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Abstract

The understanding of bacterial gene function has been greatly enhanced by recent

advancements in the deep sequencing of microbial genomes. Transposon insertion

sequencing methods combines next-generation sequencing techniques with transposon

mutagenesis for the exploration of the essentiality of genes under different environmental

conditions. We propose a model-based method that uses regularized negative binomial

regression to estimate the change in transposon insertions attributable to gene-environment

changes in this genetic interaction study without transformations or uniform normalization.

An empirical Bayes model for estimating the local false discovery rate combines unique and

total count information to test for genes that show a statistically significant change in trans-

poson counts. When applied to RB-TnSeq (randomized barcode transposon sequencing)

and Tn-seq (transposon sequencing) libraries made in strains of Caulobacter crescentus

using both total and unique count data the model was able to identify a set of conditionally

beneficial or conditionally detrimental genes for each target condition that shed light on their

functions and roles during various stress conditions.

Author summary

Transposon insertion sequencing allows the study of bacterial gene function by combin-

ing next-generation sequencing techniques with transposon mutagenesis under different

genetic and environmental perturbations. Our proposed regularized negative binomial

regression method improves the quality of analysis of this data.

This is a PLOS Computational Biology Methods paper.
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Introduction

A central question in molecular genetics is, What genes are essential for life? Prior to the

advent of high-throughput technology this question was addressed by mutagenesis and fine

mapping [1, 2]. The simplicity of homologous recombination in S. cerevisiae allowed for the

generation of a complete mutant library containing strains each with a complete knockout of a

single gene and tagged with a unique genetic barcode[3]. Subsequent analysis of this library by

custom microarrays and sequencing revealed genes essential for growth in rich media as well

as conditionally essential genes—genes that are dispensable in rich media, but are essential in

different environmental conditions [3–5]. However, generating a mutant pool from individual

genetic knockout strains is labor-intensive and not feasible in organisms for which homolo-

gous recombination is inefficient. Transposon sequencing (Tn-seq) methods have alleviated

this problem and provide a powerful method for identifying essential and dispensable genes

under a variety of environmental conditions and genetic backgrounds. This type of study, with

perturbations to both the genetic content and the environmental context

(gene × environment) is typically referred to as a genetic interaction study; here the primary

phenotype is growth.

Transposon sequencing

Transposon sequencing uses a modified transposon to generate a saturation mutant library of

a background strain of interest. Each transposon has a selectable marker; a unique, random

DNA barcode (in some cases); and loci for PCR amplification that can be used to identify the

DNA adjacent to the transposon insertion site [6, 7]. Once the transposon mutant library is

generated, it can be grown in various environmental conditions of interest. Strains that have a

fitness defect due to the transposon insertion grow more slowly or not at all. The abundance of

the transposon insertion mutant strain in the library can be assayed by sequencing the library

after growth and counting the reads that map to a particular insertion site. For each gene, the

change in the count of sequenced transposon insertions between the control and the perturbed

environment can be used to identify conditionally essential or conditionally dispensable genes.

Since the introduction of the original Tn-seq method, many variations have been developed

to facilitate the study of a wider range of organisms or to improve efficiency [6]. Random-

barcode transposon sequencing amortizes the cost of multiple environmental perturbation

experiments by doing the expensive mapping of transposon insertion site to random barcodes

once and then using that mapping for all future experiments [8]. Transposon sequencing tech-

nology addresses the time consuming and often technically challenging process of generating

one-at-a-time gene deletions by using parallel mutagenesis and counting-by-sequencing[9].

But, this technology has introduced a new, statistical problem. How can the transposon count

data be used to test the hypothesis that a gene is essential such that all of, and only, the essential

and dispensable genes are identified?

Related work

There are several existing statistical approaches for analyzing transposon sequencing data. van

Opijnen et al. [10] used several normalization steps to compute a ratio of the fold-expansion of

the mutant relative to the rest of the population. Then, a t-test with a Bonferroni correction

was used for each gene to decide if a change in the fitness statistic is significant. This type of

normalization renders the statistic independent of growth duration, but requires an additional

calibration experiment to estimate an expansion factor which measures the growth of the bac-

terial population during library selection. The fitness effect estimator is non-linearly
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dependent on the calibration factor because it appears in both a logarithm and in the denomi-

nator of the fitness effect ratio.

Wetmore et. al. [8] dispensed with the calibration step and still found good estimates of fit-

ness effect. They computed the log-ratio of start-time t0 count to the stop-time tafter count.

They added a pseudo-count term to regularize noisy estimates for low counts. These low count

observations were filtered out in [10].

ESSENTIALS is a software package developed by [11] that uses Loess [12] normalization

followed by the application of edgeR [13], a software package developed for identifying differ-

entially expressed genes from RNA-seq data, to call essential genes. They demonstrated that

their package is robust to differences in transposon sequencing technology—a significant ben-

efit as TnSeq experimental methods continue to be revised and improved.

