating matrix) into the product of two
lower dimensional matrices (e.g., a user matrix and an item
matrix). According to the Tab. I, R ∈ RM×N , U ∈ RM×K ,
V ∈ RN×K . The matrix factorization can be defined as:

R = U × V T (1)

A loss function L calculates the loss value between the
predicted training matrix (T ) and the ground truth matrix (R).
Let r, u, and v represent elements of matrices R, U , and V .
The loss function is calculated as:

L =

M∑
i=1

N∑
j=1

wij(rij − r̂ij)2 + λ(

M∑
i=1

||ui||2 +
N∑

j=1

||vj ||2) (2)

To optimize the ALS algorithm, eALS (element-wise
ALS) [9] introduces two new attributes, the element-wise
learner and popularity-aware strategy. With this optimization,
eALS separates the rated and unrated elements in matrix R,
then assigns unrated elements a confidence value c. Here is
the optimized loss function L:

L =
∑
i,j∈R

wij(rij − r̂ij)2 +
M∑
i=1

∑
j /∈Ri

cj r̂ij)
2

+ λ(

M∑
i=1

||ui||2 +
N∑

j=1

||vj ||2)

(3)

The confidence c comes from the popularity fi that denotes
the popularity of item i. The definition of c is:

ci = c0
fi∑N
j=1fj

(4)

To minimize this loss function, we need to get the deviation
and compute the updating rules of matrices U and V . The
updating formulas of uif and vjf are defined as:

uif =

∑
j∈R[wijrij − (wij − cj)r̂fij ]vjf −

∑
k 6=f pik × svkf∑

j∈R(wij − ci)v2jf + svff + λ
(5)

vjf =

∑
i∈R[wijrij − (wij − cj)r̂fij ]uif − cj

∑
k 6=f pik × sukf∑

j∈R(wij − ci)u2
if + cj × suff + λ

(6)

Algorithm 1: Fast eALS Algorithm [9]
Input: R, W , c, K, λ
Output: Matrices U , V

1 Initialize U and V randomly;
2 for (i, j) ∈ R do
3 r̂ij = Eq.(1)

4 while Stopping criteria is not met do
5 // Update user factors;
6 Sv =

∑
i=1N civiv

T
i ;

7 for i = 1; i ≤M ; i++ do
8 for f = 1; f ≤ K; f ++ do
9 for j ∈ Ri do

10
ˆ
rfij = r̂ij − uifvjf

11 uif = Eq.(5);
12 for j ∈ Ri do
13

ˆ
rfij = r̂ij + uifvjf

14 // Update item factors;
15 Su = UT × U ;
16 for j = 1; j ≤M ; j ++ do
17 for f = 1; f ≤ K; f ++ do
18 for i ∈ Rj do
19

ˆ
rfij = r̂ij − uifvjf

20 vjf = Eq.(6);
21 for i ∈ Rj do
22

ˆ
rfij = r̂ij + uifvjf

23 return U and V ;

As shown in Alg. 1, kernel computation is to update dense
matrices U and V in formula (5) and (6). Take computing U as
an example, after a matrix multiplication to compute Sv , the
kernel consists of three for loops. The first loop is to compute
every row of U , which is able to execute concurrently. In
the middle for loop, every column is accessed in U , and the
dependence exists in this loop. To be more specific, the sparse
matrix R is updated before and after updating U . Then the
updated R should be used in the next iteration to update the
next element in one row of U . The data dependence limits the
efficiency of the parallel fast eALS algorithm implementation.

Tab. II shows detailed comparisons between the origi-
nal ALS implementation in CuMF ALS [15] and the fast
eALS algorithm. ALS consists of two main kernels, ma-
trix multiplication (get_hermitian_x) and matrix inverse
(batch_solve). No data dependence exists as partitioning
the input matrices into tiles for both kernels. ALS’s matrix
inverse (batch_solve) consists of two solving functions,
LU and Conjugate Gradient (CG). LU’s complexity is K-time
higher than eALS. CG is an estimated method and its iteration
number is set to be 6 in the programs, so the time complexity
of the CG solver is the same as the initial prediction in the
fast eALS algorithm. If (M +N)K is much larger than |R|,
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TABLE II
COMPARE CUMF ALS AND FAST EALS: TIME COMPLEXITY AND COMPUTATION PATTERNS

Algorithm Function Time Complexity Computation Pattern
CuMF ALS get_hermitian_x |R|K2 Matrix multiplication, no dependence
CuMF ALS batch_solve (M +N)K3/(M +N)K2 ∗ It CG Matrix inverse and multiplication, no dependence
fast eALS updateUser/updateItem |R|K Irregular access computation, have dependence
fast eALS initialPredictions (M +N)K2 Dense matrix multiplication, no dependence

(M + N)K2 is dominant in time complexity. In summary,
the original ALS has obvious higher time complexity than
fast eALS, while the optimized CG solution of ALS in
CuMF has the same time complexity as fast eALS. Besides
time complexity, convergence speed is another critical factor
to evaluate recommendation systems. In He et al.’s work
[9], they conclude that the fast eALS algorithm has better
recommendation quality than the ALS algorithm, which are
compared in Section VIII.

