
Exploring the Learnability of Program Synthesizers by Novice
Programmers

Dhanya Jayagopal∗
dhanyajayagopal@berkeley.edu
University of California, Berkeley

Berkeley, USA

Justin Lubin∗
justinlubin@berkeley.edu

University of California, Berkeley
Berkeley, USA

Sarah E. Chasins
schasins@cs.berkeley.edu

University of California, Berkeley
Berkeley, USA

ABSTRACT

Modern program synthesizers are increasingly delivering on their
promise of lightening the burden of programming by automatically
generating code, but little research has addressed how we can make
such systems learnable to all. In this work, we ask: What aspects
of program synthesizers contribute to and detract from their learn-
ability by novice programmers? We conducted a thematic analysis
of 22 observations of novice programmers, during which novices
worked with existing program synthesizers, then participated in
semi-structured interviews. Our findings shed light on how their
specific points in the synthesizer design space affect these tools’
learnability by novice programmers, including the type of specifi-
cation the synthesizer requires, the method of invoking synthesis
and receiving feedback, and the size of the specification. We also
describe common misconceptions about what constitutes meaning-
ful progress and useful specifications for the synthesizers, as well
as participants’ common behaviors and strategies for using these
tools. From this analysis, we offer a set of design opportunities
to inform the design of future program synthesizers that strive to
be learnable by novice programmers. This work serves as a first
step toward understanding how we can make program synthesizers
more learnable by novices, which opens up the possibility of using
program synthesizers in educational settings as well as developer
tooling oriented toward novice programmers.

KEYWORDS

learnability, program synthesis, novice programmers, qualitative,
thematic analysis

ACM Reference Format:

Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins. 2022. Exploring the
Learnability of Program Synthesizers by Novice Programmers. In The 35th
Annual ACM Symposium on User Interface Software and Technology (UIST
’22), October 29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3526113.3545659

∗Authors contributed equally.

This work is licensed under a Creative Commons Attribution International
4.0 License.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9320-1/22/10.
https://doi.org/10.1145/3526113.3545659

1 INTRODUCTION

The promise of program synthesis is to lighten the burden of pro-
gramming by automatically generating code that satisfies a user-
provided specification. However, little work has studied how novice
programmers learn and use synthesis tools. Our work draws on
observations of early-stage programmers and identifies synthesizer
design dimensions that affect synthesizer learnability. The end goal
is to inform design guidelines so that the community can make
synthesizers more approachable and ultimately boost their impact
on a broader class of users.

We observed 22 novice programmers using five existing program
synthesis tools (Blue-Pencil [48], Copilot [22], Flash Fill [23],
Regae [76], and SnipPy [15]) and followed each session with a
semi-structured interview.

We identified a number of influential design dimensions. One
such dimension is that synthesizers can (i) require users to engage
in a separate synthesis-specific specification mode or (ii) derive
a specification as a byproduct of normal non-synthesis tool use.
Another important dimension is whether users are in charge of
triggering synthesis runs and the display of synthesis outputs or
whether the tool is in charge. The size of the specification also
matters, but seemingly not as much other dimensions—a surprising
finding in light of design guidelines and goals from the synthesis
literature, which emphasize specification size [8, 23, 37, 43, 56].

We also identified important user knowledge gaps and common
strategies. Novices struggle with plan composition during synthesis
in much the same way as during manual coding. Novice program-
mers struggle to figure out what kinds of specifications work well
for a given synthesis tool. For synthesis tools embedded in familiar
environments, novice programmers may also borrow behaviors
from their pre-synthesizer use. Finally, novice programmers may
engage more deeply with synthesis-written programs relative to
teacher-written programs provided as exercise solutions.

Based on our findings, we provide a set of design opportunities
to inform the design of future program synthesizers that aim to be
learnable by novices.

No element of this paper is intended as an evaluation of the
tools used in the study. In particular, we note that the tools we
used in this study are not explicitly designed for learnability by
novice programmers. Rather, we chose a stable of tools that exhibit
different design choices for their synthesis algorithms, interfaces,
and user interaction models as a means to uncover patterns in how
these design choices affect users.

Learnability. A tool’s learnability can refer either to its (i) first-
encounter usability or (ii) how long its users take to gain proficiency.
In this paper, we are exclusively concerned with the first definition.

https://orcid.org/0000-0002-4780-4087
https://orcid.org/0000-0003-2311-1873
https://orcid.org/0000-0003-0557-3580
https://doi.org/10.1145/3526113.3545659
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3526113.3545659


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins

Contributions. This paper presents the following contributions:
• An observational study of novice programmers using

program synthesis tools for the first time.

• An analysis that identifies key synthesizer design dimen-

sions that affect learnability; a preliminary analysis of
particular design decisions that improve or reduce synthe-
sizer learnability.

• A set of opportunities for synthesizer designers, to guide
designers towards choices that make synthesis tools learn-
able by novice programmers.

2 BACKGROUND: PROGRAM SYNTHESIS

Program synthesis is the automatic generation of code based on
some specification that communicates user intent. This expression
of user intent can take many forms, including, for example, a logical
formula, input-output examples, or task demonstrations. The term
specification is typically used to mean a formal specification—an ob-
jective, machine-checkable predicate that gives yes or no answers
about whether a given program meets the specification. For in-
stance, we can automatically check whether a given program meets
the logical specification output = 2 ∗ input or the input-output
example specification [3 → 6, 5 → 10]. For this paper, we use a
broader definition of specification that includes any expression of
user intent to a synthesizer. In particular, the input to Copilot
is a large portion of the content of an in-progress file in an IDE.
Although this input does not offer a way of automatically and non-
subjectively checking whether a synthesized program “meets” this
specification, we will still use the term specification.

3 RELATEDWORK

3.1 Learnability & Usability of Synthesis Tools

Recent work in the programming languages community and a
variety of other subfields has produced tremendous advances in
program synthesis technology [3, 16, 23–25, 33, 35, 45, 53, 56, 61, 63].
Synthesis approaches are now sufficiently mature that we are seeing
them adopted within HCI [8, 13, 26, 31, 40, 47, 66, 70] and integrated
into mainstream products [19, 50, 60, 73]. Although the early wave
of program synthesis works from the programming languages com-
munity largely did not assess synthesizers’ learnability or usability,
the more recent wave of synthesis-augmented interfaces within the
HCI community has started to offer answers about how humans
interact with synthesizers.

Existing user studies of program synthesis tools fall into a few
categories. Many works compare a novel synthesis tool against a
manual programming condition [8, 15, 20, 30, 70]. These studies
typically find that participants are faster—sometimes much faster—
with synthesis than with manual coding, that they make fewer
errors, that they are more likely to complete tasks, or some subset
of these. Others focus exclusively on one novel synthesizer, with
no control condition, and assess whether users can complete tasks
with the tool at all [14, 41, 68]. These studies typically find that
participants can complete tasks with the synthesizer under test.

Comparison of synthesizer variants. More recently we have begun
to see user studies that test a novel synthesizer against a tweaked

versions of the same synthesizer. Such studies begin to answer
a question similar to ours: what aspects of program synthesizers
affect their usability? To date, we know of two such studies.

The first of these studies [55] compares how successful partic-
ipants were using (i) a traditional programming-by-example syn-
thesizer in which users provide input-output examples versus (ii) a
variant of the synthesizer using a paradigm the authors dub “pro-
gramming not only by example” that also allows users to select
subexpressions of a candidate program to either keep or reject. The
authors found that the subexpression selection mechanism was
faster to use than standard input-output examples and strongly
preferred to examples overall except for with expert users.

The second of these studies (which investigates one of the tools
we use in our study, Regae) [76] compares how successful par-
ticipants were using (i) the second condition of the above study
versus (ii) a further enhancement on the programming-by-example
paradigm that allows users to mark parts of their regex as either
“general” or ‘literal” (so-called semantic augmentation) as well as
receive automatic example generation of additional input examples
(so-called data augmentation). The authors found that participants
were significantly faster in the second condition.

User studies of synthesizers in our study. We highlight in par-
ticular that three of the five tools in our protocol have already
been studied in published user studies: Regae (as we discussed in
previous subsection), SnipPy, and Blue-Pencil.

The authors of SnipPy ran their user study [15] as a controlled
experiment between (i) a live programming environment with no
synthesis features and (ii) the same live programming environment
with SnipPy activated. Neither correctness nor speed differences
were statistically significant between the two groups, but the au-
thors did find that when the participants broke the task down in
a way that the synthesizer understood, the synthesizer produced
substantial and helpful parts of the overall solution.

The authors of Blue-Pencil did a field study [48] that included
follow-up interviews to collect qualitative feedback of their tool in
an uncontrolled environment. Their study revealed two key usabil-
ity barriers: (i) low discoverability and (ii) frustration with lacking a
mechanism to preview the effects of running the synthesized code
before accepting or rejecting it.

Our approach. All the aforementioned studies of synthesizer
usability and learnability are highly relevant to the questions we
address in our work. However, in contrast to the existing founda-
tional studies in this space—which explore either one synthesis tool
at a time, one synthesis tool and one traditional programming lan-
guage, or two very close variants of a single synthesizer—our work
draws on observations of participants using five diverse synthesis
tools. Comparing across a variety of divergent tools lets us explore
a somewhat broader swath of the synthesis design space and situate
our observations in the broader landscape of that design space.

3.2 Interactive Program Synthesis

Recent work in the programming languages and program synthesis
community has begun to emphasize interactive program synthesis.
Within the program synthesis community, interactive program syn-
thesis usually refers to a synthesizer in which either (i) if the user



Exploring the Learnability of Program Synthesizers by Novice Programmers UIST ’22, October 29-November 2, 2022, Bend, OR, USA

updates an existing specification, the synthesis algorithm works
differently than if the user had provided this specification initially,
or (ii) the synthesis tool can guide the user in how to augment an
ambiguous specification. For instance, tools may show partially
completed programs at multiple stages during synthesis and request
user feedback before completing more [4], or they may show users
examples of program behaviors and ask if they are correct [21].
Some recent work even presents a framework for reasoning about
how user inputs can be used to reduce specification ambiguity [54].
More than the first wave of program synthesis research, this recent
wave is wrestling with the role of human users in the synthesis pro-
cess and recognizing synthesis as an interactive human-machine
collaboration. However, the work in this space still currently empha-
sizes advances in algorithm design or performance over advances
in usability; user studies are not currently more common in the
space of interactive program synthesis techniques than in the more
traditional techniques.