DeJesus et. al. [14] developed a full Bayesian model for Tn-seq count data. They approached

the problem by defining a Boolean variable to represent whether a gene is essential or non-

essential. In their method, the data for a gene includes the number of insertions, the longest

run of non-insertions, and the span of nucleotides of the longest run of non-insertions. This

additional information beyond the number of insertion counts is informative and the Bayesian

model elegantly incorporates all of the data into a posterior probability of essentiality. In other

work, DeJesus et. al. [15] identified genetic interactions by measuring changes in enrichment

through a hierarchical Bayesian model. Their method identified mutants that differentially

affect bacterial fitness by performing a four-way comparison. While this is primarily useful for

small-scale genetic interaction studies, it cannot accommodate multiple varying conditions

and stress levels nested within many background strains. The normal distribution used in the

paper may not properly approximate the distribution of insertions, especially for small genes

compared to a negative binomial model.

Subramaniyam et. al. [16] focuses on fine-resolution mapping of essential regions.

Their method applies to transposon libraries constructed with the mariner transposon

family which preferentially inserts in TA dinucleotides. Their method models the number of

transposon insertions at each TA dinucleotide site rather than aggregating by gene. Because

many TA dinucleotide sites are unlikely to harbor any transposon insertions, they employ a

zero-inflated negative binomial model to accommodate the many zero counts. It should be

noted that [10] and [8] include a normalization for the number of Tn counts at the start of

the experiment, but more recent model-based work does not require this normalization

[14, 16].

Contributions

Our work builds upon these previous works in several ways. Like [16], our approach employs

a negative binomial generalized linear model to use information from the entire experimental

data set rather than using only pairs of experiments. Our model employs a Bayesian prior over

coefficients as in [14] that manifests as a regularization term in the regression formulation.

Our work differs from these efforts in that we aggregate transposon counts at the gene level in

the context of a negative binomial model with nested effects which allows our model to be

robust to the transposon library creation method, and we use a false discovery rate approach

to call conditionally beneficial and conditionally detrimental genes. Our contributions are: (1)

a regularized negative binomial model with nested effects to estimate the effect of varying envi-

ronmental conditions in the context of genetic background, (2) the use of both unique Tn

insertions and total Tn insertions to improve sensitivity and specificity, (3) the use of an inter-

section local false discovery rate control to identify genes that have a quantitative effect on

growth.
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Total and unique insertions

Total counts are obtained by summing up the counts across all the insertion sites in a gene.

Total counts tend to reflect the growth of bacteria under a particular condition, which is

extremely useful for measuring overall fitness effects. While total counts are a useful measure

to identify conditionally beneficial and conditionally detrimental genes, they may be skewed

when there is an inconsequential insertion hotspot near the tail ends due to an amplification

error or a genome-specific bias. Unique counts are obtained by counting the number of inser-

tion sites in a gene. Unique counts capture site-specific variations and satisfy independent

assumptions of the count models. Unique counts provide a deeper understanding of genomic

location-specific fitness effects. But, the sparse nature of these counts and library dependence

makes it somewhat unreliable for modeling.

Problem statement

Let the set of genes under investigation be S. We partition S into a set of essential genes, A,

and the set of nonessential genes, A ¼ S n A. Essential genes show no growth when disrupted

in a wild-type strain in standard media. Then, we partition the set of nonessential genes into a

set of conditionally essential genes, ℬ � A, and a set of conditionally nonessential genes,

ℬ ¼ A n ℬ. The conditionally essential set contains genes that when disrupted still yield

growth in control conditions, but do not grow when the genetic background or media condi-

tions are varied; this set depends on the growth condition.

In order to identify genes that produce a quantitative, rather than qualitative, change in fit-

ness as measured by growth rate, the set of conditionally nonessential genes is further parti-

tioned into the following mutually exclusive, collectively exhaustive sets: conditionally

beneficial (C), conditionally neutral (D), and conditionally detrimental (F ). If the disruption

of a gene decreases growth, it is called conditionally beneficial (C). If the disruption of a gene

does not affect growth, it is called conditionally neutral (D). And, if the disruption of a gene

improves growth, it is called conditionally detrimental (F ).

Denote the genetic background of the experiment g 2 G and the environmental condition

e 2 E. Note that not all pairwise combinations in G � E may be available in a data set. For a

given combination (g, e) the data set contains Rge replicate experiments; we index the replicate

with r. In experiment (g, e, r), there are Nger observed transposon insertions that are mapped to

genes (perhaps excluding some trimmed region around the start and stop codon of the gene).

We reduce the raw data to two features for each gene: (1) the total count of insertions and (2)

the count of unique insertions. For gene i and experiment (g, e, r), let ytot
geri be the total count of

insertions and let yuniq
geri be the count of unique insertions. The average total counts across r rep-

licates is �ytot
gei , and the average unique counts is similarly defined �yuniq

gei . We define the control

condition to be a wild-type genetic background within standard PYE media and we denote

this condition (g0, e0). The average control condition counts for gene i are then �ytot
g0e0 i.