B. Computation Pattern Analysis
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Fig. 2. Kernel Computation Pattern. Kernel computation mainly involves
two stages: one is to utilize R, W , and V to update the target matrix U
(¬); the other is to calculate R based on two dense matrices U and V (­).
Highlighted elements participate in calculating one element of U . Updating
the second element (red cross one) in the first row of U requires the first
row of R, but this row of R is necessarily updated after computing the first
element (black cross one) of U . Dependence exists in the same row of
the matrix U , i.e., one element of U depends on the updated values of all
previous elements in the same row.

Compared with the original ALS, the fast eALS has a more
complicated computation kernel with data dependency. Fig. 2
shows the access patterns of the fast eALS with an example
highlighted with a yellow background. Target matrix and dense
matrix are two dense matrices, defined as U and V . The
objective is to use R to estimate U and V . In the left part
of Fig. 2, the goal is to update the red cross element (in row
1 and column 2) of the target matrix U . The first row of
two sparse matrices (R and W ) and the second column of
the dense matrix (V ) will be accessed to compute the selected
target element (¬). Next, the updated red element of the target
matrix (U ) and the second column of the dense matrix (V ) are
used to update the first row of the sparse matrix (R) (­), as
shown in the right part of Fig. 2.

Updating each row of U raises data dependence among
columns, while no dependence occurs between rows. Take
updating one row of U into consideration. Before computing
the second element (i.e., the red cross element in the first row
of U ), the first row of R is necessarily updated. However, this
row of R is computed after updating the first element (i.e.,
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Fig. 3. System Overview: architecture-adaptive data format and hybrid
CPU/GPU collaboration model. Sparse matrices are reordered and packed
into groups. Dense matrices are reorganized into a merged one-dimensional
array. The optimized data are fed into the hybrid CPU/GPU collaboration
model with a dynamic data assignment. Kernel computation includes two
types: (a) partitioning kernel into Kernel 1-GPU (partial computation
kernel w/o dependence on GPU) and Kernel 1-CPU (dependence part on
CPU); (b) Kernel 2-GPU (complete kernel on different data).

the black cross one in the first row of U ). More specifically,
computing one element of U requires the associated row of R,
and this row of R is calculated based on the updated previous
elements of U . Computing one element of U has to wait
until all previous elements accomplish updating. Thus, data
dependence exists in updating the same row of U . Different
rows of U can execute concurrently without any dependence.

IV. SYSTEM OVERVIEW

Based on the background and algorithm analysis, this work
presents an efficient parallel eALS recommendation frame-
work on CPU/GPU heterogeneous systems (called HEALS).
Fig. 3 illustrates HEALS’s overview that consists of two main
parts: architecture-adaptive data format and hybrid CPU/GPU
collaboration model.

For input data, sparse matrices and dense matrices have
different optimizations. On the one hand, HEALS reorders
sparse matrices and pack them into groups for better work-
load balance. The new data formats are designed based on
well-known CSR [17], [18]. Moreover, new data formats
are designed to be adaptive for specific architectures, based
on hardware characteristics. On the other hand, in order to
improve data locality, HEALS linearizes dense matrices from
2D to 1D array and merges multiple matrices to one array.

After pre-processing input data, the data will be assigned to
the hybrid CPU/GPU collaboration model. HEALS partitions
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GPU and CPU. Sparse matrices on GPU are reorganized with balanced group
size, while on CPU adopt uncertain size groups but more even computation
cost. For dense matrices, HEALS translates multiple matrices into a combined
one-dimensional array for better data locality.

kernel computation into Kernel 1-GPU (partial compu-
tation kernel without dependence on GPU) and Kernel
1-CPU (partial computation kernel with dependence on
CPU). To further leverage concurrency, HEALS performs
Kernel 2-GPU to hide the waiting latency of the device.
Kernel 2-GPU processes different data from Kernel 1-
GPU/CPU and accomplishes the complete kernel compu-
tation. Additionally, HEALS dynamically assigns data chunks
with optimized proportion to achieve better workload balance.

V. ARCHITECTURE-ADAPTIVE DATA FORMAT

In order to reduce workload unbalance and improve data
locality, HEALS presents architecture-adaptive data format for
sparse matrices and dense matrices. Targeted workload unbal-
ance, prior works propose various data format optimizations.
For instance, Hong et al.’s paper [18] reorders the data and
packs different rows. The data formats have two extra index
arrays and a complicated data structure, which is suitable for
simple kernel computation like matrix multiplication instead
of matrix factorization. With respect to the kernel computation
patterns, this work designs architecture-adaptive data format,
including optimizing sparse matrices for GPU and CPU re-
spectively, and dense matrix transformation.

A. Sparse Matrix

The sparse matrix optimization is shown in the upper part of
Fig. 4. Before compressing the sparse matrix, HEALS reorders
both rows and columns based on the number of rated elements.
Then HEALS divides the whole sparse matrix into two parts:
a dense part and a sparse part. Since GPU is beneficial for
the computation-intensive kernel, the dense part is fed to GPU,
while the sparse part to CPU.

As claimed in Section II, workload unbalance relies on the
varied row lengths of sparse matrices. To improve workload
balance, the key idea is to divide the rows into groups and

balance the number of elements in each group for each thread.
HEALS utilizes the greedy algorithm to distribute multiple
rows into groups, and generate even groups. This new data
format is named Multiple Packed Compressed Sparse Row
(MP-CSR). The detailed steps are:

• Step 1: Reorder the matrix based on the row size.
• Step 2: Select the smallest row, and assign it to the

current smallest group.
• Step 3: Continue selecting and assigning until all the

rows are allocated. Each group contains an uncertain
number of rows.

