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ABSTRACT: Accounting for parametric uncertainty in models is Input Parameter
essential for quantifying the models’ predictive ability. Recently, 6! Uncertainty
approaches have been introduced to estimate parametric uncertainty
in kinetic models while accounting for correlations among energy
parameters. However, correlations have been estimated indirectly and
correlations in entropies have not been accounted for. For surface-
catalyzed microkinetic models of >C2 (more than two carbon-
containing) molecules, which consist of thousands of reaction steps
and intermediate surface species, first-principles density functional
theory (DFT) is costly, and thus, estimation of thermochemistry and
reaction barriers requires surrogate methods of DFT, such as group
additivity and Brensted—Evans—Polanyi relationships, respectively. For
such parametrization, model uncertainty is unclear. This work develops
a framework to overcome these gaps using group additivity and a single
DFT functional. We estimate correlations in parameters of kinetic models and quantify uncertainty for thermochemistry, reaction
barriers, reaction paths, and ultimately reaction rates, accounting also for the contribution of entropic uncertainty. The approach is
illustrated on propane combustion and ethane oxidative dehydrogenation reactions.
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B INTRODUCTION It has recently been realized that energies of species and
reactions are correlated, and these correlations affect model
prediction.”*>* Medford et al.”* examined the ammonia
chemistry using the BEEF-vdW (Bayesian error estimation

identify catalyst properties that optimize quantities of interest functional Wl,th van der Waal§ correlation) func.tlonal, Whlc_h
(Qol) for discovery of new catalysts, and link catalyst offers‘ an estimate of the var}ance of t'he relative electr'omc
properties to reactor design’"'' MKMs depend on both energies calculated over a fa.rnlly of functlf)nals. The one-sigma
thermodynamic and kinetic parameters (called collectively variance among functionals in the :;1lds.01tpt10n energy was found
hereafter as model parameters or simply parameters) for all to be. 32 k.cal/ mol. Sutt.on etlal. 1An]ected results. from five
species and reactions in a reaction network 1217 Uncertainty f1-1nct10nals into a Ba)'resmn prior estimate postula.tlng a one-
in these parameters and its propagation to Qol's become sigma energy un?ertalnty of § kcal/mol. Co.rrelétlons alt'ered
essential in assessing the predictive ability of a model and the most 1f1ﬂuent1al parameter;and k.ey reaction 1ntermed1at.es
finding ways to reduce uncertainty. and reactions. Walker et al.”™” studied the water—gas shift

MKM parameters of surface-catalyzed models are difficult to reaction also using four functionals and found that the reaction
determine experimentally. Instead, DFT or semi-empirical path shifts depending on the functional. These earlier works
group additivity (GA) schemes are employed to estimate underscored the fact that failure to account for correlations

thermodynamic properties. DFT combined with transition

First-principles microkinetic models (MKM) link ab initio
density functional theory (DFT) data to reactor simulation and
design.'~” MKMs can inform the design of experiments,

state theory (TST) or semi-empirical Bronsted—Evans— Received: May 30, 2021
Polanyi (BEP) relationships are used to determine reaction Revised:  July 26, 2021
barriers and eventually kinetic parameters.'”"” DFT error Published: August 11, 2021

affects model accuracy. Additionally, semi-empirical methods,
which are often linear fits of DFT data, add errors due to
linearization.
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misstates the variability of the reaction rates and can
misidentify the rate-controlling reaction step(s). Work by
others,”¥”> following a similar approach, reached similar
conclusions.

The variance in parameters in prior work using the BEEF-
vdW functional or multiple functionals represents systematic
differences between functionals, and the estimated correlations
do not represent the actual correlations between species on the
same catalyst with the same functional. This is because the
species energies of a reaction network form a one-dimensional
vector, and a method for estimating correlations (typical for
2D matrices) is lacking. Additionally, previous studies
accounted only for correlations in electronic energies and
excluded entropy. Finally, estimation of model parameters with
multiple functionals requires significant resources that become
impractical for large reaction networks.