Previous work has focused primarily on the estimation of the set of genes that produce a

qualitative elimination of growth when disrupted. In this work, we estimate the set of essential

genes using only the total counts as bA ¼ ij�ytot
g0e0 i < 1; 8i 2 S

n o
, noting that �ytot

g0e0i � �yuniq

g0e0i . We

estimate the set of conditionally essential genes in condition (g, e) as ℬ̂ge ¼ ij�ytot
gei < 1; 8i 2 A

n o
.

A hierarchical decision tree representation of these categories is shown in Fig 1.

The goal of this work is to identify the set of genes that have a quantitative effect on the ability

of the organism to grow under certain genetic and environmental conditions. The null hypothe-

sis (H0) is that a gene is conditionally neutral. To identify the set R ¼ C [ F of conditionally
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beneficial and conditionally detrimental genes is often too challenging and instead a more

approachable task is to ensure that the rate of false discoveries in R is bounding in probability.

Therefore, the problem is to estimate the set R such that the false discovery rate is small.

Materials and methods

RB-TnSeq experimental methods

RB-TnSeq uses a randomly barcoded transposon to amortize the cost of many related experi-

ments [8]. Barcoded transposon donor plasmids are transferred to the cell of interest by either

electroporation or conjugation. Subsequently, cells containing plasmids are selected using a

selection media, and small aliquots are frozen in 10% glycerol. The frozen aliquot is the muta-

genesis libraries used in all experiments. In RB-Tnseq, a sequencing run is done on the librar-

ies to assign each barcode to its genomic location. For subsequent experiments on these

libraries, a simple single PCR step is required to amplify and count the barcodes.

Read mapping and pre-processing. In this study, we used RB-TnSeq data of Caulobacter
crescentus and Pseudomonas fluorescens FW300-N1B4 from Price et. al. [17]. As input we have

downloaded all.poolcounts (http://genomics.lbl.gov/supplemental/bigfit/), and gener-

ated two different count files from it. The first, labeled “total counts”, are the sum of all inser-

tions aggregated by each gene. The second is the “unique counts”, where instead of using the

sum of all insertions, we have used the sum of the number of unique barcodes that have non-

zero reads per gene.

Tn-seq experimental methods

Transposon mutagenesis libraries used in this study were generated as previously described

[18]. Briefly, wild-type (wt) and Δlon Caulobacter crescentus NA1000 strains were grown until

mid-log phase, pelleted, washed three times with 10% glycerol, and transformed with EzTn5

<Kan-2> transposomes (Lucigen) by electroporation. Following recovery in PYE,

Fig 1. Gene categorization in transposon insertion sequencing (Tn-seq). Our modeling framework primarily focuses on

identifying the set of conditionally beneficial C (decreased growth due to disruption) and conditionally detrimental genes F
(increased growth due to disruption).

https://doi.org/10.1371/journal.pcbi.1009273.g001
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transformed cells were plated on PYE + Kan selection media and grown for 7 days. Colonies

were scraped, pooled, and frozen in PYE + 20% glycerol in 1 ml aliquots and frozen for further

experiments. For stress condition experiments, 2 aliquots of each library was thawed and sepa-

rately recovered overnight in 2 x 10 ml of PYE in a 30˚C shaker. These saturated cultures were

then stressed as described below. All conditions were performed in quadruplicates, optical

density (OD) measurements were taken at 600 nm.

Control environment. Libraries were back diluted to OD 0.008 into 7 ml of PYE and

grown overnight until they reach saturation at OD *1.6.

Heat shock stress. One ml of the overnight culture was heat-shocked at 42˚C for 45 min-

utes in a heat-block, then back-diluted to OD 0.008 and grown overnight until saturation.

L-canavanine. Overnight cultures of cells were back diluted to OD 0.008 in 7 ml of PYE

+ 100 ug/ml L-canavanine and grown at 30˚C for 90 minutes. After 90 minutes of L-canava-

nine stress, the cells were spun for 10 minutes at 5000 rpm, washed once with PYE, spun again,

then resuspended with 7 ml of PYE, and recovered overnight until they reached saturation.

Library preparation. Following overnight growth, 1.5 ml of saturated culture from each

Tn library was pelleted at 15,000 RPM for 1 minute and gDNA was extracted by MasterPure

Complete DNA and RNA purification kit according to manufacturer’s protocol. Sequencing

libraries were prepared for Next-generation sequencing via three PCR steps. Indexed libraries

were pooled and sequenced at the University of Massachusetts Amherst Genomics Core Facil-

ity on a NextSeq 500 (Illumina).

Read mapping and pre-processing. Mapping and pre-processing of the Tnseq raw data

was done as described previously with some modifications [18]. Briefly, samples were de-mul-

tiplexed, and unique molecular identifiers (UMIs) were added during PCR steps removed

using Je [19]. Clipped reads mapped to the Caulobacter crescentus NA1000 genome (NCBI

Reference Sequence: NC011916.1) using bwa, sorted with samtools [20, 21]. Duplicate

transposon reads removed by Je and indexed with samtools. Genome positions are

assigned to the 50 position of transposon insertions using bedtools genomecov [22]. Sub-

sequently, the bedtools map used to count either the total number of transposon insertions

per gene using the bedtools map -o sum argument or the unique number of insertions

using the bedtools map -o count argument.