Since the data size of every group may be distinct, MP-CSR
manages an extra array to record the first index position of
every group. However, an extra array requires more memory
space, resulting in extra access operations and more cache
misses, especially for GPU. Thus, HEALS proposes another
grouping approach, in which it assigns each group the same
number of rows and balances the total number of elements
in these rows. After reordering the rows, HEALS packs the
longest one and shortest one together as a group. This new
data format is named Nested Packed Compressed Sparse Row
(NP-CSR). NP-CSR implies dividing multiple rows into even
groups. The number of rows in the dense part is set to be
even multiple numbers of the group. The number of groups
depends on the input data size and GPU layouts. The detailed
steps are:

• Step 1: Reorder the matrix based on the row size.
• Step 2: Select the largest row and smallest row, then

assign them to one group.
• Step 3: Continue selecting and assigning until all the

rows are allocated. Each group contains the same number
of rows.

Compared with NP-CSR, MP-CSR has a better workload
balance but a more complicated data structure. In contrast to
GPU, CPU is more suitable to conduct an extra array with
a larger cache and memory size. Therefore, GPU employs
NP-CSR, while CPU employs MP-CSR.

B. Dense Matrix

For dense matrices, HEALS linearizes a two-dimensional
matrix into a one-dimensional array then merges dense matri-
ces. When accessing data, the increased possibility of access-
ing near elements in different threads improves data locality.
Packing three matrices together is also able to reduce data
movements. For small datasets, dense matrices are easy to
reorganize. For large dense matrices, HEALS partitions data
to fit the limited global memory of GPU. As shown in Fig. 4,
different color areas of dense matrices represent different
partitions. Based on the access pattern in Fig. 2, light area
in three matrices are loaded to deal with one partition of the
target matrix. The partition organization depends on the input
data size.

VI. HYBRID CPU/GPU COLLABORATION MODEL

This section introduces hybrid CPU/GPU collaboration
model in HEALS. Some related works implement CPU/GPU
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parallelism; (b) Kernel 1-GPU and Kernel 1-CPU achieve task parallelism;
(c) Overlapped data transfer hides latency between Kernel 1-GPU and
Kernel 2-GPU. Additionally, computation is partitioned into several stages
to handle very large datasets.

concurrent schemes to solve matrix factorization. Tsai et al.’s
work [19] separates kernel computation to solve QR matrix
factorization with a much longer execution time on CPU
than GPU. Teodoro et al.’s work [20] designs a performance-
aware method for multi-GPUs with extra scheduling over-
head. In contrast to prior approaches, HEALS exploits a
hybrid CPU/GPU collaboration model, combining Workload
Partition (WP) and CPU-GPU Pipeline (CGP) collaboration
models [21]. HEALS dynamically adjusts data partitioning
proportion for balance workload and optimal overlapping.

A. Multi-level Concurrency Design

Fig. 5 illustrates the design of hybrid CPU/GPU collab-
oration model. To process large datasets, HEALS partitions
the whole data into chunks. The scheduling framework solves
chunks stage by stage. In each stage, kernel computation is
divided into two execution lines: one executes on Kernel 1-
GPU and Kernel 1-CPU, and another runs on Kernel 2-GPU.
The two execution lines process independent data.

Kernel 1 represents the first execution line, including two
kernels: kernel without data dependence and the rest compu-
tation with dependence. The no dependence computation is
named Kernel 1-GPU, executing on GPU. The rest of kernel
computation is Kernel 1-CPU on CPU. They are combined
together to solve a complete kernel for the same data chunks.
Kernel 1-CPU can only start after Kernel 1-GPU.

However, Kernel 1-GPU is more than five times faster than
Kernel 1-CPU to process identical data chunks. The significant
GPU waiting time affects the performance. To improve GPU
utilization, HEALS applies another execution line, aiming
to concurrently execute with Kernel 1-CPU. To avoid any
conflicts, this execution line deals with separate data chunks
on GPU. This kernel is named Kernel 2-GPU to implement
the whole kernel computation. Only executing Kernel 2-GPU
is not efficient enough due to the data dependence. Therefore,
the optimal design is to incorporate these two execution lines,
to fully utilize both GPU and CPU. If the dataset is large, the
computation will be partitioned into several stages. Due to the

sequential execution of kernels on the device, multiple stages
constitute a pipeline model.

Based on Sunet al.’s work [21], HEALS combines two
CPU/GPU collaboration models: Workload Partition (WP)
and CPU-GPU Pipeline (CGP). On one hand, Kernel 2-
GPU and Kernel 1-CPU solve independent workload con-
currently as a WP collaboration model. On other hand, the
first execution line partitions kernel computation in multiple
stages, formalized as a CGP collaboration model. Further-
more, HEALS achieves multi-level concurrency. As shown
in Fig. 5, the concurrency consists of three major aspects:
task parallelism between Kernel 1-CPU and Kernel 1-GPU,
data parallelism between two execution lines (i.e., Kernel 1
and Kernel 2), and overlapped data transferring between two
GPU kernels.

