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Abstract—TIn this paper, we study the properties of path metrics
of an entanglement path for a given entanglement swapping order
of the path. We show how to efficiently compute the path metrics
of an entanglement path for any given swapping order. We show
that different entanglement swapping orders for the same path
can lead to different expected throughputs. A key finding is that
the binary operator corresponding to entanglement swapping
along a path is not associative. We further show that the problem
of computing an s-t path with maximum expected throughput
under any entanglement swapping order does not have the sub-
path optimality property, which is a key property most path
finding algorithms such as Dijkstra’s algorithm rely on. We use
extensive simulations to validate our theoretical findings.

Keywords: Entanglement routing, entanglement swapping, ex-
pected throughput, path metrics, quantum networks.

1. INTRODUCTION

Quantum networks, composed of quantum repeater stations
connected by quantum channels such as optical fibers or
free space links, promise a smorgasbord of advantages over
classical networks [15]. Entanglements form the basis of all
quantum communications: if Alice and Bob each share half
of an entangled pair of qubits, known as a Bell pair, using
local operations and classical communication (LOCC), Alice
can use the Bell pair to teleport a data qubit to Bob, destroying
the entanglement of the Bell pair as well as any superposition
state of the data qubit at her site in the process. Repeaters
enable remote entanglement between Alice and Bob: if Alice
and Charlie share a Bell pair and Charlie and Bob share a
Bell pair, using LOCC wherein Charlie applies a Bell state
measurement (BSM) to her respective qubits in a process
known as entanglement swapping, Alice and Bob’s qubits may
be projected onto a Bell pair, becoming directly entangled with
each other. Given a repeater chain connected by Bell pairs
between Alice and Bob, the intermediate repeaters in the path
may perform entanglement swapping to generate a Bell pair
between Alice and Bob.

Quantum teleportation and entanglement swapping in prac-
tice degrade the fidelity of data qubits and Bell pairs, so
repeaters come in three generations, dubbed 1G, 2G, and 3G,
with each generation using procedures such as heralded entan-
glement generation (HEG), heralded entanglement purification
(HEP), and quantum error correction (QEC) to correct for
photon loss and operation errors, which only compound with
communication distance [7, 8]. 1G repeaters are currently in
the development phase, while 2G and 3G repeaters remain
theoretical concepts. Most entanglement routing studies in the
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area of network science assume 1G repeaters, and we do the
same. Specifically, we assume 1G repeaters based on atomic
ensembles and linear optics [3, 10], but omit any mention
of entanglement purification by also assuming all operations,
if successful, produce high-fidelity Bell pairs for simplicity’s
sake. For a comprehensive overview of quantum networks see
[13].

Path selection mechanisms for entanglement routing mimic
many of those used in classical routing. In [14], for instance,
Van Meter et al. adapt Dijkstra’s algorithm for quantum
repeater networks. The bulk of existing work on entanglement
routing is concerned with optimizing metrics such as through-
put and resource utilization [12, 16] just as in classical routing,
while also accounting for quantum properties like fidelity [6].
Van Meter et al. define the throughput of a path in a quantum
network as the number of Bell pairs generated per time slot
of a given fidelity [14]. As in [9, 12, 16], we assume path
computation, resource allocation, and all relevant LOCC are
done in one time slot for a given set of source-destination
repeater pairs. In order to maximize throughput for Alice
and Bob, we must find paths which maximize the number
of Bell pairs between them. To the best of our knowledge,
the question of whether the order in which repeaters in a path
perform entanglement swapping affects throughput is largely
unanswered. We posit order matters.

Two well-known swapping orders of a repeater chain are
the sequential order and the parallel order [4, 14]. In the
sequential order, the swappings of an n-hop path are performed
on the intermediate nodes in n — 1 iterations, from left to
right. In the parallel order, the swappings of an n-hop path
(where n is assumed to be a power of 2) are performed on the
intermediate nodes in logn iterations, where g swappings
are performed in the k-th iteration (see Section 4 for de-
tails). Assuming quantum channels can support multiple Bell
pairs simultaneously using wavelength-division multiplexing
(WDM), take the width of a repeater chain to be the minimum
number of Bell pairs spanning any link in the path [12].
We study the expected throughput of a given repeater chain
of arbitrary hop count and arbitrary width coupled with a
swapping order in Section 4.