In-vivo validation. Overnight cultures of wild-type and ΔclpA Caulobacter crescentus
strains each mixed at a 1:1 ratio with a reporter strain constitutively expressing fluorescent

Venus (CPC798). The mixtures were kept at either 30˚C or heat-shocked at 42˚C for 45 min-

utes in a thermocycler. After the heat-shock, the mixtures were diluted to 1:4000 in PYE media

and allowed to grow for 24 hours (*12 doublings) at 30˚C. Number of fluorescent control

(Venus) and nonfluorescent tester (WT or ΔclpA) cells were counted in both the initial mix-

ture and after 24 hour growth using phase contrast and fluorescent microscopy. The same tes-

ter and control normalization coefficients were used for initial and 24 hour time points for

each strain (normalization coefficient = 1/(tester and control) at time = 0). and time = 24 by

adjusting the time = 0 ratios to 1 for each strain. Normalized 24 hour ratios are what we are

reporting as competitive index. An index of greater than one means the tester condition were

able to grow faster compared to the control and an index of less than one means the tester

grew slower compared to the control. Quantifications of at least 100 cells were performed for

each condition with replicates when possible.

Regularized negative binomial regression

Our approach for integrating all of the experimental data to estimate the effect of the genetic

background and the environmental condition is based on a generalized linear model

PLOS COMPUTATIONAL BIOLOGY Identification of conditionally-essential genes from tn-seq data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009273 March 7, 2022 6 / 19

https://doi.org/10.1371/journal.pcbi.1009273


framework. Here, we describe the negative binomial model framework, the nested effects

model matrix structure, and the form and rationale for regularization.

Negative binomial model. The generalized linear model consists of three components:

(1) a probability distribution for the sampling error, (2) a model matrix structure, and (3) a

link function connecting the expected value of the response to the covariates. It has been

observed that Tn-seq count data is often overdispersed and therefore, the data is better fit by a

negative binomial distribution rather than a Poisson distribution because of the additional free

parameter to allow for a variance that does not directly depend on the mean parameter. The

link function that is often chosen for a negative binomial distribution is a log function and we

do so here. The generalized linear model takes the form E(yi|x) = f−1(xβ), where yi is the vector

of observed Tn counts across all experiments in the data set for gene i, x is the model matrix, β
is the vector of parameters, and f−1 is the log link function.

Nested effects in generalized linear regression model. The model matrix must be

designed to specifically address the questions of interest of the data. First, we are interested in

the main effect of the genetic background in relation to the wild-type strain. For example, if a

there is a drastic reduction in Tn counts in a mutant background relative to wild-type, it indi-

cates that the gene is beneficial conditional on the strain mutation(s). Likewise if there is a

drastic increase in Tn counts in a mutant background relative to wild-type, the gene is likely

detrimental conditional on the strain mutation(s). Second, we are interested in the effect of the

environmental condition, but only in the context of the genetic background. For example, if

there is a reduction in Tn counts in the g = Δlon background relative to the wild-type back-

ground in rich media growth conditions, but then no change when shifted to a heat-stress, the

gene may be viewed as interesting in the genetic background, but not in the conditions specific

to heat-stress. One would expect that if a gene is beneficial in the g = Δlon background that it

continues to be beneficial in all environmental conditions—only deviations from that expecta-

tion should be flagged as scientifically interesting. These questions of interest logically lead to

the consideration of a nested effects model matrix structure:

EðyijxÞ ¼ f �1ðb0 þ xgbg þ xejgbejgÞ; ð1Þ

where xg and xe|g are the standard indicator matrix encodings for the genetic background and

nested environmental condition respectively. Note that this nested model matrix structure is

different than the one usually employed for modeling interactions in that there is no term cor-

responding to the main effects of the environmental condition xe. Structuring the model

matrix in this way allows the inferential products of the model (the model parameters) to

inform the scientifically interesting questions we have of the data. Fig 2 shows a hierarchical

diagram of the nested effects interrogated by the generalized linear regression model.

A way to interrogate this data is to observe the baseline number of total and unique insertions

in the wild-type background strain with no stress (control). An excess or depletion of insertions

in the Δlon background are viewed as a shift from the control. Finally, an excess or depletion of

the stress conditions is viewed relative to the particular background strain the library was created

in. This interpretation of the data leads to the nested effects model proposed here.

Regularization. Estimating the model parameters when the number of transposon count

is small has been noted by others and handled either by filtration [10] or the addition of

pseudo-counts [8]. The low counts in response variables can result in inflated regression coef-

ficients and are susceptible to very high variance. They also affect false discovery rate proce-

dures increasing the risk of type-I errors. For genes that are conditionally nonessential (ℬ), we

employ a regularization methodology that has proven successful in many statistical contexts

and has Bayesian as well as classical statistical rationale [23–25]. Regularization can be viewed
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as a prior distribution on the regression coefficients,

b � GaussianðlÞ: ð2Þ

The Gaussian prior converts the maximum likelihood estimation problem for the regression

coefficients to a penalized maximum likelihood estimation problem with an L2 norm penalty or

equivalently a maximum a-posteriori estimation problem. The parameters for the penalized

count regression are estimated by a combination of the iteratively reweighted least squares

(IRLS) algorithm and coordinate descent algorithm as implemented in the mpath package [26].