3.3 Learnability & Usability of Novice-Focused

Programming Environments

Research on programming environments has studied novice pro-
grammers to explore the learnability of a variety of tools from
Codecademy-style [10] tutorial systems with built-in programming
environments [51, 62] to inquisitive IDEs that prompt users with
questions about program behavior during development [27]. Be-
cause program synthesizers often display synthesized programs in a
specialized or general-purpose programming environment, many of
the key insights from existing work on programming environment
usability can be directly applied to the programming environment
elements of program synthesizers. In this study, we focus specifi-
cally on the aspects of the program synthesizers themselves that
impact their learnability by novice programmers.

3.4 Learnability & Usability of AI Tools

With at least two decades of work in the space of human-AI inter-
action, there has been substantial work that addresses the learn-
ability and usability of AI tools. Some works offer guidelines for
improving human-AI collaboration [2, 5, 28, 29, 36, 42, 52]; others
detail the usability or learnability of particular classes of AI tools
[17, 44, 49, 58, 74]. We are not aware of any usability studies to
date from the human-AI interaction community that investigate
the usability of AI tools that produce computer code.

3.5 Think-Aloud and Observational Studies

with Novices

The observational think-aloud design used in our work connects
closely with prior studies [7, 39, 46, 71] that use observations
of novice programmers to uncover patterns in a variety of pro-
cesses, from novices’ plan composition strategies to how they
track program state. Although existing observational studies of
novice programmers have yielded important insights in CS edu-
cation [7, 39, 71] as well as language and IDE design [46], this
approach has not yet been applied to synthesis-augmented pro-
gramming environments.

4 PROGRAM SYNTHESIZERS

We selected a range of program synthesis tools for participants to
use based on two main criteria: (i) the tool could plausibly support
novice programmers, and (ii) the tool is publicly available and func-
tional in their publicly available form. We selected five such tools
based on the additional goal of exploring a diversity of program
synthesis algorithms and interfaces: Blue-Pencil, Copilot, Flash
Fill, Regae, and SnipPy.

Blue-Pencil [48] is a plugin for Microsoft’s Visual Studio Code
that aims to automate repetitive code edits, such as changing the
name of a variable. GitHub Copilot [22] is an editor plugin pow-
ered by OpenAI’s Codex model [9] that automatically synthesizes
code on the fly based on the code and comments the user has al-
ready written. Flash Fill [23] is a feature of Microsoft Excel that
uses programming-by-example to automatically populate data cells
based on existing patterns in other data cells. Regae [76] is a stan-
dalone tool that implements programming-by-example synthesis
for regular expressions (regexes). SnipPy [15] is a fork of Visual Stu-
dio Code that supports “small-step live programming by example”
for Python; it lets users supply input-output examples via projection
boxes [38] that dynamically show the values of variables at different
points in the program. Table 1 describes the input and output of
each tool, and Figure 1 shows screenshots.

5 METHOD

Participants and Recruitment. We conducted virtual study ses-
sions with 22 participants (with identifiers P0–P21), all of whom
were enrolled in a second-semester computer science course on data
structures at an R1 university in the United States. We screened
participants (recruited from Piazza, Facebook groups, and Slack
workspaces) via a survey for little to no external programming
experience beyond their first semester of computer science. We
compensated participants with a 30 USD Amazon gift card.

Study Protocol. Study sessions consisted of one recorded Zoom
call between the first author of this paper and the participant. We
scheduled these calls for 1.5 hours, but most lasted approximately
45 minutes to 1 hour. We divided each session into two sections.

In the first section, participants narrated their thought processes
aloud as they used various program synthesizers to complete tasks
that we assigned. We selected tools to be shown to each participant
at random such that an equal number of participants saw the five
tools. The tasks that we assigned depended on the program syn-
thesis tools that the participants used, and we detail these tasks
in Table 2. In most cases, we designed the tasks to be similar to
the tasks that were used as examples in the associated publications
for each of the tools. We additionally provided participants with a
minimal verbal explanation of the tools to get started.

In the second section of the study, the investigator asked partici-
pants in a semi-structured interview to talk about their experience
with the program synthesis tools that they used, and to elaborate
on certain topics that came up during their use of the tools.

Analysis. We used thematic analysis to analyze the recorded ses-
sions of novice programmers working with program synthesizers.
The first author reviewed each recorded session and tagged any
relevant participant actions or narration with a low-level textual



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins

Table 1: Characteristics of the tools in the study, including the input and output for the underlying synthesizer.

Synthesizer Input Output Communicating
Input

Communicating
Output

Communicating
Failure

Blue-Pencil Trace of user’s code edit actions Program for au-
tomating detected
repetitive program
edits

Automatically collects synthe-
sizer input in the background

Light bulb icon that,
when clicked, reveals
options to execute the
code transformations

No communication

Copilot Arbitrary text, such as a
partially-written program

Arbitrary text, ide-
ally a program

Automatically collects synthe-
sizer input in the background

Grayed-out text in-
serted at cursor, as in
other text suggestion
interfaces

No communication

Flash Fill Input-output pairs of strings String transforma-
tion program that
transforms each
example input into
its output

User fills an empty column ad-
jacent to an “input” column
that serves as the correspond-
ing “outputs,” then clicks the
Flash Fill button

Tool fills remaining
cells of the output col-
umn by running syn-
thesized string trans-
formation

Pop-up error mes-
sage

Regae (i) Strings a regex should accept,
(ii) strings a regex should not ac-
cept, (iii) literal/generalizable la-
bels applied to substrings of ac-
cepted strings, (iv) desirable/un-
desirable labels for subexpres-
sions of candidate regexes

A regex satisfying
the user-provided
examples

Custom standalone interface
with specific slots for each
type of input

Displays set of candi-
date regexes

Progress bar turns
red and displays
“Synthesis Failed.”

SnipPy A Python program with a hole
(??) and a set of input-output
examples

A Python expression
satisfying the user-
provided examples

(i) User types hole (??) in pro-
gram text, (ii) a box displays
values of variables in scope as
inputs for examples, (iii) user
provides output for each input,
(iv) user presses enter key

Synthesizer replaces
hole with synthesized
expression

Synthesizer re-
places hole with
“Synthesis Failed”
comment

summary. After accumulating many such summary tags, the first
author grouped these tags into loose categorizations (the begin-
nings of the themes in this paper), and re-watched existing footage
to annotate any missing occurrences of these categorizations. This
inductive, open coding process continued, with the themes becom-
ing more concrete and robust over time via discussion with the
other authors on this paper until arriving at the set of themes that
form the subsection headers in Section 6. Finally, all authors col-
laborated to explore and refine these themes even further while
the first author reviewed the recorded session for any additional
evidence and nuance for the final themes.

6 RESULTS

Our analysis of novice programmers using program synthesizers
revealed seven main themes:

(§6.1) Synthesizers can either (i) require users to engage in a sepa-
rate process to produce a specification or (ii) derive a spec-
ification as a byproduct of normal non-synthesis tool use;
participants struggled more with the former.

(§6.2) Synthesizers give users varying amounts of control over
when to trigger synthesis-related activities; overall, synthe-
sizers that exposed more control were more confusing to
participants, although this choice had drawbacks too.

(§6.3) Participants sometimes struggled with synthesizers that re-
quired large specifications, but this pattern was not as pro-
nounced as the others we identified.

(§6.4) Participants did not always know what constitutes meaning-
ful progress in the context of a given synthesizer.

(§6.5) Participants did not always know what constitutes a good
specification for a given synthesizer.

(§6.6) In familiar programming environments, participants often
borrowed behavior from their pre-synthesizer use of the
environment.

(§6.7) Participants engaged with synthesis-written programs in
ways that they might not engage with teacher-written pro-
grams provided as exercise solutions.

Based on these results, we provide a set of design opportunities that
that we place in outlined, yellow boxes throughout this section;
each design opportunity appears immediately after the relevant
observations.

6.1 Voluntary and Incidental Specifications

Synthesizers vary in how they have the user communicate a speci-
fication, and we observed that participants faced more learnability
barriers when they had to use an entirely new process to craft
the specification separately from the primary artifact they were



Exploring the Learnability of Program Synthesizers by Novice Programmers UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 1: Screenshots of each of the program synthesizers used in the study. Clockwise from the top left: Blue-Pencil, Copilot,

Flash Fill, Regae, and SnipPy.

developing. We call these separate, standalone specifications vol-
untary specifications. In contrast, some tools create specifications
behind the scenes based on users’ existing, pre-synthesizer behav-
iors. In such cases, when a specification is a byproduct of proceeding
toward an existing goal, we call the specification an incidental spec-
ification. The following table presents a summary classification,
which we expand upon in the next two subsections:

Voluntary Specifications: Regae, SnipPy
Incidental Specifications: Blue-Pencil, Copilot, Flash Fill

6.1.1 Voluntary Specifications: Specifications created only as in-
put to a synthesizer. Two of the synthesizers in our study—SnipPy
and Regae—require participants to craft specifications beyond
what they would have produced during their normal program-
ming process. All participants who used tools that required such
a specification—what we call a voluntary specification—asked for
some form of clarification or assistance before successfully eliciting
a synthesis output.

SnipPy offers a traditional programming environment in which
users could author code manually, but in which manual coding does
not produce a specification. Instead, participants use a special syn-
thesis mode if they want to take advantage of the synthesizer. Four
of the six SnipPy participants attempted to write code manually
to complete SnipPy-Reverse-2 instead of entering input-output
examples to make a specification for the synthesizer. P6 jumped to

thinking about the structure of the code rather than input-output
examples, remarking, “I was thinking I could use a for loop on the
input. Would that make sense?” Similarly, P5 was surprised that
they were not supposed to manually write the code, remarking,

So I’m not allowed to type my own code, I have to do
it this way?