The main contributions of this paper are the following.

e We show how to efficiently compute the expected
throughput of a repeater chain for any given swapping
order.

o We show that the entanglement swapping operation is not
associative.

o We show that the problem of computing an s-¢ path with
maximum expected throughput does not have the sub-
path optimality property, which is a key property that
most path finding algorithms rely on.



The rest of this paper is organized as follows. In Section 2,
we present the system model. In Section 3, we define the
metric vector of a link/path and show how to compute the
metric vector resulting from a given swapping. In Section 4,
we study the impact of swapping order on the resulting
expected throughput of a path. In Section 5, we present
simulation results which validate our theoretical findings. We
conclude the paper in Section 6.

2. SYSTEM MODEL

We model a quantum network using an undirected graph G =
(V,E;C,Q,p,q) with edge and vertex attributes, where

o V is the set of vertices each of which corresponds to a
repeater,

o E is the set of edges each of which corresponds to a
multi-mode optical fiber connecting a pair of adjacent
vertices,

o Cyy C {1,2,...,W} is the set of available quantum
channels on edge (u,v), V(u,v) € E,

e (Q, € Ny is the number of available qubits (stored in
quantum memory) for creating Bell pairs at v, Vv € V,

e Duy € [0,1] is the success probability of generating
an entanglement over a channel in Cy,, V(u,v) € E
(assuming the required qubits at u and v are available),

e ¢y € [0,1] is the success probability of swapping a pair
of adjacent entanglements at vertex v, Vv € V.

We use the terms vertices (a graph theory term) and nodes
(a networking term) interchangeably. We use the terms edges
and links interchangeably. We use <vg, v1,...,v,> to denote
an ordered sequence of vertices, and use vg-v1----- v, to
denote an n-hop path with end nodes vy, v,, and intermediate
nodes wv1,vs,...,V,_1. We abbreviate quantum channels as
channels. We use W to denote the maximum number of
channels a link may have. Hence |C,,,| < W holds for every
link (u,v) € E.

A node can bind/assign each of its qubits to a quantum
channel [9, 12], so that each qubit is assigned to at most one
channel, and each end node of a channel is assigned at most
one qubit. A channel that is assigned qubits at both of its end
nodes is called a bound channel. Our choice of repeaters relies
on the Duan-Lukin-Cirac-Zoller (DLCZ) protocol [3, 7, 10],
which is as follows.

Heralded entanglement generation: To attempt to generate
an entanglement on a bound channel on link (u,v), adja-
cent repeaters u and v, equipped with quantum memories
(viz., atomic ensembles), simultaneously excite their respective
ensemble with a laser pulse, inducing an atom to emit a
photon that is entangled with said atom. These two photons
are coupled to optical fibers and interfered on a polarizing
beamsplitter at the midpoint between u and v, with the outputs
detected by two single-photon detectors. If either detector
detects a single photon, the two ensembles are projected onto
an entangled state. A classical “heralding” signal is sent to
u and v informing them of the result. We use p,,, to denote
the success probability of generating a Bell pair on a bound
channel on link (u,v).

Entanglement swapping: We use e(u, v) to denote an entan-
glement between nodes u and v, where v and v do not have

to be adjacent. Two entanglements are said to be adjacent
if they share a common end node. Let e(x,v) and e(v,y) be
two adjacent entanglements. After v receives heralding signals
from z and y indicating the successful generation of e(z,v)
and e(v,y), v attempts entanglement swapping of e(x,v) and
e(v,y) by applying a laser pulse to its atomic excitations
stored in the ensembles corresponding to e(x,v) and e(v,y),
converting them into photons which are then interfered on a
beamsplitter. The detection of a single photon in either detector
heralds the successful projection of x and y’s ensembles onto
an entangled state e(z,y). We use ¢, to denote the success
probability of entanglement swapping at v. Note that ¢, < 0.5
for BSMs based on linear optics, but we allow g, to take on
arbitrary values in [0, 1] for experimental purposes.

In practical implementations of the DLCZ protocol, after
generating entanglement in the form of a single delocalized
excitation shared between the desired end nodes, we would
post-select for two-photon entanglement, which is more useful.
We refer to [3, 10] for a description of this procedure.

3. SUCCESS PROBABILITIES OF ENTANGLEMENT
GENERATION AND ENTANGLEMENT SWAPPING

Since link (u, v) has |Cy,| available channels, node u has Q,,
available qubits, and node v has @), available qubits, we can
attempt to generate w = min{|Cly,|, Qu,Q»} entanglements

on link (u,v).
)

@ po(u,v) = (1 = puv)®.
(i) p1(u,v) = 2puv(l — puv).
: (i) p2(u,v) = P,
@ p(d) = pg,-

(iv) A link with two channels.