B. Adjusting Data Partition Dynamically

This work designs a dynamic partition model to calculate
the ideal proportion and adjusts it in the following iterations.
According to Fig. 5, HEALS partitions the data into two
independent execution lines, so it is critical to balance the
workload between the two execution lines. When training the
complete parallel fast eALS model, the iteration number is
at least 50 to achieve a satisfying accuracy. After executing
on the first iteration, HEALS obtains execution time and
builds bivariate linear equations to compute the ideal partition
ratio. Subsequently, the adjusted proportion is applicable in
the following iterations.

Take one stage as an example to explain how to compute
the ideal partition ratio. This work defines the execution time
of Kernel 1-GPU to be t1, Kernel 2-GPU to be t2, and Kernel
1-CPU to be t3. First, HEALS allocates θ tiles to solve. Tiles
mean the groups of rows of the sparse matrices. Second, α
tiles are allocated to Kernel 2-GPU and β to Kernel 1. The
most overlapped case is t1 + t2 = t3, between Kernel 1 and
Kernel 2. Last, the equations are built as follows: θ = α+ β,
α× t2 + β × t1 = β × t3.

The partition ratio is set to be γ = α
β . Execution time t1,

t2, t3, and the total number of tiles θ are given. The objective
is to calculate γ, β and α. After solving the bivariate linear
equations, results are shown as follows:

γ = (t3 − t1)/t2 (7)

β =
t2θ

t3 − t1 + t2
(8)

α =
(t3 − t1)θ
t3 − t1 + t2

(9)

If the data size is so large to be managed more than one
stage, all stages will compute ratios individually after the first
iteration and record them in a global array.

VII. HARDWARE-BASED ACCELERATING TECHNIQUES

This section presents hardware-based accelerating tech-
niques used in HEALS, including loop transformation and
GPU parallel reduction. Fig. 6 illustrates the implementing
details in Kernel 1-GPU, Kernel 2-GPU and Kernel 1-CPU.
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__global__ void KernelTwo_GPU(){
__shared__ float numer_sh[1];
__shared__ float denom_sh[1];
__shared__ float tmp_numer_sh[1];
for(u->N){//EVERY ROW OF THE TARGET MATRIX

for (j->R_u) {
for(f=0; f<factors/4; f++){

tmp_u = reinterpret_cast<float4*>(uvsv_cu)[u*factors/4+f];
tmp_v = reinterpret_cast<float4*>(uvsv_cu)[uborder/4+i*factors/4+f];
tmp_res4 = make_float4(tmp_u.x * tmp_v.x, tmp_u.y * tmp_v.y, 

tmp_u.z * tmp_v.z, tmp_u.w * tmp_v.w);
res = res + res4.x + res4.y + res4.z + res4.w;

}
//INITIALIZE THE MATRIX R

}
//EVERY COLUMN OF THE MATRIX
for (f = 0; f < factors; f++) {

for (j->R_u) {
numer += ... //COMPUTATION THE NUMERATOR OF EQ.(5);
denom += ... //COMPUTATION THE DENOMINATOR OF EQ.(5);

}
for(j = tid; j<factors/4; j+=THREAD_NUM){

tmp_u = reinterpret_cast<float4*>(uvsv_cu)[u*factors/4+j];
tmp_v = reinterpret_cast<float4*>(uvsv_cu)[vborder/4+f*factors/4+j];
tmp_res4 = make_float4(tmp_u.x * tmp_v.x, tmp_u.y * tmp_v.y, 

tmp_u.z * tmp_v.z, tmp_u.w * tmp_v.w);
tmp_numer = tmp_numer + res4.x + res4.y + res4.z + res4.w;

}

for (j = 16; j > 0; j /= 2){
numer += __shfl_down_sync(FULL_MASK, numer, j);
denom += __shfl_down_sync(FULL_MASK, denom, j);
tmp_numer += __shfl_down_sync(FULL_MASK, tmp_numer, j);

}
//SUM UP ALL WARPS
//UPDATE MATRIX U;
for (j->R_u){//UPDATE MATRIX R;}

}
}

}

Shared memory

Vectorization

Vectorization

Warp Shuffle

__global__ void KernelOne_GPU(){
int tidx = threadIdx.x;
int bidx = blockIdx.x; //BLOCK X REPRESENTS THE ROW OF THE TRAGET MATRIX
int bidy = blockIdx.y; //BLOCK Y REPRESENTS THE COLUMN OF THE TARGET 

MATRIX
float numer_reg;
float denom_reg;
__shared__ float tmp_numer[1];
__shared__ float tmp_denom[1];
for(u->N){

for (j->R_u) {
numer_reg +=...//COMPUTE THE NUMERATOR OF EQ.(5) WITHOUT MATRIX R
denom_reg +=...//COMPUTATION THE DENOMINATOR OF EQ.(5);

}
for (j = 16; j > 0; j /= 2){

numer_reg += __shfl_down_sync(FULL_MASK, numer_reg, j);
denom_reg += __shfl_down_sync(FULL_MASK, denom_reg, j);

}
//SUM UP ALL WARPS
//UPDATE MATRIX U;

}
}

Shared memory

Warp Shuffle

void KernelOne_CPU(){
for (int f = 0; f < factors; f++) {

for(int j = 0; j<size_item; j++){
v_col[j] = V.matrix[i][f];}

for (j->R_u) {
UPDATE_NUMERATOR(j);
UPDATE_NUMERATOR(j+1);
UPDATE_NUMERATOR(j+2);...}

//DEAL WITH THE REMAINDER AND UPDATE THE TARGET MATRIX
for (int j = 0; j<size_item; j+=UNROLLING_SIZE){