In contrast to SnipPy, Regae offers an entirely new programming
environment which does not resemble the programming environ-
ments that study participants had seen before. Regae gives users
functionality for entering (i) strings that their target regular ex-
pression should reject or accept and (ii) hints for shaping how
the synthesizer searches the space of programs; notably, it does
not allow users to author regular expressions manually. However,
despite lacking visual similarities with traditional programming
environments (see Figure 1), participants still attempted to use the
environment as a site to write programsmanually; four of the six Re-
gae participants all tried to write partial regular expressions rather
than input-output examples. Looking at a synthesized (but incor-
rect) regular expression, P2 wondered aloud, “Is there anywhere
I can write the regex directly then? I can’t find the expressions I
want in [these suggestions].”

Even before looking at Regae’s synthesis results, participants
were still inclined to write code rather than examples. P15’s imme-
diate reaction to Regae was to inspect the interface for about 15
seconds and subsequently ask, “So where should I write the code?



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins

Table 2: Participant tasks. Tasks are ordered by difficulty and were assigned in order. Throughout this paper, we refer to tasks

by the identifier Synthesizer-Name-#.

Synthesizer Name # Description

Blue-Pencil Point 1 Change the program to use Point objects to represent position rather than a pair of integers (x, y).
Blue-Pencil Rename 2 Change the name of variable X to latitude. Change the name of variable Y to longitude.
Blue-Pencil LinkedList 3 Change a list to be a LinkedList (built-in Java class) instead of a primitive array.

Copilot Abbreviate 1 Write a program to return the abbreviation of a given name.
Copilot Occurrences 2 Write a program to turn a list into a dictionary that counts the number of occurrences of each character.
Copilot Subsequence 3 Write a program to find the length of the longest subsequence of a given sequence such that all

elements of the subsequence are sorted in increasing order. For example, the output for [10, 22, 9,
33, 21, 50, 41, 60, 80] should be 6 because the longest sorted subsequence is [10, 22, 33,
50, 60, 80].

Flash Fill Names 1 Using the data from Column A, populate Column B with <Last Name>, <First Name> and populate
Column C with <First Initial><Last Name> in lower case.

Flash Fill Emails 2 Populate Column B with the prefixes of the email addresses in Column A.
Flash Fill Characters 3 Populate Column B with all of the upper case letters from Column A. Populate Column C with all of

the lower case letters from Column A. Populate Column D with all of the numbers from Column A.

Regae Plus 1 Write a regular expression that accepts strings that contain + or digits but no ++.
Regae ABC 2 Write a regular expression that accepts strings that only have A, B, C, or any combinations of them.
Regae Phone 3 Write a regular expression that accepts phone numbers that start with one optional + symbol and

follow with a sequence of digits. For example, +91 and 91, but not 91+.

SnipPy Abbreviate 1 Write a program to return the abbreviation of a given name.
SnipPy Reverse 2 Write a program to reverse a given string.
SnipPy Filter 3 Write a program to return a given string without a specified letter.

I don’t see anywhere for me to write the expressions.” Similarly,
while using Regae, P1 explained, “Basically I am trying to exclude
two plus signs from being next to each other, and the regex guide
said that the ‘not’ expression would work for that.” After strug-
gling for about 90 seconds to enter a regex directly rather than an
input-output example, we informed P1 that the interface expected
an input-output example, to which they responded: “Oh! I’m sorry.
I thought I had to write the code directly in the box. Let me try
entering an example instead.”

Design Opportunity. Novice programmers may prefer program
synthesis tools where they can also complete tasks using non-
synthesis strategies or pre-existing expertise, such as by writing
code manually.

Although voluntary specifications proved to be a barrier to initial
learnability, participants did not necessarily view them as a long-
term barrier to usability. P5 later remarked,

I’m so used to writing code—not writing output of
it—but now that I got the hang of it . . . if I hadn’t done
an intro to Python course, I think it would actually be
really helpful.

And P4 commented,

When you first showed me how to use [it], I was still
pretty confused because I have never used anything
like that pop-up before. Once I saw it a few times
though, I was able to get used to it.

6.1.2 Incidental Specifications: Specification as a byproduct of nor-
mal tool use. The remaining three synthesizers in our study elicit
specifications as a byproduct of normal tool use without requiring
synthesizer-specific specification input. We refer to these specifica-
tions as incidental specifications.

• In Excel, users build Flash Fill inputs by filling a subset of
cells in a column. This is the same first step that a user would
take to fill a whole column manually.

• In Visual Studio Code, users build Copilot inputs by writing
part of a program. This is the same first step that a user would
take to write a program manually.

• In Visual Studio Code, users build Blue-Pencil inputs by edit-
ing a part of a program. This is the same first step that a user
would take to perform the corresponding edits across the entire
program manually.



Exploring the Learnability of Program Synthesizers by Novice Programmers UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Table 3: A summary of which synthesizers feature triggerless
and user-triggered initiation and result communication.

Triggerless Result

Communication

User-Triggered Result

Communication

Triggerless

Initiation

Copilot Blue-Pencil

User-Triggered

Initiation

quadrant empty by
construction Flash Fill, Regae, SnipPy

Incidental specifications generally appeared to be the more ex-
citing and less confusing for participants. For instance, after P19
was introduced to Copilot, they responded “Oh, cool! Okay, so I
just have to [write code] normally.” Similarly, for Flash Fill, P5
read the Flash Fill instructions, then began to complete the first
Flash Fill task by filling in two of the cells manually. They clicked
the Flash Fill button and, upon seeing that it completed the rest of
the task automatically, exclaimed, “Oh that is super useful! I didn’t
realize it was going to do [that].” P4 was similarly delighted with
the incidental of nature of Flash Fill’s specification, commenting
“Oh! That is very convenient. I didn’t have to type anything except
for the first cell.”

Incidental specifications also enabled participants to ignore syn-
thesis features when they did not feel compelled to rely on them.
For example, P9 started BluePencil-Rename-2 by manually editing
code. Then, while they were doing so, the contextual button to run
Blue-Pencil’s synthesis appeared three separate times—all while
P9 was writing the first line of code alone. Although this contextual
button is arguably not very discoverable (P14, for example, men-
tioned that “[they] barely noticed the light bulb when it showed
up”), the incidental nature of Blue-Pencil’s specification (simply
writing code as usual) did not diminish P9’s pre-existing ability to
complete the task.

Moreover, while SnipPy and Regae users were reluctant to shift
from authoring code manually to providing voluntary specifica-
tions built up by alternative interactions, Flash Fill users were
comfortable providing a specification by filling spreadsheet cells
rather than by writing cell formulas manually, which suggests that
a key learnability stumbling block is not necessarily asking for non-
program specifications, but rather asking users to take actions that
do not visibly move the user towards the target output. These find-
ings resonate with broader research on the relatively high cognitive
costs of task-switching [1, 32, 59] and the usability issues around
modes [12, 57].

Design Opportunity. Incidental specifications are a promising
avenue for on-ramping novice programmers to using program
synthesizers.

6.2 Triggerless and User-Triggered Initiation

and Result Communication

We identified two important design decisions for program synthe-
sizers regarding the mechanism and timing for synthesis initiation
and result communication:

• Does the tool decide when it should run synthesis, or does the
user decide?

• Does the tool decide when it should communicate synthesis
results, or does the user decide?

We use the terms triggerless initiation and triggerless result com-
munication to describe when the tool automatically makes these
decisions; conversely, we use the terms user-triggered initiation and
user-triggered result communication when the user makes these de-
cisions. We categorize the program synthesizers that participants
used into quadrants in Table 3 representing all possible combina-
tions of the aforementioned design choices. We note, however, that
only three of the four quadrants are inhabitable by tools: because
synthesizer outputs can only be displayed after the synthesizer
runs, a tool that relies on user-triggered synthesis necessarily also
relies on user-triggered result communication.

6.2.1 Triggerless Initiation + Triggerless Result Communication.
Copilot uses triggerless initiation and triggerless result communi-
cation: it proactively provides code suggestions as the user types
normally. Although participants who used Copilot did not al-
ways accept the synthesis suggestions without modification (as
we discuss later in Section 6.7.1), these participants all initiated syn-
thesis rapidly and were able to see synthesis results immediately.
For example, P20 started Copilot-Abbreviate-1 by writing def
abbrev(name):, to which Copilot quickly showed a synthesis sug-
gestion. P20 then used their mouse to hover over the suggested line
of code and asked, “So should I just accept this suggestion? It looks
correct to me.” P18 had a similar experience, and simply pressed the
tab key to accept the synthesis suggestion when presented with it.
P19 summarized their experience by remarking, “I really liked how
I could see the suggestion without having to do anything.” This
behavior may violate a maxim of polite software [72]—in particular,
that “polite software respects, and does not preempt, rightful user
choices.” However, these findings findings resonate with the polite
software observation that ‘[impolite software] may help novices . . .
who may trade politeness for usefulness’ [72].

On the other hand, a downside to an entirely triggerless ex-
perience was that, after relying on synthesis for parts of a task,
participants sometimes wanted to continue to rely on the synthe-
sizer by manually triggering it. For example, when using Copilot
to synthesize a solution for Copilot-Subseqence-3, P20 noticed a
bug in the synthesized code. When starting to debug, P20 wondered
aloud, “How do I get the suggestions again? Can I use the tool to
help find the error?” Ultimately, P20 could not figure out how to
manually trigger Copilot suggestions for what they wanted to do,
so they finished the task by fixing the bugs manually.

6.2.2 Triggerless Initiation + User-Triggered Result Communication.
Unlike Copilot, Blue-Pencil has triggerless initiation but relies
on user-triggered result communication. It identifies repetitive edit
actions as the user types normally, and it automatically synthesizes
program transformation scripts to automate the edits. However,
the user must go out of their way to request to view synthesis
outputs by clicking on a contextual light bulb icon that appears
when synthesis has completed.

Overall, participants were confused aboutwhen they should click
on this contextual light bulb. As P14 described, “ I didn’t really know



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins

when to click on it, because I didn’t know how it could help.” In
some cases, Blue-Pencil’s contextual light bulb appeared during
a time when the participant struggled to complete an aspect of a
task we assigned them, and, if the participant had clicked on it,
they would have seen a suggestion from Blue-Pencil that would
have automatically completed the task successfully. For example,
P9 tried to manually make modifications to the starter code in
BluePencil-Point-1, but their edits resulted in errors because P9
did not initialize a Point object correctly. (Blue-Pencilwould have
initialized the Point correctly.) Similarly, P10 mentioned they were
confused about a syntactic construct in Java that was relevant to
the edit they needed to make in BluePencil-Point-1, and thus they
could not initially complete one of the repetitive edits. (Blue-Pencil
would have completed the edit with the correct syntax.)