We have found that this regularization effectively shrinks large coefficient estimates due to

small Tn counts. However, it does not address situations where there are exactly zero counts.

In those cases, our model is not necessary—the gene can be considered conditionally essential

in the condition with high confidence. Therefore, we restrict our modeling to conditionally

nonessential genes (ℬ).

Fig 2. Example of nested experimental design of Tn-seq data. Shown are two background strains: WT and Δlon, and

three nested environmental perturbations: control, canavanine, heat shock. Each perturbation experiment is replicated

four times.

https://doi.org/10.1371/journal.pcbi.1009273.g002
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Local false discovery rate

The regularized negative binomial generalized linear model was fit to both the total count

data, ytot
i , and the unique count data, yuniq

i independently for each gene i. The next task is to

decide if a gene is conditionally beneficial or conditionally detrimental or neutral. In a

generalized linear model the response is conditionally independent of a covariate given all

the other covariates in the model if and only if the associated model coefficient is equal to zero

(for proof see [27]). Therefore, under the model-based framework testing if a gene is condi-

tionally beneficial or detrimental is equivalent to testing whether the model coefficient is equal

to zero.

Under the assumption that a large fraction of the genes under investigation are neutral, the

local false discovery rate can be used to control the proportion of false positives in the set of

called conditionally beneficial or conditionally detrimental genes [28]. The central idea is to fit

a Gaussian distribution to the center of the empirical distribution of coefficients for a given

effect across all genes. Genes that have a coefficient that is unlikely under that distribution are

called conditionally beneficial or conditionally detrimental. There is abundant theory to sup-

port the use of this procedure to control the proportion of false discoveries [29–31].

The false discovery rate of the regression coefficient is

FdrðbicÞ ¼ Probfgene i is null in condition c j jbicj � �bg ð3Þ

The local false discovery rate makes use of a mixture model framework with two compo-

nents. It fits a Gaussian distribution to the center of the empirical distribution of the regression

coefficients βic across genes. Genes associated with coefficients that are not attributable to the

central Gaussian are called conditionally beneficial or conditionally detrimental [32].

Intersection of marginal local false discovery tests. The standard false discovery rate

approach only considers the coefficients estimated from one model, however, in our analysis,

we estimate coefficients from the model fit to ytot and the model fit to yuniq. Yet, we would like

a single decision as to whether the gene is conditionally neutral or not. Our approach is to take

the intersection of the decisions from the two models. That is, only genes that are deemed con-

ditionally beneficial or conditionally detrimental on the basis of both unique counts and total

counts are retained. This approach has the effect of reducing the number of calls and thus the

number of false positives at the expense of false negatives.

Results

We generated simulated data on 4,000 genes under 3 simulated knockout backgrounds and 4

environmental conditions with 5 replicates for each combination of strain background and

environment. We compared the fit of the regularized negative binomial model to a zero-

inflated negative binomial model of the type used by [16] and to a unregularized negative bino-

mial model [11].

Our method was then applied to two independent data sets using different transposon

sequencing methods. First, our method was applied to RB-TnSeq data. This data set explored

the essential genes in many organisms across varying carbon sources, nitrogen sources, and

environmental stress conditions. We selected only the Caulobacter crescentus data set for this

study. The background genotype for all the RB-TnSeq experiments is wild-type so no synthetic

lethality combinations are identifiable. Second, our method was applied to Tn-seq data that

was collected in our lab. Both wild-type and a Δlon knockout strain were used as genetic back-

grounds for library preparation. These strain pools were subjected to heat-shock stress and

canavanine. Each condition was replicated at least two times in biological replicates.
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Simulation experiments

We simulated samples from total of three background strains (g) with four conditions (e) and

each condition having five replicates (r). First the dispersion parameter was sampled from a

Gamma distribution for each condition and for 8 intervals (l) each containing 500 genes. The

hyper-parameters of the Gamma distribution were drawn from uniform distributions as

ag � Uð0; 5Þ; bg � Uð0; 5Þ for g ¼ 1; 2; 3;

ygel � Gammaðag ; bgÞ for g ¼ 1; 2; 3; e ¼ 1; . . . ; 4; l ¼ 1; . . . ; 8:
ð4Þ

The number of unique insertions for each gene was sampled from a negative binomial dis-

tribution with mean parameters shared across groups of 500 genes, μ = (0.5, 1, 2, 4, 8, 16, 32,

64),

yuniqgerl � NBðml; yslÞ: ð5Þ

This simulation provides the number of unique transposon counts for each gene. For every

gene, the total transposon insertion counts were obtained by sampling from a negative bino-

mial distribution with mean μ = 100 and dispersion θ = 1 for each unique insertion site previ-

ously generated

ytotgeri �
X
yuniqgeri

s¼1

NBðm ¼ 100; y ¼ 1Þ: ð6Þ

Regularized negative binomial model reduces over-fitting. Out of 4,000 simulated

genes, there were 82 for which the regularized negative binomial model fitting algorithm did

not converge leaving 3,918 simulated genes for comparison to other algorithms. We observed

that for 3,456(86.67%) genes, the regularized negative binomial model had a better fit as mea-

sured by residual variance compared to a unregularized negative binomial model [11]. Fig 3

shows the mean counts and the residual variance for each of the 3,918 genes for a multi-condi-

tion setup. Clearly, the negative binomial model alone fits poorly for low mean count values.