UPDATE_R(j);
UPDATE_R(j+1);
UPDATE_R(j+2); ...}

//DEAL WITH THE REMAINDER
}

}

Locality

Loop
Unrolling

#pragma unrolling UNROLLING_SIZE
Loop Unrolling

Fig. 6. Implementation in Kernel 1-GPU, Kernel 1-CPU and Kernel 2-GPU: applying hardware-based accelerating techniques. Loop transformation
includes loop unrolling for a better locality and vectorizd I/O to leverage data parallelism. GPU parallel reduction is accelerated by warp primitives (warp
shuffle), which efficiently utilizes registers and shared memory for reduction.

A. Loop Transformation

HEALS applies loop transformation including vectoriza-
tion and loop unrolling. Vectorization is commonly used to
leverage data parallelism, as one instruction manages multiple
data (SIMD). On CPU, the compiler automatically applies
SIMD optimizations in most loops when setting -O3. On
GPU, vectorized I/O cannot be managed by nvcc, providing
chances to improve the kernel performance. CUDA supports
vectorization instructions, including 64 or 128-bit load and
store operations. Vectorization is used to update R, a data-
dependent part. Thus HEALS conducts vectorization in Kernel
2-GPU. Likewise, loop unrolling is applied in Kernel 1-CPU
and Kernel 1-GPU to further improve data locality.

During loop transformation, HEALS leverages shared
memory to store temporal data for each block. Based on
the access pattern in Fig. 6, when updating one row of the
target matrix, the whole dense matrix has to be accessed,
which cannot fit in the limited shared memory. As for the
sparse matrix, each thread processes one row, of which the
size varies dramatically. Thus, HEALS mainly stores temporal
parameter values instead of dense or sparse matrices in the
shared memory, both in Kernel 1-GPU and Kernel 2-GPU.
These parameters are extended to arrays, making each thread
process one element without any conflicts.
B. Accelerating GPU Parallel Reduction

GPU parallel reduction techniques aim to summarize data
among threads efficiently. Based on the eALS algorithm im-
plementation in Section III, summation operation is part of
the kernel computation to calculate dense matrices. Therefore,
HEALS performs efficient utilization of registers and shared
memory to improve GPU parallel reduction.

GPU parallel reduction in HEALS is broadcast through
warp-level (registers), block-level (shared memory), and
global-level (global memory). To accomplish summation

operations in Kernel 1-GPU and Kernel 2-GPU, HEALS
takes advantage of registers based on warp-level primitives,
shfl_down_sync. Warp shuffle directly fetches data from
other threads’ registers within one warp, which benefits broad-
casting data without __syncthreads(). The detailed im-
plementing steps are: First, HEALS utilizes primitive function
shfl_down_sync to get the sum of one warp, and the
first thread of every warp obtains the result; Second, HEALS
employs atomicAdd operation to sum up all warps and
store the result in shared memory; Last, HEALS gathers the
values in the shared memory and stores the final result in
the global memory. Overall, efficient GPU parallel reduction
yields great benefits on performance improvements, which will
be explained in Section VIII.

VIII. EVALUATION

This section evaluates HEALS with a set of experiments.
The evaluation objectives include: (a) demonstrating that
HEALS outperforms other state-of-the-art related works; (b)
evaluating the effects of proposed optimizations including
architecture-adaptive data format, hybrid CPU/GPU collabo-
ration model, and hardware-based accelerating techniques; (c)
validating the benefits of HEALS on prediction accuracy and
recommendation quality.

A. Experiment Settings

1) Environment: Experiments are conducted on a heteroge-
neous CPU/GPU platform with an Intel Xeon CPU with 40-
cores, and an NVIDIA Tesla P100 GPU (as shown in Tab. III).
This platform is configured with Ubuntu 18.04.4, icpc (ICC)
19.1.0.166, and CUDA V10.1.105. All HEALS runs use all
computing resources (i.e., 40 threads w/o hyper-threading and
the whole GPU).

7258

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 04:00:19 UTC from IEEE Xplore.  Restrictions apply. 



TABLE III
MACHINE INFORMATION

Hardware Descriptions
CPU Intel(R) Xeon(R) Gold 6138 CPU @ 2.00GHz
GPU NVIDIA Corporation GP100GL Tesla P100 PCIe 16GB

TABLE IV
EXPERIMENT DATASETS

Name Users Items Ratings Sparsity
Yelp 25677 25815 698472 99.8947

Amazon 117176 75389 3790245 99.9571
YahooMusic 1127446 136736 431596064 99.7211
Frienderster 37551359 124836179 1768515776 99.9999

2) Datasets: This work is tested on four datasets: Yelp,
Amazon, YahooMusic, and Frienderster. Yelp and Amazon
datasets come from the original eALS paper [9]. Dataset
YahooMusic [22] includes the ratings of songs with artists
and albums from the Verizon Media Labs. Frienderster is a
sparse matrix dataset from the Stanford Large Network Dataset
Collection. Frienderster contains 1.7 billion ratings to show
HEALS’s capacity of handling large data. It requires more
than 56 GB memory for kernel computation, out of GPU’s
on-device memory. This original dataset is pre-processed to
match our recommendation evaluation needs, including adding
random rated values from one to five and eliminating all
repeated edges and null elements. The number of users, items,
and training ratings are shown in Tab. IV. This work randomly
selects 90% data to train and 10% to test. Training datasets
are used for measuring performance while testing datasets are
used for measuring accuracy and recommendation quality.