Design Opportunity. Synthesis with triggerless initiation may
be more learnable to novice programmers, but to reap the full
benefits of triggerlessness, synthesis tools will likely need to
support both triggerless initiation as well as triggerless result
communication.

6.2.3 User-Triggered Initiation + User-Triggered Result Communi-
cation. Regae, Flash Fill, and SnipPy all rely on user-triggered
initiation: users must manually decide when they have built a suf-
ficient synthesizer input, then trigger synthesis themselves. As a
result, these tools necessarily require a user trigger for the synthe-
sis to communicate output results, which places them all in the
bottom-right quadrant of Table 3: user-triggered initiation with
user-triggered result communication.

Placing the burden of deciding when a specification is sufficient
into the hands of novice programmers produced significant learn-
ability obstacles for the synthesizers in this category.

On a basic level, simply remembering how to trigger synthesis
was a learning obstacle for participants. Four of the six participants
who used SnipPy struggled significantly to remember how to trigger
synthesis (which is done by introducing a hole, ??, in the program
text). P3 even asked the same question twice after they saw the ??
work as a trigger for the synthesis pop up: “How do I open the box
to put in examples again?” and “Sorry, I forgot how to get the box
again, can you remind me?” Working with Regae, P1 kept adding
input-output examples because they did not know how to trigger
synthesis; only after adding twelve input-output examples did they
ask,“Is there a maximum number of examples I can add? What do I
do next?”

On a deeper level, participants often built substantially larger
specifications than the synthesizer required—a mode of failure that
should never occur in triggerless synthesis initiation. For example,
four of the six Regae participants spent significantly more time
than necessary adding exhaustive input-output examples in the
Regae interface and only clicked the synthesize button when we
prompted them to do so; until that time, the synthesizer did not
run. After 3 minutes, we nudged P6 to stop adding examples, to
which they remarked:

Oh that makes sense. I wasn’t sure when to stop
adding examples because I thought I had to add one
for every possible input.

P12 had a similar experience, adding ten annotated examples during
Regae-Plus-1 before asking, “Is this too many inputs? I don’t know
how many more to add.”

Design Opportunity. Synthesizers with user-triggered initia-
tion may need to provide guidance or feedback to users on how
many examples are likely to be necessary for a given task.

Even more fundamentally, user-triggered synthesis initiation
creates a setting that is ripe for user misconceptions about spec-
ifications to manifest. For example, the participant behavior we
described in the previous paragraph indicates that participants of-
ten seemed to hold the belief that the synthesizers they worked
with would always perform better if the synthesizers were given
more information. We call this belief about synthesizer specifica-
tions the monotonicity belief. In fact, the performance of synthesis
algorithms may degrade as the sizes of specifications grow large,
even when parts of the larger specification are redundant and the
specifications are satisfied by the same program [16, 69].

This monotonicity belief led to counterproductive behaviors
when working with, for example, Regae. As a synthesizer with
user-triggered initiation, Regae required participants to decide—
without guidance—howmany examples to provide before triggering
synthesis. P2 initially entered a set of five redundant examples that
caused the synthesizer to return an incorrect result. Instead of
modifying these examples to be more representative of the problem
domain, P2 immediately jumped to adding ten more examples, but
the total number of examples P2 entered simply caused Regae to
time out.

Design Opportunity. User-triggered synthesis lets novice pro-
grammers construct incorrect theories about when to trigger
synthesis. Designers of such synthesizers may want to consider
identifying misconceptions about their tool (such as the belief
that larger specifications will improve synthesis performance)
via user studies, then refine their tool to proactively combat these
misconceptions.

6.3 Small Specification Size

Overall, participants more easily learned to use—and were delighted
by—synthesizers that required relatively small specifications, such
as Copilot, Blue-Pencil, and Flash Fill. For example, once Copi-
lot suggested synthesized code for Copilot-Abbreviate-1 after
P19 typed only a function declaration (def abbrev(name):), P19
exclaimed: “Ohwow! Can I just press tab and accept the suggestion?”
Similarly, after P14 made just one program edit for BluePencil-
Rename-2, Blue-Pencil synthesized the remaining edits needed to
complete the task, to which P14 responded: “I mean, I think it did
all of it for me.” Lastly, after completing FlashFill-Characters-3
by running Flash Fill on just one example, P6 remarked, “Oh,
cool! That was easy. I didn’t know for sure if it could figure out the
pattern from [one example].”

While participants did seem to appreciate a smaller specification
size, it is worth noting that we observed that other factors—such
as voluntary versus incidental specifications (Section 6.1) and trig-
gerless versus user-triggered interactions (Section 6.2)—seemed to



Exploring the Learnability of Program Synthesizers by Novice Programmers UIST ’22, October 29-November 2, 2022, Bend, OR, USA

have a more substantial impact on the learnability of the program
synthesizers. Recommended practices for synthesis systems [37]
and many existing program synthesizers make small specification
size an explicit goal [8, 23, 43, 56], so this finding may suggest a
change in emphasis for future algorithmic work.

Design Opportunity. Synthesis designers may want to explore
factors other than size to reduce the burden of specification, such
as collecting incidental specifications, which could elicit large
specifications from novice programmers with relative ease.

6.4 Interpreting Synthesis Outputs

Participants struggled to use synthesis outputs to figure out if the
synthesizer had made useful progress, in particular (i) thinking the
synthesizer made progress on a task when it had not and (ii) not
realizing that the synthesizer made progress on a task.

This struggle with assessing progress may reflect difficulties de-
composing a task into smaller subproblems, understanding when
synthesis outputs are solving those subproblems, or some combina-
tion of both. If decomposition is at fault, this echoes the difficulties
novice programmers face with plan composition (putting together
fragments of programming knowledge that accomplish particu-
lar kinds of tasks [64]) and task decomposition in programming
more broadly [6, 18, 65]. However, they may also reflect a lack of
necessary guidance from the synthesis tool.

6.4.1 Incorrectly Believing the Synthesizer Made Progress. In one
case, P14 made an incorrect edit in BluePencil-Point-1 (chang-
ing a return statement to return an entire point instead of an x-
coordinate). Blue-Pencil then generalized this edit, and P14 ac-
cepted Blue-Pencil’s suggestion to carry the edit through the rest
of the program. However, these edits took P14 farther from the
task’s solution and ultimately P14 had to make the necessary edits
manually, without Blue-Pencil’s help.

In another case, P3 overgeneralized their experience working on
the first SnipPy task (SnipPy-Abbreviate-1) to the second SnipPy
task (SnipPy-Reverse-2) by reusing the step in SnipPy-Abbreviate-
1 of splitting a space-separated string into a list of words. As in
SnipPy-Abbreviate-1, synthesis succeeded for this query and pro-
duced code to separate the string properly. P3 appeared to interpret
this result as an encouraging sign and continued by providing
input-output examples to reverse the string, not recognizing that
the first “successful” result was not a meaningful step towards solv-
ing SnipPy-Reverse-2. Due to not having enough of the task broken
down properly, SnipPy was unable to synthesize code to satisfy the
input-output examples that P3 specified, which led P3 to scrutinize
their second query to the synthesizer and completely ignore the
code generated by their first query, which was actually at fault.

Design Opportunity. Because novice programmers may be con-
fused about the difference between synthesis succeeding on a
query and making meaningful progress on a task, synthesis de-
signers may need interventions like (i) documentation stressing
the distinction or (ii) scaffolding for problem decomposition.

6.4.2 Incorrectly Believing the Synthesizer Did Not Make Progress.
When working on Regae-Plus-1, P17 observed some results that
were almost (but not exactly) correct, noting “This one is kind of
correct because [the examples] can’t contain ++, but it still accepts
letters.” However, they did not understand that they could mark
these partial solutions to be included in a full solution in Regae;
instead, they completely threw away the synthesis results and went
back to add and augment examples in their original specification
to try to get a more correct synthesis result.

Overall, participants often missed when the synthesizer made
useful suggestions or even full solutions, even when the synthesis
outputs were visible. For instance, P19 noticed that the autocom-
plete suggestion for Copilot-Occurrences-2 was incorrect, so
they started to rename a function in an effort to trigger Copilot to
synthesize something different. Although the Copilot pane which
shows additional suggestions (beyond the autocomplete one) dis-
played two correct synthesis outputs, the participant did not realize
and continued with their strategy of renaming the function.

6.5 What Kind of Specification Does My

Synthesizer Want?

Participants did not always know how best to specify their intent
to the synthesizers they used. In particular, participants did not
know what kinds of specification were best for a given synthesizer.
For example, when attempting Copilot-Occurrences-2, P20 was
not satisfied with the first synthesis suggestion, but seemed un-
sure how much of an impact changing their function declaration
would have: “I feel like this is wrong, and I am a bit confused. If I
change the name of the function, would this change the results that
Copilot would output?” P19 faced a similar situation, receiving
an incorrect Copilot autocomplete suggestion, then struggling to
figure out how to communicate to Copilot what they wanted to
change. They came up with the same strategy of changing a func-
tion name, tweaking a portion of their program text to read def
listToDictionary(list) instead of def count(list). These
observations reinforce a pattern identified in [34], that lacking a
formal programming language, users try to teach themselves the
informal “language” accepted by the language model, largely via
trial and error.

For triggerless tools, sometimes users could not even figure out
how to change their tool use behaviors in order to trigger synthe-
sis. For example, P9 could not figure out what to include in their
specification to trigger the contextual light bulb in Blue-Pencil,
remarking “It feels like the light bulb pops up randomly.”