S1 Fig shows the mean counts and the residual variance for a control condition setup. Even

though the regularized negative binomial model has higher variance in the residual variance

across genes, on a per-gene basis, the residual variance for the regularized negative binomial

model is lower than the zero-inflated negative binomial model and the negative binomial

model for the vast majority (86.67%) of genes.

Sensitivity, specificity, and accuracy. We simulated total counts and unique counts mea-

sures of 4000 genes separately for both control and condition in 20 sets with varying parame-

ters (a schematic of the simulation model is shown in S2 Fig). For the total count measure,

gene sets were simulated in the following way: 4000 genes of control are chosen similarly for

all 20 sets, i.e., from a negative binomial distribution with μ = 1000 and θ = 100. Genes that are

unaffected by the condition (n = 3900) are chosen similarly for all 20 sets, i.e., from a negative

binomial distribution with μ = 1000 and θ = 100. The remaining n = 100 genes that are truly

affected by the condition are chosen from negative binomial distribution with μ = (1, 50. . .,

950) and θ = 100, respectively. The intention behind simulating the “true effect” genes with dif-

ferent mean values was to test the model’s sensitivity. For the unique counts, transposon inser-

tion values were simulated in the following way: 4000 genes of control are chosen similarly for

all 20 sets, i.e., from a negative binomial distribution with μ = 20 and θ = 100. Genes that are

unaffected by the condition (n = 3900) are chosen similarly for all 20 sets, i.e., from a negative
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binomial distribution with μ = 20 and θ = 100. The remaining n = 100 genes that are truly

affected by the condition are chosen from negative binomial distribution with μ = (1, 2. . ., 20)

and θ = 100, respectively. This set of simulation data provides true positive genes and true neg-

ative genes for the sensitivity/specificity analysis.

The sensitivity, specificity, and accuracy analysis of detected genes was performed for the

unregularized negative binomial model, zero-inflated negative binomial model, and regular-

ized negative binomial models. For total counts, regularized negative binomial outperforms

the other two models in sensitivity and specificity. For unique counts, regularized negative

binomial model has higher sensitivity but slightly lower specificity when the condition mean

becomes closer to the control mean. This might be due to fact that regularization of similar

effects may yield few false positives for unique counts. In general, sensitivity and accuracy

drop as the condition mean becomes closer to the control mean for all models. While taking

an intersection of total and unique counts reduces the false positives (higher specificity), it

comes at the expense of false negatives (lower sensitivity) especially as the condition mean

becomes closer to the control mean. These trends are shown in the Fig 4.

Analysis of RB-TnSeq data

We fit the regularized negative binomial model to RB-TnSeq data [8]. We selected all Caulo-
bacter crescentus and Pseudomonas fluorescens experiments and grouped the conditions into

carbon-source, nitrogen-source, and stress conditions. The stress conditions, such as heat-

stress, antibiotic addition, etc, were conducted in rich media (PYE or LB), while the carbon

and nitrogen source changes were conducted in minimal media. The control (wild-type, no

stress) experiments were conducted in rich media. The lack of replicate experiments in this

data set prevents us from inferring high-confidence conditionally beneficial or conditionally

detrimental genes in finer resolution conditions.

Caulobacter crescentus results. For genes with at least one transposon insertion, we

identified 3/38/0 (total/unique/overlap) as conditionally essential in carbon, none in nitrogen,

Fig 3. A simple negative binomial model (left) does not fully capture the variance in genes with low counts. Zero-inflated negative binomial

(center) model overfits count data, attributing almost all variation to strain and conditional effects. As a result, almost every gene exhibits low residual

variance. A regularized negative binomial error model (right) successfully captured the mean-variance relationship inherent in the data independent of

gene counts. Mean-variance trendline shown in blue for each panel. The results shown are aggregated across multiple simulated conditions described.

https://doi.org/10.1371/journal.pcbi.1009273.g003
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and 0/42/0 (total/unique/overlap) in stress as conditionally essential by the criteria described

previously. Fig 5(A)–5(C) shows the conditionally beneficial and conditionally detrimental

genes in each of the conditions considered for this data set (excluding the conditionally essen-

tial genes). Each data point is a gene and genes labeled as red or blue diamonds are called con-

ditionally beneficial or conditionally detrimental by the local FDR criterion. The intersection

of blue and red diamonds shows genes that are conditionally beneficial or conditionally detri-

mental by measures of total insertions and unique insertions. They capture differential fitness

for both gene-wise insertions akin to growth and site-specific variation, giving much more

confidence in functionally annotating a particular genetic component. It is clear that many

genes are called conditionally beneficial (decrease in both total and unique transposon inser-

tions) in both the carbon and nitrogen shift conditions. Our hypothesis is that these genes are

required for general biosynthetic processes necessary to survive in minimal media conditions.