Fig. 1: (iv): link (u,v) with two available channels; nodes u
and v each have 2 qubits. (a): entanglement attempt failed
on both channels. (b): entanglement attempt successful on
blue channel only. (c): entanglement attempt successful on
red channel only. (d): entanglement attempt successful on both
channels. (i): probability of having 0 entanglement on (u,v)
is the probability of case (a). (ii): probability of having 1
entanglement on (u, v) is the probability of cases (b) and (c).
(iii): probability of having 2 entanglements on (u,v) is the
probability of case (d).

(b) p(b) = (1 - puv)puv-

@

(©) p(C) = puv(l - puv)

Theorem 1: Assume that we attempt to generate w en-
tanglements on w different available channels on link (u,v),
where w = min{|Cyy|, Qu, Q@+ }- The probability of success-
fully generating exactly k entanglements on link (u,v) is

(;j)quw(l —pu)? 7k, k=0,1,...,w 0
0, k>w

where p,, is the success probability of generating an entan-
glement on a single channel on link (u,v). O

pr(u,v) =
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(a) swapping one pair of entanglements at y.
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(d) swapping one pair of entanglements at y.
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(b) swapping one pair of entanglements at y.
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(e) swapping two pairs of entanglements at y.
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(c) swapping one pair of entanglements at y.
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(f) swapping two pairs of entanglements at y.

)

z

LN

(h) swapping two pairs of entanglements at y.

(i) swapping three pairs of entanglements at y.

Fig. 2: We attempt m = min{L, R} entanglement swappings at node y.

Proof. Since we only attempt to generate w entanglements on
link (u,v), the probability of having more than w entangle-
ments is 0.

Let k € {0,1,...,w} be fixed. Let Cy, = {c1,c¢2,...,Cx}
be a subset of the w channels over which we attempt to
generate entanglements. The probability of having these k
attempts succeed and the remaining w — k attempts fail is
P, (1 —puy)® . There are () different choices of Cj. This
proves the theorem. ]

Fig.1 illustrates Theorem 1 for the case w = 2. Fig. 1(a)
illustrates case (a) where the attempts on both channels are
unsuccessful. The probability for case (a) is (1 — puy)2
Fig. 1(b) illustrates case (b) where the attempt on the first
channel is unsuccessful, but the attempt on the second channel
is successful. The probability for case (b) is (1 — puy)Pus-
Fig. 1(c) illustrates case (c) where the attempt on the first
channel is successful, but the attempt on the second channel
is unsuccessful. The probability for case (c) is puy (1 — Puw)-
Fig. 1(d) illustrates case (d) where the attempts on both
channels are successful. The probability for case (d) is p2,.
Scenario (i) consists of case (a), where there is 0 entanglement
between u and v, illustrated in Fig. 1(i). The probability for
scenario (i) is po(u,v) = p(a) = (1 — puy)?. Scenario (ii)
consists of cases (b) and (c), where there is 1 entanglement
between u and v, illustrated in Fig. 1(ii). The probability for
scenario (ii) is p1(u,v) = p(b) + p(¢) = 2pup(1 — Puy ). Sce-
nario (iii) consists of case (d), where there are 2 entanglements
between u and v, illustrated in Fig. 1(iii). The probability for
scenario (iii) is p2(u,v) = p(d) = p2,.

Assume that there are L entanglements e;(z,y), i =1, ...,
L, connecting nodes x and y, and R entanglements e;(y, z),

7 =1,..., R, connecting nodes y and z. We can perform up
to m = min{L, R} entanglement swappings at node y, i.e.,
swap e;(z,y) and e;(y,z) for i = 1,...,m. Fig. 2 illustrates

all cases for L € {1,2,3} and R € {1, 2, 3}. For example, in
Fig. 2(c), we attempt to swap the only entanglement on link
(z,y) with the 1st entanglement (of the 3 entanglements) on
link (y, z). In Fig. 2(h), we attempt two swaps: swapping the
Ist entanglement on link (z,y) with the Ist entanglement on
link (y, z), and swapping the 2nd entanglement on link (z,y)
with the 2nd entanglement on link (y, 2).