The purpose of this work is to develop a scalable statistical
framework to estimate correlations in both enthalpic and
entropic parameters and propagate them in a MKM model.
Specifically, this work enables one to perform uncertainty
quantification for the same functional without invoking
multiple functionals (a task that is expensive and limited in
data due to the small ensemble of functionals available) or
interpolative schemes, such as BEEF-vdW. Notably, it does so
for both energy and entropy terms. Furthermore, it enables
uncertainty quantification for large reaction mechanisms,
which has been unattainable by previous works relying on
expensive DFT calculations. The framework developed can be
extended to include parametric uncertainty arising from other
relationships, such as linear scaling relations, BEPs, and
adsorbate—adsorbate interactions.

B METHODS

DEFT enthalpic and entropic correlations cannot be estimated
on a catalyst using a single functional. We propose to
overcome this limitation using GA, as explained below. The
GA method can parameterize the thermochemistry of large
molecules and/or reaction networks. GA was introduced by
Benson”® for gas molecules and was only recently extended to
adsorbed species on surfaces.”” GA relies on graph theory
defining each molecule as a collection of subgraphs (hereafter
referred to as groups) with a frequency of occurrence for each.
The values assigned to GA groups (f#) are determined from the
DFT-calculated thermodynamic properties (Y1) of a (training)
set of molecules via linear regression by minimizing the
difference between the GA- and DFT-estimated parameters.
Entropic contributions due to finite temperature are included
using vibrational frequencies and statistical mechanics, i.e.,
species electronic energy and frequency data are converted into
species enthalpy, entropy, and free energy data sets. The
entropic uncertainty contributes ~12% of the model root-
mean-square error (RMSE) to Gibbs free energy. This impacts
equilibrium calculations and reverse reaction rates (Table 1).
We expect the entropic contribution to uncertainty to be larger
for reactions with lower barriers and at higher temperatures.

Importantly, we propose that GA provides a natural
framework to estimate correlations among groups from the
training molecule-group configuration matrix X1 using stand-
ard statistics and linear algebra. X describes the frequency of
occurrence of groups in molecules, and the subscript T stands
for training, as demonstrated in Figure 1.

The configuration matrix is usually an overdetermined
matrix with many more molecules (samples) than groups

Table 1. GA Model Uncertainty (pGrAdd:GRWSurface2018
Database)

thermodynamic property (298.15 K) RMSE
enthalpy 4.53 kcal/mol
entropy 2.07 cal/mol K
free energy S.15 kcal/mol

(parameters). The thermodynamic estimated group contribu-
tion vector (/) is determined via ordinary least squares (OLS)
by the dot product of the pseudo-inverse of the configuration
matrix (X7) with the vector of thermodynamic values (Yr) (eq

1):
XY = B

B = XY, X7 = pseudoinverse of X

Xt = (XLF-XT)_I-XZr ordinary least squares (OLS)

(1)
The model variance for each thermodynamic property is
determined by comparing the predicted thermodynamic
property to the DFT-calculated property of each training
molecule and dividing the mean square difference by the
number of degrees of freedom (eq 2):

I(Ty, — Hp)¥; I

e

m—g-1 )
where &7 is the unbiased estimator of model variance; YT is the
estimated thermodynamic property of the training molecules;
(m — g — 1) is the number of training model degrees of
freedom, in which m is the number of molecules (samples), g is
the number of groups (parameters), and —1 accounts for
computing the intercept; and Hr is the “hat” matrix (the hat or
projection matrix maps the vectors of observed values to
vectors of predicted values Yp,.q = HyYr) as defined above.
The squared L2 norm of the numerator gives the sum of the
squared estimate of errors (SSE).

Equations 1 and 2 are basic statistics. Properly accounting
for correlations in the training data allows us to assign a
portion of the model uncorrelated variance to each group,
avoiding overstating the variance for any group. The impact of
correlated data can be easily demonstrated in a simple bivariate
example (see Supporting Information: Correlated Data:
Bivariate Example).