S1 Table lists all the essential, conditionally essential, conditionally beneficial, and condition-

ally detrimental genes found in the RB-TnSeq data of Caulobacter crescentus by measures of

Fig 4. Comparison of sensitivity, specificity and accuracy of total counts, unique counts and intersection for the simple Negative Binomial model

(NB), Regularized Negative Binomial model (RNB), and Zero-inflated negative binomial (ZINB). The figure shows each model’s variation trend of

sensitivity, specificity, and accuracy to changes in condition mean for total counts, unique counts and intersection.

https://doi.org/10.1371/journal.pcbi.1009273.g004
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the total and unique counts. Fig 6(A) shows the intersection of the gene sets identified in these

two conditions and the high degree of overlap and the identities of the genes supports this

hypothesis.

In total there are 21 conditionally beneficial or conditionally detrimental genes by total

insertion counts and 2 conditionally beneficial or conditionally detrimental genes by unique

insertion counts for the stress condition. The two genes that are conditionally beneficial by

unique counts: CCNA_03859 (cenR), known to be critical for envelope maintenance [33], and

CCNA_03346 ruvC, a nuclease important for homologous recombination. Because so many of

the tested stresses involve the cell envelope either directly (ethanol, polymyxin, etc) or indi-

rectly rely on components in the cell envelope (drug transporters), it is not surprising that a

cell envelope maintenance gene like cenR would be important for many of these stresses.

Because many stresses also lead to DNA damage (cisplatin, metals, etc) we reason that the con-

ditional beneficial nature of ruvC stems from its crucial role in resolving crossover junctions, a

critical step for DNA damage repair by homologous recombination [34].

Pseudomonas fluorescens results. For genes with at least one transposon insertion, we

identified 78/0/0 (total/unique/overlap) as conditionally essential in carbon, none in nitrogen,

and 89/0/0 (total/unique/overlap) in stress as conditionally essential by the criteria described

previously. S2 Table lists all the essential, conditionally essential, conditionally beneficial, and

Fig 5. Conditionally beneficial and conditionally detrimental genes in the published RB-TnSeq data set for Caulobacter crescentus NA1000 (A-C)

and Pseudomonas fluorescens FW300-N1B4 (D-F) [8].

https://doi.org/10.1371/journal.pcbi.1009273.g005
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conditionally detrimental genes found in the RB-TnSeq data of Caulobacter crescentus by mea-

sures of the total and unique counts. Fig 5(D) and 5(E) shows the conditionally beneficial and

detrimental as identified by the mode in each of the conditions considered for this data set.

There are two conditionally detrimental genes and one conditionally beneficial gene by both

measures of total insertion counts and unique insertion counts for the stress condition. First, a

conditionally detrimental gene, Pf1N1B4_2858 (CbrB), is a two-component sensor needed for

cells to use a variety of carbon or nitrogen sources [35]. The second conditionally detrimental

gene is Pf1N1B4_1906, a Shikimate 5-dehydrogenase which would influence synthesis of aro-

matic amino acids. The conditionally beneficial gene is Pf1N1B4_2106, also known as OxyR, a

hydrogen peroxide-inducible transcriptional activator which controls expression of oxidative

stress response proteins. The conditional beneficiality of this gene makes mechanistic sense

because many of the stress conditions impact the oxidative stress system.

Analysis of Tn-seq data

We fit the regularized negative binomial model to our own Tn-seq data on Caulobacter cres-
centus experiments described previously. Of the 4,084 genes with at least one transposon inser-

tion, we identified 84/109/64 (total/unique/overlap) as conditionally essential in heat shock,

23/22/13 (total/unique/overlap) in canavanine, 237/251/210 (total/unique/overlap) in Δlon,

211/233/188 (total/unique/overlap) in Δlon+heat shock, and 253/286/231 (total/unique/over-

lap) in Δlon+canavanine by the criteria described previously. We identified 26/53/17 (total/

unique/overlap) as conditionally beneficial or conditionally detrimental in heat shock, 20/22/

10 (total/unique/overlap) in canavanine, 132/2/2(total/unique/overlap) in Δlon, 13/19/9 (total/

unique/overlap) in Δlon+heat shock, and 24/34/14(total/unique/overlap) in Δlon+canavanine

by our modeling framework. S3 Table lists all the essential, conditionally essential, significant

conditionally beneficial, and significant conditionally detrimental genes found in the Tn-seq

data by measures of the total and unique counts. Fig 7 shows the conditionally beneficial and

conditionally detrimental genes in each of the conditions considered for this data set (exclud-

ing the conditionally essential genes). Each data point is a gene and genes labeled as triangles

are called conditionally beneficial or conditionally detrimental by the local FDR criterion.