The probability of having exactly k successful entangle-
ments connecting nodes = and z from these m attempts is

m _
<k>q’;(1—qy)m Fk=0,1,...,m )

where ¢, is the success probability of performing a single
entanglement swapping at node .

Suppose we know the probability of having exactly k
entanglements connecting nodes x and y, and the probability
of having exactly k entanglements connecting nodes y and
z, for k = 0,1,2,...,W. Can we obtain the probability
of having exactly k entanglements connecting nodes x and
z, after performing entanglement swapping at node y? The
following theorem answers this question.

Theorem 2: Let w € {1,...,W}. Assume that the prob-
ability of having exactly k entanglements connecting nodes
x and y is pr(x,y), where pi(x,y) = 0 for k > w. Also
assume that the probability of having exactly £ entanglements
connecting nodes y and z is pg(y, z), where pg(y, z) = 0 for
k > w. After performing w entanglement swappings at node v,
the probability of having exactly k£ entanglements connecting
z and z is

pr(@,2) =Y pil,y) X_:pj(y, 2) (é) gy (1 — gy~ "
i=k =k

X () )d0 - o
i=k =i

for k = 1,2,...,w. We also have pi(z,z) = 0 for k > w,
and po(z,2) =1-=,_, pr(z, 2). O
Proof. Since pi(x,y) = 0 and pi(y,z) = 0 for k > w, we
have pg(x,z) = 0 for k > w. This also implies po(z,z) =
1- Z;:=1 Pr(T,2).

Let k be an integer in {1,2,...,w}. In order to have k
entanglements connecting x and z, there must be ¢ > &k
entanglements connecting x and y, and j > k entanglements
connecting y and z. For each i € [k,w], if j € [k,i — 1], we
perform j (the minimum of {i,;}) entanglement swappings
at y; if j € [i,w], we perform 4 (the minimum of {i,;})
entanglement swappings at y. This leads to formula (3). W

For any two nodes x and y, we use e(x,y) to de-
note the set of entanglements connecting x and y, and use
p(z,y) to denote the (W+1)-dimensional column vector
(pO(I7 y)apl(gja y)7 s apW(‘Ta y))T We call p(gj" y) the met-
ric vector of e(x,y), as it characterizes the properties of
e(x,y) as a random variable. Initially, neither e(x,y) nor
p(z,y) is defined for any pair of nodes x and y. After the
entanglement generation attempts on link (u,v), e(u,v) be-
comes defined and denotes the resulting set of entanglements
connecting v and v, and also p(u,v) becomes defined and is
computed according to equation (1).



When p(z,y) and p(y, z) are both defined (which implies
that both e(x,y) and e(y, z) are defined), and we attempt to
perform entanglement swapping at node y, then e(z, z) be-
comes defined and denotes the resulting set of entanglements
connecting nodes x and z, and also p(z, z) becomes defined
and is computed according to Theorem 2. Here nodes x and
y (y and z, respectively) do not have to be adjacent.

The operations and computations associated with entangle-
ment swappings define two binary operators @ and ®, where

e(a:,z) = e(xvy) @e(yvz) “4)
denotes that e(x, z) is obtained from entanglement swapping
of e(z,y) and e(y, z) at node y, and

p(.T,Z) =p($7y)®p(y,z) &)
denotes that p(z,z) is computed from p(z,y) and p(y, z)
according to formula (3). We will further study the properties
of these two operators in Sections 4 and 5.

4. IMPACT OF ENTANGLEMENT SWAPPING ORDER

Efficient algorithms for computing a good routing path for
a source-destination pair are fundamental in both traditional
computer networks [1, 2] and quantum networks [9, 12]. A
path connecting source node s to destination node ¢ is known
as an s-t path. Path finding algorithms rely on a path metric
that characterizes the quality of the path.

Path metrics are commonly known as path lengths [11],
although they do not always carry the literal meaning of
length. The path metric (path length) is computed from the link
metrics of the links on the path. Depending on the application,
the link metrics contribute to the path metric in different ways.

In the minimum delay path problem, each link has a metric
known as the link delay which measures the transmission delay
of the link, and each path has a metric known as the path
delay which measures the transmission delay of the path. In
this case, the path delay is computed as the summation of the
link delays over the links on the path. In the most reliable path
problem, each link has a metric known as the link reliability,
and each path has a metric known as the path reliability. In
this case, the path reliability is computed as the product of the
link reliabilities over the links on the path.