3) State-of-the-art Works to Compare: HEALS is compared
with three state-of-the-art implementations: Original Java
implementation [9] is implemented in a sequential way.
LIBMF [7] is a state-of-the-art matrix factorization library on
CPU. This work compares with its ALS implementation (with
all 40 CPU threads). CuMF ALS [5], [8], [15] is a state-
of-the-art library to solve matrix factorization on (multiple)
GPUs. Each test runs 10 times. Because different runs do not
vary significantly, this work only reports the average time for
readability.

B. Overall Improvement

The overall performance improvement is evaluated in terms
of the execution time per iteration (as shown in Tab. V). CuMF
library is evaluated with two different batch solver functions:
CG and LU. Factor values (f ) are commonly set to be 60 or
100 as suggested in Xie et al.’s work [5], so our experiments
cover both factors. Tab. V shows the minimum and maximum
speedup in the last column. OOM donates that CuMF cannot
execute Friendster on a single GPU because of the limited
on-device memory. Our evaluation results show that HEALS
achieves significant speedups on all datasets, outperforming
all other state-of-the-art works by a speedup from 1.48× to
23.6×. Particularly, comparing with the state-of-the-art CPU
implementation (LIBMF with all 40 CPU threads), HEALS
achieves 15.65×, 14.43×, 8.47×, and 8.44× speedup on Yelp,
Amazon, YahooMusic, and Friendster, respectively. Compar-
ing with the fastest version of the latest GPU implementation

(CuMF), HEALS achieves 3.42×, 2.39×, and 1.48× speedup
on Yelp, Amazon, and YahooMusic, respectively.

C. Performance Analysis: Optimization Breakdown

Fig. 7 to Fig. 10 illustrate the impact of different op-
timizations on performance improvements. The speedup is
compared with the original eALS implementation in Fig. 7
and Fig. 8. The partition ratio in Fig. 8 represents the
workload ratio of Kernel 2 over Kernel 1. The baseline of
Fig. 9 and Fig. 10 is the non-optimized kernel computa-
tion. The proposed hardware-based accelerating techniques
are divided into Vectorized I/O, and Warp shuffle
+ Vectorized I/O.

Fig. 7 shows the impact of architecture-adaptive data for-
mat. Sparse matrix data format optimization brings 1.1×
benefits on average while dense matrix optimization brings
additional 1.2× gains, e.g., the speedup of Amazon improves
from 13.01× with sparse matrix optimization only to 16.98×
with both sparse and dense data format optimizations. Ex-
periments demonstrate that dense matrix optimization yields
slightly more benefits than the sparse matrix. Fig. 8 shows
the benefits of dynamic partition ratio, achieving a 1.25×
to 2.54× speedup over other selected fixed partition ratios.
The improved results demonstrate great benefits of the hybrid
CPU/GPU collaboration model. Fig. 9 and Fig. 10 show the
speedup of hardware-based accelerating techniques compared
with non-optimized GPU kernel implementation. Warp shuffle
yields more benefits than loop transformation, e.g., the GPU
vectorized I/O brings 1.09× performance gains on average
while warp shuffle brings additional 1.23× benefits on average
(in Fig. 9).

D. Recommendation Efficiency

This work evaluates recommendation efficiency in two
major aspects: matrix factorization precision and recom-
mendation equality. The performance metrics are Root Mean
Square Error (RMSE, the lower the better) and Normal-
ized Discounted Cumulative Gain (NDCG, the higher the
better) [9]. RMSE represents the average accuracy of rated
scores, illustrating matrix factorization precision. NDCG aims
to measure the recommending quality without considering the
values of rated scores. The observations involve not only
convergence point values but convergence speed as well to
measure the recommendation efficiency.

Fig. 11 shows the evaluation results. HEALS is measured
with f = 64. HEALS is compared with CG solver-based
CuMF with two factors (f = 60, f = 100) in three datasets.
For Friendster, HEALS is compared with LIBMF (f = 64).

For RMSE, HEALS and CuMF achieve close factoriza-
tion precision but HEALS obtains faster convergence speed.
As shown in Fig. 11, HEALS achieves 1.45× convergence
speedup over CuMF (f = 60) and 1.77× over CuMF
(f = 100) on average, respectively. On Friendster, HEALS
outperforms LIBMF, achieving 3.75× convergence speedup.
Experiment results prove HEALS has better recommendation
efficiency than other ALS-based parallel libraries.
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TABLE V
OVERALL PERFORMANCE: EXECUTION TIME (S) PER ITERATION. HEALS is compared with original java implementation of eALS, LIBMF, and

CuMF with CG and LU solvers. CuMF is measured with two factors: f = 100 and f = 60. ’Speedup’ illustrates the minimum and maximum speedup of
HEALS over all others. ’OOM’ donates that CuMF cannot execute Friendster on a single GPU due to the limited on-device memory.