The specification issue was most prominent with participants
using example-based synthesizers. As we discussed in Section 6.2.3,
participants using user-triggered example-based synthesizers often
had the quantitative misconception that more examples would al-
ways result in a better outcome (the monotonicity belief); however,
participants also had qualitative misconceptions about what kinds
of examples to provide as well. For example, P17 provided an ex-
tensive set of correctly-annotated input-output examples to Regae,
ran the synthesizer, and received only an indication of synthesis
failure after a few minutes of waiting. Despite their large synthe-
sis specification, P17 had missed some edge cases while providing



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins

an overabundance of redundant examples. P17’s response to this
situation was to wonder aloud:

Am I missing any cases? I feel like I covered all of the
edge cases. Do I need to add a different example for
every letter?

Similarly, P15 initially entered small, underspecified set of input-
output examples into Regae. The synthesizer returned an incorrect
regex, and P15’s reaction was to add significantly more positive
and negative input-output examples (approximately 15), but they
did not provide the additional, optional annotations on the input-
output examples that the synthesizer needed to complete the task.
Their endeavor ultimately resulted in another synthesis failure.

Lack of feedback upon synthesis failure. Participants’ lack of
knowledge about what constitutes a good specification was exacer-
bated by the lack of informative feedback upon synthesis failure,
which echoes findings in the explainability of recommendation sys-
tems [67], the learnability of AI systems more broadly (Section 3.4),
the notion of the user-synthesizer gap [15] that previous usability
studies of synthesizers have explored [14, 15], and findings from
follow-up work on the Regae synthesizer [75].

For example, after Regae timed out on a synthesis request from
P2, P2 asked, “Is there a way to check why it failed?” Similarly, when
attempting SnipPy-Reverse-2, P2 entered “Augusta Ada King” and
the same string backward as an input-output example which (for
a reason we do not know) caused the synthesizer to fail. When
the participant later changed the example to “John Doe” and kept
all other aspects of the specification the same, the synthesis query
succeeded, and P2 asked “Oh that’s weird. Do you know why it
didn’t work before?”

This lack of feedback on specifications upon failure was partic-
ularly problematic in synthesizers with complex, multi-part spec-
ifications. For example, the Regae interface requires the user to
take several distinct steps: (i) enter input-output examples, (ii) an-
notate input-output examples as either “general” or “literal,” and
(iii) decide when there are enough examples to manually trigger the
synthesizer. Aside from the fact that longer sequences of actions
mean that users will need to wait longer to view the results of
synthesis, we observed that tools that require more independent
specification components make it harder to debug synthesis failures.
For example, a user may wonder: Are the input-output examples
correct? Are they correctly annotated? Are there enough examples?
Too many? P15 exemplified this confusion: Having completed the
steps above for Regae, P15 received an incorrect result from the
synthesis engine. Upon receiving the incorrect result, P15 attempted
to use the “Mark as Literal” and “Mark as General” buttons more
extensively in order to improve the synthesized results. They also
tried to add several more input-output examples that were similar
to the ones they had already written. Neither of these approaches
helped the synthesizer succeed; the specification bug was actually
that the examples did not cover all aspects of the requirements.

Design Opportunity. Novice programmers may benefit from
(i) feedback about why a given synthesis run has failed and (ii) in-
teractions that help them understand an incorrect synthesis out-
put and why it was produced.

In summary, participants often did not know what constitutes a
good specification, so they invented theories, some of which were
incorrect. Without feedback about how to improve their specifica-
tion when synthesis failed, these wrong theories persisted.

6.6 Borrowing Existing Behaviors in Familiar

Environments

Three of the five synthesizers in our study were instantiated in
existing, mainstream environments: Flash Fill in Excel, and Blue-
Pencil and Copilot in Visual Studio Code. When participants
used synthesizers in these previously familiar environments, they
may have borrowed behaviors and intuitions from their previous
exposures to these tools.

For example, participants using Flash Fillwere inclined to enter
multiple examples and drag the cell or simply manually type in the
formula themselves, rather than provide just one example and use
the Flash Fill button. P6 remarked, “I thought I had to enter in
a lot of examples and then drag down on the cell, but this is way
easier.” Similarly, P5 explained,

I would have probably right clicked on the cell or done
a Google search to figure out how to fill in the spread-
sheet if you hadn’t showed me the Flash Fill button.
I don’t use Excel too much but that approach usually
works for other [programming environments].

When completing BluePencil-Rename-2, P9 knew they could
change all variable occurrences to a new name in Visual Studio
Code by right clicking on a variable and selecting the “Change All
Occurrences” option. They chose this approach that they already
knew how to do over using the contextual Blue-Pencil light bulb,
which was already present beside the line of code in question.

Finally, P19 did not open the Copilot tab in Visual Studio Code
at all prior to the last task. They explained:

Usually when I use the helper tools in VSCode they
don’t show anything useful, so I don’t use any of the
pop ups or features anymore.

Design Opportunity. Because novice programmers may apply
pre-existing strategies from a particular environment to synthesis-
augmented variants of the environment, designers may benefit
from being aware of common pre-existing user behaviors.

6.7 More Effort + Less Trust = More

Engagement

Synthesis tools provide novice programmers different ways to en-
gage with coding and debugging relative to a traditional educational
setting. In particular, participants in our study quickly saw code
they had not written themselves, worked to understand and debug
code that is partially or entirely incorrect, and used the output of
the synthesizer as a tool to refine their understanding of the prob-
lem domain. In some ways, synthesizer output is comparable to an
instructor-provided exercise solution in a traditional computer sci-
ence course—both may show the student an example of a working
program. But we see a few key differences:



Exploring the Learnability of Program Synthesizers by Novice Programmers UIST ’22, October 29-November 2, 2022, Bend, OR, USA

• More effort. Program synthesizers require the user to come
up with some form of specification.

• Less trust. Program synthesizers may return code that satisfies
the given specification but does not do what the user intends.

While these points could be viewed as negative attributes of pro-
gram synthesis, we observed some positive impacts of these dif-
ferences. Namely, they may result in more engagement than we
expect from students looking at, for example, teacher-written exer-
cise solutions.

6.7.1 Code Engagement. In nearly all cases that the synthesizers
returned code, participants investigated the code to some degree to
ensure its correctness rather than immediately accepting the code
and moving on. For example, P0 completed SnipPy-Abbreviate-1
and manually traced an example input out loud before coming to
the conclusion that the synthesized code was incorrect. Similarly, P1
attempted to identify any counterexamples that would imply that
the synthesized code was incorrect, ultimately concluding that the
code was in fact the correct answer to Regae-Plus-1. On various
occasions, P18, P19, and P20 all took at least 60 seconds walking
through synthesized code in Copilot before accepting a suggestion.
After doing so, both P18 and P20 accepted code they knew did not
fully meet the specification for the task at hand and subsequently
spent time debugging and tweaking the code to match their needs.
P17 describes how this process of engagement unfolded for them
in a similar situation:

This semi walks you through the process of how to
get there, and, like, makes you think about what are
the edge cases—what do I think about in order to get
to that end goal.

While we cannot say for sure that these participants would not
have done the same for instructor-provided solution code, these
examples suggest that because synthesizers engender less trust,
they increase the engagement with output code.

More generally, many participants expressed signs of engage-
ment such as surprise or delight at the code the synthesizer re-
turned, sometimes learning new ways to tackle the problem. For
example, after P3 completed SnipPy-Abbreviate-1, they expressed
their understanding of the synthesized code, which included a list
comprehension. P3 remarked that they had never seen a list com-
prehension before, but their stated understanding of the code was
correct: “I have never seen it done like this before. Does this just
mean that it automatically loops over every element without a for
loop?” Similarly, P4 remarked of SnipPy,

After the synthesizer delivered the code forme, I kinda
went over it and was like “Ahh! That’s a really smart
way to do it”—I would have thought of a much longer
way to do it.

Design Opportunity. Novices spend time reading and tracing
synthesized programs rather than accepting them without ques-
tion. Synthesis may be a useful tool in the toolbox for designers
targeting code reading or understanding.

6.7.2 Specification Engagement. Participants spent substantial time
and energy on refining specifications, shaping them to eventually

match their true intent. After engaging with a synthesis output
that satisfied their input specification but did not reach their goal,
participants had to reexamine their input specification. For example,
although the participants described in Section 6.5 did not have a
correct mental model of what kinds of examples would be useful
for the synthesizer at hand, they did spend a significant amount of
time working and reworking their input specifications.

We observed that Regae participants P2 and P7 found that Re-
gae responded to their synthesis queries by producing results that
allowed expressions with an alphabetical letter even though they
added a negative example as an input. It was only after they saw this
synthesis error that they refined their specifications by annotating
examples as general or literal.

We observed that participants produced better specifications over
time, during interactions with the synthesizers. We speculate that
because synthesis tools can interactively generate code that satisfies
a given specification, they may support novice programmers in
writing complete and correct specifications. Asking students to
ensure that a synthesizer arrives at the correct solution when given
their specification may be a plausible educational intervention for
teaching students how to reason about correctness of programs
in general, and important correctness concepts such as covering
corner cases.

Design Opportunity. Novice programmers using synthesis
tools spend time wrestling with and refining specifications for
the programs they have in mind. Synthesis may be a useful tool
in the toolbox for designers targeting specification skills.

7 LOOKING BACK: WHY PBD SYSTEMS FAIL

Tessa Lau’s classic article “Why PBD systems fail: Lessons learned
for usable AI” [37] offers five design guidelines for crafting usable
programming-by-demonstration synthesizers, shaped by formal
and informal feedback on the various synthesizers that she and
her teams invented. Given the influence of these guidelines in the
usable synthesis community, we now briefly conclude our analysis
by discussing how our findings relate to her guidelines thirteen
years later.

1. Detect failure and fail gracefully. In Section 6.4.1, we discuss
how participants sometimes incorrectly believed synthesizers had
made progress when they had not. Detecting that a synthesizer is
failing or unlikely to succeed given further queries may address this
issue. We also discuss synthesizers’ lack of feedback upon synthesis
failure in Section 6.5 and how it prompted participants to become
confused and engage in counterproductive behavior.

2. Make it easy to correct the system. In Section 6.2.1, we discuss
how participants sometimes wanted to manually trigger a trigger-
less synthesizer to refine the synthesis output, but had difficulty
doing so, echoing Lau’s call for ease of correction. In Section 6.5, we
discuss how participants did not always know what specification
to provide to the system to best achieve their desired outcomes,
leading to extended counterproductive specification modifications
in an attempt to correct the synthesizers.