An important fact common to the above path finding
problems is the following. Let x(u,v) denote the metric of
a link (u,v), and x(w) denote the metric of a path 7 =
V-V -Vg- -+« * - vy,. Then there is a binary operator ® such that

k() = Kk(vo,v1) © K(v1,V2) © -+ @ K(Vp—1,Vp),  (6)
where a © 8 f o + [ for the minimum delay path problem,
and a®©f def o x [ for the most reliable path problem. In both
path finding problems, the binary operator ® is associative:

(@Op)Oy=a0(Bo9),Ya, B, 7. (N
The associativity (7) of the operator ® implies the following
sub-path optimality property.

Definition 1 (Sub-path Optimality): A path finding prob-
lem has the sub-path optimality property if for any s-t path 7
and any intermediate node x on 7, the optimality of 7 implies
the optimality of 7% as well as the optimality of %!, where
5% is the portion of 7 from s to z and 7*¢ is the portion of
m from z to t. (]

If the sub-path optimality property holds, one can compute
an optimal path by extending optimal partial paths from
the source node hop-by-hop in a greedy manner until the
destination node is reached, just like Dijkstra’s algorithm [2].

For entanglement routing in a quantum network, a well-
known path metric is the expected throughput [12] of an
entanglement path 7 connecting nodes s and ¢, which can
be computed by the following formula

=Yk xprls, 1), ®)

where pi(s,t) is the probability of having exactly k entan-
glements connecting s and ¢, after the necessary entanglement
swappings at all intermediate nodes on path 7.

X v§%=%§2§%=(@

EXT™

Fig. 3: Entanglement swapping order matters.

In order to use (8), we need to compute p(s,t), which we
call the path metric vector of path 7. The example in Fig. 3
shows that p(s,¢) depends on not only the s-t path 7, but
also the order in which the entanglement swappings are
performed on path 7.

In Fig. 3, we have a 4-hop path m = s-z-y-z-t. The number
of available channels on links (s, ), (z,¥), (y,2), and (z,t)
are 1, 2, 3, and 3, respectively. W = 3, p,, = p = 0.5 for
all links, ¢, = ¢ = 0.8 for all nodes. For this 4-hop path, we
need to perform entanglement swapping at nodes z, y, and 2
in some order to get entanglements connecting s and ¢. There
are 5 distinct ways to associate 3 applications of the binary
operator ®. Applying Theorems 1 and 2, we get

0.853

(O 147) 7 (9)
0.843

(0 157) , (10)

0.847
(0 153) , (11)
0.845
(0 105) 7 (12)

0.841
p(s,7) ® [p(z,y) ® [p(y, 2) © p(,1)]] = () , (13)

0
where we rounded the values to three decimal places for ease

of reading. Note that the right-hand sides in equations (9)-(13)
are different. This observation proves the following theorem.
Theorem 3: The binary operator ® is not associative. [J
Equations (9)-(13) correspond to 5 ways to associate the 3
® operations. They correspond to the following 5 swapping
orders: O = <z,y,2>, Oy = <z,z,y>, O3 = <y, x, 2>,
04 =<y, z,z>, and Os = <z,y, x>, respectively. Swapping
order Oy = <z,x,y> is missing from the above. It is
equivalent to the swapping order Oy = <z, z,y> as both
correspond to the same association order, in equation (10).
The swapping orders O1, Oz, O3, O4, and O3 lead to different
expected throughput values 0.147, 0.157, 0.153, 0.155, and
0.159, respectively, of the same path m = <s,z,y, z,t>.

[[p(s,2) ® p(z,y)] @ P(y, 2)] @ P(2, 1)

[p(s,2) @ p(z,)] ® [Py, 2) @ P(2,1)]

[p(s.2) ® [p(z,y) @ Py, 2)]| ® P(2, 1)

p(s,2) @ [[p(z,y) @ p(y, 2)] @ p(2,1)] =



Summarizing the above analyses/observations, we have

Theorem 4: Let 7w be an s-t path with hop-count H (7). Let
O be a swapping order of 7. The metric vector p(s,t) corre-
sponding to order O can be computed in O(H (7) x W?) time.
Let p™9(s,t) denote the metric vector p(s,t) corresponding
to swapping order O of path 7. The expected throughput of
path m under swapping order O is