Datasets Original eALS LIBMF CuMF(CG,f=100) CuMF(CG,f=60) CuMF(LU,f=100) CuMF(LU,f=60) HEALS (f=64) Speedup
Yelp 0.284 0.18776 0.06942 0.04104 0.2902 0.1456 0.0120 3.42X-23.6X

Amazon 1.223 1.71973 0.4186 0.2852 0.8176 0.4102 0.1192 2.39X-14.4X
YahooMusic 89.811 70.905 19.55 12.4054 22.7412 13.3947 8.3740 1.48X-10.7X

Friendster 940.8 663.7 OOM OOM OOM OOM 78.6 8.4X-11.97X
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Fig. 9. Speedup in Kernel 1-GPU:
impact of hardware-based acceler-
ating techniques.
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Fig. 11. Recommendation Efficiency: Convergence Speed of RMSE and NDCG. Compare HEALS (f = 64) with CG Solver based CuMF (f = 60,
f = 100) in datasets: Yelp, Amazon, and YahooMusic. Compare HEALS (f = 64) with LIBMF (f = 64) in Friendster.

For NDCG, HEALS yields benefits on both recommenda-
tion equality and convergence speed. For instance, HEALS
obtains a 1.14× convergence point value over CuMF on
YahooMusic. HEALS achieves a 2.78× convergence speedup
over CuMF on Amazon. For Friendster, HEALS achieves
a 1.12× NDCG absolute value and a 4.83× convergence
speedup over LIBMF. In summary, HEALS shows great ben-
efits on recommendation efficiency, outperforming others.

IX. RELATED WORK
Matrix factorization-based recommendation algorithms.
Various matrix factorization-based algorithms have been ap-
plied in recommendation systems, e.g., Stochastic Gradi-
ent Descent (SGD) [1], [23], Cyclic Coordinate Descent
(CCD) [6], [20], and ALS [7], [9], [15], [24]. He et al.’s
eALS work [9] has proved that the optimized eALS-based rec-
ommendation model outperforms other matrix factorization-
based approaches (e.g., SGD, CCD, and original ALS) in

both computation cost and recommendation accuracy. That is
why this work focuses on building the first efficient parallel
recommendation system based on eALS.

Parallel ALS-based recommendation systems. Many exist-
ing research efforts focus on parallelizing ALS-based recom-
mendation. LIBMF [7] offers an efficient ALS C++ library
on CPUs. Chen et al. [25] also propose an optimized ALS
algorithm based on Weighted-Regularization (WR) on CPU.
Tan et al. [8], [15] employ iterative conjugate gradient solver
to optimize parallel ALS, and present a parallel ALS im-
plementation on GPU (CuMF). Closely related to HEALS,
Teodoro et al. [20] propose a performance-aware CPU/GPU
heterogeneous framework and optimize ALS by managing
GPU layouts and partitioning. Chen et al. [26] implement
a portable ALS framework to optimize original ALS by
applying system techniques, e.g. thread batching techniques.
Many other ALS-based parallel recommendation systems are
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implemented on distributed systems. Xie et al. [27] design
a new loss function of ALS algorithm on Spark platform.
Aljunid and Manjaiah [28] optimize conventional ALS algo-
rithm based on Apache Spark. Winlaw et al. [29] propose an
optimized ALS by using a nonlinear conjugate gradient (NCG)
on Spark. Compared with all of these efforts, HEALS targets
a more advanced algorithm (eALS) that is more challenging
to be parallelized than the original ALS, and for the first time
presents a set of new system optimizations on heterogeneous
CPU/GPU systems.
Other parallel recommendation systems based on ma-
trix factorization. Many other matrix factorization-based ap-
proaches are implemented on multi-core or many-core archi-
tectures. CuMF SGD [5] scales up the SGD kernel computa-
tion on multiple GPUs, and Nisa et al. [6] present an optimized
implementation of CCD++ on GPU. Li et al. [24] mainly focus
on non-negative matrix factorization and present a multi-GPU
implementation. All these efforts explore GPU optimizations
without fully utilizing CPU resources or CPU/GPU collab-
oration. Zinkevich et al. [23] mainly optimize SGD in data
parallelism. In contrast, HEALS exploits hybrid CPU/GPU
collaboration model and combines data parallelism and task
parallelism together. Again, different from all of these efforts,
HEALS targets a more advanced eALS algorithm with better
computation cost and recommendation accuracy while more
challenges to be parallelized.

X. CONCLUSION

This work presents HEALS, an efficient CPU/GPU parallel
recommendation system, for the first time building on top of
fast eALS. To alleviate workload unbalance, HEALS employs
a new architecture-adaptive data format for both GPU and
CPU. HEALS is also equipped with a new hybrid CPU/GPU
collaboration model with an adjustable partition ratio. HEALS
supports multi-level concurrency including data parallelism,
task parallelism, and overlapped data transferring. Moreover,
HEALS takes advantage of various hardware-based accelerat-
ing techniques to further optimize kernel computation, includ-
ing vectorized I/O, loop unrolling, and efficient GPU parallel
reduction. HEALS outperforms other baselines by a speedup
of 1.48× to 23.6×. HEALS also achieves significantly better
recommendation accuracy and quality, and faster convergence
than other state-of-the-art libraries. In the future, we plan to
extend HEALS to execute on multiple GPUs.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for making innumerable helpful suggestions and comments.
This research is in part supported by National Science Foun-
dation CCF-2047516 (CAREER) and Jeffress Trust Awards
in Interdisciplinary Research to William & Mary, and an
industry sponsorship research grant from iLambda to Kent
State University. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of NSF, or
Thomas F. and Kate Miller Jeffress Memorial Trust.