3. Encourage trust by presenting a model users can understand.
We discuss participants’ difficulties with interpreting synthesis



UIST ’22, October 29-November 2, 2022, Bend, OR, USA Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins

progress in Section 6.4, although we did not observe instances of
participants fundamentally misunderstanding the output of the syn-
thesizer itself (e.g., the synthesized code, regexes, or code transfor-
mations). We speculate this stems from the fact that our participants
were novice programmers rather than non-programmers.

4. Enable partial automation. This guideline reflected the obser-
vation that users may not always want the synthesizer to do all the
work (total automation). Participants reported appreciating tools in
which they could make progress towards their goal without the syn-
thesizer’s help—e.g., writing code manually or filling spreadsheet
cells (Section 6.1). This reinforces the value of partial automation.
However, Lau’s discussion particularly emphasizes the importance
of letting users modify synthesized programs manually, after syn-
thesis. We saw evidence for this too, with Regae users wanting to
manually write regexes based on synthesis outputs (Section 6.1.1).

5. Consider the perceived value of automation. This guideline
emphasized that helping the synthesizer is work, and this new
work is only worthwhile if it is faster or easier than completing the
task another way. Lau suggested integrating synthesis into existing
tools to reduce the work required of the user. Participants appeared
to prefer incidental specifications (Section 6.1.2) over voluntary
specifications (Section 6.1.1), which may support Lau’s suggestion.
On the other hand, we discuss in Section 6.6 that participants’
pre-existing ideas about editor features could interfere with their
judgment about the utility of the integrated synthesis tool.

Summary. Our analysis contributes multiple themes that go be-
yond the discussion in “Why PBD Systems Fail,” including: (i) axes
for synthesis authors to explore (Sections 6.1 and 6.2), (ii) the impact
of collecting specifications in the background and how it nuances
the idea that tools “must learn accurately from an absurdly small
number of user-provided training examples” [37] (Sections 6.1.2 and
6.3), and (iii) that some of the “failures” of these systems (namely,
that they require more effort and instill less trust, as discussed
in Section 6.7) may actually produce novel design opportunities
for synthesis authors. However, we also find support for some of
Lau’s existing guidelines, especially for the importance of guide-
lines (1) detecting and communicating failure, (2) making it easy for
users to refine specifications, and (4) letting users do some amount
of the work manually. In addition to serving as a standalone set of
themes for future research to explore, we hope putting this study in
conversation with existing works like Lau’s seminal guidelines can
help the community to revisit and re-prioritize existing guidance.

8 LIMITATIONS AND FUTURE WORK

Disentangling effects. As a consequence of using real tools that
were not designed to vary one design dimension at a time, we
cannot definitively attribute every pattern to a particular design
decision. A randomized controlled experiment would be required to
achieve definitive conclusions about varying degrees of learnability
along the axes that we identified. However, more than attributing
success to a particular dimension versus another, this study was
aimed at identifying and exploring dimensions of interest in the
first place. We hope future research on synthesizer learnability
will contribute experiments that vary a given synthesizer across
the dimensions we identified. We expect this style of research will

eventually help the field develop guidelines for how we should
design synthesis tools, rather than only evaluating a given tool in
isolation or against manual coding.

Effects of think-aloud and investigator presence. Participants com-
pleted tasks and thought aloud simultaneously, which could in-
crease cognitive load relative to using tools outside a lab setting [11].
Further, the first author was present throughout the video meeting
and recorded the session for future analysis. If participants felt
pressured, their interactions with the synthesizers may have been
harder. Conversely, the presence of the first author may have had
the opposite effect if it assisted their learning in any way.

Non-evaluative. Some of the tools in our study were not created
with the intention of being learnable for novice programmers. We
selected the tools in our study with the goal of uncovering design
decisions that do and do not work for novices. However, the fact
that serving novice programmers is not an explicit goal for some
of them is one of several reasons that this study should not be read
as an evaluation of either the synthesizers we used or whether
existing synthesis tools for novices are serving that audience.

External validity. Although the tools used in the study are real
and publicly available, the research team selected the tasks that
participants completed in sessions. The learnability of synthesis
tools for these tasks may or may not resemble the learnability
for users’ real tasks. Moreover, our participants were drawn from
a pool of undergraduates attending an R1 university. While the
behavior of this population has generated a useful starting point for
understanding the learnability of program synthesizers by novice
programmers, it almost certainly does not reflect the behavior of
all novice programmers. We hope future work in this area explores
the behaviors of additional groups of novice programmers.

Learning outcomes. Our study explored whether novices found
it easy to learn to use synthesizers during first-use exposure, but it
did not offer insights into whether these tools help them learn pro-
gramming or computing concepts. Importantly, showing these tools
are learnable is not the same as showing they improve students’
learning outcomes. In fact, learnable synthesis tools may damage
CS education outcomes. Exploring the impact of synthesizers on
novices’ learning outcomes in CS education contexts would help us
understand more about roles for synthesizers for novices, perhaps
via a longitudinal study using validated concept inventories.

Ultimately, even if synthesizers are eventually shown to have
a negative impact on CS students’ learning outcomes, we would
remain interested in the goal of making synthesizers learnable to
novice programmers. Crucially, not all programming novices are
CS students. Non-technical domain experts like journalists or social
scientists may have a specific task in mind—e.g., a programmatic
data analysis—without wanting to learn computer science.

Incompleteness. We expect the insights from this study will be
useful for the designers of future program synthesis tools. However,
we are certain our study is not the final word on the learnability
of program synthesis tools for novice programmers. This study
drew on observation of 22 sessions with novice programmers, all of
which (i) followed a single, fixed structure and (ii) we analyzed via
qualitative analysis alone. Regarding (i), we are confident that there



Exploring the Learnability of Program Synthesizers by Novice Programmers UIST ’22, October 29-November 2, 2022, Bend, OR, USA

is much more to learn from additional qualitative and need-finding
work; regarding (ii), our observations offer plausible hypotheses
for future, quantitative follow-on work.

9 CONCLUSION

Program synthesis tools have the potential to make programming
tasks easier for a variety of audiences. This work explores key bar-
riers that stand between novice programmers and this vision of
learnable, helpful synthesizers. We hope reasoning explicitly about
design dimensions like voluntary versus incidental specifications,
triggerless versus user-triggered synthesis, and triggerless versus
user-triggered output will eventually support our community in
making synthesis tools more learnable. The common misconcep-
tions we observed may also play an important role in helping future
synthesizer authors design specifications that work for real users.
Although this work is only a first step toward understanding how to
make program synthesizers more learnable by novices, we believe
insights from this work can ease the design process for designers
who aim to make synthesizers for use in novice-targeted develop-
ment tools.

REFERENCES

[1] D. Alan Allport, Elizabeth A. Styles, and Shulan Hsieh. 1994. Shifting Intentional
Set: Exploring the Dynamic Control of Tasks. In Attention and Performance 15:
Conscious and Nonconscious Information Processing. The MIT Press, 421–452.

[2] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for Human-
AI Interaction. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (CHI ’19). Association for Computing Machinery, 1–13. https:
//doi.org/10.1145/3290605.3300233

[3] Matej Balog, Alexander Gaunt, Marc Brockschmidt, Sebastian Nowozin, and
Daniel Tarlow. 2017. DeepCoder: Learning to Write Programs. In Proceedings of
ICLR’17.

[4] Osbert Bastani, Xin Zhang, and Armando Solar-Lezama. 2019. Synthesizing
Queries via Interactive Sketching. CoRR abs/1912.12659 (2019). arXiv:1912.12659
http://arxiv.org/abs/1912.12659

[5] Victoria Bellotti and Keith Edwards. 2001. Intelligibility and Accountability:
Human Considerations in Context-Aware Systems. Human–Computer Interaction
16, 2-4 (Dec. 2001), 193–212. https://doi.org/10.1207/S15327051HCI16234_05

[6] Francisco Enrique Vicente Castro and Kathi Fisler. 2016. On the Interplay Be-
tween Bottom-Up and Datatype-Driven Program Design. In SIGCSE Technical
Symposium. https://doi.org/10.1145/2839509.2844574

[7] Francisco Enrique Vicente Castro and Kathi Fisler. 2020. Qualitative Analyses of
Movements Between Task-Level and Code-Level Thinking of Novice Programmers.
Association for Computing Machinery, 487–493. https://doi.org/10.1145/3328778.
3366847

[8] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. 2018. Rousillon: Scrap-
ing Distributed Hierarchical Web Data. In Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology (UIST ’18). Association for
Computing Machinery, 963–975. https://doi.org/10.1145/3242587.3242661

[9] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. (2021). arXiv:2107.03374 [cs.LG]

[10] Codecademy. 2022. Learn to Code - for Free. https://www.codecademy.com.
Accessed: 2022-07-26.

[11] Simon P. Davies and AdrianM. Castell. 1994. From Individuals to Groups Through
Artifacts: The Changing Semantics of Design in Software Development. In User-
Centred Requirements for Software Engineering Environments, David J. Gilmore,

Russel L. Winder, and Françoise Détienne (Eds.). https://doi.org/10.1007/978-3-
662-03035-6_2

[12] Asaf Degani. 1996. Modeling Human-Machine Systems: On Modes, Error, and
Patterns of Interaction. Ph.D. Dissertation. Georgia Institute of Technology.

[13] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. Association for Computing Machinery, 1–12. https:
//doi.org/10.1145/3313831.3376442

[14] Kasra Ferdowsifard, Shraddha Barke, Hila Peleg, Sorin Lerner, and Nadia Po-
likarpova. 2021. LooPy: Interactive Program Synthesis with Control Struc-
tures. Proc. ACM Program. Lang. 5, OOPSLA, Article 153 (Oct. 2021), 29 pages.
https://doi.org/10.1145/3485530

[15] Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia
Polikarpova. 2020. Small-Step Live Programming by Example. Association for
Computing Machinery, 614–626. https://doi.org/10.1145/3379337.3415869

[16] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure
Transformations from Input-Output Examples. ACM SIGPLAN Notices 50, 6 (June
2015), 229–239. https://doi.org/10.1145/2813885.2737977

[17] Leah Findlater and Joanna McGrenere. 2004. A Comparison of Static, Adaptive,
and Adaptable Menus. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI ’04). Association for Computing Machinery, 89–96.
https://doi.org/10.1145/985692.985704

[18] Kathi Fisler and Francisco Enrique Vicente Castro. 2017. Sometimes, Rainfall
Accumulates: Talk-Alouds with Novice Functional Programmers. In International
Conference on Computing Education Research (ICER). https://doi.org/10.1145/
3105726.3106183

[19] Nat Friedman. 2021. Introducing GitHub Copilot: your AI pair programmer. https:
//github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/. Ac-
cessed: 2022-04-04.