The correlations in GA define a multivariate problem for the
distribution of thermodynamic input parameters. The dis-
tribution of thermodynamic properties Y, for a given set of
molecules can be stated as the conditional probability of Yy,
given Xp, X, and Yy

P(YIXp, X, ¥p) (3)

where X, is the molecule-group configuration matrix of a set of
molecules that one wishes to predict and Xy, Yr are the
molecule-group configuration matrix and thermodynamic
values of the training set molecules. This distribution can be
expanded to

P(%IXr, ¥, Xp) = P(YPHA{P) éRandom)P(?Ple! p)
P(BIX 1, Yr)P(&ongom X1 Yr) 4)
where
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Figure 1. Example of groups and their frequency of occurrence in propene and butane (note that the group additivity scheme employed here is
slightly different from that of Benson’s) shown in the top tables and the molecule-group configuration matrix of butane and propene shown at the
bottom. The notation follows the typical group additivity one, e.g., C(C)(H)3 implies a C atom connected to a C atom and three H atoms. [d]

stands for double-bonded C.

YP = XPﬂ + ERandom = XPﬂ + Egit + €Random

= XPﬂ + €Random + (gFit + £.RandomEs'cima'cion)
YP = Xl’ﬂ + (eFit + eRandomEstimation)

S YP = YP + é\‘Random (5)
in which § is the estimated thermodynamic group contribution
and € and € are the sources of actual and estimated error,
respectively. To determine the probability distribution function
(PDF) of thermodynamic properties (Yp), we estimate the
error distribution (the RMSE of a thermodynamic property)
resulting from the OLS fit of our training data using a
bootstrap resampling method. We estimate thermodynamic
properties using the GA scheme of the pGrAdd software and
database (pGrAdd:GRWSurface2018)* that was trained using
DFT data by Gu et al”® This training set comprises 164
molecules containing C (C1—CS), H, and O described by 66
groups. For this published data, the Vienna ab initio
Simulation Package (VASP)* was used with the Perdew,
Burke, and Ernzerhof (PBE) exchange-correlation functional
and the dDsC dispersion correction’””' to determine
electronic energies and vibrational fre%uencies. The projec-
tor-augmented wave function (PAW 7% method was used to
treat core electrons and a 400 eV cutoft for valence electrons. A
4 X 4 four-layer unit cell is employed with the bottom two
layers remaining fixed, while a Monkhorst—Pack mesh of 3 X 3
X 1 k-points is used to integrate the Brillouin zone.”> We
repeatedly resample 9/10 of those training molecules, use an
OLS fit (described in detail in Supporting Information: Group
Additivity) to compute group contributions, and then
determine the RMSE of the predicted thermodynamic
property vs DFT computed using the remaining 1/10 of the
training molecules.>® This way, we estimate the mean, variance,
and distribution of the RMSE for each thermodynamic
property. Results are compared to a normal distribution,
using the predicted enthalpy as an example (Figure 2). The
error distribution is consistent with a normal distribution.
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Figure 2. Error distribution of the pGrAdd:GRWSurface2018

database and scheme. Histogram (purple) is the result of a bootstrap

resampling to determine the enthalpy RMSE distribution vs a normal
PDF (dark violet), validating that the error is normally distributed.

We can also subject the data set to an Anderson—Darling
(AD) goodness-of-fit test vs a normal distribution.””** AD and
other goodness-of-fit tests fail with very large data sets, like the
one we show here, so we need to examine subsets of this data
and use the collective results to assess normality. Using a
sample size of 100 points (largest sample size that does not
expose the sample size weakness of AD) and drawing multiple
samples (1000) from the data set results in over 95% of the
samples testing as normal with the AD test (p-value of the test
> 0.05). This allows us to conclude that the GA fit errors are
normally distributed and finalize the multivariate distribution.
Assuming the distribution is Gaussian, the multivariate normal
distribution of Y} is then estimated as

P(%IXr, Y, Xp)
~ N(E(XPﬁ + éRandom + £.Fit,RE)
] Var(XPﬂ + é:Random + 6.Fit,RE))