w
EXT™(0) =k xpp(s,t). (14)
k=1
In general, EXT™(O) is a non-constant function of ©. O
Proof. Computing () for w = 0,1,...,W and k = 0,1,
...,w takes O(W?) time. For each link (u,v), computing
pk and (1 — py,)¥ for all k& € {0,...,W} takes O(W?)
time. For each node y, computing q’; and (1 — g,)F for all
k €{0,...,W} takes O(W?) time. Since 7 has H(r) links
and H(w) — 1 intermediate nodes, the above computations
for all links and nodes on 7 takes O(H (7)W?) time. The
computation in eqn. (1) takes O(W) time for all k. The com-
putation in eqn. (3) takes O(W?) time for all k. This proves
the asymptotic bound on the worst-case time complexity for
computing p™© (s, t). The example illustrated in Fig. 3 shows
that EXT™(O) is a non-constant function of O. [ |

So far we have shown that both the path metric vector
p™?(s,t) and the expected throughput EXT7(0) of path
7 depends on not only the path itself, but also the order
in which the entanglements are swapped. It is natural to
define the optimal swapping order of an s-t path 7 by

Oppe = argmax EXT™(0),
0eO(m)
where O(7) denotes the set of all swapping orders of path .

We say two swapping orders are equivalent if they cor-
respond to the same association order. For an n-hop path,
there are C,,_1 non-equivalent swapping orders, where C,, =
n(ii?))"n' is the n-th Catalan number [5]. C,, is the number of

istinct ways to associate n applications of the binary operator
®. The fast growth of this sequence makes it prohibitive to
enumerate all swapping orders to find an optimal order. How-
ever, it is a theoretical concept that is worthy of discussion.

The following two swapping orders have been studied in
the literature [4, 14]. The sequential order, denoted by Og.q,
assumes the binary operator & (®, respectively) to be left
associative. Under this swapping order, we have

5)

e(a,b)de(be)@e(c,d) Y (e(ab)delbe))delc,d), (16)
p(a,0)©p(b,c)®@p(c.d) ' (p(a,b)®p(be)@p(cd). (17)
For the n-hop path m = wvg-vi-vg----- vy, we first per-

form swapping of e(vp,v1) and e(vy,v2) at vy, resulting
in e(vg,v2). We then perform swapping of e(vg,v2) and
e(vs, v3) at vg, resulting in e(vg, v3). We continue this process
for n — 1 iterations to get e(vg, vy, ). In our example in Fig. 3,
O is the sequential order.

The parallel order, denoted by Oy, is designed for paths
whose hop-count is a power of 2. Let 7 = vg-v1-va--- - - Up,
where n = 2¥. We perform logn iterations of swapping. In
the first iteration, we perform 3 swappings in parallel: for
i =1,2,...,5, swapping e(vz;_2,v2,—1) and e(vz;—1,v2;)
at node wvg;—1 to get e(va;_2,v2;). In the next iteration,

we perform 2

4 swappings in parallel: for : = 1,2,...
swapping €(v4;—4,v4i—2) and e(v4;_a,v4;) at node vy;_o to
get e(v4;—4,v4;). We continue this process for log n iterations
to get e(vg, vy,). In our example in Fig. 3, O, is the parallel
order.

Among Ogeq, Opar and Ogpe, Ogeq is the most useful in
path finding algorithms, because when we extend a partial
path by one hop, the contribution of the new hop to the
metric vector of the extended path is known due to the left
association assumption. In contrast, under either Opq, 0 Ogpt,
the contribution of the new hop to the metric vector of the
extended path is not known until the whole path is computed.
With the aid of Fig. 4, we present an example to show that
under any of the swapping orders, the problem of computing
an s-t path with maximum expected throughput does not have
the sub-path optimality property.

(e}

n
40

X9
t
Q0

Fig. 4: W = 2, py, = p = 0.5 for all links, ¢, = ¢ = 0.84
for all nodes. Links (s,a) and (a,b) each have 2 available
channels. Links (s, b) and (b, t) each have 1 available channel.
Each node has 4 qubits.

In this example, there are two s-t paths. The path 7 =
s-a-b-t has an expected throughput of 0.202 under the optimal
swapping order <a,b> (the expected throughput is 0.198
under the swapping order <b,a>). The path mo = s-b-t has
an expected throughput of 0.210 (there is only one swapping
order). Therefore 7, is the unique optimal s-t path. There are
two s-b paths. The path 73 = s-a-b has an expected throughput
of 0.525 (there is only one swapping order). The path 74 = s-b
has an expected throughput of 0.500 (no swapping is needed).
Therefore 73 is the unique optimal s-b path. This example
shows that the s-b path 74 (which is a sub-path of the optimal
s-t path 75) is not an optimal s-b path. Hence we have proven
the following theorem.