[20] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik
Sen. 2014. CodeHint: Dynamic and Interactive Synthesis of Code Snippets. In
Proceedings of the 36th International Conference on Software Engineering (ICSE
2014). Association for Computing Machinery, 653–663. https://doi.org/10.1145/
2568225.2568250

[21] Ivan Gavran, Eva Darulova, and Rupak Majumdar. 2020. Interactive Synthesis
of Temporal Specifications from Examples and Natural Language. Proc. ACM
Program. Lang. 4, OOPSLA, Article 201 (Nov. 2020), 26 pages. https://doi.org/10.
1145/3428269

[22] GitHub Inc. 2021. GitHub Copilot: Your AI pair programmer. https://copilot.
github.com/. Accessed: 2022-03-31.

[23] Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using Input-
Output Examples. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL ’11). Association for
Computing Machinery, 317–330. https://doi.org/10.1145/1926385.1926423

[24] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. 2011.
Synthesis of Loop-Free Programs. In Proceedings of the 32nd ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’11).
Association for Computing Machinery, 62–73. https://doi.org/10.1145/1993498.
1993506

[25] Sumit Gulwani and Ramarathnam Venkatesan. 2009. Component Based Synthe-
sis Applied to Bitvector Circuits. Technical Report MSR-TR-2010-12. Microsoft
Research.

[26] Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming via Di-
rect Manipulation. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). Association for ComputingMa-
chinery, New York, NY, USA, 379–390. https://doi.org/10.1145/2984511.2984575

[27] Austin Z. Henley, Julian Ball, Benjamin Klein, Aiden Rutter, and Dylan Lee. 2021.
An Inquisitive Code Editor for Addressing Novice Programmers’ Misconceptions of
Program Behavior. IEEE Press, 165–170. https://doi.org/10.1109/ICSE-SEET52601.
2021.00026

[28] K. Höök. 2000. Steps to Take before Intelligent User Interfaces Become Real.
Interacting with Computers 12, 4 (2000), 409–426. https://doi.org/10.1016/S0953-
5438(99)00006-5

[29] Eric Horvitz. 1999. Principles of Mixed-Initiative User Interfaces. In Proceedings
of CHI ’99, ACM SIGCHI Conference on Human Factors in Computing Systems,
Pittsburgh, PA, ACM Press. 159–166.

[30] Thibaud Hottelier, Ras Bodik, and Kimiko Ryokai. 2014. Programming by Ma-
nipulation for Layout. In Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology (UIST ’14). Association for Computing
Machinery, 231–241. https://doi.org/10.1145/2642918.2647378

[31] Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L.
Glassman. 2021. Assuage: Assembly Synthesis Using A Guided Exploration. In
The 34th Annual ACM Symposium on User Interface Software and Technology (UIST
’21). Association for Computing Machinery, 134–148. https://doi.org/10.1145/
3472749.3474740

[32] A. T. Jersild. 1927. Mental Set and Shift. Archives of Psychology 14, 89 (1927).

https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
https://arxiv.org/abs/1912.12659
http://arxiv.org/abs/1912.12659
https://doi.org/10.1207/S15327051HCI16234_05
https://doi.org/10.1145/2839509.2844574
https://doi.org/10.1145/3328778.3366847
https://doi.org/10.1145/3328778.3366847
https://doi.org/10.1145/3242587.3242661
https://arxiv.org/abs/2107.03374
https://www.codecademy.com
https://doi.org/10.1007/978-3-662-03035-6_2
https://doi.org/10.1007/978-3-662-03035-6_2
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3313831.3376442
https://doi.org/10.1145/3485530
https://doi.org/10.1145/3379337.3415869
https://doi.org/10.1145/2813885.2737977
https://doi.org/10.1145/985692.985704
https://doi.org/10.1145/3105726.3106183
https://doi.org/10.1145/3105726.3106183
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/2568225.2568250
https://doi.org/10.1145/3428269
https://doi.org/10.1145/3428269
https://copilot.github.com/
https://copilot.github.com/
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1109/ICSE-SEET52601.2021.00026
https://doi.org/10.1109/ICSE-SEET52601.2021.00026
https://doi.org/10.1016/S0953-5438(99)00006-5
https://doi.org/10.1016/S0953-5438(99)00006-5
https://doi.org/10.1145/2642918.2647378
https://doi.org/10.1145/3472749.3474740
https://doi.org/10.1145/3472749.3474740


UIST ’22, October 29-November 2, 2022, Bend, OR, USA Dhanya Jayagopal, Justin Lubin, and Sarah E. Chasins

[33] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
Guided Component-Based Program Synthesis. In 2010 ACM/IEEE 32nd Interna-
tional Conference on Software Engineering, Vol. 1. 215–224. https://doi.org/10.
1145/1806799.1806833

[34] Ellen Jiang, Edwin Toh, Alejandra Molina, Kristen Olson, Claire Kayacik, Aaron
Donsbach, Carrie J. Cai, and Michael Terry. 2022. Discovering the Syntax and
Strategies of Natural Language Programming with Generative Language Models.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
386, 19 pages. https://doi.org/10.1145/3491102.3501870

[35] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013. Syn-
thesis modulo Recursive Functions. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages
& Applications (OOPSLA ’13). Association for Computing Machinery, 407–426.
https://doi.org/10.1145/2509136.2509555

[36] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. 2015.
Principles of Explanatory Debugging to Personalize InteractiveMachine Learning.
In Proceedings of the 20th International Conference on Intelligent User Interfaces
(IUI ’15). Association for Computing Machinery, 126–137. https://doi.org/10.
1145/2678025.2701399

[37] Tessa Lau. 2009. Why Programming-By-Demonstration Systems Fail: Lessons
Learned for Usable AI. AI Magazine 30, 4 (Oct. 2009), 65–65. https://doi.org/10.
1609/aimag.v30i4.2262

[38] Sorin Lerner. 2020. Projection Boxes: On-the-Fly Reconfigurable Visualization
for Live Programming. Association for Computing Machinery, 1–7. https:
//doi.org/10.1145/3313831.3376494

[39] Colleen M. Lewis. 2012. The Importance of Students’ Attention to Program
State: A Case Study of Debugging Behavior. In Proceedings of the Ninth Annual
International Conference on International Computing Education Research (ICER
’12). Association for Computing Machinery, 127–134. https://doi.org/10.1145/
2361276.2361301

[40] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (CHI ’17). Association
for Computing Machinery, 6038–6049. https://doi.org/10.1145/3025453.3025483

[41] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, TomM. Mitchell,
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent That Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(UIST ’19). Association for Computing Machinery, 577–589. https://doi.org/10.
1145/3332165.3347899

[42] Brian Y. Lim and Anind K. Dey. 2009. Assessing Demand for Intelligibility in
Context-Aware Applications. In Proceedings of the 11th International Conference
on Ubiquitous Computing (UbiComp ’09). Association for Computing Machinery,
195–204. https://doi.org/10.1145/1620545.1620576

[43] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program Sketching
with Live Bidirectional Evaluation. Proceedings of the ACM on Programming
Languages 4, ICFP (Aug. 2020), 109:1–109:29. https://doi.org/10.1145/3408991

[44] Ewa Luger and Abigail Sellen. 2016. “Like Having a Really Bad PA”: The
Gulf between User Expectation and Experience of Conversational Agents. In
Proceedings of the 2016 CHI Conference on Human Factors in Computing Sys-
tems (CHI ’16). Association for Computing Machinery, 5286–5297. https:
//doi.org/10.1145/2858036.2858288

[45] David Mandelin, Lin Xu, Rastislav Bodík, and Doug Kimelman. 2005. Jungloid
Mining: Helping to Navigate the API Jungle. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’05). Association for Computing Machinery, 48–61. https://doi.org/10.1145/
1065010.1065018

[46] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Mind
Your Language: On Novices’ Interactions with Error Messages. In Proceedings
of the 10th SIGPLAN Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Portland, Oregon, USA) (Onward! 2011).
Association for Computing Machinery, New York, NY, USA, 3–18. https:
//doi.org/10.1145/2048237.2048241

[47] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron, Olek-
sandr Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani. 2015. User
Interaction Models for Disambiguation in Programming by Example. In Proceed-
ings of the 28th Annual ACM Symposium on User Interface Software & Tech-
nology (UIST ’15). Association for Computing Machinery, 291–301. https:
//doi.org/10.1145/2807442.2807459

[48] Anders Miltner, Sumit Gulwani, Vu Le, Alan Leung, Arjun Radhakrishna, Gustavo
Soares, Ashish Tiwari, and Abhishek Udupa. 2019. On the Fly Synthesis of Edit
Suggestions. Proc. ACM Program. Lang. 3, OOPSLA, Article 143 (Oct. 2019),
29 pages. https://doi.org/10.1145/3360569

[49] Chelsea Myers, Anushay Furqan, Jessica Nebolsky, Karina Caro, and Jichen Zhu.
2018. Patterns for How Users Overcome Obstacles in Voice User Interfaces. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). Association for Computing Machinery, 1–7. https://doi.org/10.1145/

3173574.3173580
[50] Sujata Narayana. 2020. Power BI Desktop August 2020 Feature Summary: Tex-

t/CSV By Example (preview). https://powerbi.microsoft.com/en-us/blog/power-
bi-desktop-august-2020-feature-summary/#_text_csv. Accessed: 2022-04-05.