P(Ypler YT) Xp) ~ N(Xpﬁx 52(INP + Hp)) (6)

https://doi.org/10.1021/acs.jpcc.1c04754
J. Phys. Chem. C 2021, 125, 18187—18196


https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.1c04754/suppl_file/jp1c04754_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04754?fig=fig2&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c04754?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

The Journal of Physical Chemistry C pubs.acs.org/JPCC
4 N\ 4 . N\
Determine
Calculate Heat of .
Reaction —{ Forward Reaction [—
Adjust Surface i
Calculate Gas and - ) \ /N E, via BEP J
. Species Energies
Surface Species
. for Lateral p N N
Thermodynamics Interactions Calculate Determine
Reactions Gibb’s | Equilibrium —
\___FreeEnergy ) |__ Constant (K,,)

Compute Lateral
Interaction based
on New Surface
Coverage

Compute
Forward and
Reverse Reaction |+«
Constants and
Rates

Solve for Gas and
Surface Species
Concentrations

Figure 3. Workflow demonstrating MKM parameterization and solution with the lateral interactions recursive relationship shown in red. When
nonlinear algebraic or differential-algebraic solvers are used, all quantities are computed simultaneously rather than recursively.

where ﬁ is the estimated thermodynamic group contribution,
X, Y are the configuration and thermodynamic properties of
the training molecules, X, is the configuration matrix of the
molecules we wish to predict, €, & represent the various sources
of actual and estimated error, and the hat matrix is Hp =
Xp(X1Xp) !X, (see Supporting Information: Multivariate
Normal Distribution Derivation for GA). The hat matrix, Hp,
contains the correlation matrix X1Xr, a symmetric matrix that
represents the variance contribution of each group to the
model overall variance in the diagonal elements and the
covariance, variance shared between pairs of groups, in the off-
diagonal elements. The correlation matrix ensures that each
group is assigned a variance that represents its contribution to
the overall model variance without double-counting variance it
shares with another group.

We now use GA to estimate the unperturbed thermody-
namic properties of a set of molecules, a sample from a
multivariate zero-mean distribution representing the variance
of each molecule (model variance, ?7%%}1]5) computed via

bootstrap sampling), and sum the two:
N(XPBr &Z(INP + HP))(CP,H,S)

— A A2
= XPﬂ(CP,H,S) + N(0y,, G(CP,H,S)(INP + HP))(CP,H,S)
unperturbed GA zero-mean multivariate normal distribution

of molecule thermodynamic value uncertainty

7)

Translating a distribution of MKM input parameters into a
distribution of MKM Qols analytically is, in general, not
possible as it depends on several nonlinear relationships.
Uncertainty in species free energies translates into uncertainty
in reaction thermochemistry (enthalpy, entropy, free energy,
and equilibrium constant), reaction barriers through BEP
relationships, and reaction rate at the MKM level. The
following equations illustrate how the distribution of
thermodynamic values (H,, S, G; + € peur) impacts these

Qols:

thermodynamic values

TOF ¢ 5/RT (8)
Ea,i = ¢i(Hﬁi + gi,Lateral Interactions + ei,Perturb) + 14 {BEP}
)

—AG+€; 1 ateral Interactions T &, Perturb /RT

Keq,i =e (10)
In addition, lateral interactions (&;1,eral mnteractions) Modify the
energy of each adsorbed species based on surface coverages of
all species. This introduces a nonlinear recursive relationship.
Lateral interactions are a function of surface coverage and the
enthalpy change due to the coverage.

Si,Lateral Interactions — f (91’ AHi,interaction) (1 1)

Surface coverages are a function of the species binding energy
as well as the concentration of species in the gas phase. The
species binding energy is also a function of the lateral
interaction.

01' =f(Hi + gi,H,LateraI Interactions + Si,Perturb’
Si + gi,S,LateralInteractions + Si,Perturbl Ci,gas) (12)

Finally, the species-gas concentrations are a function of the
reaction rates and equilibrium constants and, in more complex
reaction mechanisms, also a function of the reaction path.