REFERENCES

[1] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in COMPSTAT. Springer, 2010.

[2] A. Liu, Q. Wu, Z. Liu, and L. Xia, “Near-neighbor methods in random
preference completion,” in AAAI, 2019.

[3] P. Nagarnaik and A. Thomas, “Survey on recommendation system
methods,” in ICECS. IEEE, 2015.

[4] Q. Wu, A. Hare, S. Wang, Y. Tu, Z. Liu, C. G. Brinton, and Y. Li, “Bats:
A spectral biclustering approach to single document topic modeling and
segmentation,” ACM TIST, 2021.

[5] X. Xie, W. Tan, L. L. Fong, and Y. Liang, “Cumf sgd: Parallelized
stochastic gradient descent for matrix factorization on gpus,” in HPDC,
2017.

[6] I. Nisa, A. Sukumaran-Rajam, R. Kunchum, and P. Sadayappan, “Par-
allel ccd++ on gpu for matrix factorization,” in GPGPUs, 2017.

[7] W.-S. Chin, B.-W. Yuan, M.-Y. Yang, Y. Zhuang, Y.-C. Juan, and C.-J.
Lin, “Libmf: a library for parallel matrix factorization in shared-memory
systems,” JMLR, 2016.

[8] W. Tan, S. Chang, L. Fong, C. Li, Z. Wang, and L. Cao, “Matrix factor-
ization on gpus with memory optimization and approximate computing,”
in ICPP, 2018.

[9] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization
for online recommendation with implicit feedback,” in SIGIR, 2016.

[10] H. Li, K. Li, J. An, and K. Li, “Msgd: A novel matrix factorization
approach for large-scale collaborative filtering recommender systems on
gpus,” TPDS, 2017.

[11] B. Hidasi and D. Tikk, “Fast als-based tensor factorization for context-
aware recommendation from implicit feedback,” in ECML PKDD.
Springer, 2012.

[12] I. Pilászy, D. Zibriczky, and D. Tikk, “Fast als-based matrix factorization
for explicit and implicit feedback datasets,” in RecSys, 2010.

[13] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in ICDM. Ieee, 2008.

[14] P. Lu and M. Allam, “Hybrid collaborative filtering recommendation
algorithm for als model based on a big data platform,” in IAEAC, 2021.

[15] W. Tan, L. Cao, and L. Fong, “Faster and cheaper: Parallelizing large-
scale matrix factorization on gpus,” in HPDC, 2016.

[16] H. Liu, S. Pai, and A. Jog, “Why gpus are slow at executing nfas and
how to make them faster,” in ASPLOS, 2020.

[17] B. Wheatman and H. Xu, “Packed compressed sparse row: A dynamic
graph representation,” in 2018 HPEC. IEEE, 2018.

[18] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in PPoPP,
2019.

[19] Y. M. Tsai, W. Wang, and R.-B. Chen, “Tuning block size for qr
factorization on cpu-gpu hybrid systems,” in MCSoC. IEEE, 2012.

[20] G. Teodoro, T. M. Kurc, T. Pan, L. A. Cooper, J. Kong, P. Widener,
and J. H. Saltz, “Accelerating large scale image analyses on parallel,
cpu-gpu equipped systems,” in IPDPS. IEEE, 2012.

[21] Y. Sun, X. Gong, A. K. Ziabari, L. Yu, X. Li, S. Mukherjee, C. Mc-
Cardwell, A. Villegas, and D. Kaeli, “Hetero-mark, a benchmark suite
for cpu-gpu collaborative computing,” in IISWC. IEEE, 2016.

[22] G. Dror, N. Koenigstein, Y. Koren, and M. Weimer, “The yahoo! music
dataset and kdd-cup’11,” in KDD Cup 2011. PMLR, 2012.

[23] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in NIPS, 2010.

[24] H. Li, K. Li, J. Peng, and K. Li, “Cusnmf: A sparse non-negative
matrix factorization approach for large-scale collaborative filtering rec-
ommender systems on multi-gpu,” in ISPA/IUCC. IEEE, 2017.

[25] M. Chen, T. Chen, and Q. Chen, “An efficient implementation of the
als-wr algorithm on x86 cpus,” in BMO. Springer, 2019.

[26] J. Chen, J. Fang, W. Liu, T. Tang, and C. Yang, “clmf: A fine-grained
and portable alternating least squares algorithm for parallel matrix
factorization,” Future Generation Computer Systems, 2018.

[27] L. Xie, W. Zhou, and Y. Li, “Application of improved recommendation
system based on spark platform in big data analysis,” Cybernetics and
Information Technologies, 2016.

[28] M. F. Aljunid and D. Manjaiah, “An improved als recommendation
model based on apache spark,” in ICSCS. Springer, 2018.

[29] M. Winlaw, M. B. Hynes, A. Caterini, and H. De Sterck, “Algorithmic
acceleration of parallel als for collaborative filtering: Speeding up
distributed big data recommendation in spark,” in ICPADS, 2015.

10261

Authorized licensed use limited to: William & Mary. Downloaded on September 28,2022 at 04:00:19 UTC from IEEE Xplore.  Restrictions apply. 