Theorem 5: The problem of computing an s-t path with
maximum expected throughput under any entanglement swap-
ping order does not have the sub-path optimality property. [

The lack of sub-path optimality property indicates that an
optimal algorithm might not be a trivial generalization of
Dijkstra’s algorithm. Realistic path metrics that ensure the sub-
path optimality property can make entanglement routing easier.

5. SIMULATION RESULTS

To validate our theoretical findings, we wrote a simulator and
performed extensive experiments. The simulation of entan-
glement generation is as follows. For each available channel
with adequate qubits on a link (u,v), we generate a random
number r € (0,1). If 7 < py,, we consider the attempt for
entanglement generation successful. If r > p,,, we consider
the attempt unsuccessful.

The simulation of entanglement swapping is as follows.
Suppose e(x,y) contains L entanglements, e(y, z) contains
R entanglements, and we attempt to perform entanglement
swapping at node y. We simulate m = min{L, R} attempts
of entanglement swapping at node y. For each attempt, we
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Fig. 5: The number on each link is the number of available channels. Each node has 10 qubits. W = 5.

Swapping order: Opqar

Swapping order: Oseq =<a, b, c,d, e, f,g>
Experimental result |

Experimental result \ Theoretical result

=<a,c,e,9,b, f,d>
Theoretical result

Swapping order: Oopt =<c, b, e, f,d, g,a>
Experimental result \ Theoretical result

fo: 5734 Po : 0.058 fo: 2602 Po : 0.026 fo: 2100 Po : 0.021
fi: 30184 p1: 0.301 f1: 23285 p1: 0.233 f1: 20061 p1: 0.200
fo: 48367 p2 : 0.484 fo: 54205 p2 : 0.539 fo: 53747 p2 : 0.536
f3: 15715 | ps: 0.157 fa: 19908 | ps : 0.202 fs: 24092 | p3: 0.244
total : 174063 | ext : 1.741 total : 191419 | ext: 1.917 total : 199831 | ext : 2.003

TABLE I: Result over 100000 experiments for each swapping
when exactly k entanglements are formed between s and ¢; py,

generate a random number r € (0,1). If r < g,,, we consider
the attempt successful, resulting in an entanglement connecting
z and z. If r > g, we consider the attempt unsuccessful.

In Fig. 5, we have an 8-hop path 7 = s-a-b-c-d-e-f-g-t.
Links (s,a) and (g,t) each have 3 available channels. Links
(a,b) and (f, g) each have 4 available channels. All other links
each have 5 available channels. We assume p,,, = p = 0.9 for
all links and ¢, = ¢ = 0.95 for all nodes.

We study 3 swapping orders: Oseq, Opar, and Oope, Where
Oopt is obtained by enumerating all 429 swapping orders.
For each swapping order, we perform 100000 experiments.
We use fr to record the number of times when exactly k
entanglements connecting s and ¢ are formed, £ = 0,1, 2, 3.
We compute total = ZkW:1 k X fr. We also (theoretically)
compute the probability of having exactly k£ entanglements
connecting s and ¢, for each O € {Oseq, Opar, Oopt }, and
denote it as p (= pZ’O(s,t)). The expected throughput is
denoted by ext. These results are reported in Table 1.

We observe that the expected throughput for O, is 2.003,
which is larger than that for both Ogeq and Oyq,-. In all cases,
Tobkss is very close to py, and {EHL s very close to ext.
This validates the correctness of our theoretical derivations
from the perspective of experimental probability.

6. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have studied the impact of swapping order
on the resulting expected throughput of a path in a quantum
network. We show how to efficiently compute the metric vector
and expected throughput of a path for any given swapping
order. We prove that the binary operator corresponding to
entanglement swapping is not associative. We further show
that the problem of finding an s-t path maximizing the
expected throughput for a given swapping order lacks the sub-
path optimality property. Extensive simulations validate our
theoretical result. It is of interest to know whether two different
swapping orders of an entanglement path 7 can lead to
significantly different expected throughput values. Designing
polynomial time algorithms for computing an s-t path and its
corresponding swapping order leading to maximum expected
throughput is also challenging.
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