C; .. = f(TOF, reaction path) (13)

i,gas

The workflow of the model is demonstrated in Figure 3.
Equations 6 and 7 along with eqs S16—S19 form the base for
our sampling and demonstrate how the uncertainty and
correlations are accounted for. Monte Carlo stochastic
sampling is used to create a family of thermodynamic input
parameters built from the vector of expected values Xpf
summed with repeated samples from the model’s zero-mean
covariance distribution A(0y, &*(Iy, + Hp)). Each

thermodynamic set determines a set of reaction thermochem-
istry and rate constants that are input into the MKM to find a
solution. The distribution of thermodynamic parameters leads
to a distribution of MKM calculations and Qols. The
distribution of Qols represents the uncertainty of the MKMs.

B DEMONSTRATED EXAMPLES

Two reaction networks were chosen to demonstrate error
propagation. The first is the oxidative dehydrogenation of
ethane on a Pt(111) surface. The reaction network consists of
295 elementary reactions generated using RING (a rule-based

https://doi.org/10.1021/acs.jpcc.1c04754
J. Phys. Chem. C 2021, 125, 18187—18196
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Figure 4. (a) Correlation heatmap between the 66 groups in GA training set used to determine group thermodynamic property contributions. The
values are symmetric: corr(X, Y) = corr(Y, X). (b) Distribution of the Gibbs’ free energy for a typical elementary surface reaction step. Mean value
(dark-dash), 95% prediction interval (light dotted), and distribution of values (blue—purple contour map).

Table 2. Overall Reactions in Demonstrated Examples of Propane Total Oxidation and Ethane Oxidative Dehydrogenation on

a Pt Catalyst
propane oxidation
C;H; + SO, =2 3CO, + 4H,0 (oxidation)
CO + H,0 = CO, + H, (water-gas shift)

ethane oxidative dehydrogenation
C,H, + 20, = 2CO, + 3H,0 (oxidation)
C,H¢ = C,H, + H, (dehydrogenation)
C,H¢ + H, = 2CH, (hydrogenolysis)
C,H, + 2H,0 = 2CO + SH,
C,H, + 2H,0 =2 2CO + 4H, ; (reforming)
CH, + H,0 = CO + 3H,

CO + H,0 = CO, + H, (water-gas shift)

reaction network generator).”” The thermodynamic properties
of the 45 surface species are estimated using GA and are the
source of our parametric input uncertainty, while nine
additional surface species’ thermodynamics is estimated using
DFT because these are small species that are groups by
themselves; using DFT values ensures accuracy. Eighteen gas
species thermodynamics are obtained from NIST.*” The
second is the oxidation of propane, which consists of 1,315
elementary reactions obtained using RING.”” The thermo-
chemistry of the network consists of 147 surface species
estimated using GA, 9 surface species using DFT, and 35 gas
species using NIST.*” Reaction barriers are determined from
BEP relationships from heats of reaction.*'

GA group contribution estimates were based on the DFT
zero Kelvin electronic energy and vibrational data,”® which was
converted to finite temperature thermodynamic quantities
using the statistical mechanics converter in the Python
Multiscale Thermochemistry Toolbox (pMuTT).” GA
group contributions, the group definition scheme, and the
automated surface species thermodynamic value estimation
were managed using the Python GA software (pGrAdd)."”
MKMs were executed with the Surface Chemkin software™
with thermodynamic input files created using pMuTT. Pre-
exponential factors for all reactions are a first-order estimate
and normalized for the catalyst surface density.

ky

A= ——
bt (14)

where kg is Boltzmann’s constant, h is Planck’s constant, and I
is the catalyst site density (see Supporting Information:
Chemkin Input Files). The pre-exponential does not include

18191

a temperature term as Chemkin includes a separate
exponentiated temperature term in the rate constant.