[51] Greg L. Nelson, Benjamin Xie, and Amy J. Ko. 2017. Comprehension First:
Evaluating a Novel Pedagogy and Tutoring System for Program Tracing in
CS1. In Proceedings of the 2017 ACM Conference on International Computing
Education Research (ICER ’17). Association for ComputingMachinery, 2–11. https:
//doi.org/10.1145/3105726.3106178

[52] Donald A. Norman. 1994. How Might People Interact with Agents. Commun.
ACM 37, 7 (July 1994), 68–71. https://doi.org/10.1145/176789.176796

[53] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-Directed
Program Synthesis. SIGPLAN Not. 50, 6 (June 2015), 619–630. https://doi.org/10.
1145/2813885.2738007

[54] Hila Peleg, Shachar Itzhaky, and Sharon Shoham. 2018. Abstraction-Based Inter-
action Model for Synthesis. In Verification, Model Checking, and Abstract Inter-
pretation, Isil Dillig and Jens Palsberg (Eds.). Springer International Publishing,
382–405. https://doi.org/10.1007/978-3-319-73721-8_18

[55] Hila Peleg, Sharon Shoham, and Eran Yahav. 2018. Programming Not Only by
Example. In Proceedings of the 40th International Conference on Software Engi-
neering (ICSE ’18). Association for Computing Machinery, 1114–1124. https:
//doi.org/10.1145/3180155.3180189

[56] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
Synthesis from Polymorphic Refinement Types. In Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI
’16). Association for Computing Machinery, 522–538. https://doi.org/10.1145/
2908080.2908093

[57] Jef Raskin. 2000. The Humane Interface: New Directions for Designing Interactive
Systems. Addison-Wesley Professional.

[58] Ruth Ravichandran, Sang-Wha Sien, ShwetakN. Patel, Julie A. Kientz, and Laura R.
Pina. 2017. Making Sense of Sleep Sensors: How Sleep Sensing Technologies
Support and Undermine Sleep Health. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems (CHI ’17). Association for Computing
Machinery, 6864–6875. https://doi.org/10.1145/3025453.3025557

[59] Robert D. Rogers and Stephen Monsell. 1995. Costs of a Predictible Switch
between Simple Cognitive Tasks. Journal of Experimental Psychology: General
124, 2 (1995), 207–231. https://doi.org/10.1037/0096-3445.124.2.207

[60] Chad Rothschiller. 2012. Flash Fill. https://www.microsoft.com/en-us/microsoft-
365/blog/2012/08/09/flash-fill/. Accessed: 2022-04-04.

[61] Eric Schkufza, Rahul Sharma, and Alex Aiken. 2013. Stochastic Superoptimization.
In Proceedings of the Eighteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS ’13). Association for
Computing Machinery, 305–316. https://doi.org/10.1145/2451116.2451150

[62] Steven C. Shaffer. 2005. Ludwig: An Online Programming Tutoring and Assess-
ment System. SIGCSE Bull. 37, 2 (June 2005), 56–60. https://doi.org/10.1145/
1083431.1083464

[63] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay
Saraswat. 2006. Combinatorial Sketching for Finite Programs. SIGARCH Comput.
Archit. News 34, 5 (Oct. 2006), 404–415. https://doi.org/10.1145/1168919.1168907

[64] Elliot Soloway and Kate Ehrlich. 1986. Empirical Studies of Programming Knowl-
edge. In Readings in Artificial Intelligence and Software Engineering, Charles Rich
and Richard C. Waters (Eds.). https://doi.org/10.1016/B978-0-934613-12-5.50042-
2

[65] James C. Spohrer and Elliot Soloway. 1986. Novice Mistakes: Are the Folk
Wisdoms Correct? Communications of the ACM (July 1986). https://doi.org/10.
1145/6138.6145

[66] Amanda Swearngin, Chenglong Wang, Alannah Oleson, James Fogarty, and
Amy J. Ko. 2020. Scout: Rapid Exploration of Interface Layout Alternatives through
High-Level Design Constraints. Association for Computing Machinery, 1–13.
https://doi.org/10.1145/3313831.3376593

[67] Nava Tintarev and Judith Masthoff. 2015. Explaining Recommendations: Design
and Evaluation. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach,
and Bracha Shapira (Eds.). Springer US, 353–382. https://doi.org/10.1007/978-1-
4899-7637-6_10

[68] Priyan Vaithilingam and Philip J. Guo. 2019. Bespoke: Interactively Synthe-
sizing Custom GUIs from Command-Line Applications By Demonstration. In
Proceedings of the 32nd Annual ACM Symposium on User Interface Software
and Technology (UIST ’19). Association for Computing Machinery, 563–576.
https://doi.org/10.1145/3332165.3347944

[69] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. 2019.
Visualization by Example. Proceedings of the ACM on Programming Languages 4,
POPL (Dec. 2019), 49:1–49:28. https://doi.org/10.1145/3371117

[70] Chenglong Wang, Yu Feng, Rastislav Bodik, Isil Dillig, Alvin Cheung, and
Amy J Ko. 2021. Falx: Synthesis-Powered Visualization Authoring. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI ’21). Association for Computing Machinery, Article 106, 15 pages. https:
//doi.org/10.1145/3411764.3445249

https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3491102.3501870
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/2678025.2701399
https://doi.org/10.1145/2678025.2701399
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1609/aimag.v30i4.2262
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/3313831.3376494
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/2361276.2361301
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.1145/1620545.1620576
https://doi.org/10.1145/3408991
https://doi.org/10.1145/2858036.2858288
https://doi.org/10.1145/2858036.2858288
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/1065010.1065018
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/2048237.2048241
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/3360569
https://doi.org/10.1145/3173574.3173580
https://doi.org/10.1145/3173574.3173580
https://powerbi.microsoft.com/en-us/blog/power-bi-desktop-august-2020-feature-summary/#_text_csv
https://powerbi.microsoft.com/en-us/blog/power-bi-desktop-august-2020-feature-summary/#_text_csv
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/3105726.3106178
https://doi.org/10.1145/176789.176796
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.1145/2813885.2738007
https://doi.org/10.1007/978-3-319-73721-8_18
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3025453.3025557
https://doi.org/10.1037/0096-3445.124.2.207
https://www.microsoft.com/en-us/microsoft-365/blog/2012/08/09/flash-fill/
https://www.microsoft.com/en-us/microsoft-365/blog/2012/08/09/flash-fill/
https://doi.org/10.1145/2451116.2451150
https://doi.org/10.1145/1083431.1083464
https://doi.org/10.1145/1083431.1083464
https://doi.org/10.1145/1168919.1168907
https://doi.org/10.1016/B978-0-934613-12-5.50042-2
https://doi.org/10.1016/B978-0-934613-12-5.50042-2
https://doi.org/10.1145/6138.6145
https://doi.org/10.1145/6138.6145
https://doi.org/10.1145/3313831.3376593
https://doi.org/10.1007/978-1-4899-7637-6_10
https://doi.org/10.1007/978-1-4899-7637-6_10
https://doi.org/10.1145/3332165.3347944
https://doi.org/10.1145/3371117
https://doi.org/10.1145/3411764.3445249
https://doi.org/10.1145/3411764.3445249


Exploring the Learnability of Program Synthesizers by Novice Programmers UIST ’22, October 29-November 2, 2022, Bend, OR, USA

[71] Jacqueline Whalley and Nadia Kasto. 2014. A Qualitative Think-Aloud Study
of Novice Programmers’ Code Writing Strategies. In Proceedings of the 2014
Conference on Innovation & Technology in Computer Science Education (ITiCSE
’14). Association for Computing Machinery, 279–284. https://doi.org/10.1145/
2591708.2591762

[72] Brian Whitworth. 2005. Polite Computing. Behaviour & Information Technology
24, 5 (Sept. 2005), 353–363. https://doi.org/10.1080/01449290512331333700

[73] Mark Wilson-Thomas. 2019. Refactoring made easy with IntelliCode!
https://devblogs.microsoft.com/visualstudio/refactoring-made-easy-with-
intellicode/. Accessed: 2022-04-04.

[74] Rayoung Yang, Eunice Shin, Mark W. Newman, and Mark S. Ackerman. 2015.
When Fitness Trackers Don’t ’Fit’: End-User Difficulties in the Assessment of Per-
sonal TrackingDevice Accuracy. In Proceedings of the 2015 ACM International Joint

Conference on Pervasive and Ubiquitous Computing (UbiComp ’15). Association
for Computing Machinery, 623–634. https://doi.org/10.1145/2750858.2804269

[75] Tianyi Zhang, Zhiyang Chen, Yuanli Zhu, Priyan Vaithilingam, Xinyu Wang,
and Elena L. Glassman. 2021. Interpretable Program Synthesis. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21).
Association for Computing Machinery, Article 105, 16 pages. https://doi.org/10.
1145/3411764.3445646

[76] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020.
Interactive Program Synthesis by Augmented Examples. Association for Computing
Machinery, 627–648. https://doi.org/10.1145/3379337.3415900

https://doi.org/10.1145/2591708.2591762
https://doi.org/10.1145/2591708.2591762
https://doi.org/10.1080/01449290512331333700
https://devblogs.microsoft.com/visualstudio/refactoring-made-easy-with-intellicode/
https://devblogs.microsoft.com/visualstudio/refactoring-made-easy-with-intellicode/
https://doi.org/10.1145/2750858.2804269
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1145/3411764.3445646
https://doi.org/10.1145/3379337.3415900

	Abstract
	1 Introduction
	2 Background: Program Synthesis
	3 Related Work
	3.1 Learnability & Usability of Synthesis Tools
	3.2 Interactive Program Synthesis
	3.3 Learnability & Usability of Novice-Focused Programming Environments
	3.4 Learnability & Usability of AI Tools
	3.5 Think-Aloud and Observational Studies with Novices

	4 Program Synthesizers
	5 Method
	6 Results
	6.1 Voluntary and Incidental Specifications
	6.2 Triggerless and User-Triggered Initiation and Result Communication
	6.3 Small Specification Size
	6.4 Interpreting Synthesis Outputs
	6.5 What Kind of Specification Does My Synthesizer Want?
	6.6 Borrowing Existing Behaviors in Familiar Environments
	6.7 More Effort + Less Trust = More Engagement

	7 Looking Back: Why PBD Systems Fail
	8 Limitations and Future Work
	9 Conclusion
	References