Conditionally beneficial genes. In wild-type strains under heat stress conditions, we

found six genes that are conditionally beneficial. One of these (metK) is a known substrate of

the chaperone GroEL [36], suggesting that during heat stress prolific misfolding of MetK

could result in a higher need for the metK gene in Caulobacter. Under canavanine conditions,

there is only one gene found beneficial in this condition, the katG gene, a peroxidase-catalase

Fig 6. Venn diagram showing a high degree of overlap between genes identified in carbon and nitrogen shift

conditions in Caulobacter crescentus NA1000 (A) and Pseudomonas fluorescens FW300-N1B4 (B) indicating genes

involved in the shift to minimal media are identified.

https://doi.org/10.1371/journal.pcbi.1009273.g006
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gene that is critical for oxidative tolerance in stationary phase [37]. Neither of these genes

seem to be conditionally beneficial during stress conditions for cells lacking the Lon protease,

suggesting that these mutant strains respond differently to protein homeostasis stresses.

Conditionally detrimental genes. We found twelve genes that were conditionally detri-

mental during heat stress and eight during canavanine stress in wildtype strains. For those det-

rimental during heat stress, we were intrigued to find katG as well, suggesting that while katG
is important for tolerating canavanine induced protein misfolding, its presence confers less fit-

ness when cells are subject to heat stress. We note that during canavanine stress, the dksA gene

becomes detrimental. dksA was identified as a multicopy suppressor of growth defects stem-

ming from loss of the DnaK chaperone and it is known to inhibit ribosome synthesis [38], sug-

gesting a strong role in proteostasis. We speculate that loss of dksA may guard against protein

misfolding stress resulting from canavanine misincorporation, or improve ribosome capacity

which is taxed due to misincorporation of canavanine. Again, while we see similar numbers of

genes being conditionally detrimental in cells lacking Lon under these stress conditions, there

is no overlap in the sets, suggesting a different program in place for stress response.

Validation experiments. Our model has identified clpA to be conditionally detrimental

by both measures of total and unique counts in the wt background under heat stress. To vali-

date this we performed competitive mutant fitness assays comparing the growth rate of wt and

Δ clpA in competition with a wt strain constitutively expressing the fluorescent reporter,

Venus. The competition assay results in Fig 8 shows that heat-stress (42˚C) compensates for

Fig 7. Analysis of transposon sequencing data of Caulobacter crescentus. Shown are the regularized model coefficients for the genetic background

effect for Δlon and the nested environmental conditions: heat shock and canavanine for total count and unique count data.

https://doi.org/10.1371/journal.pcbi.1009273.g007
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the fitness defect caused by the loss of clpA under normal conditions (30˚C) across three bio-

logical replicates.

Conclusion

We have presented a model-based method that uses regularized negative binomial regression

to estimate the change in transposon insertions attributable to gene-environment changes

without transformations or uniform normalization. Simulation experiments indicate that the

regularized negative binomial model performs well without over-fitting. When applied to

RB-TnSeq and Tn-Seq using both total and unique data, the model is able to identify sets of

conditionally beneficial and conditionally detrimental genes for each perturbation that shed

light on their functions and roles during various stress conditions.
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S1 Table. RB-TnSeq data analysis of Caulobacter crescentus. List of essential, conditionally

essential, conditionally beneficial, and conditionally detrimental genes found in the RB-TnSeq

data of Caulobacter crescentus by measures of the total and unique counts.

(XLSX)

S2 Table. RB-TnSeq data analysis of Pseudomonas fluorescens. List of essential, conditionally

essential, conditionally beneficial, and conditionally detrimental genes found in the RB-TnSeq

data of Pseudomonas fluorescens by measures of the total and unique counts.

(XLSX)

S3 Table. Tn-seq data analysis results. List of essential, conditionally essential, significant

conditionally beneficial, and significant conditionally detrimental genes found in the Tn-seq

data by measures of the total and unique count, total counts.

(XLSX)

S1 Fig. Comparison of regularized negative binomial model (right) with a simple negative

binomial model (left) and Zero-inflated negative binomial (center). These results show data

Fig 8. Competitive mutant fitness experiment comparing fitness of wild-type and ΔclpA under heat stress. Y-axis corresponds to the ratio of cells

after 24 hours growth either with no heat stress (30) or after a transient 42 degrees C heat stress (42) compared to the Venus reporter strain. Ratios of

initial mixtures normalized to 1. Error bars indicate the standard error of the mean of each group.

https://doi.org/10.1371/journal.pcbi.1009273.g008
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for only the control and one condition in contrast to the multiple condition results shown in

Fig 3.

(TIF)

S2 Fig. Schematic representation of our simulation framework to test sensitivity, specific-

ity, and accuracy of our model. A total of 20 sets each containing 4000 genes in a control con-

dition setup are simulated for total counts and unique counts separately according to schema

and parameters shown in the figure.

(TIF)
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