A total of 5000 perturbed thermodynamic input files were
generated for each reaction network and MKM was solved for
each at a range of 36 temperatures and a constant reactant feed
ratio to assess conversion, turnover frequency (TOF), and
apparent activation energy. The same calculations were
performed at constant temperature for nine different reaction
feed ratios to assess hydrocarbon and oxygen reaction orders.

B RESULTS AND DISCUSSION

If the GA groups were independent of each other, the
correlation matrix would consist of diagonal elements of value
one and off-diagonal elements of value zero. In essence, the
correlation matrix (Figure 4a) provides physical insights into
the independence of subgraphs. These correlations are mostly
low, as one would anticipate from a robust group additivity
scheme, where each group contributes maximum information,
and the groups are not correlated to each other. Nonetheless,
there are islands of higher correlation that they are properly
accounted for using the covariance matrix described earlier.
This matrix, using the GA overall model uncertainties (Figure
4a), also properly assigns both a mean thermodynamic
contribution to each group and a variance representing the
uncertainty contribution from each group. Surface species
thermodynamic values as a function of temperature are now
represented in the model as normal distribution, and,
consequently, the thermochemistry of elementary reaction
steps that includes those surface species is also normally
distributed (Figure 4b). The resulting Qol distribution from
the MKMs is though unknown. The uncertainty in the

https://doi.org/10.1021/acs.jpcc.1c04754
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dimensionless free energy (AG/RT) of a chemical reaction is
amplified at low temperatures due to a temperature term in the
denominator. Even at high temperatures, where the
uncertainty is significantly lower, the range is relatively large,
creating significant variation in the equilibrium constant and
the backward rate constant. Improving the accuracy of
thermochemistrsy is a critical task. Physics-based** and machine
learning-based** approaches are suitable for this task but are
outside the scope of this work.

The conversion as a function of temperature shows some of
the complexity as a normally distributed thermodynamic input
parameter transforms in the model. The complete oxidation of
propane (Table 2) is a simpler reaction with propane
converted to combustion products with near 100% selectivity
(Figure Sa). Many of the solutions are concentrated near zero
and near 100% conversion, suggesting that once this reaction
initiates, it completes rapidly (this is typical for combustion
reactions). Consequently, the 95% prediction interval*®

N (%, — %)
PIh = yh + t(a/z,n—z) MSE|1 + ; + 72 (x ~ j)z

(1)

often spans the entire range from 0 to 100%. Here y, is the
model predicted value at h, ¢(,/, ,—,) is the critical value from a
2-sided Student’s t-distribution at a total tail area of a (for a
95% prediction interval @ = 0.05) and degrees of freedom n —
2 (n is the number of observations), MSE is the mean square
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error between the predicted ¥, and the observed gy erveqs %; are
the observed x-values, X is the mean observed x-value, and x;,
the x-values at the predicted ¥,

The oxidative dehydrogenation of ethane (Table 2) is more
complex with multiple reaction regimes. The reaction starts
with complete oxidation, yielding mostly combustion products,
followed by a dehydrogenation reaction and a competing
hydrogenolysis reaction. If allowed to continue long enough,
this mechanism shifts to reforming reactions that will consume
the ethylene produced in the dehydrogenation regime. The
resulting conversion as f(temperature) plot shows some of the
complexity. In the first regime of oxidation, O, is quickly
consumed, converting 17.5% of the ethane (Figure Sb). The
prediction interval and density of solutions at 0 and 17.5%
conversion are very similar to propane oxidation. The
prediction interval is very wide at the point where most
solutions have consumed the oxygen (~750 K). A key Qol is
the TOF. Knowing that the reaction energies are normally
distributed and exponentiated in the equilibrium constants, the
semi-log plot of TOF vs 1000/T (Figure 6) provides an
ensemble of solutions in an Arrhenius plot.

The straight-line anticipated from an Arrhenius plot and the
symmetric distribution of values around the mean suggest this
data is normally distributed at a temperature. The oxidative
dehydrogenation of ethane again shows multiple regions of
linear relationships consistent with the multiple reaction
regimes. It is interesting that the mean result and the
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unperturbed solution are different. This is a consequence of
the nonlinear recursive relationship between parametric
uncertainty and distribution of Qols (for further discussion,
see Supporting Information: Nonlinear Recursive Relation-

ships).

n,
< 1 (V2 2
P % P(5)gen = 2 0=
i=1 270, (16)

The distribution of log(TOFs) at a fixed temperature (Figure
7) is predicted to be normally distributed, given that the
apparent activation energy is normally distributed and
exponentiated. The propane distribution of log(TOFs) in
Figure 7a is normal (by inspection vs an ideal normal
distribution and AD normality test) with a 1-sigma uncertainty
of about +1 order-of-magnitude in the reaction rate. The
ethane TOF (Figure 7b) is not as clearly normal, having a skew
of —0.687 and kurtosis of 1.2, preventing the use of a simple
mean and variance applied to normal distributions.”” We
tested a wide range of other distributions, but the goodness of
fit was unacceptable. The Gaussian mixture model was the best
alternative in situations where a single Gaussian or an
alternative distribution were inadequate. Alternatively, we can
consider a Gaussian mixture model**** (eq 16) to fit multiple
(n.) normal distributions within the observed distribution
P(x)os The Gaussian mixture model creates a probability
distribution function (pdf) through a combination of Gaussian
distributions. This is common practice in, for example,

18193

deconvoluting spectra. The idea behind approximating the
histogram with a Gaussian mixture is to find the best-fit
parameters (weights, means, and covariances) that ensure the
best approximation, that is P(x),p,0x weighted sum of an
optimum number of Gaussians (n.). Any number of
distributions can be assumed, but overfitting can occur if too
many are used. Evaluating the Bayesian information criteria
(BIC) loss, which balances fit and model complexity (n.), over
a range of n_ values and selecting the lowest loss allows us to
select the optimum number of Gaussians. We achieve this
through the Python scikit-learn machine learning library
sklearn.mixture. GaussianMixture,*’ using an expectation—
maximization (EM) algorithm to accomplish the fit and BIC
loss resulting in means (y;), standard deviations (o;), and
weights (®;) for the contributing distributions. As the resultant
data is now characterized via a combination of normal
distributions, we can easily identify the dominant peak and
apply mean and variance measures as for any normal
distribution.

In Figure 7b, we fit two Gaussians for the ethane ODH,
dominant one with parameters y; = —0.28, 6, = 0.77, and @,
0.75, and a secondary one with y, = —1.69, 6, = 1.19, and w,
0.25. The uncertainty in the dominant reaction rate
distribution is close to but lower than +1 order-of-magnitude.
This uncertainty in reaction rate in both reactions considered
in this work is slightly lower but consistent with previous
works; the specific numbers depend on conditions, e.g,
temperature, and probably less so on chemistry, given that a

)
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comparable level of uncertainty has been seen in several
different reactions here and in previous works. The good fit
obtained with just two Gaussians indicates that most
combinations of parameters lead to a dominant reaction rate,
but there are also combinations of parameters that result in a
mean reaction rate that is lower by about 2 orders of
magnitude.

The distribution of apparent activation energies for both
example mechanisms displays right skew and kurtosis >0
inconsistent with normal distributions. Identical analysis on the
apparent activation energy (Figure 8) shows dominant peaks
encompassing ~70% of the observed data. The one standard
deviation uncertainty is 4—6 kcal/mol, with additional normal
distribution at higher values resulting in a positive skew to the
composite distribution. We believe that the higher mean
apparent activation energy corresponds to the lower mean
TOF, shown more clearly in Figure 7b for ethane oxidation.
The predicted range of uncertainty in activation energies is
important for future comparison to experimental data.
Furthermore, and surprisingly, the two mean apparent
activation energies of ~26 and ~34 kcal/mol for propane
oxidation and ~28 and ~42 kcal/mol for oxidation of ethane
underscore the wide spread in the mean apparent activation
energy predicted by a model and rationalize that combination
of parameters may explain the large difference often seen from
experiments. We hypothesize that small changes in the catalyst
could activate different pathways, resulting in drastically
different apparent activation energies. Further work is needed
to exploit this physics deeper.

Reaction orders (Figure 9) exhibited much lower variance
than other Qols with one-sigma uncertainty ranging from
+0.006 to 0.03, which is a very low uncertainty. We have
advocated in recent years that the reaction order is one of the
most sensitive kinetic signatures, e.g, ref 50. The tight
uncertainty predicted and the model results herein further
support this proposal. The dominant peak based on a Gaussian
mixture model still encompasses about 70% of the observed
data except for the oxygen reaction order in the propane total
oxidation mechanism (Figure 9a), which contained all of the
data. While the reaction orders for the oxidative dehydrogen-
ation of ethane (Figure 9b) have a very small variance for the
dominant 70% of the data, the remaining 30% spans a wide
range from order 0 to 1 (difficult to discern at the graph’s
scale). The oxygen reaction order is centered around zero for
both hydrocarbons, consistent with most experimental data on
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hydrocarbon oxidation, e.g., see ref 51 and references therein.
The dominant ethane reaction order is ~1, whereas that for
propane is ~0.4. The former is consistent with whereas the
latter is lower than most experimental data; see ref 51 and
references therein, the reason for the lower reaction order for
propane is unclear but beyond the scope of interrogating the
microkinetic model against experimental data.

The framework we described allows one to assess the
uncertainty in each MKM Qol, expressing each as a
distribution of solutions. This also allows meaningful
comparison to experimental data by comparing their respective
95% prediction intervals to determine if the model and
experimental data are statistically indistinguishable or not.

B CONCLUSIONS

This work has established a framework for assessing error
propagation in surface-catalyzed microkinetic models (MKMs)
by examining error propagation from uncertainty and
correlations in model parameters. The framework bypasses
limitations of prior work, which relied on multiple functionals
or the BEEF functional and in essence, provided correlations
among functionals rather than those between species and
reaction parameters. We accomplished this task using the well-
established framework of group additivity (GA) and by
assigning not only a thermodynamic value to each subgraph
or group, as is typical for GA works, but also a variance and the
associated correlation among groups (the correlation among
groups is small by design; groups should be as independent as
possible). Through this framework, entropic correlations are
naturally included for the first time. Importantly, since the GA
scheme is transferable and explainable, in machine learning
terminology, it allows estimation of error for large molecules
and large reaction networks from a rather small training set of
molecules/species whose thermodynamics is computed via
DFT. We demonstrated the framework to ethane oxidative
dehydrogenation and propane total oxidation on Pt.

The exponentiation of thermodynamic and kinetic quantities
allows us to assume normal distributions for a logarithmic
transformation of those quantities. Standard statistical analyses
can then be used to assess the distribution of quantities of
interest (Qols) and estimate Gaussian mixed models for more
complex composite multiple normal distributions. While the
exact transformation of input parameter uncertainty appears
reaction-dependent, there are similarities between the two
mechanisms. An input uncertainty of 4.5 kcal/mol in
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enthalpies and 2.1 cal/mol K in entropies (several studies
suggest such energy value for the DFT uncertainty) results in
~=1 (or less) order-of-magnitude uncertainty (one standard
deviation) in the TOF. Apparent activation energies possess an
uncertainty of 4—6 kcal/mol (15—20%), while reaction orders,
with very low variance, are a very reliable Qol. These
uncertainty intervals allow one to compare models with
experimental data and assess if the prediction intervals overlap.
Finally, bimodality in reaction rates, apparent activation
energies, and reaction orders is possible for certain
combinations of parameters. It is important to note that this
study examined only the uncertainty in the thermodynamic
input parameters as understood through GA. MKMs depend
on a variety of parameters as encountered in BEPs, LSRs, and
lateral surface interactions as well as model uncertainty
regarding the reaction mechanism. A complete assessment of
MKM uncertainty would need to consider all of these
uncertainties but could be performed with the proposed
framework.
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